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Let K be a convex body in Rd (d�2), and denote by Bn(K) the set of all polyno-
mials pn in Rd of total degree �n such that | pn |�1 on K. In this paper we consider
the following question: does there exist a pn* # Bn(K) which majorates every element
of Bn(K) outside of K? In other words can we find a minimal #�1 and pn* # Bn(K)
so that | pn(x)|�# | pn*(x)| for every pn # Bn(K) and x # Rd"K? We discuss the
magnitude of # and construct the universal majorants pn* for even n. It is shown that
# can be 1 only on ellipsoids. Moreover, #=O(1) on polytopes and has at most
polynomial growth with respect to n, in general, for every convex body K. � 2001
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Let K/Rd, d�2, be a convex body i.e., it is a convex compact set with
nonempty interior in Rd. Consider the space Pd

n of polynomials on Rd of
total degree �n, endowed with the usual supremum norm on K. Then the
unit ball in this space is given by

Bn(K) :=[ p # Pd
n : &p&C(K)�1].

In this paper we address the following question: is there a ``largest'' polyno-
mial in Bn(K) which majorates all elements of Bn(K) everywhere on Rd"K?
In other words does there exist a #�1 and pn* # Bn(K) such that

| pn(x)|�# | pn*(x)|, \pn # Bn(K), \x # Rd"K? (1)

Such a pn* majorates all pn # Bn(K) at every point outside K (with the con-
stant #). In this sense pn* is a universal majorant for polynomials in Bn(K).
Naturally, we are interested in the smallest possible #�1 for which (1)
holds with some pn* # Bn(K). Thus we set #n(K) :=inf[#: there exists a
pn* # Bn(K) so that (1) holds].
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The above definition is motivated by the classical inequality of
Chebyshev (see [1, p. 235]) stating that when d=1 and K=[&1, 1] we
have

| pn(x)|�|Tn(x)|, \pn # Bn([&1, 1]), \ |x|>1, (2)

where Tn(x)=cos n arc cos x is the Chebyshev polynomial. This means in
our terminology that #n([&1, 1])=1 for every n # N, with \Tn being the
universal majorants.

In this paper we shall study the magnitude of #n(K) when d>1 and K
is a convex body in Rd. First, it has to be noted that the above question
is meaningful only for even n # N, because #2n+1(K)=� whenever d>1
and n # N. Indeed, if #2n+1(K)<�, i.e., a universal majorant p*2n+1 #
B2n+1(K) exists, then it follows from (1) that deg p*2n+1=2n+1 (and not
less), and p*2n+1 {0 on Rd"K. Since d>1 we can easily find a line
L=[at+b : t # R1] in Rd (a, b # Rd) so that L & K=< and the univariate
polynomial p*2n+1 (at+b) has degree 2n+1. This yields that p*2n+1

(at0+b)=0 for some t0 # R1 contradicting the above observation that
p*2n+1 {0 on Rd"K.

On the other hand for even n one can give a simple example of a univer-
sal majorant in Rd, d>1. In what follows |x| denotes the Euclidean norm
in Rd (d�1), (x, y) stands for the inner product of x, y # Rd, Bd K and
Int K are the boundary and interior of K, respectively.

Example 1. Let K=[x # Rd : |x|�1] be the Euclidean unit ball in Rd.
Then #2n(K)=1 with p*2n(x)=T2n( |x| ) # B2n(K) being a universal majorant.
This follows immediately from (2) since T2n(t), t # R1 is an even polyno-
mial.

Using affine transformations of Rd the above example can be easily
extended to arbitrary ellipsoids which means that #2n(K)=1 for any ellip-
soid K. Our first result gives a converse to this showing that #2n(K) can
attain its minimal value 1 only on ellipsoids.

Theorem 1. Let K/Rd, d�2, be a convex body; n # N. Then #2n(K)=1
if and only if K is an ellipsoid, i.e., K=[x # Rd : |Ax+b|�1] for some A #
Rd_Rd (det A{0) and b # Rd. Moreover, in this case p*2n=\T2n( |Ax+b| )
are the only universal majorants.

