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Let K be a convex body in R? (d>2), and denote by B,(K) the set of all polyno-
mials p, in R¥ of total degree <n such that |p,| <1 on K. In this paper we consider
the following question: does there exist a p} € B,(K) which majorates every element
of B,(K) outside of K? In other words can we find a minimal y > 1 and p; € B,(K)
so that |p,(x)| <y |p*(x)| for every p,eB,(K) and xe R"\K? We discuss the
magnitude of y and construct the universal majorants p¥ for even n. It is shown that
y can be 1 only on ellipsoids. Moreover, y=O(1) on polytopes and has at most
polynomial growth with respect to n, in general, for every convex body K.  © 2001
Academic Press

Key Words: convex bodies; polynomial majorants; polytopes; polytopal approxi-
mation.

Let Kc R? d>2, be a convex body ie., it is a convex compact set with
nonempty interior in R? Consider the space P? of polynomials on R? of
total degree <n, endowed with the usual supremum norm on K. Then the
unit ball in this space is given by

B,(K):={peP;: 12 ey < 1j.

In this paper we address the following question: is there a “largest” polyno-
mial in B,(K) which majorates all elements of B,(K) everywhere on R?\K?
In other words does there exist a y > 1 and p;f € B,(K) such that

IP(x)| <y lpX(x)l,  Vp,eB,K), ¥xeRN\K? (1)

Such a p} majorates all p, € B,(K) at every point outside K (with the con-
stant y). In this sense p¥ is a universal majorant for polynomials in B,(K).
Naturally, we are interested in the smallest possible y>1 for which (1)
holds with some p} € B,(K). Thus we set y,(K):=inf{y: there exists a
p¥ € B,(K) so that (1) holds}.
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The above definition is motivated by the classical inequality of
Chebyshev (see [ 1, p.235]) stating that when d=1 and K=[ —1, 1] we
have

PO <ITW(x),  Vp,eB,([—-11]), VIx[>1, (2)

where 7,(x)=cos n arc cos x is the Chebyshev polynomial. This means in
our terminology that y,([ —1,1])=1 for every ne N, with + T, being the
universal majorants.

In this paper we shall study the magnitude of y,K) when d>1 and K
is a convex body in R First, it has to be noted that the above question
is meaningful only for even ne N, because y,,, ;(K)= oo whenever d> 1
and neN. Indeed, if y,,,,(K)<o0, ie, a universal majorant p%, €
B,, , 1(K) exists, then it follows from (1) that deg p%,,,=2n+1 (and not
less), and p%,,; #0 on R?\K. Since d>1 we can easily find a line
L={ar+b:reR'} in R? (a, be R so that Ln K= ¢ and the univariate
polynomial p% ., (ar+b) has degree 2rn+1. This yields that p%, .,
(aty+b)=0 for some 7, €R' contradicting the above observation that
170 on RY\K.

On the other hand for even n one can give a simple example of a univer-
sal majorant in R% d> 1. In what follows |x| denotes the Euclidean norm
in R? (d>1), {x,y) stands for the inner product of x, ye R% Bd K and
Int K are the boundary and interior of K, respectively.

ExaMPLE 1. Let K={xeR“:|x| <1} be the Euclidean unit ball in R%
Then y,,(K) =1 with p%,(x) = T,,(x|) € B,,(K) being a universal majorant.
This follows immediately from (2) since T,,(t), t€ R! is an even polyno-
mial.

Using affine transformations of R? the above example can be easily
extended to arbitrary ellipsoids which means that y,,(K) =1 for any ellip-
soid K. Our first result gives a converse to this showing that y,,(K) can
attain its minimal value 1 only on ellipsoids.

THEOREM 1. Let K< R? d>2, be a convex body; ne N. Then y,,(K) =1
if and only if K is an ellipsoid, i.e., K= {xeR?: |Ax +b| <1} for some A e
RYx R (det A #0) and be R?. Moreover, in this case p¥,= + T,,(|AX +b]|)
are the only universal majorants.

