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Abstract

Using Casorati determinants of Hahn polynomials (h,"{”ﬁ’]\[)n7 we con-
struct for each pair F = (F1, F2) of finite sets of positive integers polyno-
mials h2# Y% n € ox, which are eigenfunctions of a second order differ-
ence operator, where or is certain set of nonnegative integers, o & N.
When N € N and «, 8, N and F satisfy a suitable admissibility con-
dition, we prove that the polynomials AN are also orthogonal and
complete with respect to a positive measure (exceptional Hahn polynomi-
als). By passing to the limit, we transform the Casorati determinant of
Hahn polynomials into a Wronskian type determinant of Jacobi polyno-
mials (Pﬁ’ﬂ )n. Under suitable conditions for «, 3 and F, these Wronskian
type determinants turn out to be exceptional Jacobi polynomials.

1 Introduction

In [8] and [9], we have introduced a systematic way of constructing exceptional
discrete orthogonal polynomials using the concept of dual families of polynomi-
als. We applied this procedure to construct exceptional Charlier and Meixner
polynomials and, passing to the limit, exceptional Hermite and Laguerre poly-
nomials, respectively. The purpose of this paper is to extend this construction
to Hahn and Jacobi exceptional polynomials.

Exceptional orthogonal polynomials p,,, n € X & N, are complete orthogonal
polynomial systems with respect to a positive measure which in addition are
eigenfunctions of a second order differential operator. They extend the classi-
cal families of Hermite, Laguerre and Jacobi. The last few years have seen a
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great deal of activity in the area of exceptional orthogonal polynomials (see,
for instance, [8, 9, 17, 18] (where the adjective exceptional for this topic was
introduced), [19, 21, 29, 30, 32, 33], and the references therein).

In the same way, exceptional discrete orthogonal polynomials are complete
orthogonal polynomial systems with respect to a positive measure which in
addition are eigenfunctions of a second order difference operator, extending
the discrete classical families of Charlier, Meixner, Krawtchouk and Hahn, or
Wilson, Racah, etc., if orthogonal discrete polynomials on nonuniform lattices
are considered ([8, 9, 31, 35]).

The most apparent difference between classical or classical discrete orthogonal
polynomials and their exceptional counterparts is that the exceptional families
have gaps in their degrees, in the sense that not all degrees are present in the
sequence of polynomials (as it happens with the classical families) although they
are complete in the underlying L? space. This means that they are not covered
by the hypotheses of Bochner’s and Lancaster’s classification theorems (see [2]
or [26]) for classical and classical discrete orthogonal polynomials, respectively.

In [8, 9], we assume that the gap N\ X in the degrees of the exceptional
Charlier, Meixner, Hermite and Laguerre polynomials is finite and that they are
orthogonal and complete with respect to a positive measure. These are also the
usual assumptions in the literature for exceptional polynomials. In this paper,
we consider exceptional Hahn polynomials, and then we should slightly modify
these assumptions. Hahn polynomials (h%#"),, depend on three parameters,
usually denoted by «, 3 and N. The most interesting case appears when N is a
positive integer: indeed, only when NV is a positive integer and n =0,1,--- , N,
the Hahn polynomials are orthogonal with respect to a positive measure and
have non null norm. This positive measure is a finite combination of Dirac
deltas (the associated L? space has then finite dimension) and the Hahn poly-
nomials with degrees 0,1,--- , N, are complete with respect to this measure.
This implies that actually there is a gap in the degrees of the Hahn polynomi-
als. But this gap is related to the norm of the polynomials, and not with the
polynomials themselves. Indeed, also for n > N, a Hahn polynomial of degree
n can be defined, which is also an eigenfunction of the corresponding second
order difference operator, but its norm is 0 (see Section 2.4 for more details).
From the Hahn family (h2%),,, where N might not be a positive integer, we
will construct sequences of polynomials with degrees n € X ¢ N and N\ X
finite which are eigenfunctions of a second order difference operator. As for the
Hahn polynomials, we need to assume that N is a positive integer (together
with certain admissibility condition) to associate them a positive measure with
respect to which these polynomials are orthogonal. Then we will have an ex-
ceptional Hahn polynomial of degree n for n € X ¢ N with N\ X finite, but
only the polynomials with degree n € X and 0 < n < ng, for certain ng, will
be required to have non null norm and to be complete in the corresponding L2
space (which, as for the Hahn polynomials, will be of finite dimension).

As mentioned above, we use the concept of dual families of polynomials to con-
struct exceptional discrete orthogonal polynomials (see [27]). Classical discrete
orthogonal polynomials (py,), are eigenfunctions of two second order difference




operators. One of them acts on the discrete parameter n, and corresponds with
the three term recurrence relation they satisfy as a consequence of their orthog-
onality with respect to a measure. The other second order difference operator
acts on the continuous variable x. Duality is with respect to the corresponding
sequences of eigenvalues. For Charlier or Meixner polynomials, both sequences
can be taken equal to n, and the families turns out to be selfdual. For Hahn
polynomials the situation is different because one of the eigenvalue sequences
is quadratic in n. As a consequence, when duality is applied one moves from
Hahn to dual Hahn polynomials and viceversa.

Definition 1.1. Given two sequences of numbers (wy, )nev and () )nev, where
U,V are subsets of N, we say that the two sequences of polynomials (p,)nev,
(gn)nev are dual with respect to (wy )ney and (w))nev if there exist a couple
of sequences of numbers (&,)ncr, (Cn)nev such that

(11) gupu(wv) = CUQU(WZ), uwelUwvelV.

Duality has shown to be a fruitful concept regarding discrete orthogonal poly-
nomials, and his utility has been again manifest in the exceptional discrete
polynomials world. Indeed, as we pointed out in [8] and [9], it turns out that
duality interchanges exceptional discrete orthogonal polynomials with the so-
called Krall discrete orthogonal polynomials. A Krall discrete orthogonal family
is a sequence of polynomials (py)nen, pn of degree n, orthogonal with respect
to a positive measure which, in addition, are also eigenfunctions of a higher
order difference operator. A huge amount of families of Krall discrete orthogo-
nal polynomials have been recently introduced by the author in [11] by mean of
certain Christoffel transform of the classical discrete measures of dual Hahn (see
also [6, 7, 13, 14]). A Christoffel transform consists in multiplying a measure u
by a polynomial 7.

The content of this paper is as follows. In Section 2, we include some prelim-
inary results about Christoffel transforms and finite sets of positive integers.

In Section 3, using Casorati determinants of Hahn polynomials we associated
to a pair F = (F}, F») of finite sets of positive integers a sequence of polynomials
which are eigenfunctions of a second order difference operator. Denote by k; for
the number of elements of F;, ¢ = 1,2 and by k = k1 + ko the number of elements
of F. One of the components of F, but not both, can be the empty set. We
define the nonnegative integer ur by ur = ZfEFl I+ ZfeF2 - (’“2‘“) — (k;)
and the infinite set of nonnegative integers o by

0'_7::{U]-‘,U]:+1,’u_7:+2,"‘}\{Uf+f,fGFl}-

Under mild conditions on the parameters o, 6 and N, we then associate to the
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pair F the sequence of polynomials h% , n € or, defined by

(1.2)

higu%(x +j-1) 1< <k+1
RN (x+5—1) }

f
[f €

—k N 1 . a,—3, N .
[sfﬁ_j’;t%x)sj_ﬁ‘” (¢+j— Dy P @ 45— 1) }

e Fy

hﬁ’ﬁ’N;f(x) —

[ (N =2 =k + gy (N + B =2 — i +2); 1
where (h%#),, are the Hahn polynomials (see (2.31)) and
(13) Sy(x):(ui'r)ﬁ UGC,jZO,l,"'

Along this paper, we use the following notation: given a finite set of positive
integers F' = {f1,..., fm}, the expression

(1.4) [fo,l 2 Zfm
€F

inside of a matrix or a determinant will mean the submatrix defined by

Zfi, 1 R2f1,2 0 Zfim

Zfm,l Rfm,2 2 fm,m

The determinant (1.2) should be understood in this form. As usual (a); =
a(a+1)---(a+j—1) denotes the Pochhammer symbol.
Consider now the measure pfzﬁw = n§B7N(m — uzx), where

15)  nlsn= ] A@) =) [T A@) = AMf = B)weasn,

feF: fEFs

Az) = AP (2) = 2(x + o+ B+ 1), and w, o g N is the measure which respect
to which the dual Hahn polynomials (R%#),, are orthogonal (see (2.25) and
(2.28)). It turns out that the sequence of polynomials h%%N:# n € oz, and
the sequence of orthogonal polynomials with respect to the measure pi g.N are
dual sequences (see Lemma 3.2). As a consequence we get that the polynomials
he:PN:F € or, are always eigenfunctions of a second order difference operator
Dz (whose coefficients are rational functions); see Theorem 3.3.

