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Frobenius–Padé approximants of piecewise analytic

functions. II

Manuel Bello-Hernández1

Dpto. de Matemáticas y Computación, Universidad de La Rioja,
Edificio Cient́ıfico Tecnológico, Calle Madre de Dios, n. 53,

26006 Logroño, Spain

Abstract

We prove the convergence of the Frobenius–Padé approximants for a class
of piecewise analytic functions which includes |x|α with 0 < α < 2. The
measures considered for the expansions are symmetric in [−1, 1].

1. Introduction

When a function has discontinuities, as is the case in physical problems
with shocks or in image compression, the convergence of a Fourier series or an
expansion in a basis of orthogonal polynomials is poor or does not take place.
Several methods have been developed to overcome these problems (see, for
example, [1] and references therein). One approach is to use Frobenius–Padé
approximants (see [2], [4], [5], [6], [8] and [9]). Unfortunately, very little
is known about the convergence of these rational functions when there is a
singularity of the approximated function in the interior of the interval where
the measure used in the expansion is supported (see [3]).

In this note we prove the convergence of the Frobenius–Padé approxi-
mants for a class of piecewise analytic functions including all functions of
the form |x|α with 0 < α < 2. The expansions are given in terms of or-
thogonal polynomials with respect to a symmetric measure in [−1, 1]. As a
consequence, we obtain the convergence of Frobenius–Padé approximants for
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|x|α, −1 < α < 0, in the spherical metric. This paper is a sequel of [3]. The
rational approximation of |x|α has been a subject of major interest in the
recent past (see, for example, [11], [13], [14] and the references therein).

Let f : [−1, 1]→ R be an even function such that its restriction to (0, 1],
f |(0,1], has an analytic extension to {z ∈ C : <(z) > 0}, which we also denote
by f , that satisfies the following conditions:

(i) For x ∈ (−∞, 0) there exist

lim
z→x+i0

f(
√
z) =: f+(x), lim

z→x−i0
f(
√
z) =: f−(x),

when z approaches x from the upper or lower half-plane, respectively.
Hereafter, we take the principal branch of the square root in C\(−∞, 0].
We assume that the previous limits are uniform on each compact subset
of (−∞, 0); that is, for each compact subset K ⊂ (−∞, 0) and ε > 0
there exists δ > 0 such that for x ∈ K,=(z) > 0, |z − x| < δ we have

|f(
√
z)− f+(x)| < ε

and the analogous relation for f−(x).

(ii) If f ∗(x) := (f+(x)− f−(x))/i for x ∈ (−∞, 0), then

f ∗(x) > 0 and f ∗(x) ∈ L1((1− x)−2dx).

(iii) f(0) = 0 and
lim
ε→0

sup
t∈(−π,π)

|f(ε eit/2)| = 0.

(iv) We have the following behavior at infinity

lim
R→∞

inf
t∈(−π,π)

|f(Reit/2)| =∞, lim
R→∞

sup
t∈(−π,π)

|f(
√
Reit)|
R

= 0.

(v) There exist constants α1, α2 in (0, 1) such that

α1π ≤ arg(f+(x)) ≤ α2π, −α2π ≤ arg(f−(x)) ≤ −α1π.

for all x ∈ (−∞, 0), where the argument function is the main branch
in (−π, π).
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Let A denote the class of all functions f which verify the previous condi-
tions. Observe that if 0 < α < 2, then |x|α ∈ A, and we have

lim
z→x±i0

zα/2 = |x|α/2(cos
απ

2
± i sin

απ

2
), x ∈ (−∞, 0).

Notice also that a linear combination with positive coefficients of functions
|x|α, α ∈ (0, 2), is also in A.

Let β be a nontrivial positive Borel measure on R with finite moments;
that is, xj ∈ L1(β) for all non negative integer j. Let {ϕj} denote the
sequence of orthonormal polynomials with respect to β. Given g ∈ L1(β) a
Frobenius-Padé approximant of order n of g with respect to β is a rational
function Πn = Pn/Qn where Pn and Qn are polynomials of degree ≤ n,
Qn 6≡ 0, and

∫
(Qn(x)g(x)− Pn(x))ϕj(x) dβ(x) = 0, j = 0, 1, . . . , 2n. (1.1)

This means that the Fourier coefficients of Qn(x)g(x) − Pn(x) with respect
to {ϕj : j ≥ 0} are zero for j ≤ 2n. Thus, Pn(x) is the Fourier partial sum
of order n of Qng with respect to β and

∫
Qn(x)g(x)ϕj(x) dβ(x) = 0, j = n+ 1, n+ 2, . . . , 2n,

which is a homogeneous system of n linear equations in the coefficients of
Qn. Hence, for each n, a Frobenius-Padé approximant of g always exists. In
general it is not unique. However, if for a given n all the solutions of the
homogeneous system of equations which determines Qn have deg(Qn) = n
then the approximant of this order is unique.