Thus apart from ellipsoids we always have y,,(K) > 1. It turns out that
7,,(K)=0O(1) with a constant independent of n whenever K is a polytope.
For a polytope K we shall denote by f;(K) the number of its j-dimensional
faces, 0 < j<d— 1.



222 ANDRAS KROO

TaeoreM 2. Let K be a convex polytope in RY d=2. Then for every
neN

d—2

72ulK) < Y f(K) Sy 1 (K) +2f4 1 (K). (3)

j=1
Moreover, if K is central symmetric then we have y,,(K) < f,_,(K).

Using the above theorem and some known results on degree of
approximation of convex bodies by polytopes with prescribed number of
vertices or faces we can verify that y,,(K) has at most polynomial growth
in n for every convex body K. Namely we have the next

TueoREM 3. Let K be a convex body in R?, d=2. Then for every ne N
V2u(K) < c(d, K) n?@= 1, (4)

where ¢(d, K) >0 depends only on d and K.

Note that in general, polynomials bounded by 1 on K can grow exponen-
tially outside K. Thus the polynomial growth y,,(K)= O(n*“—Y) given by
Theorem 3 is very small relative to the size of polynomials p,, € B,(K) out-
side of K. The estimate (4) can be improved further if K has a C? -bound-
ary, ie., its second fundamental form exists on Bd K and the Gauss
curvature is a positive continuous function on Bd K.

THEOREM 4. If K is a convex body in R? (d>2) with a C? -boundary
then y,,(K) = O(n*9=1),

Above estimates can be used in order to obtain results on approximation
of convex surfaces by algebraic surfaces. (We call zero sets of p, e P?
algebraic surfaces of order n.) Denote by ¢(A, B) the Hausdorff distance
between A, Bc R4

THEOREM 5. For any convex body K in R? (d>2) there exists an
algebraic surface Q,, of order n such that o( Bd K, Q,,) < c(*22)2, where ¢ >0
depends only on K and d.

This paper is organized as follows. Section 1 contains some material on
the geometry of convex bodies needed for our considerations. In Section 2
the proofs of Theorem 1-5 will be given. Finally, we shall conclude the
paper by a discussion of some open problems.
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1. GEOMETRY

First we need to introduce a certain quantity o (x) which measures the
distance from a given xe R to the boundary Bd K of a convex body
K = R This quantity was used in [5] and [6] for the study of multi-
variate Chebyshev and Bernstein Inequalities.

For given A, Be R?andueS?~ ' := {xeR?: |x| = 1} such that (u, B—A)
> 0 consider the corresponding “slab” given by

Su(A, B):={xeR?: (u, A) <<{u, x) <<{u, B)}.

For a fixed a>0 the “a-dilation” of this slab is defined by Si(A, B) :=
{xeR?: (u,A) —J,<<u, x) <<{u,B) +7,} where §,:=*5L(B—A, u).
Finally, set K,:=() {S%(A,B): S,(A,B)oK, A,BeR%, ueS? ™'}, ax(x)
=inf{a: xeK,}.

Clearly, ag(x)> 1 for xe RY\K, ax(x)=1 on Bd K, and ay(x) < 1 inside
K. Also, it is easy to see that when K is central symmetric about 0 then
ag(x)=1inf{a>0: 2K} is the usual Minkowski functional. It is proved in
[6] that for every x e R?\K

sup{|p.(X)|: p, € B,(K)} = T (o (x)). (5)

We shall also need the following lemmas on parallel supporting hyper-
planes which are proved in [5] and [6]. (A special case of Lemma | also
appears in [7].)

LemMA 1. Let xe RY\K. Then there exists a line L passing through x
with KnL=[A, B], such that K possesses parallel supporting hyperplanes
at A and B. Moreover, for any such line

X . (6)

ag (x) = 3 b

A+B/mm

For the proof of the above statement see [ 6], Corollary 1 and the proof
of Theorem 1A on p. 422. The next lemma provides a similar statement for
inner points of K.