Thus apart from ellipsoids we always have #2n(K)>1. It turns out that
#2n(K)=O(1) with a constant independent of n whenever K is a polytope.
For a polytope K we shall denote by fj (K) the number of its j-dimensional
faces, 0� j�d&1.
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Theorem 2. Let K be a convex polytope in Rd, d�2. Then for every
n # N

#2n(K)� :
d&2

j=1

f j (K) fd& j&1(K)+2 fd&1(K). (3)

Moreover, if K is central symmetric then we have #2n(K)� fd&1(K).

Using the above theorem and some known results on degree of
approximation of convex bodies by polytopes with prescribed number of
vertices or faces we can verify that #2n(K) has at most polynomial growth
in n for every convex body K. Namely we have the next

Theorem 3. Let K be a convex body in Rd, d�2. Then for every n # N

#2n(K)�c(d, K) nd (d&1), (4)

where c(d, K)>0 depends only on d and K.

Note that in general, polynomials bounded by 1 on K can grow exponen-
tially outside K. Thus the polynomial growth #2n(K)=O(nd (d&1)) given by
Theorem 3 is very small relative to the size of polynomials pn # Bn(K) out-
side of K. The estimate (4) can be improved further if K has a C 2

+ -bound-
ary, i.e., its second fundamental form exists on Bd K and the Gauss
curvature is a positive continuous function on Bd K.

Theorem 4. If K is a convex body in Rd (d�2) with a C 2
+-boundary

then #2n(K)=O(n2(d&1)).

Above estimates can be used in order to obtain results on approximation
of convex surfaces by algebraic surfaces. (We call zero sets of pn # Pd

n

algebraic surfaces of order n.) Denote by *(A, B) the Hausdorff distance
between A, B/Rd.

Theorem 5. For any convex body K in Rd (d�2) there exists an
algebraic surface 0n of order n such that *(Bd K, 0n)�c( log n

n )2, where c>0
depends only on K and d.

This paper is organized as follows. Section 1 contains some material on
the geometry of convex bodies needed for our considerations. In Section 2
the proofs of Theorem 1�5 will be given. Finally, we shall conclude the
paper by a discussion of some open problems.
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1. GEOMETRY

First we need to introduce a certain quantity :k(x) which measures the
distance from a given x # Rd to the boundary Bd K of a convex body
K/Rd. This quantity was used in [5] and [6] for the study of multi-
variate Chebyshev and Bernstein Inequalities.

For given A, B # Rd and u # Sd&1 :=[x # Rd : |x|=1] such that (u, B&A)
>0 consider the corresponding ``slab'' given by

Su (A, B) :=[x # Rd : (u, A)�(u, x) �(u, B)].

For a fixed :>0 the ``:-dilation'' of this slab is defined by S:
u (A, B) :=

[x # Rd : (u, A) &$:�(u, x)�(u, B)+$:] where $: := :&1
2 (B&A, u).

Finally, set K: :=� [S:
u (A, B): Su (A, B)#K, A, B # Rd, u # Sd&1], :K (x)

:=inf[:: x # K:].
Clearly, :K (x)>1 for x # Rd"K, :K (x)=1 on Bd K, and :K (x)<1 inside

K. Also, it is easy to see that when K is central symmetric about 0 then
:K (x)=inf[:>0: x

: # K] is the usual Minkowski functional. It is proved in
[6] that for every x # Rd"K

sup[ | pn(x)|: pn # Bn(K)]=Tn(:K (x)). (5)

We shall also need the following lemmas on parallel supporting hyper-
planes which are proved in [5] and [6]. (A special case of Lemma 1 also
appears in [7].)

Lemma 1. Let x # Rd"K. Then there exists a line L passing through x
with K & L=[A, B], such that K possesses parallel supporting hyperplanes
at A and B. Moreover, for any such line

:K (x)= }x&
A+B

2 }<|A&B|
2

. (6)

For the proof of the above statement see [6], Corollary 1 and the proof
of Theorem 1A on p. 422. The next lemma provides a similar statement for
inner points of K.

Lemma 2. Let x # Int K. Then there exists a line L passing through x
with K & L=[A, B] such that (6) holds, and K possesses parallel supporting
hyperplanes at A and B.
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Note a slight difference in the statements of Lemmas 1 and 2: when
x # Rd"K by Lemma 1 (6) holds for every L as above, while for x # Int K
by Lemma 2 (6) holds for some L as above.

The first statement of Lemma 2 asserting that (6) holds for a certain line
as above is a consequence of Proposition 2 in [5]. The second statement
concerning parallel supporting hyperplanes is Proposition 1 of [5].