Theorem 1.1. Let µ be a finite symmetric positive Borel measure on [−1, 1]
whose support has an accumulation point different from 0. Given f ∈ A let
Πn(f) denote the Frobenius-Padé approximant of order n of the function f
with respect to µ. Then

lim
n→∞

Πn(f ; z) =

{
f(z) if <(z) > 0,
f(−z) if <(z) < 0,

uniformly on compact subsets of C \ {z : <(z) = 0}, where we also denote by
f the analytic extension of f |(0,1] to {z ∈ C : <(z) > 0}.
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Corollary 1.2. Let µ be a measure satisfying the conditions of Theorem 1.1
and let f ∈ A be such that 1/f ∈ L1(µ). Let Πn(1/f) denote the Frobenius-
Padé approximant of order n of the function 1/f with respect to the measure
µ. Then

lim
n→∞

Πn(1/f ; z) =

{
1/f(z) if <(z) > 0,
1/f(−z) if <(z) < 0,

uniformly on compact subsets of C \ {z : <(z) = 0}.

In Section 3 we prove Theorem 1.1. Its proof is reduced to the study of
Frobenius-Padé approximants of a function given on the interval (0, 1) and
is based on the orthogonality conditions defining Frobenius-Padé approxima-
tion as well as the behavior of the points where Qn(z)f(z)−Pn(z) equals zero.
Section 2 includes several properties of the Frobenius-Padé approximants for
functions in class A.

2. Properties of the approximants

Let µ be a nontrivial finite symmetric positive Borel measure on (−1, 1)
and let µ(

√
x) denote the image measure of µ on (0, 1) by the function

√
x.

Lemma 2.1. Let µ be a nontrivial finite symmetric positive Borel measure
on (−1, 1). Let f ∈ A. The Frobenius-Padé approximant pn/qn of order n of
the function f(

√
x) with respect to µ(

√
x) on (0, 1) is unique. The Frobenius-

Padé approximant P2n/Q2n of order 2n of the function f with respect to µ
satisfies P2n(x) = pn(x2), Q2n(x) = qn(x2). Moreover, there exist exactly
2n+ 1 distinct points z1, z2, . . . , z2n+1 in (0, 1) such that

qn(zj)f(
√
zj)− pn(zj) = 0, j = 1, 2, . . . , 2n+ 1. (2.1)

(To emphasize the dependance on n sometimes we write zj,n instead of zj.)
Moreover, the polynomial qn has precisely degree n and if w2n+1(z) :=

∏
j(z−

zj), it satisfies the orthogonality relations

∫ 0

−∞
qn(t)tj

f ∗(t)

w2n+1(t)
dt = 0, j = 0, 1, . . . , n− 1. (2.2)

Proof. First we obtain relations (2.1) and (2.2). Let pn/qn be a Frobenius-
Padé approximant of order n of the function f(

√
x) with respect to the
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measure µ(
√
x) on (0, 1). For any polynomial h of degree at most 2n, we

have ∫ 1

0

(qn(x)f(
√
x)− pn(x))h(x) dµ(

√
x) = 0. (2.3)

Then the function qn(x)f(
√
x) − pn(x), which is continuous on the interval

(0, 1), has at least 2n + 1 sign changes on (0, 1). Indeed, if it had at most
2n sign changes taking h as the polynomial whose zeros are these points we
would have that (qn(x)f(

√
x) − pn(x))h(x) has constant sign on (0, 1) and

(2.3) could not hold. Therefore, there exist distinct points z1, z2, . . . , z2n+1

in (0, 1) such that (2.1) takes place. Let Pn denote this set of 2n+ 1 points.
Let Γε,R be the curves given in Figure 1 with ε small enough and R

sufficiently large so that all the points in Pn are in the interior of Γε,R. Since

0
Î R

Figure 1: Integration contour Γε,R.