The most interesting case appears when the measure pg': 5. s either positive
or negative. This gives rise to the concept of Hahn admissibility (see Definition
2.5 in Section 2.3). In Section 4, assuming that N is a positive integer, we
introduce the measure
R A [ (AN
Q37N ()05 (z + 1)

Z

F _
Wa,8,N =
x=0




where Qi-”g N is the polynomial defined by

1<j<k
[f;;'«‘ﬁ’N(x +5-1) }
S 3
Bﬁ}iﬂx)sﬁﬁ“(z +j = DRy N @ - 1) }
€F

G @) = = .
[L2i(N =2 = k4 Dpymipa(N+ B -2 —i+2)i1
We prove that Hahn admissibility is equivalent to the fact that this measure is
either positive or negative (Lemma 4.2). We also prove that if o, 5, N and F
are Hahn admissible, then the polynomials h,‘i’ﬁ’N ¥ n € of, are orthogonal
with respect to this measure waf’ﬁﬁN (Theorem 4.4), but only when n € oz and
n < N + ug the polynomial h%#™% has non null norm (similarly to what
happens to the Hahn family). We also prove that the polynomials h%#N:7
n € or and n < N + ugr, are complete with respect to the measure Wf,ﬁ,w

In Section 5 and 6, we construct exceptional Jacobi polynomials by taking
limit (in a suitable way) in the exceptional Hahn polynomials when N — +oo0.
We then get (see Theorem 5.2) that for each pair F = (Fi, F») of finite sets of
positive integers, the polynomials

(1)1 (Pe )=V () 1<)kl
B—l)jl(Pf’B)(jl)(x) }

e F
(8- f)j—l(l + x)k—j+1p}l+j—1,—ﬁ—j+1(x) }

e Fy

a,B;F _

n € or, are eigenfunctions of a second order differential operator.
Consider the polynomial Q%’ﬁ defined by

eR
(B =i (1 + x)k*jp}lﬂ—lv—ﬁ—yﬂ(x)
€F

[<f—1>j-1<P;ﬂ><f-1><w> %

(L7 - 0F’(@) =

(1 + z)k2(k2—1)

Assuming that

(1.8) a+k>-1,8+k —ky>—1and Q]Oéﬁ(x) #£0, z € [-1,1],
we prove that the polynomials Pfj"ﬁ?}'
the positive weight

, n € oF, are orthogonal with respect to

(1 — 2)2 k(1 4 g)Pthi—ke
Q5" (x))2

Wa,3;F = , —l<z<l,




and form a complete orthogonal system in L?(wq g.7) (see Theorem 6.2). Pass-
ing to the limit from Hahn admissibility we get the concept of Jacobi admissi-
bility (see Definition 2.7). We prove that the assumptions (1.8) imply that «, 5
and F are Jacobi admissible (Theorem 6.3). We conjecture that the converse is
also true, but we have only been able to prove it under an additional technical
condition (Theorem 6.5).

In Section 7 we show that both exceptional Hahn and Jacobi polynomials
satisfy higher order recurrence relations. So one can say that these families of
polynomials are bispectral. Let us explain this in some more detail. In the
terminology introduced by Duistermaat and Griinbaum ([5]; see also [22], [23]),
a family (p,(z)), of Krall or Krall discrete polynomials is called bispectral.
Indeed, as functions of the continuous variable x, the polynomials (p,(z)), are
eigenfunctions of a higher order differential or difference operator, respectively.
But, on the other hand, since the polynomials (p,(z)), are orthogonal with
respect to a measure, Favard’s Theorem establishes that they satisfy a three
term recurrence relation of the form (p_; = 0)

(1.9) pn () = ant1Pnt1(x) + bppn(2) + copn—1(z), n >0,

where (ap)n, (bn)n and (c,), are sequences of real numbers with a,c, # 0,
n > 1 (anc, > 0, n > 1, if we work with positive measures). The three term
recurrence formula is saying that the polynomials p,, as functions of the dis-
crete parameter n, are also eigenfunctions of a second order difference operator.
The word bispectral is then stressing the existence of two eigenfunctions prob-
lems associated to two different operators in relation to Krall or Krall discrete
polynomials. Since exceptional polynomials also satisfy higher order recurrence
relations (see, for instance, Section 7 in this paper for exceptional Hahn and
Jacobi polynomials, but also [12, 20, 28, 33]), there are also two eigenfunctions
problems associated to them: the one associated to the second order differential
or difference operator with respect to which they are eigenfunctions (acting in
the continuous variable) and the higher order recurrence relation (which it can
be seen as a higher order difference operator acting on the discrete variable n).
However, from my point of view, the bispectral approach is not as essential for
exceptional polynomials as it is for Krall or Krall discrete polynomials. The
reason is that in the Krall case the three term recurrence relation is equiva-
lent to the orthogonality with respect to a measure, and hence to be bispectral
and Krall are equivalent properties. But the higher order recurrence relation,
which the exceptional polynomials satisfy, is not equivalent to the orthogonality
of these polynomials (due to the gaps in the degrees). So, in this case to be
bispectral and exceptional are not equivalent properties.

We finish pointing out that, as explained above, the approach of this paper is
the same as in [8] and [9] for Charlier and Hermite and Meixner and Laguerre
polynomials, respectively. Since we work here with more parameters, the com-
putations are technically more involve. Anyway, we will omit those proofs which
are too similar to the corresponding ones in [8] or [9].




2 Preliminaries

Let 1 be a Borel measure (positive or not) on the real line. The n-th moment
of y1 is defined by [, t"dpu(t). When p has finite moments for any n € N, we can
associate it a bilinear form defined in the linear space of polynomials by

(2.1) (p,q) = /pqdu-

Given an infinite set X of nonnegative integers, we say that the polynomials p,,
n € X, are orthogonal with respect to p if they are orthogonal with respect to
the bilinear form defined by p; that is, if they satisfy

/pnpnzdﬂ =0, n 7é m, mn,me X.

When X = N and the degree of p, is n, n > 0, we get the usual definition of
orthogonal polynomials with respect to a measure. When X = N, orthogonal
polynomials (with non null norm) with respect to a measure are unique up
to multiplication by non null constant. Let us remark that this property is
not true when X # N. Positive measures p with finite moments of any order
and infinitely many points in its support has always a sequence of orthogonal
polynomials (py,)nen, pn of degree n; in this case the orthogonal polynomials
have positive norm: (p,,p,) > 0. Moreover, given a sequence of orthogonal
polynomials (p,,)nen with respect to a measure p (positive or not) the bilinear
form (2.1) can be represented by a positive measure if and only if (p,,p,) > 0,
n > 0. In Section 4 of this paper, we deal with discrete measures supported in
a finite number of mass points. The following lemma will be useful in relation
with this kind of measures.

Lemma 2.1. Consider a discrete measure p = Z?]:o Wibz,, with u; # 0, i =
0,---,N.

1. If we assume that there exists a sequence p;, i = 0,--- , N, of orthogonal
polynomials, with deg(p;) = i and such that (p;,p;) # 0 has constant sign,
then either p; >0 or u; <0,4=20,--- | N.

2. If we assume that there exists a sequence (fl-)i-vzgl of orthogonal functions

with non-null L? norm, then these functions form a basis of L?(u).

Proof. (1) Assume that (p;,p;) > 0,4=0,---,N. For a polynomial ¢q # 0 with
deg(q) < N, we have ¢ = Zj.\;o a;p;, and at least one a; is non zero. This

gives (g, q) = Z;V:O a? (pj,p;j) > 0. Consider now the polynomial of degree N,
gi(z) = H;‘V:O,j;éi(‘r_xj)‘ Then 0 < (gi, gi) = i H;‘V:O,j;éi(mi_xj)Q' So, pi > 0.
(2) Write A and D for the (N + 1) x (N + 1) matrices defined by A =

(fi(z;))o<i<no<j<n and D = diag(po,- - , ). Since the functions (fi)ﬁ\fol,

are orthogonal, we have

ADA" = dlag(<fzafl>7l =0, aN)




mspcl

In particular det(ADA?) = H£i+01<fi7fi> # 0. That is, det(A) # 0. Now it is
easy to conclude. O

When X = N, Favard’s Theorem establishes that a sequence (py, )nen of poly-
nomials, p,, of degree n, is orthogonal (with non null norm) with respect to a
measure if and only if it satisfies a three term recurrence relation of the form

zpn () = anppi1(x) + bppn(z) + copn_1(z), n >0, p_1=0,

where a,, b, and c,, n € N, are real numbers with a,_1¢, # 0, n > 1. If, in
addition, a,_1¢, > 0, n > 1, then the polynomials (p, )nen are orthogonal with
respect to a positive measure with infinitely many points in its support, and
conversely. Again, Favard’s Theorem is not true for a sequence of orthogonal
polynomials (p,,)nex when X # N.