2. PROOFS

Proof of Theorem 1. The sufficiency in Theorem 1 is straightforward, it
follows by a change of variables y=Ax+b (x, y # Rd) and Example 1.

Assume now that K/Rd is such that #2n(K)=1, and p*2n # B2n(K) is a
corresponding universal majorant, so that

| p2n(x)|�| p*2n(x)|, p2n # B2n(K), x # Rd"K.

Then it easily follows from (5) that

| p*2n(x)|#T2n(:K (x)), x # Rd"K.

In particular, we have that for every x # Rd "K either p*2n(x)#Tn(:K (x)), or
p*2n(x)# &Tn(:K (x)). Thus we may assume that

p*2n(x)#T2n(:K (x)), x # Rd"K. (7)

First we shall verify that equality (7) holds for x # K, as well. Choose
any x~ # Int K. Then by Lemma 2 there exists a line L through x~ with
L & K=[A, B] such that

:K (x~ )=
}x~ &A+B

2 }
}A&B

2 }
, (8)

and K possesses parallel supporting hyperplanes at A and B. Let

x~ =
1&t~

2
A+

1+t~
2

B,

where it can be assumed that 0�t~ �1. Then by (8), :K (x~ )=t~ . Moreover,
by Lemma 1 for every x # L"K equality (6) holds, i.e. setting xt=
1&t

2 A+ 1+t
2 B we have :K (xt)=t, t>1. This and (7) yield that

p*2n(xt)#T2n(t), t>1.
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But of course the above equality of univariate polynomials has to extend
from [t # R1 : t>1] to the whole line, i.e.,

p*2n \1&t
2

A+
1+t

2
B+#T2n(t), t # R. (9)

In particular, setting in (9) t=t~ we obtain p*2n(x~ )=T2n(t~ )=T2n(:K (x~ )).
Thus and by (7)

p*2n(x)#T2n(:K (x)), x # Rd. (10)

The next step is to verify that K is central symmetric. Set

:0 := inf
x # K

:K (x), K0 := ,
:>:0

K: .

Clearly, :0�0, K0 {< and Int K: {<, :>:0 . Furthermore, for every
x # K0 we have :K (x)�:0 , i.e., by minimality of :0 it follows that
:K (x)=:0 whenever x # K0 . This last observation implies that K0 must be
a singleton. Indeed, if a*, b* # K0 (a*{b*) then [a*, b*]/K0 , and hence
:K (x)=:0 for x # [a*, b*]. This and (10) yield that p*2n #T2n(:0) on the
line L* through a* and b*, in an obvious contradiction with (10). Thus
K0=[a*]. Consider now a line L* through a* with K & L*=[A*, B*]
such that K possesses parallel supporting hyperplanes at A* and B*
(Lemma 2). By (9) and (10) we have with xt*= 1&t

2 A*+ 1+t
2 B*

T2n(t)= p*2n(xt*)=T2n(:K (xt*)), t # R1. (11)

As t increases from &1 to 1 the continuous function :K (xt*) decreases from
1 to :0 , and then increases from :0 to 1. Thus in view of (11) we must have
:0=0, and a*=x0*=(A*+B*)�2. (In particular, Int K: {< for every
:>0.) Similarly for any A # Bd K there exists a B # Bd K such that K pos-
sesses parallel supporting hyperplanes at A and B. Thus using again (9)
and (10)

T2n(t)=T2n \:K \1&t
2

A+
1+t

2
B++ , t # R.

Again, as t varies in [&1, 1] :K ( 1&t
2 A+ 1+t

2 B) must decrease from 1 to 0
and then increase from 0 to 1. Hence [A, B] must contain a* (otherwise
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:K ( 1&t
2 A+ 1+t

2 B) can not attain 0), and, in addition, a*= A+B
2 . Thus for

every A # Bd K the line through A and a* exits K at B=2a*&A. This
means that K is central symmetric about a*.

We may assume now that a*=0 and K is symmetric about the origin.
Then :K (tx)=t:K (x) whenever x # Rd and t>0. The polynomial p*2n can
be written as p*2n(x)=�2n

j=0 hj (x), where h j is its jth homogeneous part,
0� j�2n. Furthermore T2n(t)=�n

j=0 cj t2 j, where cj # R, 0� j�n. Then
for every u # Sd&1 and t>0

p*2n(tu)= :
2n

j=0

hj (tu)= :
2n

j=0

t jhj (u),

T2n(:K (tu))=T2n(t:K (u))= :
n

j=0

cj :2 j
K (u) t2 j.

