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Abstract

In this note we continue the study initiated in [F. Albiac and P. Wojtaszczyk,
Characterization of 1-greedy bases, J. Approx. Theory 138 (1) (2006) 65–
86] of greedy-like bases in the “isometric case,” i.e., in the case that the
constants that arise in the context of greedy bases in their different forms
are 1. Here we settle the problem to find a satisfactory characterization of 1-
quasi-greedy bases in Banach spaces. We show that a semi-normalized basis
in a Banach space is quasi-greedy with quasi-greedy constant 1 if and only if
it is unconditional with suppression-unconditional constant 1.
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1. Introduction and background

Let (X, ‖ · ‖) be an infinite-dimensional (real or complex) Banach space,
and let B = (en)∞n=1 be a semi-normalized basis for X with biorthogonal
functionals (e∗n)∞n=1. The basis B is quasi-greedy (see [1]) if for any x ∈ X the
corresponding series expansion,

x =
∞∑

n=1

e∗n(x)en

converges in norm after reordering it so that the sequence (|e∗n(x)|)∞n=1 is
decreasing. Wojtaszczyk showed [2] that a basis (en)∞n=1 of X is quasi-greedy
if and only if the greedy operators GN : X → X defined by

x =

∞∑

j=1

e∗j(x)ej 7→ GN (x) =
∑

j∈ΛN (x)

e∗j (x)ej ,

where ΛN(x) is any N -element set of indices such that

min{|e∗j(x)| : j ∈ ΛN(x)} ≥ max{|e∗j(x)| : j 6∈ ΛN(x)},

are uniformly bounded, i.e.,

‖GN(x)‖ ≤ C‖x‖, x ∈ X, N ∈ N, (1)

for some constant C independent of x and N . Note that the operators
(GN)∞N=1 are neither linear nor continuous, so this is not just the Uniform
Boundedness Principle!

Obviously, (1) implies that then there is a (possibly different) constant C̃
such that

‖x− GN(x)‖ ≤ C̃‖x‖, x ∈ X, N ∈ N. (2)

We will denote by Cw = Cw[B, X] the smallest constant such that (1) holds,
and by Cℓ = Cℓ[B, X] the least constant in (2). We will refer to Cℓ as the
suppression quasi-greedy constant of the basis. It is rather common (cf. [3, 4])
and convenient to define the quasi-greedy constant of the basis as

Cqg = Cqg[B, X] = max{Cw[B, X], Cℓ[B, X]}.

If B is a quasi-greedy basis and C is a constant such that Cqg ≤ C we will
say that B is C-quasi-greedy.
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Recall also that a basis (en)∞n=1 in a Banach space X is unconditional if for
any x ∈ X the series

∑∞
n=1 e∗n(x)en converges in norm to x regardless of the

order in which we arrange the terms. The property of being unconditional is
easily seen to be equivalent to that of being suppression unconditional, which
means that the natural projections onto any subsequence of the basis

PA(x) =
∑

n∈A

e∗n(x)en, A ⊂ N,

are uniformly bounded, i.e., there is a constant K such that for all x =∑∞
n=1 e∗n(x)en and all A ⊂ N,

∥∥∥∥∥
∑

n∈A

e∗n(x)en

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∞∑

n=1

e∗n(x)en

∥∥∥∥∥ . (3)

The smallest K in (3) is the suppression unconditional constant of the basis,
and will be denoted by Ksu = Ksu[B, X]. Notice that

Ksu[B, X] = sup{‖PA‖ : A ⊂ N is finite} = sup{‖PA‖ : A ⊂ N is cofinite}.

If a basis B is unconditional and K is a constant such that Ksu ≤ K we will
say that B is K-suppression unconditional.

Konyagin and Telmyakov [1] proved that unconditional bases with the
additional property of being democratic are precisely the bases for which
GN(x) provides essentially the best N -terms approximation to x for every
N ∈ N and x ∈ X, i.e., there is a constant C such that

‖x− GN(x)‖ ≤ C inf

{∥∥∥∥∥x−
∑

n∈A

αnen

∥∥∥∥∥ : |A| = N, αn ∈ R, n ∈ A

}
. (4)

These bases are known as C-greedy bases.
Unlike greedy bases, quasi-greedy bases are not in general unconditional.