To compute the degree of the exceptional polynomials introduced in this pa-
per, we will need the following lemma.

Lemma 2.2. For a pair U,V of finite sets of (different) positive integers with
k1 and ko the number of elements of U and V', respectively, let Ry, Ro, ..., Ry,
be nonzero polynomials satisfying that U = {degR;,i = 1,--- ;k1} and V =
{deg Ry, +i,i = 1,-+- ,ko}. Write r; for the leading coefficient of R;, 1 < i <
k = k1 + ko. For real numbers N, 3, consider the rational function P defined by

1<j<k
{Ru(m +j-—1) }
uelU

[sﬁ:jitl(z)sjvj"“@ +j—DR,(z+j—1) }
veV

(2.2) P(z) = : — —
102, s 25 (@) s 07 ()

Then, if 6+u—v#£0,u € Uwv eV, P is a polynomial of degree ZuEU,UEV f—
(’“21) — (’“22), with leading coefficient given by

k

(2.9 p=VeW [ TI B+u-o).

i=1 weUweV

where by Vi we denote the Vandermonde determinant of F = {f1, -+, fx}

(2.4) Ve= ] (Fi—-£)

1=i<j=k

Proof. The Lemma can be proved as Lemma 3.3 in [11]. O

We will also need the following straightforward lemma.




Lemma 2.3. Let M be a (s + 1) x m matriz with m > s+ 1. Write ¢;, i =
1,...,m, for the columns of M (from left to right). Assume that for0 < j < m—
s — 1 the consecutive columns cjy;, 1 =1,---,5, of M are linearly independent

while the consecutive columns cjyi, © = 1,---,5 4+ 1, are linearly dependent.
Then rank M = s.

2.1 Christoffel transform

Let p be a measure (positive or not) and assume that p has a sequence of
orthogonal polynomials (p,)nen, pn with degree n and (p,,p,) # 0 (as we
mentioned above, that always happens if p is positive, with finite moments and
infinitely many points in its support).

Given a finite set F' of real numbers, F' = {f1, -+, fx}, fi < fi+1, we write
®,,, n >0, for the k x k determinant
(2.5) Py, = |pntj—1(fi)lij=1, k-

Notice that ®,,, n > 0, depends on both, the finite set F’ and the measure p. In
order to stress this dependence, we sometimes write ®%¥ for ®,,.

Along this Section we assume that the set ©F = {n € N : ®%F = 0} is finite.
We denote 0] = max ©F. If ©F = () we take ] = —1.

The Christoffel transform of p associated to the annihilator polynomial pr of
F,pp(x) = (x— f1)- - (x — fi), is the measure defined by pup = prpu.

The following determinantal expression for the orthogonal polynomials with
respect to the Christoffel transform pp of a measure p can be found in [34], Th.
2.5

pn()  Pati(z) o pnyk(T)
1 Pu(f1) Pata(f1) - Poyr(fi)

(2.6) gn(z) = i@ det

pn(-fk) pn+1.(fk) pn+k-(fk)

The three term recurrence relation and the norming constant formula for (¢, )»
can be found in several papers (see, for instance, [8, 35]; for a systematic treat-
ment of the Christoffel (and Geronimus) transform see [3]).

Notice that the degree of ¢, is equal to n if and only if n ¢ @5 . In that case
the leading coefficient A9 of g, is equal to (—=1)*AL, ®,,, where AL denotes the
leading coefficient of p,,.

The next Lemma follows easily using [34], Th. 2.5 (in [34] only the case
K = oo is considered, but the case K < oo can be proved similarly).

Lemma 2.4. Let K be a positive integer or infinity. The measure pup has
a sequence (gn)5_,, qn of degree n, of orthogonal polynomials if and only if
@5 =0 or min®, > K. In that case, an orthogonal polynomial of degree n
with respect to pp is given by (2.6) and also (gn,qn)pr # 0, 0 < n < K. If
©, # 0, the polynomial q, (2.6) has still degree n for n ¢ @5, and satisfies

(@nsT) e = 0 for all polynomial v with degree less than n and (gn, gn)pp 7 0.




n2q

dinv

From (2.6), one can also deduce (see Lemma 2.8 of [8])

AL
(2.7) (Gns @) pp = (—1)F 222D, &, (D, D)y, n> 08 + 1
AP I

This identity holds for n > 0 when ©,, =0

2.2 Finite sets and pair of finite sets of positive integers.

Consider the set = formed by all finite sets of positive integers:
= ={F: F is a finite set of positive integers}.

We consider the involution I in = defined by

(2.8) I(F)={1,2,--- ,max F} \ {max F — f, f € F}.

The definition of I implies that I? = Id.
The set I(F') will be denoted by G: G = I(F'). Notice that

max F'=maxG, m=maxF —k+1,

where k and m are the number of elements of F' and G, respectively (for more
details see [8], Section 2.3).

For a finite set F' = {f1,- -, fx}, fi < fit1, of positive integers, we define
1, if F =0,
(2.9) sp = k41, if F={1,2,---,k},
min{s > 1:s< fs}, if F#{1,2,---k},
if ' = F={12---
(2-10) FU/ — 0’ ? @Or { ) ) 7k}7
{fspst,"'afk*SF}a lfF%{17277k}
From now on, F = (F, F») will denote a pair of finite sets of positive integers.
We will write F} = {flﬂ, , ,1]}, Fy = {flﬂ7 , ,fl}, with flﬂ < ffll (the

use of f? to describe elements of Fj is confusing because it looks like a square,
ZW). Hence k; is the number of
elements of Fj, j = 1,2, and k = k; + ko is the number of elements of F. One
of the components of F, but not both, can be the empty set.
We associate to F the nonnegative integers ur and wz and the infinite set of
nonnegative integers o defined by

G gz (7))

this is the reason why we use the notation f»2

feFR fEF>
(2.12) wr= Y f+ > f- <k1> - <k2> +1,
fER  feFy 2 2
(2.13) or ={ur,ur + Lup+2,--- }\{ur + f, f € F1}.

10




The infinite set o7 will be the set of indices for the exceptional Hahn or Jacobi
polynomials associated to F. Notice that wr = ur + k1 + 1.

For a pair F = (F1, F») of positive integers we denote by Fj r;3, i =1,..., kj,
Jj =1,2, and F| the pair of finite sets of positive integers defined by

deff1| (2.14) Fry = (F1\ M R,

deff2| (2.15) Fopy = (FL, B\ {f7")),
deffd| (2.16) Fy = ((F1)y, F2),

where (F1)y is defined by (2.10). We also define

o))
o®
Hh
n
[«
Hh

(217) SF=S8p

where the number s, is defined by (2.9).

2.3 Admissibility

sectadm
Using the determinant (1.2), whose entries are Hahn polynomials, h2%N | we

will associate to each pair F of finite sets of positive integers a sequence of
polynomials which are eigenfunctions of a second order difference operator. The
more important of these examples are those which, in addition, are orthogonal
and complete with respect to a positive measure. As it happens with the Hahn
family, for the existence of such a positive measure the parameter N must be
taken to be a positive integer: we make that assumption along this section.

The key concept for the construction of exceptional Hahn and Jacobi polyno-
mials is that of admissibility. The analogy with the cases of exceptional Charlier
and Hermite, and Meixner and Laguerre polynomials suggests that the admissi-
bility condition in the Hahn and Jacobi case should be equivalent to either the
positivity or the negativity of the measure p{; s (1.5).

To avoid division by zero or trivial situations, along this section we will assume

cpara| (2.18) o,B,a+B# —1,-2,---,—N, {0,1,--- ,N}\ (FAU(-8+ Fy)) #0.

dadh| Definition 2.5. Let F = (Fy, F2) be a pair of finite sets of positive integers.
For a positive integer N, real numbers «, 3 satisfying (2.18) and = € N, write

defadmh | (2.19)
AN@) = [[@-Ha+f+a+8+1) [[@+8-Ha+f+a+1)
fer feF,
r+a+p+1)(a+1),
(z+a+ B+ 1)Nt1(B+ 1)

We say that «, 3, N and F are Hahn admissible if .A;-’B’N(x) has constant sign
forx=0,---,N.

11
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For u € R, we will use the notation & = max{—[u],0} (where [u] denotes the
value of the floor function at u, i.e. [u] = max{s € Z : s < u}). Notice that
always v + 4 > 0. If we write

(@+atBf+ni = (@+atf+l) mr@tatf+lta+ B+ 1) 7570
we see that if N > « -T\ﬂ-l- 1 then
(2:20) sign((z + v+ B+ 1)n41) =sign((z + a+ B+ 1) 757)-

This means that for N > « Jr/ﬁj 1 the sign of A?‘_-’ﬁ’N(x) does not depend on
N. Hence we have proved the following Lemma.