(qn(z)f(
√
z)− pn(z))/w2n+1(z) is an analytic function in C \ (−∞, 0], by the

Cauchy theorem we have

0 =

∫

Γε,R

qn(z)f(
√
z)− pn(z)

w2n+1(z)
zj dz =

∫

Γε,R

qn(z)f(
√
z)

w2n+1(z)
zj dz,

for all j = 0, 1, . . . , n − 1. Here we have deformed the integration contour
and used the assumption that the limit for f+ and f− are locally uniform
on (−∞, 0). In the last equality we have used the Cauchy theorem for the
functions pn(z)zj/w2n+1(z), j = 0, 1, . . . , n − 1, which are analytic in {z ∈
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C : |z| ≥ R} and have a zero of order at least 2 at infinity. As f belongs to
the class A (see conditions (i)–(iv)), we have

lim
ε→0,R→∞

∫

Γε,R

qn(z)f(
√
z)

w2n+1(z)
zj dz =

∫ 0

−∞
qn(t)tj

f ∗(t)

w2n+1(t)
dt, j = 0, 1, . . . , n−1.

Hence (2.2) follows and qn turns out to be an orthogonal polynomial of
precise degree n. Thus, the Frobenius-Padé approximant of order n of the
function f(

√
x) is unique. Moreover, the previous arguments reveal that

qn(z)f(
√
z)− pn(z) cannot have more than 2n+ 1 zeros in (0, 1). Indeed, if

that function had more than 2n + 1 zeros, putting all those points as zeros
of what was denoted w2n+1 we would find that qn satisfies more that n − 1
orthogonality relations implying that qn ≡ 0.

Next we prove the relation between the Frobenius-Padé approximants of
f(x) and f(

√
x). Define the even polynomials of degree at most 2n given by

q(x2) := Q2n(x) +Q2n(−x) and p(x2) := P2n(x) + P2n(−x). As f is an even
function, we have

∫ 1

−1

(q(x2)f(x)− p(x2))x2j dµ(x) = 0, j = 0, 1, . . . , 2n,

so ∫

(0,1)

(q(x2)f(x)− p(x2))x2j dµ(x) = 0, j = 0, 1, . . . , 2n.

Making the change of variable x2 = t we obtain

∫

(0,1)

(q(t)f(
√
t)− p(t))tj dµ(

√
t) = 0, j = 0, 1, . . . , 2n.

Then p/q is a Frobenius-Padé approximant of f(
√
x) of order n with respect

to µ(
√
t). According to (2.2) q has exact degree n, Q2n degree 2n. Thus,

the Frobenius-Padé approximant of f of order 2n is unique and Q2n(x) =
Q2n(−x) from which the relation Q2n(x) = qn(x2) follows (possibly up to
some multiplicative constant).

The same line of reasoning leads to the following result for Frobenius-
Padé approximants of odd degree. The details of the proof are left to the
reader.
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Lemma 2.2. Under the hypothesis of the Lemma 2.1, the Frobenius-Padé
approximant P2n+1/Q2n+1 of order 2n + 1 of the function f with respect
to µ satisfies P2n+1(x) = xpn(x2), Q2n+1(x) = xqn(x2) where pn/qn is the
Frobenius-Padé approximant of order n of the function f(

√
x) with respect

to measure x dµ(
√
x) in (0, 1).

Cauchy’s integral formula allows to obtain a convenient integral represen-
tation of the remainder.

Lemma 2.3. Let πn = pn/qn be the Frobenius-Padé approximant of order n
of the function f(

√
x) with respect to µ(

√
x) with x ∈ (0, 1). Then

qn(z)f(
√
z)− pn(z) =

w2n+1(z)

2πhn(z)

∫ 0

−∞

hn(x)qn(x)

x− z
f ∗(x) dx

w2n+1(x)
, (2.4)

where z ∈ C \ (−∞, 0], hn denotes any non null polynomial of degree ≤ n,
and w2n+1 is as defined in Lemma 2.1. In particular, if hn = qn we have

f(
√
z)− πn(z) =

w2n+1(z)

2πq2
n(z)

∫ 0

−∞

q2
n(x)

x− z
f ∗(x) dx

w2n+1(x)
. (2.5)

Proof. Since hn(z)(qn(z)f(
√
z) − pn(z))/w2n+1(z) is an analytic function in

C \ (−∞, 0], Cauchy’s integral formula gives us

hn(z)(qn(z)f(
√
z)− pn(z))

w2n+1(z)
=

1

2πi

∫

Γε,R

hn(ζ)(qn(ζ)f(
√
ζ)− pn(ζ))

w2n+1(ζ)(ζ − z)
dζ =

1

2πi

∫

Γε,R

hn(ζ)qn(ζ)f(
√
ζ)

w2n+1(ζ)(ζ − z)
dζ,

where Γε,R is the same contour described in Figure 1. Now, it remains to
make R → ∞, ε → 0 using the properties of f ∈ A and the definition of
f ∗.