LeEMMA 2. Let xelInt K. Then there exists a line L passing through x
with Kn L =[A, B] such that (6) holds, and K possesses parallel supporting
hyperplanes at A and B.
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Note a slight difference in the statements of Lemmas 1 and 2: when
xeR\K by Lemma 1 (6) holds for every L as above, while for x e Int K
by Lemma 2 (6) holds for some L as above.

The first statement of Lemma 2 asserting that (6) holds for a certain line
as above is a consequence of Proposition 2 in [5]. The second statement
concerning parallel supporting hyperplanes is Proposition 1 of [5].

2. PROOFS

Proof of Theorem 1. The sufficiency in Theorem 1 is straightforward, it
follows by a change of variables y=Ax +b (x, ye R?) and Example 1.

Assume now that K <= R? is such that y,,(K)=1, and p% e B, (K) is a
corresponding universal majorant, so that

|p2n(x)| <|p§kn(x)|’ p2n EBZn(K)a XERd\K~
Then it easily follows from (5) that
|p;<n(x)| = T2n(O(K(X))9 Xe Rd\K

In particular, we have that for every x e R?\K either p%,(x) = T,(ax(x)), or
pi(x)= — T,(ax(x)). Thus we may assume that

P3(x)=Th(ak(x)),  xeRNK (7)

First we shall verify that equality (7) holds for xeK, as well. Choose
any XelInt K. Then by Lemma 2 there exists a line L through X with
LN K=T[A, B] such that

% A+B
. 2
aK(X)z ‘A—B‘ s

2

and K possesses parallel supporting hyperplanes at A and B. Let

where it can be assumed that 0 <7< 1. Then by (8), ax(X)=7. Moreover,
by Lemmal for every xeL\K equality (6) holds, ie. setting x,=
152A +134B we have ag(x,)=1, > 1. This and (7) yield that

pikn(xt) = T2n(t)’ > 1
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But of course the above equality of univariate polynomials has to extend
from {reR':¢>1} to the whole line, ie.,

1—¢ 1+1¢

3 <2A+2B>E T,,(1), teR. 9)

In particular, setting in (9) t=17 we obtain pi,(X) = T,,(f) = T,,(ax(X)).
Thus and by (7)

P3(X) =Ty (ak(x)),  xeR- (10)

The next step is to verify that K is central symmetric. Set

ag := inf oy (x), Ko:= () K.

xeK a>

Clearly, a,=0, K, # & and Int K, # J, a>a,. Furthermore, for every
xeK, we have oag(x)<ay, ie., by minimality of «, it follows that
ok (x) =g whenever x € K. This last observation implies that K, must be
a singleton. Indeed, if a*, b* e K, (a* #b*) then [a* b*] < K,, and hence
ag (X)=0o, for xe[a* b*]. This and (10) yield that p%, = T,,(a,) on the
line L* through a* and b*, in an obvious contradiction with (10). Thus
K, = {a*}. Consider now a line L* through a* with KnL*=[A* B*]
such that K possesses parallel supporting hyperplanes at A* and B*
(Lemma 2). By (9) and (10) we have with x}* =131 A* 4+ LHB*

Tou(t) = p3(xF) = Toy(ax (x ), teR. (11)

As t increases from —1 to 1 the continuous function ok (x;*) decreases from
1 to oy, and then increases from a, to 1. Thus in view of (11) we must have
%y =0, and a*=x§ =(A*+B*)/2. (In particular, Int K, # J for every
o> 0.) Similarly for any A € Bd K there exists a Be Bd K such that K pos-
sesses parallel supporting hyperplanes at A and B. Thus using again (9)
and (10)

1—1t 1+t
To,(1)=Ts, <0(K <2A+;“B>>, reR.

Again, as ¢ varies in [ —1, 1] ag(*5* A + 12 B) must decrease from 1 to 0
and then increase from 0 to 1. Hence [ A, B] must contain a* (otherwise
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ag (151 A + L B) can not attain 0), and, in addition, a* =23$®, Thus for
every AeBdK the line through A and a* exits K at B=2a* — A. This
means that K is central symmetric about a*.