In spite of that, quasi-greedy bases preserve some vestiges of uncondition-
ality and, for instance, they are unconditional for constant coefficients (see
[2]). Most classical spaces contain conditional quasi-greedy bases. The first
example of a conditional quasi-greedy basis was provided by Konyagin and
Temlyakov in [1]. Subsequently, Wojtaszczyk gave in [2] a general construc-
tion (improved in [5]) to produce quasi-greedy bases in some Banach spaces.
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His method yields the existence of conditional quasi-greedy bases in separa-
ble Hilbert spaces, in the spaces ℓp and Lp[0, 1] for 1 < p < ∞, and in the
Hardy space H1. Dilworth and Mitra proved in [6] that ℓ1 also has a con-
ditional quasi-greedy basis. Subsequently, Dilworth, Kalton and Kutzarova
[7] showed the existence of quasi-greedy bases in any Banach space X with a
Schauder basis such that X contains a complemented subspace with a sym-
metric basis which is not equivalent to the unit vector basis of c0. But, oddly
enough, in all those cases the quasi-greedy constant of the basis appears to
be bigger than 1.

Of course, unconditional bases are always quasi-greedy. Quantitatively,
if B is K-suppression unconditional then B is K-quasi-greedy. In particu-
lar, unconditional bases with Ksu = 1 are quasi-greedy with Cw = 1. Our
aim is to show the converse of this statement, thus characterizing 1-quasi-
greedy bases. The related problem of characterizing bases that are 1-greedy
was solved in [8]. The question we settle is relevant since the optimality in
the constants of greedy-like bases seems to improve some properties of the
corresponding basis. Indeed, in the “isometric case” greedy bases gain in
symmetry (they are invariant under greedy permutations instead of merely
democratic). Our result reinforces this pattern by showing that “isomet-
ric” quasi-greedy basis are not only unconditional for constant coefficients,
but they are unconditional. It seems surprising to us that a question that
has been circulating around for quite some time now [9], ended up having a
remarkably simple answer with a rather uninvolved proof.

2. The Main Theorem and its Proof

As a by-product of their research on unconditionality-type properties of
quasi-greedy bases, Garrigós and Wojtaszczyk [5] have shown that bases in
Hilbert spaces with Cw = 1 are orthogonal. A direct proof of their result can
be obtained as follows.

Let B = (en)∞n=1 be a basis in a (real or complex) Hilbert space with
Cw = 1. Then, if |ω| = 1, 0 < t < 1, and i 6= j,

‖ei‖2 ≤ ‖ei + ωtej‖2 = ‖ei‖2 + 2tℜ(ω〈ei, ej〉) + t2‖ej‖2.

Simplifying,
−2ℜ(ω〈ei, ej〉) ≤ t‖ej‖2.

Choosing ω such that ω〈ei, ej〉 = −|〈ei, ej〉| and letting t tend to zero we
obtain |〈ei, ej〉| = 0.
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A strengthening of this argument leads to the following generalization of
Garrigós-Wojtaszczyk’s result.

Theorem 2.1. A quasi-greedy basis (en)∞n=1 in a Banach space X is quasi-
greedy with Cw = 1 if and only if it is unconditional with suppression uncon-
ditional constant Ksu = 1.

Proof. We need only show that if x and y are vectors finitely supported in
(en)∞n=1 with disjoint supports then ‖x‖ ≤ ‖x + y‖. This readily implies that
(en)∞n=1 is unconditional with suppression unconditional constant Ksu = 1.

Suppose that this is not the case and that we can pick x, y ∈ X finitely and
disjointly supported in (en)∞n=1 with ‖x + y‖ < ‖x‖. Consider the function
ϕ : R → [0,∞) defined by

ϕ(t) = ‖x + ty‖.

Using the definition, it is straightforward to check that ϕ is a convex function
on the entire real line. Moreover, ϕ(0) = ‖x‖ and, by assumption, ϕ(1) <
‖x‖. Therefore, ϕ(t) < ‖x‖ for all 0 < t < 1. Choosing t ∈ (0, 1) small
enough we have x = GN (x + ty), where N is the cardinality of the support
of x. Consequently, for such a t,

‖x + ty‖ = ϕ(t) < ‖x‖ = ‖GN(x + ty)‖ ≤ ‖x + ty‖,

where we used the hypothesis on the quasi-greedy constant of the basis to
obtain the last inequality. This absurdity proves the result.

We close with some consequences of Theorem 2.1, which need no further
explanation.