The rational approximant πn = pn/qn given in Lemma 2.1 verifies the
following properties.

Lemma 2.4. 1. The polynomial qn has n simple zeros in (−∞, 0) which
we denote by ζj, j = 1, . . . , n and enumerate in the order ζ1 < ζ2 <
. . . < ζn.
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2. We have

πn(z) =
pn(z)

qn(z)
=

n∑

j=1

λj
z − ζj

+ An, (2.6)

where λj < 0, j = 1, . . . , n, and An > 0.

3.
f(0) = 0 < πn(0) and πn(1) < f(1). (2.7)

4. The polynomial pn has exactly n real zeros, η1, η2, . . . , ηn, which alter-
nate with the points ζj, i.e.

−∞ < ζ1 < η1 < ζ2 < . . . < ζn−1 < ηn−1 < ζn < ηn < 0.

5. The zeros of f(
√
z)−πn(z) in C\(−∞, 0] are precisely the 2n+1 zeros

of w2n+1 and they lie in (0, 1).

6. The function πn is strictly increasing and strictly concave in (ζn,∞).

Proof. The first statement is a well known consequence of the orthogonality
properties in (2.2). Formula (2.6) follows immediately since the zeros of qn
are simple.

If we take hn(z) = qn(z)
z−ζj in (2.4), multiply the resulting equation by (z−ζj),

and take limit z → ζj, we obtain

−λj =
w2n+1(ζj)

2π(q′n(ζj))2

∫ 0

−∞

(
qn(x)

x− ζj

)2
f ∗(x) dx

w2n+1(x)
.

Since the zeros of w2n+1 are in (0, 1) and the zeros of qn are in (−∞, 0), the
previous identity leads to λj < 0, j = 1, . . . , n.

Now we check the inequalities in (2.7) and 4) before proving that An > 0.
Taking z = 0 in (2.5), it follows that πn(0) > 0. Since f(

√
z)−πn(z) changes

sign at 2n + 1 points on (0, 1), it follows that πk(1) < f(1). The inequality
πn(0) > 0, together with limz→ζ±` πn(z) = ∓∞ allows us to conclude that πn
(or equivalently pn) has a simple zero in (ζn, 0) and in each interval (ζj−1, ζj)
which proves the statements in 4). Thus, πn(0) = An

∏n
j=1

ηj
ζj
, and we get

An > 0.
Next we prove statement 5). We have

=
(∫ 0

−∞

q2
n(x)

x− z
f ∗(x) dx

w2n+1(x)

)
= =(z)

∫ 0

−∞

q2
n(x)

|x− z|2
f ∗(x) dx

w2n+1(x)
6= 0, for =(z) 6= 0,
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and ∫ 0

−∞

q2
n(x)

x− z
f ∗(x) dx

w2n+1(x)
> 0, for z ≥ 0.

Hence, by (2.5) and Lemma 2.1 the zeros of f(
√
z) − πn(z) in C \ (−∞, 0]

are precisely the 2n+ 1 points in (0, 1).
Finally, according to the statement 2) the derivative of πn is positive in

R \ {ζ1, . . . , ζn}, thus we have 6).

A direct consequence of part 4 in Lemma 2.4 is

Corollary 2.5. The poles and the zeros of the Frobenius-Padé approximants
of f ∈ A are located on the imaginary line {z : <(z) = 0} and they strictly
interlace.

Now we consider the Newman type-function

Nn(z) :=
f(
√
z)− πn(z)

f(
√
z) + πn(z)

=
1− f(

√
z)−1πn(z)

1 + f(
√
z)−1πn(z)

, z ∈ C \ (−∞, 0], n ≥ 1.

This is equivalent to

πn(z) = f(
√
z)

(
1− 2

Nn(z)

1 +Nn(z)

)
, z ∈ C \ (−∞, 0]. (2.8)

Lemma 2.6. Each function Nn, n ∈ N, is analytic in C\(−∞, 0] and has ze-
ros precisely at z1, z2, . . . , z2n+1. The sequences {Nn} and {πn} are uniformly
bounded on each compact subset of C \ (−∞, 0].