We may assume now that a* =0 and K is symmetric about the origin.
Then ok (1X) = tog (X) Whenever x e R? and ¢>0. The polynomial p%, can
be written as p%,(x)= ] o h;(x), where £, is its jth homogeneous part,
0</j<2n. Furthermore T,,(1)=3%7_,¢ tf, where ¢; e R, 0<j<n. Then
for every ueS?~! and >0

2n

2n
PE(tu)= 3 hi(tu)= ) t/h;(u),
j=0

Jj=0

T, (o (10)) = Ty, (1o (u i 2 (u) .
Hence using (10) we obtain
Y hi(w) /= Z c;o0 (u) 1%, ueS4L >0
This means that h,,(u) =c;af/ (u) for every ue SY~'. In particular
ocf((u)zcihz(u):sz(u), ueS1
1

Evidently, H, is a positive definite quadratic form, i.e.
K={xeR%: ax(x)<1} ={xeR?: Hy(x)<1}

is an ellipsoid. In addition, by (10) the only possible majorants are
+ ook (x)). 1

Proof of Theorem?2. Let K< R“ be a polytope. Consider A, Be Bd K
such that K possesses parallel supporting hyperplanes H,, Hg at A and B,
and denote by %,z the set of normal vectors to such pairs of hyperplanes.
Since K is a polytope it is easy to see that for some ue %,y the correspond-
ing pair of hyperplanes H,, Hg has the property that the faces F, =Kn
H, and Fz =K nHpg of the polytope K contain a total of d—1 linearly
independent vectors. Let Z(K) :={uy, ., uy} =S4 :i={y=(py, .., ya) €
S?=':»,>0} be the set of normal vectors to pairs of hyperplanes with the
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above properties. Since every u; € %(K), 1 < j< N, is uniquely determined
by the corresponding pair of faces of K specified above it follows that

%i K) fueyr(K) + fy_r(K). (12)

Moreover, %K) %, gz # & whenever K possesses parallel supporting
hyperplanes at A, Be Bd K. Furthermore, for every u; € (K) select some
A;, B;eBd K such that w; e %, g, | <j<N.

Finally, consider the polynomial 7,(1) = (T5,(?)+ 1)/2€P Obviously
T,,>0 on R T, <1lon[—1,1], and T,,<27T,, on R \[—1 1]. Now
we set

Clearly, p%, € P4 . Moreover, we claim that |p%,|<1 on K, ie, p% €
B,,(K). Indeed, since K possesses parallel supporting hyperplanes at A; and
B; with normal u; we have (assuming, for instance that (A, u;) <
(Bj,u;>) (A, u) <<{x,u;) <<{Bj,u;), xeK. This easily implies

A.+B. A.—B.
[ <)

Since |T,,| <1 on [ —1, 1] we obtain by (13) that p%, € B,,(K). Now we
need to show that p3, satisfies (1) with a proper y. Consider an arbitrary
Pan € B, (K) and x*eRY\K. By Lemma | there exists a line L passing
through x* with KnL=[A%*, B*] such that K possesses parallel support-
ing hyperplanes at A*, B* € Bd K. As it was observed above we can choose
this pair of hyperplanes H,., Hg. (keeping A*, B* fixed) so that some
u; € (K), 1 <j<N, is the normal to these hyperplanes. Then by (6) using

that x*, A* B*eL
. A*+B*
X - u;

o (x*) = — - — . (14)

s x e K.

A%+ B*
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Recall that earlier we have already chosen A;, B; from the pair of hyper-
planes H,«, Hg« (with normal u;). Hence without loss of generality, A*,
A;eH,«, B¥, B,eHg., ie, A*—A; and B* —B; are normal to u;. Thus
using (5), (14) and (13) we have for p,, € B,,(K)

| Pan(X*)] < Tyl (x*)) < 2T, (0 (x*))

A.+B.
—)
A.—B.
< 3 ]’“f>

Finally by (12) we arrive at estimate (3).