Hence using (10) we obtain

:
2n

j=0

hj (u) t j= :
n

j=0

cj:2 j
K (u) t2 j, u # Sd&1, t>0.

This means that h2 j (u)=cj:2 j
K (u) for every u # Sd&1. In particular

:2
K (u)=

1
c1

h2(u) :=H2(u), u # Sd&1.

Evidently, H2 is a positive definite quadratic form, i.e.

K=[x # Rd : :K (x)�1]=[x # Rd : H2(x)�1]

is an ellipsoid. In addition, by (10) the only possible majorants are
\T2n(:K (x)). K

Proof of Theorem 2. Let K/Rd be a polytope. Consider A, B # Bd K
such that K possesses parallel supporting hyperplanes HA , HB at A and B,
and denote by UAB the set of normal vectors to such pairs of hyperplanes.
Since K is a polytope it is easy to see that for some u # UAB the correspond-
ing pair of hyperplanes HA , HB has the property that the faces FA =K &

HA and FB =K & HB of the polytope K contain a total of d&1 linearly
independent vectors. Let U(K) :=[u1 , ..., uN]/Sd&1

+ :=[y=( y1 , ..., yd) #
Sd&1 : y1�0] be the set of normal vectors to pairs of hyperplanes with the
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above properties. Since every uj # U(K), 1� j�N, is uniquely determined
by the corresponding pair of faces of K specified above it follows that

N� 1
2 :

d&2

j=1

fj (K) fd& j&1(K)+ fd&1(K). (12)

Moreover, U(K) & UAB {< whenever K possesses parallel supporting
hyperplanes at A, B # Bd K. Furthermore, for every uj # U(K) select some
Aj , Bj # Bd K such that uj # UAjBj , 1� j�N.

Finally, consider the polynomial T� 2n(t)=(T2n(t)+1)�2 # P1
2n . Obviously

T� 2n�0 on R1, T� 2n�1 on [&1, 1], and T2n�2T� 2n on R1"[&1, 1]. Now
we set

p*2n(x)=
1
N

:
N

j=1

T� 2n \�
x&

Aj+B j

2
, uj�

�Aj&Bj

2
, uj� + . (13)

Clearly, p*2n # Pd
2n . Moreover, we claim that | p*2n |�1 on K, i.e., p*2n #

B2n(K). Indeed, since K possesses parallel supporting hyperplanes at Aj and
Bj with normal uj we have (assuming, for instance that (Aj , uj) <
(Bj , uj) ) (Aj , uj)�(x, uj) �(Bj , uj) , x # K. This easily implies

}�x&
A j+Bj

2
, uj�}� }�A j&Bj

2
, uj�}, x # K.

Since |T� 2n |�1 on [&1, 1] we obtain by (13) that p*2n # B2n(K). Now we
need to show that p*2n satisfies (1) with a proper #. Consider an arbitrary
p2n # B2n(K) and x* # Rd"K. By Lemma 1 there exists a line L passing
through x* with K & L=[A*, B*] such that K possesses parallel support-
ing hyperplanes at A*, B* # Bd K. As it was observed above we can choose
this pair of hyperplanes HA* , HB* (keeping A*, B* fixed) so that some
uj # U(K), 1� j�N, is the normal to these hyperplanes. Then by (6) using
that x*, A*, B* # L

:K (x*)=
}x*&

A*+B*
2 }

|A*&B*|
2

= } �
x*&

A*+B*
2

, uj�
�A*&B*

2
, u j� } . (14)
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Recall that earlier we have already chosen Aj , Bj from the pair of hyper-
planes HA* , HB* (with normal uj). Hence without loss of generality, A*,
Aj # HA* , B*, Bj # HB* , i.e., A*&Aj and B*&Bj are normal to uj . Thus
using (5), (14) and (13) we have for p2n # B2n(K)

| p2n(x*)|�T2n(:K (x*))�2T� 2n(:K (x*))

=2T� 2n \�
x*&

Aj+Bj

2
, uj�

�Aj&Bj

2
, uj� +�2Np*2n(x*).