Corollary 2.2. Suppose B = (en)∞n=1 is a basis in a Banach space X with
Cw = 1. Then Cℓ = 1; in particular B is 1-quasi-greedy.

Corollary 2.3. If a basis (en)∞n=1 in a Banach space X is 1-quasi-greedy then
it is 1-suppression unconditional.

Corollary 2.4. Suppose B = (en)∞n=1 is a basis in a Banach space (X, ‖ · ‖).
Then X admits an equivalent norm ||| · ||| so that B is 1-quasi-greedy in the
space (X, ||| · |||) if and only if B is unconditional.
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3. Concluding remarks, examples, and open questions

It is clear that our work opens the door to new problems within the sub-
ject of greedy approximation. In this section we describe a few avenues to
continue the research reported in this paper and we also make a couple of
accompanying remarks.

Theorem 2.1 imposes the restriction that Cw[B, X] > 1 to any conditional
basis B in a Banach space X. A natural question that immediately arises is:
is this the best we can say about the universal lower bound for conditional
quasi-greedy bases?, i.e., is there a constant C > 1 such that C ≤ Cw[B, X]
for any Banach space X and any conditional quasi-greedy basis B in X. Fur-
thermore, Corollary 2.2 may induce to conjecture that Cℓ[B, X] ≤ Cw[B, X]
for any Banach space X and any quasi-greedy basis B in X. The following
example borrowed from [10] solves in the negative both questions.

Example 3.1. Given a bounded interval J ⊂ R, let hJ = |J |−1(χJ+ − χJ−),
where J+ and J− are the left and right half side of J respectively, and let
h = χ[0,1). For n ∈ N ∪ {0}, denote by Dn the set of diadic subintervals of
[0, 1) of lenght 2−n, and Hn = {hJ : J ∈ Dn}. Given an increasing sequence
α = (nj)

∞
j=0 of nonnegative integers, we consider the L1-normalized lacunary

Haar system
Hα = {h} ∪

(
∪∞j=0Hnj

)
.

Let Xα be the closed subspace of L1[0, 1] spanned by Hα. Dilworth et al. [10]
proved that despite the fact that the Haar system is not a quasi-greedy basis
in L1[0, 1], for any ε > 0 there is a sequence α such that Cw[Hα, Xα] ≤ 1 + ε.
The inclusion of h in the lacunary Haar system is not essential but turns
out to be convenient in the following argument, which is aimed to prove that
Cℓ[Hα, Xα] ≥ 2 for any α.

For each nonnegative integer j we recursively construct intervals Ej ⊂ Dnj

such that |Ej| = 2nj−j and

Kj := ∪{J+ : J ∈ Ej−1} = ∪{J : J ∈ Ej}, j ≥ 1.

For any m ≥ 1 we have

fm := h +

m−1∑

j=0

∑

J∈Ej

2−nj+jhJ = 2mχKm. (5)
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Note that for k ≥ 0, m ≥ 1, and N = 1 +
∑m−1

j=0 2nj−j, we have GN (fm+k) =
fm. Consequently,

Cℓ[Hα, Xα] ≥ ‖fm+k − fm‖1

‖fm+k‖1
= 2(1− 2−k).

Letting k tend to ∞, we get the desired inequality.
Notice that in order to check that Hα is a conditional basis of Xα it suffices

to compare the L1-norm of fm with the L1-norm of the function obtained
suppressing in (5) the summands corresponding to odd values of j.

Dilworth et al. [11] proved that a wide class of greedy bases are (1 + ε)-
greedy for any ε > 0 after a suitable renorming of the space. Example 3.1 and
Corollary 2.4 motivate the study of the analogous questions for quasi-greedy
bases.

Problem 3.2. Under which hypotheses a conditional quasi-greedy basis B
for a Banach space X verifies Cw[B, X] ≤ 1+ε for any ε > 0 after a renorming
of X?, when does a Banach space X possess such a basis B?

To the best of our knowledge it is not known whether Corollary 2.3 can
be improved in the sense that there is a lower bound larger than 1 for the
quasi-greedy constants of conditional bases.

Problem 3.3. Is there a constant C > 1 such that C ≤ Cqg[B, X] for any
Banach space X and any conditional quasi-greedy basis B in X?

With regard to the suppression quasi-greedy constant the main open ques-
tion is:

Problem 3.4. Is there a Banach space X and a conditional quasi-greedy
basis B for X such that Cℓ[B, X] = 1?
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