If remains to verify the sharper bound y,,(K) < f,_(K) in case when K
is a central symmetric polytope. Assume that 0 is the center of symmetry
of K. Clearly, K has M :=f,_,(K)/2 pairs of parallel (d— 1)-dimensional
faces. Denote by ®;, 1 < j< M, the normals to these pairs of hyperplanes,
and select any segments [ —A;, A;], 1</j<M with endpoints in these
pairs of faces. Finally, set

M (X, ®;) >
2l ; << mj> ’

As above, it follow that j,, € B,,(K). Now, for any x*e R?\K the line
L:= {tx* ite [Rl} intersects Bd K at some points + B which belong to a
pair of parallel (d— 1)-dimensional faces of K with normal ®, for some
1<k<M. Then B— A, 1 ®, and proceeding as above we can show that

for any py, € By,(K) [ p2,(x*)[ < fa—1(K) pru(x¥), i€., 75,(K) < f4_1(K). 1

= 2T2n

S2Np3,(x*).

Proofs of Theorems 3 and 4. Now we proceed to proving Theorems 3
and 4. Their proofs are based on the “polytopal” estimate (3) for y,,(K) on
one side, and some known results on the rate of approximation of convex
bodies by polytopes. One such result proved in [3] (see also [4]) asserts
that for any convex body K< R? (d>2) and Ne N there exists a polytope
D with f,(D)= N vertices so that

4

o(K, D) < 17—

(15)

with an absolute constant ¢>0. (Here as above ¢(K, D) stands for the
Hausdorff distance between corresponding sets.) The approximating
polytope D is constructed in [3] to be circumscribed to K, it can be
modified in an obvious way to be inscribed into K. Moreover it is shown
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in [2] that if K is C% then for any MeN there exists an inscribed
polytope D with maxy ;<4 f;(D) <M such that

4
Q(K,D)<W (16)

with some ¢, >0 depending on K. In principle, (16) provides a stronger
bound than (15) since it is known (see e.g. [8, p.257]) that for any
polytope D

[(D)<c(d) fo(D)E2, 1< j<d—1, (17)

with some ¢(d) depending only on d.

We shall also need the following well known corollary of Chebyshev
Inequality (2): if p,ePl is a univariate polynomial and |p,|<1 on
[—1,1] then

Ip ()] <e™2 |l <1+5  (0<d<1) (18)

with some absolute constant ¢, > 0.

After these preliminaries we turn to the proof of Theorem 3. Consider an
arbitrary convex body K in R? (d>2), and let D<K be an inscribed
polytope with f,(D)= N vertices so that (15) holds.

By estimate (3) of Theorem 2 and (17) we have 7,,(D)<c;(d) N% Thus
there exists a universal majorant p%, € B,,(D) such that

|P2n(X) <ci(d) NY|p3(X)], P2y €By(D), xeRAD.  (19)
Since |p3,] <1 on D =K it follows by (15) and (18) that
”P?nHC(K)<3XP[C2”N1/(1_d)] (20)

with some ¢, >0 depending on d and K. Hence setting N :=[n?"1]+1
and p,, :=e~ %, we obtain by (20) that |p,,| <1 on K, i.e., p,, € B,,(K).
Moreover, using (19) we have for every p,, € B,,(K)<B,, (D) and
x e (R\K) = (RY\D)

| P2n(X)| < €1(d) €N | po(X)] < c3n™“™ 1 | (X))

This verifies the upper bound (4) of Theorem 3.

The proof of Theorem 4 follows similarly by using estimate (16) with
M=max,;., 1 /;(D) instead of (15). This together with (3) yields the
bound y,,(D)=O0(M?). Finally, setting M :=[n?"']+1 we arrive at
72n(K) = O(n*@=1). This completes the proof of Theorems 3 and 4. |
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Remark. 1t can be shown that when K is central symmetric the
approximating polytopes satisfying (15) and (16) can also be chosen to be
central symmetric. Moreover, for central symmetric polytopes D by
Theorem 2 the sharper estimate y,,(D) < f,_ (D) holds. This bound leads
to an improvement of the above estimates for y,,(K). Indeed similarly to
the proofs of Theorems 3 and 4 we can verify that in this case
P2u(K) = O(n™?=172) and y,,(K)= O(n?"") if, in addition, K is also C? .