Lemma 2.6. If for some Ny > « —i—/ﬁ\—i— 1, a, 8, Ng and F are Hahn admissible,
then for any N >a+ 08+ 1, a, 8, N and F are Hahn admissible as well.

We define the Jacobi admissibility as follows.

Definition 2.7. Let F = (Fy, F») be a pair of finite sets of positive integers.
For real numbers «, 3 satisfying

(2.21) a,Ba+B#—1,-2,---,
and x € N, write
(2.22)
A @)= [[e-Ha+f+a+p+) [[@+8-Hla+f+a+1)

fer fEFs
" MNz+a+1)I(xz+6+1)
2r+a+pB+ 1)l (z+a+p+1)

We say that «, 8 and F are Jacobi admissible if A;’ﬁ(:r) >0 for x € N.
Notice that the condition x € N can be changed to
x €{0,1,-- ,max(max Fy, —[8] + max Fy, —[a], —[8], —[a + 3]) + 1}.
Remark 2.8. Since for u € R

MNe+u+a)(z+u+U)nr1-a
Iz +u)

(& +wnt1 = (@ + (e +u+ B)nri-a =

i

Tz +u)
(e = —Fay

we get sign( AP (2)) = sign( AL () sign(T' (e + 1)T(6 + 1)). Hence for N >

Q@ —i—/ﬁ\—i— 1 the Jacobi admissibility of «, 8 and F implies the Hahn admissibility
of a, 3, N and F.

12
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This admissibility concept is more involve than the corresponding for excep-
tional Charlier and Hermite or Meixner and Laguerre polynomials (see [8], p. 31
and [9], definition 1.2, respectively). The admissibility depends now on two (Ja-
cobi) or three (Hahn) parameters, while for Charlier and Hermite no parameter
is involved and for Meixner and Laguerre, only one parameter is involved.

We have not found in the literature a definition as 2.5 or 2.7 for Hahn and
Jacobi admissibility, respectively.

In the following Lemma we include a straightforward consequence derived
from the definition 2.7.

Lemma 2.9. Given real numbers a, 3 satisfying (2.21) and a pair F of finite
sets of positive integers, if we assume that o, 8 and F are Jacobi admissible and
that sp +a+ B +1>0, then a+ sx,B + sr and Fy are Jacobi admissible as
well.

Proof. For a finite set of positive integers F, (2.10) gives that
P sp+ Fy, for sp =1
{1, sp— 13U (sp + Fy), for sp > 1.
This gives

[jepl@+sp =+ f+sp+atB+1)
- 2 1) = .
fl;u(:c ) (z4f4+2sp+a+5+1) T @ tsr )@ tsrtjtatfiD)

Hence, after straightforward computation, we can write

A5 (@ + s7)
IL7 (w4 s — i@ +sr+a+B+1+))?
1
. (x+sp+a+3+1)

A;_:‘L-S}‘,ﬁ-‘rw-' (3;‘) y

This shows that if «, 3 and F are Jacobi admissible and sz +a+ 3+ 1 > 0,
then o + sz, 8+ s and F| are also Jacobi admissible.
O

Definitions 2.5 and 2.7 have some other much more interesting consequences.
Since we will prove them in Section 6, we include them in a separate Lemma.

Lemma 2.10. Consider a positive integer N, real numbers «, 3 satisfying (2.21)
and

(223) 0= fil =14 1,2 ifF#£0
and a pair F of finite sets of positive integers.

1. Assuming that either o, 8 and F are Jacobi admissible or a, 3, N and F

are Hahn admissible for N > « —i-/ﬁ\-&- 1, thena+k > —1 and B+ky—ko >
—1.
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2. Assuming that o, 3, N and F are Hahn admissible and N > aJr/ﬁ\+ 1
then the sign of (a + 1)k (8 + 1)k, —k, 45 equal to the sign of A.O;ﬁ’N,

3. Assuming that o, 8 and F are Jacobi admissible and Fy = ) then a+1, 3+1
and F are Jacobi admissible as well.

Remark 2.11. Part 1 and 2 of Lemma 2.10 and Remark 2.8 above show that
the Hahn admissibility of «, 3, N and F for some N > a + 0+ 1 also implies
the Jacobi admissibility of «, 8 and F.

2.4 Dual Hahn, Hahn and Jacobi polynomials

We include here basic definitions and facts about dual Hahn, Hahn and Jacobi
polynomials, which we will need in the following Sections.
For a and (8 real numbers, we write

(2.24) AP () =2(z+a+B+1).

To simplify the notation we sometimes write \(x) = A% (x).
For a # —1,—2,--- we write (R%#),, for the sequence of dual Hahn poly-
nomials defined by

n

(2.25)  RyPN(@) =) (-1)

Jj=0

(=n)i (=N +)
(a+1);5!

] ﬁ(xfi(aJrﬂJrlJri))

=0

(we have taken a slightly different normalization from the one used in [25], pp,
234-7 from where the next formulas can be easily derived). Notice that R%#N
is always a polynomial of degree n. Using that (—1)J Hg;é(/\a’ﬁ(x) —ila+ 0+
1+414)) = (—z)j(r + a+ S+ 1);, we get the hypergeometric representation

Rz,,@,N()\a,ﬁ(l_));(N)n3F2<—n — X SC+OZ+5+11>

a+1 —N ’

(since the ratio between (—N), (in from of the hypergeometric function) and
(—=N)j, 0 < j < n, (in the denominator of the coefficient of z7 in the power
expansion of the hypergeometric function) gives (—N +j)--- (=N +n —1), the
previous formula also holds when N is a positive integer and n > N)

When N is a positive integer then the polynomial R%#N (z) for n > N + 1
is always divisible by H;V:O(I —i(a+ B+ 1+1i)). Hence

(2.26) ROPN(A*P(i)) =0, n>N+1,i=0,---,N.

Dual Hahn polynomials satisfy the following three term recurrence formula

(2.27) xRy, =ApRpni1+ BoRy +CrRy1, n>0, R_1=0,
A, =n+a+1,
B,=—-(n+a+1)(n—N)—n(n—p—-N—-1),
Cph=nn—pF—N-=1)(n— N —1).
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(to simplify the notation we remove the parameters in some formulas). Hence,
when NNV is not a nonnegative integer and oo, —3 — N —1 % —1, -2, - they are
always orthogonal with respect to a moment functional wy o g,n. When N is a

positive integer and o, 8 # —1,—2,--- = N, a+ (3 # —1,--- ,—2N — 1, we have
N
Cr+a++1)(a+1)(—N)N!
2.28 Co BN = Ox(a)s
(2.28) WrionB N ;0(—1)r(x+a+ﬁ+1>N+1(6+1)xa:! A
2
N papNy _ (N
(2.29) (RPN RaBNY — Y neN.

Notice that (RY#N RYANY £ 0 only for 0 < n < N. The moment functional
Ws,q,8,N can be represented by either a positive or a negative measure only when
N is a positive integer and either —1 < «, 8 or o, 3 < —N, respectively.

Dual Hahn polynomials satisfy the following identity

(2.30) RYON (P (@ — B)) = Re PPN (30 (2),

For a,a+ 3 # —1,-2,--- we write (h2%),, for the sequence of Hahn poly-
nomials defined by

30 ) = CWen (T

a+1l —N ’

(we have taken a slightly different normalization from the one used in [25], pp,
234-7 from where the next formulas can be easily derived). Notice that h%5N
is always a polynomial of degree n. When N is a positive integer then

(2.32) the polynomial h%#N for n > N + 1 is always divisible by (—z)n 1.

The hypergeometric representation of dual Hahn and Hahn polynomials show
the duality

(2.33) (=N)mhiy®N(m) = (=N)u RPN (AP (n)),  n,m > 0.

If N is not a nonnegative integer and «, 8, + S, a0 + 3+ N # —1,—2,-- - the
Hahn polynomials are always orthogonal with respect to a moment functional

Pa.p,N- For N apositive integer and o, 8 # —1,---—N, a+8 # —1,--- , 2N -1
we have

N r4+a\[(B+N-—=zx
2.34 = 1)
(2.34) Pa.B,N ;( . )( N >ac7

N2

2.35 RPN BNy — (=N, n €N,
( n n

Wi, 5,8 (N)’
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where w,.q 5 n(n) is the mass of the dual Hahn weight at A(n) given by (2.28).
Notice that (h®8:N h28:NY £ (0 only for 0 < n < N. The moment functional
Pa,3,N can be represented by either a positive or a negative measure only when
N is a positive integer and either —1 < «, 8 or a, 3 < —N, respectively.