Finally by (12) we arrive at estimate (3).
If remains to verify the sharper bound #2n(K)� fd&1(K) in case when K

is a central symmetric polytope. Assume that 0 is the center of symmetry
of K. Clearly, K has M :=fd&1(K)�2 pairs of parallel (d&1)-dimensional
faces. Denote by |j , 1� j�M, the normals to these pairs of hyperplanes,
and select any segments [&Aj , Aj], 1� j�M with endpoints in these
pairs of faces. Finally, set

p~ 2n(x)=
1
M

:
M

j=1

T� 2n \ (x, |j)
(Aj , |j)+ .

As above, it follow that p~ 2n # B2n(K). Now, for any x* # Rd"K the line
L :=[tx* : t # R1] intersects Bd K at some points \B which belong to a
pair of parallel (d&1)-dimensional faces of K with normal |k for some
1�k�M. Then B&Ak = |k and proceeding as above we can show that
for any p2n # B2n(K) | p2n(x*)|� fd&1(K) p~ 2n(x*), i.e., #2n(K)� fd&1(K). K

Proofs of Theorems 3 and 4. Now we proceed to proving Theorems 3
and 4. Their proofs are based on the ``polytopal'' estimate (3) for #2n(K) on
one side, and some known results on the rate of approximation of convex
bodies by polytopes. One such result proved in [3] (see also [4]) asserts
that for any convex body K/Rd (d�2) and N # N there exists a polytope
D with f0(D)=N vertices so that

*(K, D)�
c

N2�(d&1) (15)

with an absolute constant c>0. (Here as above *(K, D) stands for the
Hausdorff distance between corresponding sets.) The approximating
polytope D is constructed in [3] to be circumscribed to K, it can be
modified in an obvious way to be inscribed into K. Moreover it is shown
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in [2] that if K is C 2
+ then for any M # N there exists an inscribed

polytope D with max0� j�d&1 fj (D)�M such that

*(K, D)�
c1

M2�(d&1) (16)

with some c1>0 depending on K. In principle, (16) provides a stronger
bound than (15) since it is known (see e.g. [8, p. 257]) that for any
polytope D

fj (D)�c(d ) f0(D)[d�2], 1� j�d&1, (17)

with some c(d ) depending only on d.
We shall also need the following well known corollary of Chebyshev

Inequality (2): if pn # P1
n is a univariate polynomial and | pn |�1 on

[&1, 1] then

| pn(t)|�ec0n - $, |t|�1+$ (0<$<1) (18)

with some absolute constant c0>0.
After these preliminaries we turn to the proof of Theorem 3. Consider an

arbitrary convex body K in Rd (d�2), and let D/K be an inscribed
polytope with f0(D)=N vertices so that (15) holds.

By estimate (3) of Theorem 2 and (17) we have #2n(D)�c1(d ) N d. Thus
there exists a universal majorant p*2n # B2n(D) such that

| p2n(x)|�c1(d ) Nd | p*2n(x)|, p2n # B2n(D), x # Rd"D. (19)

Since | p*2n |�1 on D/K it follows by (15) and (18) that

&p*2n&C(K)�exp[c2nN 1�(1&d )] (20)

with some c2>0 depending on d and K. Hence setting N :=[nd&1]+1
and p~ 2n :=e&c2p*2n we obtain by (20) that | p~ 2n |�1 on K, i.e., p~ 2n # B2n(K).
Moreover, using (19) we have for every p2n # B2n(K)/B2n(D) and
x # (Rd "K)/(Rd "D)

| p2n(x)|�c1(d ) ec2N d | p~ 2n(x)|�c3nd(d&1) | p~ 2n(x)|.

This verifies the upper bound (4) of Theorem 3.
The proof of Theorem 4 follows similarly by using estimate (16) with

M=max0� j�d&1 fj (D) instead of (15). This together with (3) yields the
bound #2n(D)=O(M2). Finally, setting M :=[nd&1]+1 we arrive at
#2n(K)=O(n2(d&1)). This completes the proof of Theorems 3 and 4. K
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Remark. It can be shown that when K is central symmetric the
approximating polytopes satisfying (15) and (16) can also be chosen to be
central symmetric. Moreover, for central symmetric polytopes D by
Theorem 2 the sharper estimate #2n(D)� fd&1(D) holds. This bound leads
to an improvement of the above estimates for #2n(K). Indeed similarly to
the proofs of Theorems 3 and 4 we can verify that in this case
#2n(K)=O(nd(d&1)�2), and #2n(K)=O(nd&1) if, in addition, K is also C 2

+ .