Proof. We know that all coefficients λj, j = 1, 2, . . . , n, in the partial fraction
representation (2.6) have identical (negative) signs, thus the value πn(z) runs
through the whole extended real line R when z moves along the interval
(ζj, ζj+1) with ζj and ζj+1 two adjacent poles. Also, we have that

lim
z→0±i0

Nn(z) = −1 = Nn(0) = Nn(ζj), lim
z→∞±i0

Nn(z) = 1 = N(ηj). (2.9)

Consider the mapping τα(x) := eiαπ−x
eiαπ+x

= 1−e−iαπx
1+e−iαπx (compare with the

definition of Nn(z) above). It satisfies

τα(x) + i cot(απ) = i
1 + xeiαπ

(eiαπ + x) sin(απ)
⇒ |τα(x) + i cot(απ)| = 1

sin(πα)
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for x ∈ R and 0 < α < 1. Observe that ±1 are in the circle |z + i cot(απ)| =
1

sin(πα)
. By condition (v) for the class A and the definition of the function

Nn, it follows that arg(Nn(z)) grows exactly by 2π if z moves from ζj to ζj+1

on R− + i0. Analogously, arg(Nn(z)) grows by 2π if z moves in the opposite
direction from ζj+1 to ζj on the other bank R−−i0 of R−. Because of (2.9) and
(v) the same conclusion holds for each one of intervals (ζn, 0)−i0), ((0, ζn)+i0)
on the lower and upper banks respectively, and on (−∞, ζ1)+i0∪(−∞, ζ1)−i0
taken as a whole. Thus, arg(Nn(z)) grows by 2π(2n+ 1) when z moves once
around the boundary of the domain C \ (−∞, 0] going first along one bank
in one direction and returning through the other. From (2.1) we know that
z1, z2, . . . , z2n+1 are zeros of Nn(z) in C \ (−∞, 0] and from (2.5) it follows
that this function has no other zero in that region. From the argument
principle we conclude that the function Nn(z) has no pole and is analytic in
C \ (−∞, 0].

From what was proved above and condition (v), the image of C\ (−∞, 0]
under Nn is contained in the union of disks {|z + i cot(απ)| ≤ 1/ sin(απ) :
α ∈ [α1, α2]} and −1 lies on the boundary of the image for each n. On the
other hand, condition (iv) leads to limz→∞Nn(z) = 1 in z ∈ C \ (−∞, 0].
Thus, the image of C \ (−∞, 0] by Nn is bounded independent of n and
the maximum principle entails that the sequence {Nn} is a normal family in
C \ [−∞, 0] and it can be applied because Nn extends continuously to each
banks of (−∞, 0].

According to (2.8) to prove that {πn} is also a normal family it suffices to
show that {Nn} remains bounded away from−1 in C\(−∞, 0]. Suppose there
is a point ζ ∈ C\(−∞, 0] and subindices Λ such that limn∈Λ Nn(ζ) = −1. We
can assume that Λ is such that limn∈ΛNn = N exists uniformly on compact
subsets of C \ (−∞, 0] and N(ζ) = −1. As −1 is on the boundary of the
image of C \ (−∞, 0] for each Nn, the same happens with N . By the open
mapping theorem, we have N ≡ −1 in C \ (−∞, 0] but this is impossible
since Nn(1) > 0 for all n.

3. Proof of Theorem 1.1

Due to the connections given in Lemmas 2.1 and 2.2 between the Frobenius-
Padé approximants of f ∈ A and the restriction of f(

√
x) to the interval

(0, 1), in order to obtain Theorem 1.1 it is sufficient to prove the following
result.
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Theorem 3.1. Let γ be a finite positive Borel measure on [0, 1] whose sup-
port, supp(γ), has an accumulation point different from 0. Let f ∈ A and
denote by πn the Frobenius-Padé approximants of order n of the function
f(
√
x) with respect to γ. Then

lim
n→∞

πn(z) = f(
√
z),

uniformly on compact subsets of C \ (−∞, 0].

Proof. According to Lemma 2.6, the sequence {πn}n∈N is a normal family in
C\(−∞, 0]. By Montel’s theorem it is sufficient to prove that each convergent
subsequence of {πn}n∈N converges to f(

√
z). We divide the proof in two cases

depending on whether the condition (3.1) given below is verified or not. In
what follows {πn}n∈Λ denotes a convergent subsequence.