Hahn polynomials satisfy the following identities

(2.36)
a,8,N a,8,N )‘a’ﬂ(n) a+1,8+1,N—1
hy” (@ + 1) = by (z) = Tﬂhnq (2),
sdm2 | (2.37)
Sgﬁ]itl (x)sj_\fjiﬁ—J-&-Q(x)hnoc,—ﬁﬂ-i-N(x +i-1)— S;L,;k:;l(-T)Sjy;gﬁ_]—‘r?)($)h2’_ﬁﬂ+N<$ +j-2)
a+n+1 —-n _ s A .
:( . Jr)l(ﬁ )S;CV+11149_1($)8§V7-;K3 ]+3(x>h%+17 B 1,5+N<x +3j-2),

where s is the polynomial of degree j defined in (1.3).
For o, € Ry, 5 # —1,—2,- - -, we use the standard definition of the Jacobi
polynomials (P27),,

defjac| (2.38) POP(g)=2"" zn: <n + O‘) (n 4 5) (= 1" (z+1)

=\ n—j

(see [15], pp. 169-173 and also [25], pp. 216-221).
For o, 8, + 8 # —1,—2,---, they are orthogonal with respect to a measure
Po,3 = fha,p(x)dz, which it is positive only when «, 3 > —1, and then

jacw| (2.39) fap(r)=(1—-2)*1+2)°, —-1<z<l.
We will use the following formulas

ntat B+l ei1,641

Lagder | (2.40) (Ps"ﬂ)/ = 5 A ,

Lagab] (241)  ((L+2)Py " (x)) = (B+ )Py (2) — (B —n)Py H P71 (a).

One can obtain Jacobi polynomials from Hahn polynomials using the limit

o,B, (1—z)N

. hiy O ( 2 ) n!PB(x)

blmel | (2.42) NhIE =N = CE)
oo - n « n

see [25], p. 207 (note that we are using for Hahn polynomials a different nor-
malization to that in [25]). This limit is uniform in compact sets of C.

3 Constructing polynomials which are eigenfunc-
tions of second order difference operators

We assume a number of constrains on the parameters a, 3, N and the pair
F = (Fy, Fy) of finite sets of positive integers. We always assume

cparil| (3.1) a,Ba+B#—1,-2,---.
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In addition, we also assume
(3.2) a—BB—fil —1#-1,-2,--, ifF#0

(let us recall that f,f; is the maximum number in F3). These assumptions are
needed to define the polynomials (3.3) below, and to guarantee that the polyno-
mial h%?N:7 has degree n (actually the assumption 3 — f,f; —1#-1,-2,---
can be changed to the weaker one 8 & (Fo» — F1) U Upeo, (—n+ ur + F3)). We
do not need to assume at this stage that IV is a positive integer.

Definition 3.1. Let F = (Fy, F3) be a pair of finite sets of positive integers.

We define the polynomials hf{’ﬁ’]\“f, nE€or, as
(3.3)
hg—ﬂu%(x +j—-1) 1<j<k+1
B?,B, (z+j—1) }
emn
— N 1 . a,—3, N .
[‘;kN—jitl(x)Sj—Jrlﬂ+ (x+j— 1)hf ot (z+j—1) }
hg;ﬁ,N;f(x) _ € F2

12 (N =2 —k4 1) N+ B -z —i+2)i,

where s¥ is the polynomial of degree j defined by s} (z) = (u — z); (see (1.3))
and the number uz and the infinite set of nonnegative integers o are defined
by (2.11) and (2.13), respectively.

The determinant (3.3) should be understood as explained in (1.4).
To simplify the notation, we will sometimes write h) = h2BN:F,
Using Lemma 2.2, we deduce that h), n € oz, is a polynomial of degree n

with leading coefficient equal to

Ve Ve, [ o I 1T B+i—f2) [ (f —n+ur),
ie{n—ur},F i€EF2 ic{n—uz},F1,f2EF> fEF

where Vp is the Vandermonde determinant (2.4) and r®” = %, that is,

the leading coefficient of the Hahn polynomial h?’b’N. The assumptions (3.1)
and (3.2) imply that the above leading coefficient does not vanish when n € oz.

With the convention that h, = 0 for n < 0, the determinant (3.3) defines a
polynomial for any n > 0, but for n ¢ o we have hY = 0.

The most interesting case appears when N is a positive integer. In this case,
as a consequence of (2.32), for n > N + ur + 1, the polynomial k7 is always
divisible by (_I)N—k1+1-

Combining columns in (3.3) and taking into account (2.36) and (2.37), we
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have the alternative definition

(3.4

[T/25 (A(n — ur) — M@)o t3 LH BN =04 (g 1<j<k+1
j—2 Ny pabi—1, 845 —1,N—j+1
B_H_o()\(f) = ARG ) ]
eRr
E‘a + f 18— f)jeasy 5 @by TR ) ]
e F
hg,ﬁ,N;]—"(x) _ - 2 . . ’
[licola+ 1 [L2(N =2 — k4 D, i(N+ 8 -2 —i+2)iy
where we are using the notation (a,b,---,¢); = (a);(b);---(c);. That expres-

sion can be rewritten using that z;g()\(n) —Ai)) = (n—j+2,n+a+5+1);_1.
The polynomials k7, n € o, are strongly related by duality with the poly-
nomials ¢/, n > 0, defined by

RZfﬂ(g?) 1<j<k+1
Ra, N )\a,ﬂ
|:/n+j—1( (f)) :l
e Fi
[I;f?‘iff’f”(ka"ﬁ(fﬂ }
€ Iy

eliqnme . 7 xTr) = .
R S | PN CE ) PR T )

Notice that when N is a positive integer, F} # ) and Fy C {1,---, N}, then
gl (r) =0for n > N — ky + 2. Indeed, if n > N — k; + 2 then for j > ky, we
have n +j —1> N 41 and hence sz]?]_vl()\o"ﬁ(f)) =0 (see (2.26)).

When N is a positive integer, and under suitable conditions on the pa-
rameters, one can see using (2.30) and Lemma 2.4, that the polynomials ¢/,

n=0,...,N — k, are orthogonal with respect to the measure

59

N4ur
an= > I Aa—ur)-Af) [] Ma—ur)-A(Ff=B)waaps.5(@—1r)dx@—ur),
r=ur feF fEF>

where w..q g n(2) is the mass at A(z) of the dual Hahn weight given by (2.28).

Lemma 3.2. If u >0 and v € ox, then

duagnrn | (3.7) "ECUQZ_()‘Q’B(U —uF)) = fuhvf(u)a

where

k=] N¢ [T =N -8)y,
fern fEF,

ki—1
b = ()EEVETIN —u DI TTV —u— by + 140k
i=0
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ko—1
x(N+B—u+1)f2 [T(N+8-u—i+1),

=0
Go=(Noeuy [[ Mw—uz)=20f) [] A —uzr)—Xf=5)).
feF feF:

Proof. 1t is a straightforward consequence of the duality (2.33) for the Hahn

and dual Hahn polynomials.
O

We now prove that the polynomials h7, n € o, are eigenfunctions of a
second order difference operator. To establish the result in full, we need some
more notations. We denote by Q?_-"ﬁ’N(x) and A?‘_-’*B’N(a:) the functions

(3.8)
Jj=1,..., k
[fa PN (45 —1) }
R
Lk i O e G e Y S }
03V (2) = ,
[L:2 1(Nf:v*k—i—l);€2 i1t (N+08—ax—i+42);
j=1, k—1,k+1
La’ﬁ N r+j—1) }
3
N a,—[3, N .
[fN @) @+ i - DAY N @ 45— 1) }
N €F
AFPN () =

Hz I(N — T — k+ 1)k2_i+1(N+ﬂ — T — Z + 2)1‘_1

. . . . . a,B,N a,B,N

To simplify the notation we sometimes write 0 = Q27" Ay = AZ"7.