Proof of Theorem 5. Consider an arbitrary point x* on the boundary of
convex body K. Let p%, € B,,(K) be a universal majorant in B,,(K). Then
by Theorem 3

|p2n(x)| < Cnd(d_l) |p;‘n(x)|’ p2n EBZn(K)’ X€ |Rd\l( (21)

We claim that there exists a point X € R? with |x* —X| = O((**&")?) such
that |p%,(X)| =1. In order to show this assume that |p%, | <1 in some ball
B;(x*) with center at x* and radius ¢ > 0. Our claim will follow if we verify
that such a J must satisfy J < c(log n/n)? for some ¢ > 0 independent of n.
There exists y* e Bd K such that K possesses parallel supporting hyper-
planes at x* and y* with a normal u*eS?~ 1 Let L be the line through
x* and y*. We may assume that |x* —y*| =2. (Clearly, |x*—y*| >
o(K), where w(K) is the minimal distance between parallel supporting
hyperplanes to K. Moreover |x* —y*| <d(K):=max{|x—y|:x, yeK}.)
Set now x;:=(1+jd/2)x*—joy*/2, j=1,2. Evidently, x,,x,eL\K,
|x; —x*| =0, and |x, — x*| =20.
Consider the polynomial

As in the proof of Theorem 2 it can be shown that |p,,|<1 on K, ie,
Pan € B, (K). Then by (21) for x, e R/\K

|P2n(X5)| _ T(1 +20)
% > = ) 22
|P3.(X2)] end@—1 nd@=D (22)

On the other hand since |x* —x;| =0 and |p%,|<1 on Bys(x*)UK, we
obtain, in particular, that |p%|<1 on [y* x,], where |y*—x,|=
(1+3) |x*—y* =2+46. Recall, that y* x;, x,eL where [(y*+Xx;)/
2—X,|=1+4+30/2. Now, applying (2) to the univariate polynomial
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PE(1(x, —y*)+x,)€B,([¥*, x;]), X, —y*| =2+, at the point x, with
[(x; +¥%)/2 —x,| =14 35/2 yields

|P3(X2)| < T, (1 4 9).
This together with (22) implies
en®@=VT,.(1406) = T,,(1 +20). (23)
Furthermore, it is well known (see [ 1, p.30]) that
Wi P ST <+/P— )™ 1>
This and (23) yield for 0 <d <9,

en®@=D(1 4 /30)> = 1(1+2 /9)*

Hence

lo 1+2
l+c¢, 5 > (2epd@— Dyl > + \/>1+co\/

1+./30

ie. we obtain that 5= O((l—"ﬁﬂ)z). Thus since |p%,(x*)| <1 there exists X
such that |x* —X| = O((log n/n)?) and |p%,(X)| = 1. Consider now the poly-
nomial g,, = (p%,)> — 1€ P¢ . As we have shown above for every x* € Bd K
there exists an X such that g,,(X)=0 and |x* —%|<c(logn/n)%. This
concludes the proof. ||

SOME OPEN PROBLEMS

The results proved above provide some insight on the magnitude of
7,,(K), but a number of questions remains open. Namely it would be
interesting to determine for what convex bodies K

sup 7,,(K) < oo. (24)

neN

We have seen above that (24) holds for ellipsoids and polytopes. Using
similar methods we can verify that (24) is true for finite intersections of
central-symmetric polytopes and ellipsoids having the same center. This
means that (24) holds not only for ellipsoids and polytopes. Is (24) true for
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every convex body K = R*? Another open problem consists in characteriz-
ing those compact sets K = R for which y,,(K) has subexponential growth,
1e.,

lim sup y,,(K)""=1. (25)

n— oo

Theorem 3 implies, in particular, that (25) holds for every convex body
K cR%
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