Define the functions

φ(z) :=

√
z − 1√
z + 1

, φn(z) :=
2n+1∏

j=1

φ(z)− φ(zj,n)

1− φ(z)φ(zj,n)
,

z ∈ C \ (−∞, 0]. Observe that φ is a conformal mapping of C \ (−∞, 0]
onto the open unit disk which transforms the interval (0, 1) onto the interval
(−1, 0). It is well known that

lim
n∈Λ

2n+1∑

j=1

(1− |φ(zj,n)|) =∞ (3.1)

implies that
lim
n∈Λ

φn(z) = 0

uniformly on compact subsets of C \ (−∞, 0] (see, for example, [7] or [15], p.
281).

According to Lemma 2.6, the sequence {Nn}n∈Λ is a normal family in C\
(−∞, 0]. The points in Pn are zeros of Nn. Hence, the sequence {Nn/φn}n∈Λ

is also a normal family of analytic functions in C \ (−∞, 0] and given a
compact set K ⊂ C \ (−∞, 0], there exists a constant C > 0 such that

|Nn(z)| ≤ C|φn(z)|, n ∈ Λ, z ∈ K.

Therefore, if (3.1) holds, then limn∈ΛNn(z) = 0 uniformly on compact sub-
sets of C \ (−∞, 0] and by (2.8) the statement of the theorem follows.
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Now, assume that the interpolation points {Pn}n∈Λ do not satisfy (3.1).
Then, there exists a subsequence of indexes in Λ, which we also denote Λ,
such that for all a ∈ (0, 1] the number of interpolations points in [a, 1] is
bounded as a function of n ∈ Λ. From now on we only consider such values
of n ∈ Λ. For the proof of the statement we will show that the approximants
converge to f(

√
x) on a subinterval of (0, 1) in an L1 sense. The proof relies

on some chain of inequalities and we enumerate the interpolation points in
Pn, n ∈ Λ, so that

z1,n < z2,n < . . . < z2n+1,n.

Let a, b, c be real numbers in (0, 1) such that supp(γ)∩ [a, 1] has infinitely
many points, b < a, c < a − b. For t ∈ (0, 1), let ]{zj,n < t} denote the
number of points in Pn ∩ (0, t). Without loss of generality we can assume
that qn(a) = 1.

Let dn(z) := qn(z)f(
√
z) − pn(z). As qn is a positive strictly increasing

function on [0, 1], the condition qn(a) = 1 implies

∫ 1

a

|f(
√
x)− πn(x)|

∏

zj,n≥b
|x− zj,n| dγ ≤

∫ 1

a

|dn(x)|
∏

zj,n≥b
|x− zj,n| dγ, (3.2)

and (z1,n < a)

∫ z1,n

0

∣∣f(
√
x)− πn(x)

∣∣ ∏

zj,n≥c
|x− zj,n| dγ ≥

∫ z1,n

0

|dn(x)|
∏

zj,n≥c
|x− zj,n| dγ.

(3.3)
From the definition of Frobenius-Padé approximants we have

0 =

∣∣∣∣∣

∫ 1

0

dn(x)
2n+1∏

j=2

(x− zj,n) dγ

∣∣∣∣∣

=

∣∣∣∣∣

∫ z1,n

0

dn(x)
2n+1∏

j=2

(x− zj,n) dγ +

∫ 1

z1,n

dn(x)
2n+1∏

j=2

(x− zj,n) dγ

∣∣∣∣∣

≥
∣∣∣∣∣

∫ 1

z1,n

dn(x)
2n+1∏

j=2

(x− zj,n) dγ

∣∣∣∣∣−
∫ z1,n

0

|dn(x)|
2n+1∏

j=2

|x− zj,n| dγ

=

∫ 1

z1,n

|dn(x)|
2n+1∏

j=2

|x− zj,n| dγ −
∫ z1,n

0

|dn(x)|
2n+1∏

j=2

|x− zj,n| dγ.
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In the last equality we have used that the function dn(x)
∏2n+1

j=2 (x− zj,n) has
constant sign in [z1,n, 1] (recall that according to part 5 in Lemma 2.4 the
only zeros of dn are at the points in Pn). Hereafter, all the products exclude
the term z1,n. We have shown that

∫ 1

z1,n

|dn(x)|
2n+1∏

j=2

|x− zj,n| dγ ≤
∫ z1,n

0

|dn(x)|
2n+1∏

j=2

|x− zj,n| dγ.