Using Lemma 2.2, we deduce that Qx is always a polynomial of degree uz + k.
Moreover, the leading coefficient of Qx is

VeVe, [T 737 I1 v7” 1] B+A-f)

fieF: fa2EF2 fi1€F1, f2€F>

(a+b+i+1),
(a+1)i .
In a similar way, one can see that except for I, = (), Ar is not a polynomial

but (N — 2z — k 4+ 1)Ax is always a polynomial of degree uz + k1 + 1.

where Vp is the Vandermonde determinant (2.4) and rf’b =
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As for hZ (see (3.4)), we have for Qx the following alternative definition

. ) ) 1<j<k
(f=j+2,f+a+pB+ 1)j71h?t§;11’ﬁ+j71’1\'*ﬂ+1(w) :|
el
[(fa 18— f)jmasp i @)hg T ) }
e Fy
Q.’F(‘T) = k—1 s

Lo @+ 1) [[2{(N =2 =k +1)p, i 1(N+8—2—i+2); 1

We also need the determinants ®7 and U7 n =0,..., N — k, defined by

J=1,+,k
CaBN :
Rnfjflo‘ ﬁ(f))
(3.9) oF =||fe R |,
(R PPN (=2 (f) ]
Lf € Iy |
j=1, k—1,k+1
rpuBN A a 1
Ry DN (A8 ()
(3.10) v =1lfeR ]
(RPN 2 (f) ]
Lf € Iy |
Using the duality (2.33), we have
(3.11) &7 (n) = (=12 K(=N)pyr, 9,
(3.12) Ed(N=n—k+1DAs(n) = (=12 w(=N), 11, U7

Theorem 3.3. Let F = (Fy, F3) be a pair of finite sets of positive integers.
Then the polynomials h? (3.3), n € ox, are common eigenfunctions of the
second order difference operator

(3.13) Dr=h_1(2)S_1 + ho(x)So + h1(x)51,

where

(3.14) h_y(2) = z(x—pB-N ai(z)kz)Q}-(x + l)’
(3.15) h0($):—(JL‘—Fk)(JZ—ﬂ—N—1+k)_($+a+l+k)(x_N+k)
(¢ +a+k)(z—N—1+k)Ar(2)
+A< 05 (2) >,
(z+a+k+1)(z—N+k)Qr(z)
Qr(z+1) '

and A denotes the first order difference operator Af = f(x+1)—f(x). Moreover
D]:(hf) = /\(n — U]:)h]: neor.

n’

(3.16)  hy(z) =
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Proof. The proof is similar to that of Theorem 3.3 in [8] but using here the three
term recurrence relation for the dual Hahn polynomials (2.27) and the dualities
(3.7), (3.11) and (3.12). O

The determinantal definition (3.3) of the polynomials h%, n € o7, automati-
cally implies a factorization for the corresponding difference operator D (3.13)
in two difference operators of order 1. This is a consequence of the Sylvester
identity (see [16], pp. 32, or [8], Lemma 2.1). This can be done by choosing
one of the components of F = (F, F5) and removing one element in the cho-
sen component. An iteration of this procedure shows that the polynomials b7,
n € oF, and the corresponding difference operator Dz can be constructed by
applying a sequence of at most k Darboux transform (see Definition 2.1 in [9])
to the Hahn system (where & is the number of elements of F). We display the
details in the following lemma, where we remove one element of the component
I, of F, and hence we have to assume Fy # (). A similar result can be proved
by removing one element of the component F;. The proof proceeds in the same
way as the proof of Lemma 3.6 in [8] and it is omitted.

Lemma 3.4. Let F = (F1, F3) be a pair of finite sets of positive integers and
assume Fs # (). We define the first order difference operators Ar and Br as

(—LE+6+N—]€2+1)Q]_‘($+1> (—$+N—]€1)Qj_‘(l‘)
3.17) Ar = S0 — Sy,
( ) d sz,{kQ} (x + 1) ‘ sz,{k2} ('r + 1) '
—2Q7, 4, (T + 1) (z+a+k)QF, ,, (@)

Q]:(l‘) B Q]:(LL‘)

where ko is the number of elements of Fy and the pair Fs g1,y is defined by
(2.15). Then hZ,, (v) = Af(hfz’“m )(z), n & F1. Moreover

n+ur n+uy:2y{k2}

(3.18) Br =

5{07

Dr, 4,y = BFAr — (a+ 8- i,
Dy =ArBr — (a+ f;?l +1)(B - f;i])[d-

In other words, the system (Dg, (hl )neoy) can be obtained by applying a Dar-

_’F
bouz transform to the system (Dg, , .., (hnz‘{kz})neaﬁz " }).
’ s1R2

Analogous factorization can be obtained by removing instead of sz] any other

element fiﬂ of Fp, 1 <1 < ko.

4 Exceptional Hahn polynomials
Under certain assumptions on the parameters «, 3, IV, in the previous Section

we have associated to each pair F = (Fy, F5) of finite sets of positive integers
the polynomials h2#N:7 n € oz, which are always eigenfunctions of a second
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order difference operator with rational coefficients. We are interested in the
cases when, in addition, those polynomials are orthogonal and complete with
respect to a positive measure.

As it happens with the Hahn family, for the existence of such a positive
measure the parameter N must be taken to be a positive integer and there will
be only a finite number of exceptional polynomials with non-null norm in each
family. More precisely, for a positive integer N and a pair F = (Fy, Fy) with
F ¢ {1l,---,N}, write

(41) O'N;]::O']:O{U]:,'“,N+u_7:}.

Notice that on.7 has exactly N — k; + 1 elements. Hence, along this section we
will assume N to be a positive integer and Fy & {1,--- , N}, as well as

(4.2) a,f=-1,-2,---,—N, a+pB=-1,-2---,—2N —1.

In addition, when Fy # (J, we also assume

(43) a_ﬁ#_1)_2’7_Na ﬂ#f]?l?f}?l_1770

Notice that the assumptions (4.2) and (4.3) imply the condition (2.18) that we
assume to define the Hahn admissibility in Section 2.3.

As for the Hahn family, when N is a positive integer we only consider the
polynomials h%#N:F (see (3.3)) for n € on.7. Indeed, when n € oz and
n > N + ug, the polynomial h%%N:¥ is divisible by (—x)y_#, +1. Since the
orthogonalizing measure woji g, for the exceptional Hahn polynomials will have
support in {0,1,--- , N — k1 } (see (4.8)), we have that the polynomial A5V
n € oF and n > N +uz, vanishes in the support of wi,&N and then it is useless
regarding the space L*(w? B.N)-

Definition 4.1. The polynomials h2*N:# n € on.7, defined by (3.3) are
called exceptional Hahn polynomials, if they are orthogonal and complete with
respect to a positive measure.

As we point out in Section 2.3, the key concept for the construction of excep-
tional Hahn polynomials is the Hahn admissibility (see Definition 2.5). Hahn
admissibility can also be characterized in terms of the measure pg: s (3.6) and

the sign of the polynomial Q;‘_-”B’N(x) in{0,---,N — k1 }.
Lemma 4.2. Given a positive integer N, real numbers o, 3, satisfying (4.2)

and (4.3) and a pair F = (F1, Fy) of finite sets of positive integers with Fy &
{1,--- , N}, the following conditions are equivalent.

1. The measure pf,@N (3.6) is either positive or negative.
2. a,B,N and F are Hahn admissible.

Q3N ()R N (n 4 1)

(R

k1, where the polynomial Q;”B’N is defined by (3.8).

3.
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Moreover, if any of these conditions hold, then
i. the sign of the measure Pf,g,zv is the sign of the function A?_—’ﬁ’N (2.19);

it. the constant sign mentioned in part 3 is equal to the sign of (o + 1) (8 +
a,B,N
1)k1—k2Af .

Proof. Since
(4.4) AMu) = Aw)=(u—v)(u+v+a+p+1),

the equivalence between parts 1 and 2 (as well as part i) is an easy consequence
of the definitions of Hahn admissibility (2.19) and of the measure p7 5 v .

We now prove the equivalence between part 1 and part 3.

Part 1 = part 3. We assume that the measure pi g.N 18 positive (if it is
negative, we proceed in a similar way). Write pZ7 g.n(2) for the mass of the
discrete measure piﬁJ\’ at the point A(z — uz). Using (4.4), we can write

pLan(@) = [[ (@—ur— e —ur+ frats+1)
fer

X H (x—ur—f+08)(x—ur+f+a+l)w.asn(@—ur).
fEF2

The assumptions (4.2) and (4.3) on the parameters «, 3, N and the finite set

Fy imply that piﬁyN(a:) #0,r=ug, - ,ur + N, except when z = ur + f,

f € Fi. This means that the positive measure piﬁ,N is supported in the finite

set of nonnegative integers {\(z —ur),x € on,#}. Notice that this finite set has
exactly N—k;+1 points. Since the polynomials ¢/ (see (3.5)),n =0,--- , N—k;,

are orthogonal with respect to the measure pg: s~ and the degree of ql is at
most N — ki, they have positive L2-norm. According to (2.7), we have

(4.5)

(CD)H=N)2(a+ 1), 0707,

n

(=DM + 1),

(al.q7) = (RePN REANQT DT | =

(+ Dnsr (@ + Do (T (ORET

Using the duality (3.11), we get

oF o | = Enént1 Qr(n)Qr(n+1).
B P e L ek
Using the definition of &, in Lemma 3.2, and after an easy computation, we
have for n =0,--- , N — kq,

OFDT = A2(—1)M(N —n—k1 4+ 1)y (N +8—n— ko + 1)1, Q25 (n)Qx(n + 1),

where A is certain real number (depending on n). Using (4.5), we deduce for
n=0,-,N — ki, that

(Oé + 1)n(N +B—-n—ky+ l)kZQ]:(n)Q]:(n + 1)
(o D (37 (FRE)

> 0.
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This can be rewritten as

(4.6)
(a+ 1), (N+5—n—ky+ 1), (oc+7kl+n) (ﬂJIrVIX;ﬁZIkQ) Qr(m)Qr(n + 1) o
@+ DT OR) O

A simple computation gives

(@+Da(N+B8—n—ko+ Dr, (5 R 7052 (N =) (B+ 1ky s

(a4 Dntr (“:") (5‘1"V1X;") (N —ky —n)l(a+1)’
which is non-null and has constant sign for n =0,--- , N — ky.