Proof of Theorem 5. Consider an arbitrary point x* on the boundary of
convex body K. Let p*2n # B2n(K) be a universal majorant in B2n(K). Then
by Theorem 3

| p2n(x)|�cnd (d&1) | p*2n(x)|, p2n # B2n(K), x # Rd"K. (21)

We claim that there exists a point x~ # Rd with |x*&x~ |=O(( log n
n )2) such

that | p*2n(x~ )|=1. In order to show this assume that | p*2n |�1 in some ball
B$(x*) with center at x* and radius $>0. Our claim will follow if we verify
that such a $ must satisfy $�c(log n�n)2 for some c>0 independent of n.
There exists y* # Bd K such that K possesses parallel supporting hyper-
planes at x* and y* with a normal u* # Sd&1. Let L be the line through
x* and y*. We may assume that |x*&y*|=2. (Clearly, |x*&y*|�
|(K), where |(K) is the minimal distance between parallel supporting
hyperplanes to K. Moreover |x*&y*|�d(K) :=max[ |x&y| : x, y # K].)
Set now xj :=(1+ j$�2) x*& j$y*�2, j=1, 2. Evidently, x1 , x2 # L"K,
|x1&x*|=$, and |x2&x*|=2$.

Consider the polynomial

p2n(x) :=T2n \�
x&

x*+y*
2

, u*�
�x*&y*

2
, u*� + .

As in the proof of Theorem 2 it can be shown that | p2n |�1 on K, i.e.,
p2n # B2n(K). Then by (21) for x2 # Rd"K

| p*2n(x2)|�
| p2n(x2)|
cnd (d&1) =

T2n(1+2$)
cnd (d&1) . (22)

On the other hand since |x*&x1|=$ and | p*2n |�1 on B$(x*) _ K, we
obtain, in particular, that | p*2n |�1 on [y*, x1], where |y*&x1|=
(1+ $

2) |x*&y*|=2+$. Recall, that y*, x1 , x2 # L where |(y*+x1)�
2&x2 |=1+3$�2. Now, applying (2) to the univariate polynomial
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p*2n(t(x1&y*)+x1) # Bn([y*, x1]), |x1&y*|=2+$, at the point x2 with
|(x1+y*)�2&x2 |=1+3$�2 yields

| p*2n(x2)|�T2n(1+$).

This together with (22) implies

cnd (d&1)T2n(1+$)�T2n(1+2$). (23)

Furthermore, it is well known (see [1, p. 30]) that

1
2 (t+- t2&1)2n�T2n(t)�(t+- t2&1)2n, t>1.

This and (23) yield for 0<$�$0

cnd (d&1)(1+- 3$)2n� 1
2 (1+2 - $)2n.

Hence

1+cd
log n

n
�(2cnd (d&1))1�2n�

1+2 - $

1+- 3$
�1+c0 - $,

i.e. we obtain that $=O(( log n
n )2). Thus since | p*2n(x*)|�1 there exists x~

such that |x*&x~ |=O((log n�n)2) and | p*2n(x~ ) |=1. Consider now the poly-
nomial g4n=( p*2n)2&1 # Pd

4n . As we have shown above for every x* # Bd K
there exists an x~ such that g4n(x~ )=0 and |x*&x~ |�c(log n�n)2. This
concludes the proof. K

SOME OPEN PROBLEMS

The results proved above provide some insight on the magnitude of
#2n(K), but a number of questions remains open. Namely it would be
interesting to determine for what convex bodies K

sup
n # N

#2n(K)<�. (24)

We have seen above that (24) holds for ellipsoids and polytopes. Using
similar methods we can verify that (24) is true for finite intersections of
central-symmetric polytopes and ellipsoids having the same center. This
means that (24) holds not only for ellipsoids and polytopes. Is (24) true for
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every convex body K/Rd? Another open problem consists in characteriz-
ing those compact sets K/Rd for which #2n(K) has subexponential growth,
i.e.,

lim sup
n � �

#2n(K)1�n=1. (25)

Theorem 3 implies, in particular, that (25) holds for every convex body
K/Rd.
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