Bounding the left-hand from below and the right-hand from above, it follows
that for n large enough

min
x∈[a,1]

∏

zj,n<b

|x− zj,n|
∫ 1

a

|dn(x)|
∏

zj,n≥b
|x− zj,n| dγ

≤ max
x∈[0,z1,n]

∏

zj,n<c

|x− zj,n|
∫ z1,n

0

|dn(x)|
∏

zj,n≥c
|x− zj,n| dγ. (3.4)

Since the number of elements of Pn in [b, 1] and [c, 1] is bounded as a
function of n ∈ Λ, we have

]{zj,n < b} ∼ 2n, ]{zj,n < c} ∼ 2n as n→∞. (3.5)

Therefore,

max
x∈[0,z1,n]

∏

zj,n<c

|x− zj,n| ≤ c]{zj,n<c}, min
x∈[a,1]

∏

zj,n<b

|x− zj,n| ≥ (a− b)]{zj,n<b}.

(3.6)
From the inequalities in (2.7), we also have

|f(
√
x)− πn(x)| = πn(x)− f(

√
x) < f(1)− f(

√
x), x ∈ (0, z1,n). (3.7)

Combining (3.2)–(3.7), we get

∫ 1

a

∣∣f(
√
x)− πn(x)

∣∣ ∏

zj,n≥b
|x− zj,n| dγ

≤
(

c

a− b

)2n+o(n) ∫ z1,n

0

∣∣f(
√
x)− πn(x)

∣∣ ∏

zj,n≥c
|x− zj,n| dγ

≤
(

c

a− b

)2n+o(n) ∫ z1,n

0

(f(1)− f(
√
x))

∏

zj,n≥c
|x− zj,n| dγ.
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This implies that (f(
√
x)− πn(x))

∏
zj,n≥b |x− zj,n|, n ∈ Λ, converges to 0 in

L1(γ|[a,1]). Hence this sequence has a subsequence which converges to 0 γ–
a.e. on [a, 1] (see Theorem 3.12 in [12]). For these indexes, as the number of
interpolations points in [b, 1] is bounded as a function of n ∈ Λ, there exists
the limit of

∏
zj,n≥b |x − zj,n| (at least of a subsequence). Since the support

of γ has an accumulation point in [a, 1], from the uniqueness principle of
analytic functions the limit function of {πn}n∈Λ must be equal to f(

√
z) in

C \ (−∞, 0].

For a fixed n, πn(x) is an increasing function in [0,∞). Thus we have the
same property for the function f(

√
x). We also know that the functions in

class A have no zero outside the imaginary line. We can summarize some
properties of the functions in class A in the following result.

Corollary 3.2. If f ∈ A, then f is a strictly increasing function in [0,∞)
with no zero outside the imaginary line.

Since
∫ 1

0

(q(t)
1

f(
√
t)
− p(t))tj dµ(

√
t) =

∫ 1

0

(q(t)− p(t)f(
√
t))tj

dµ(
√
t)

f(
√
t)
,

Corollary 1.2 holds. Written in terms of functions on [0, 1] we have:

Corollary 3.3. Under the assumptions of Theorem 3.1 assume that 1/f(
√
x) ∈

L1(γ), and let π∗n denote the Frobenius-Padé approximant of order n of the
function 1/f(

√
x) with respect to γ. Then

lim
n→∞

π∗n(z) = 1/f(
√
z),

uniformly on compact subsets of C \ (−∞, 0].

Example 3.4. If −1 < α < 2, dµ(x) := (1 − x2)λ dx, x ∈ [−1, 1], λ > −1,
and Πn denotes the Frobenius-Padé approximants of order n of |x|α with
respect to µ, then

lim
n→∞

Πn(z) =

{
zα, if <(z) > 0,
(−z)α, if <(z) < 0,

uniformly on compact subsets of C \ {z : <(z) = 0}. Moreover, when
−1 < α < 0, since each Frobenius-Padé approximant of x−α/2 is a posi-
tive increasing function in [0, 1], if we define zα as −∞ at zero and consider
the spherical metric, then the above limit is true on compact subsets of
(C \ {z : <(z) = 0}) ∪ {0}.
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ros, Fourier–Padé approximants for Angelesco systems. Constr. Approx.
26 (2007), 339–359.

[6] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, On the rate of
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