We then conclude from (4.6) that if pafﬂ’N is a positive measure, then

Q"N ()2 N (n 4 1)

(4'7) (a + 1)’6(/8 + 1)k1—k2 atk+ny (BE-N—Fka—n

( n ) ( N—ki—n )
is positive for n =0,--- , N — k;. In a similar form, we can prove that if pfﬂ,N
is a negative measure, then (4.7) is negative for n = 0,--- , N — ky. This proves

part 3. Using part i, part ii also follows easily.

Part 3 = part 1. Assume that the sign mentioned in part 3 is positive
(if it is negative we can proceed in a similar way). Using the duality (3.11),
the definition of &, in Lemma 3.2 and proceeding as before, we conclude that
the polynomial ¢7, n = 0,--- , N — ky, are orthogonal with respect to pfﬁ’N
and its L2%-norm is non-null and has constant sign. Since the degree of ¢/ is n,
n=0,---, N—ki, and the measure pfﬁ’N is supported in N —k; +1 points, part
1 of Lemma 2.1 gives that pf, s, s either a positive or a negative measure. [

Using Lemma 2.10 (still to be proved), we can say more about the constant
sign mentioned in part 3 of the previous Lemma.

Lemma 4.3. With the same hypothesis of the previous Lemma, assume that
any of the equivalent conditions 1, 2 or 8 of that Lemma holds. If N >

a+ B+ 1, then the constant sign mentioned in part 3 of Lema 4.2 is positive.

Proof. f N > « —T[ﬁ— 1, Part 2 of Lemma 2.10 shows that the sign of (8 +

1)k, —ky (04 1) is equal to the sign of A;’ﬂ’N. Part ii then implies that the sign
mentioned in part 3 of Lema 4.2 has to be positive. O

According to Lemma 4.2 and part 1 of Lemma 2.10, if , 3, N and F are Hahn
QF" N ()QE" N (n 4+ 1)

admissible, we have a+k > —1, B+k1—ks > —1 and }—a+k+n) (ﬁ+N7k27n)

n N—ki—n
0, for all n = 0,--- , N — k1. One can then deduce that if o, 5, N and F are

admissible, then Q?Q’N(n)Q;’B’N(n +1) >0, for all n € N. We point out that
the converse is not true. Indeed, take o = —7/2, =9, N = 20 and F; = {1},
Iy = (). A straightforward computation gives

QPN ()L N (n+1) = (3n +20)(3n +23) >0, n=0,---,N.
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However, it is easy to see that «,3, N and F are not admissible ((2.19) is
nonnegative for = 0,1,2,4,--- , N, but negative for x = 3).

In the following Theorem we prove that when «, 3, N and F are Hahn ad-
missible the polynomials h®3Ni% n € o ~;F, are orthogonal and complete with
respect to a constant sign measure.

Theorem 4.4. Given a positive integer N, real numbers «, 3 satisfying (4.2)
and (4.3) and a pair F = (F1, Fy) of finite sets of positive integers with Fy &
{1,---, N}, assume that o, 3, N and F are admissible. Then the polynomials
heBNT e on;F, are orthogonal and complete in LQ(MO{@N), where wO};ﬁ’N
is the measure (which it is either positive or negative)

N—kq (a+k}+x) (ﬁJrN—k:zfa:)

(4.8) wlan = v L Nehte g,

Hence h2P N7 n ¢ on;F, are exceptional Hahn polynomials.

Proof. The proof that h&ANF n € on;F, are orthogonal polynomials with
respect to the measure (4.8) can be proved as in Th. 4.4 in [8] or Th. 4.3 in [9)].

We now prove that they are complete in L? (wf 3, ~). Using Lemma 4.2 and
taking into account that o, 8, N and F are admissible, it follows that the mea-
sure piﬁ,N (3.6) is either positive or negative and it is supported at N —ky + 1
points. We assume that it is a positive measure. We also have that the poly-
nomials ¢/ (where ¢ is defined by (3.5)), n = 0,--- , N — ky, have degree n
and positive L?-norm. Using part 2 of Lemma 2.1, we deduce that the finite
sequence ¢, /||g” ||l2, n =0,---,N — ki, is an orthonormal basis in LQ(pZ:B)N).

1/95,5,1\7(5)7 =\ —ug),
0, x # Ms—ug),
where by pi 5.n(8) we denote the mass of the discrete measure pg: s.n at the

For s € oz, consider the function hy(x) = {

point A(s — uz). Since the support of p(i@N is {\y —ur),y € on. 7}, we get
that hy € L2 (pf s.v)- Its Fourier coefficients with respect to the orthonormal
basis (¢ /||¢ ||2)n are g7 (M(s —uz))/|lgt |2, n=0,--- , N — k;. Hence

N—ki 7 _ F _ 1
(4.9) Z q;, (A(s ur));]nQ(A(r uF)) = (hashe)pr = — S
n—0 ||qn H2 “° pa,B,N(s)

This is the dual orthogonality associated to the orthogonality

> aql (Mu—ur))gh, (Mu— ur)pl 5 5 (1) = (g, ¢ Yonm

ucor

of the polynomials ¢&, n = 0,--- , N — ky, with respect to the positive measure
paf”@’N (see, for instance, [1], Appendix III, or [25], Th. 3.8).
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Using (4.5), (2.29) and the duality (3.11), we get

1 F
— =W N(n)x ,
<q7{:’q5>pfﬁw a,B n

(4.10)

where z,, is the non-null real number given by
(—D* > (=N +n+ k) (=N +0)3, (a+ D (TFV")
N—n—k J
§n£n+1 (ﬁ}tf—n—kl 2)
and k and &, are defined in Lemma 3.2.
Using now the duality (3.7), we can rewrite (4.9) for s = r as

(4.11) Ty =

N—k; - - 217”52 1
(4.12) nz:% wl g.n(n) (A (n)) B "

A straightforward computation using (4.11) and the definitions of s, &, and ¢,
in Lemma 3.2 gives

(4 13) 1’77,5721 _ (Oé + l)k(ﬂ + l)kl—kzwf;a,ﬁ,N(r - u]:)
' k2GR (=N)7us (] g ()2 ’

where W, g,n () is the mass of the dual Hahn measure at A(z) given by (2.28).
Inserting (4.13) in (4.12), we get

(=N)7-
4.14 nZ hEy = s T s ().
( ) < > f,B,N (a+1)k(ﬁ+1)k1—k2wz;aﬁ’]\[(r_u]:)p ﬁJV( )
f

This shows that the orthogonal polynomials h7, r € oy 7, have non-null L?
norm with constant sign for » € on.7. On the other hand, Lemma 4.2 shows
that the measure wi .n s either positive or negative and has N — k; + 1 point
in its support. Since we have N — k; + 1 polynomials h7% of degree 7, we can

conclude using part 2 of Lemma 2.1 that they form an orthogonal basis in
LQ(WZZ@N)- O

Using Lemma 2.10 (still to be proved), we can say more about the sign of the
measure wa}-’ 5,n 10 the previous Theorem.

Theorem 4.5. With the same hypothesis of the previous Theorem, if N >
a+ B+ 1 then the measure wiﬁ’N (4.8) is positive.

Proof. 1t is a direct consequence of Lemma 4.3. O

5 Constructing polynomials which are eigenfunc-
tions of second order differential operators

One can construct exceptional Jacobi polynomials by taking limit in the excep-
tional Hahn polynomials. We use the basic limit (2.42).
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In the next two sections we assume the same constrains (3.1) and (3.2) on
the parameters a, 3 as in Section 3. These assumptions are needed to define
the polynomial P%#7 (see (5.1) below) and to guarantee that it has degree
n (actually this last condition can be guaranteed using the weaker assumption
5 g (FQ - Fl) UUnEof(7n+uf+F2))~

Given a pair F = (Fy, Fy) of finite sets of positive integers, using the expres-
sion (3.4) for the polynomials h%#N% n € oz, setting * — (1 — x)N/2 and
taking limit as N — 400, we get (up to normalization constants) the polyno-
mials, n € or,

(1)~ Y(Ph, ) U () 1<j<h+1
B—l)jl(P?’ﬁ)(jl)(x) }
e n
(3 — f)j—l(l + x)k—j+1pfa+j—1,—ﬁ—j+1(x) }
S

(5.1)  PYi(a) =

(1 + x)kQ(kQ—l)

More precisely

(5.2) i 7T (0= 2)N/2)

N—+oo Nn© = vp 7 PR (x)

uniformly in compact sets, where

ko

O e e A S Rt TOD | WY |
. " (@+ Vn—us erFl,Fz (o + 1)]‘

Notice that P*#¥ is a polynomial of degree n with leading coefficient equal
to

Ve Ve [licpn-wsy pm (@ T €68+ i+ Dillictnousy mypoerm (B i = f2) [ ep, (f =1+ ur)

(~) D2 ) (0 — ) [T ey,

where Vp is the Vandermonde determinant defined by (2.4) and ¢; = 1, for
i€{n—ug}, Fy and ¢; = —1, for i € F5.
We introduce the associated polynomial

cF
(B—=f)j-1(1+ x)k_jPJ‘f“—lv—ﬁ—jH(m)

B—l)ﬂ(P;“ﬁﬂj”(x) }
e Fy }

a,B _
(54)  Q2P(z) = oy

Notice that Q?_-"’B is a polynomials of degree ur + k1. To simplify the notation
we sometimes write Qr = jS_’ﬁ.
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We straightforwardly have
(5.5) P () = 2,87 0507 (),

where
_ Hf€F1(f +a+ 6 + l)min(ﬂsy:) erFz(ﬂ - f)sf
Za,B;F = (_2)3;:(2/@1—5]:-‘,-1)/2 ’

and the positive integer sz and the pair Fy are defined by (2.17) and (2.16),
respectively.
We will need to know the value at £1 of the polynomial Qiﬁﬁ .

Lemma 5.1. Let F be a pair of finite sets of positive integers, then Q?_-”B(l)

and Q?ﬁ’ﬁ(—l) are polynomials in « and B which do not vanish when o and (3
satisfy (3.1) and (3.2). Moreover, if we write €1 = 1,e5 = —1 then

2 k; .
(5.6) 3(1) = [z Ve ILZi (e + iy —iva [ e, (0 + ki + D) g,

- 3 2 min i
(*2)( 5)+(2) erFl,F2 f! Hizl{kl’kQ}(a i) p2it

2
><H H (a—&—elﬁ—&-fi”—l-fjl-]—i-l)

I=11=i<j=Fk
< [[ Tl e+ f+g+D)B+f-9).
fEF1 g€,
(5.7)
k; .
«d Ty Vi, T2 (658 + i)k, —int [ e, (€38 + by + 1) 4k,
Q7 (-1) = .

(~)Zremm D[]y, 1
min(k1,k2) ka—j

<IIT II +as+s'+£+0 I I -9

I=11=i<j=k; Jj=1  i=j—k
Proof. The proof follows by a carefully computation using that
il (n—i—a) (n-&-a-“rﬁ-‘ri)

n—1 i

20 ’

il (n+ﬁ) (n-&-a-ﬁ-ﬁﬂ')

n—u i

(Prh)D(1) = (—1)n+igi

(P (1) =

and standard determinant techniques. Because of the value above of the Jacobi
polynomials and their derivatives at +1, Q?_-"’@ (£1) is clearly a polynomial in
both a and (3; one can also see that the right hand side of (5.6) is a polynomial
in a because each factor of the form « + s in the denominator cancels with one
in the numerator. It is now easy to see that if o and § satisfy (3.1) and (3.2),
the right hand side of (5.6) and (5.7) do not vanish.

O

Passing again to the limit, we can transform the second order difference op-
erator (3.13) in a second order differential operator with respect to which the
polynomials P25 n € or, are eigenfunctions.
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Theorem 5.2. Given real numbers o and (8 satisfying (3.1) and (3.2), and a
pair F of finite sets of positive integers, the polynomials P> n € or, are
common eigenfunctions of the second order differential operator

Dp = (1 —2%)0% + hi(2)0 + ho(z), 0 = d/dx,

hi(z) = B —a— 2k — (o + f + 2k +2)x—2(1‘””2>g§8’
ho(z) = —=A(k1) + [a = B+ 2k2 + (2k1 + a + 3)z] gig; +a- J:%Sig;

More precisely Dr(PT) = —\(n — ur) P (z).

Proof. We omit the proof because proceeds as that of Theorem 5.1 in [8] and
using the basic limit (2.42) and its consequences

. Qa’ﬂ’N({IJN) @A
(5.8) m %"W S = g0 (@),
08 @y 1) - 087V (@) N
(59) Nl—lg-loo Nurtki—1 = _2’0,%(9]-' ) (.’L‘)’
a,B,N a,3,N a,3,N
I Q5 V(@ +1) - 2057V (@) + Q5 @y — 1)) _ Ao (B
NEEOO Nurtki—2 = 4z (Q%")" ().

where xy = (1 — 2)N/2 and

k1

(=1)urth (—2)( #)+(%) [jer, m /!
HfEFI;FZ (O( + l)f ‘

(5.10) vF =

O

We can factorize the second order differential operator Dz as product of two
first order differential operators. This can be done by choosing one of the com-
ponents of F = (Fy, Fy) and removing one element in the chosen component.
An iteration shows that the system (Dg, (P2%%),c,,) can be constructed by
applying a sequence of k Darboux transforms to the Jacobi system (see Defi-
nition 2.1 in [9]). We display the details in the following lemma (the proof is
omitted because is analogous to the proof of Lemma 5.2 in [8] or 5.4 in [9]).

Lemma 5.3. Let F = (Fy, Fy) be a pair of finite sets of positive integers.
If F1 # 0, we define the first order differential operators A1,z and Ba F as

_ Qr(z) 5 Q']_-(x)
Q]:l,{kl}(z) Qfl,(kl}(x)

Ay

)
s

BiF =

(1= 2090, ) () (=03, (@) F (0= B4 2k) 4 (04 B4 260)0)0, 1, (0

T Qr(z) Qr ()
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where the pair Fy (i,y is defined by (2.14). Then for n & Fi,

Poc,ﬁ;f(x) _ AI,F(POHB%]‘—I,{I“} )(I),

ntus U (1)
By (P ) @) = —(n = fi)n+ fil + a4+ 54+ )P0 (@),
Moreover
Ds, ., = BirAiz — MfiDI4,
D = A1 #B1F — A(fi)Id.
If F» # 0, we define the first order differential operators Ay 7 and Ba r as

(1+2)Qr(x) . (1+2)Q%(x) — (B+ k1 — ks + 1)Qr(x)

Agy = o ,
i Q‘FZ{I«Q}(’/E) QfQ,{kQ}(x)

32 ;= (1 - x)Q]"z,{kQ} (‘r)a . (1 - x)Q/]:z‘{kQ} (.I) + (a + k)Q}—l{kz}(l‘)
’ Qr(x) Qr(z) 7

where the pair Fa (1,3 is defined by (2.15). Then for n & Fi,

PO&,,@;.’F(:E) _ AQ,]:(POz,ﬁLFz,{IQ} )(I),

n+ur n+u7:2={k2}

«,3; 041[32‘7:,
By s (PEET)(2) = —(nt+ a+ fi] + D)(n+ B8 — fIHPILT> 020 (),

nHUFy (hoy
Moreover

Dr, ,, = Bor o r — Afi) - B)1d,
D= As 7Bar — A(f1) — B)1d.

6 Exceptional Jacobi polynomials

In the previous Section, assuming the constrains (3.1) and (3.2) on the parame-
ters a, 8, we have associated to each pair F of finite sets of positive integers the
polynomials P%%% n € oz, which are always eigenfunctions of a second order
differential operator with rational coefficients. We are interested in the cases
when, in addition, those polynomials are orthogonal and complete with respect
to a positive measure.

Definition 6.1. The polynomials P25 n € o, defined by (5.1) are called
exceptional Jacobi polynomials, if they are orthogonal and complete with re-
spect to a positive measure.

In the following Theorem we construct exceptional Jacobi polynomials (the
proof is similar to that of Theorem 6.3 in [9] and it is omitted).
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Theorem 6.2. Given a pair F of finite sets of positive integers and real num-
bers a and B satisfying (3.1) and (3.2), assume that

(61) a+k+1>0, B+k —k+1>0, Q¥ (z)#0, zel[-1,1]

Then the polynomials PS5 n € o, are orthogonal with respect to the positive
weight
(1— x)"‘*’“(l + x)ﬁJrkrkz

(6.2) Wa, g, F(T) = (Qj‘fﬁ(x))Q , —l<z<l,

and their linear combinations are dense in LQ(wa’B;}-). Hence Pff’ﬁ?f, neE or,
are exceptional Jacobi polynomials.

The Jacobi admissibility of «, # and F is a necessary condition for the as-
sumptions (6.1) in the previous Theorem.

Theorem 6.3. Given a pair F of finite sets of positive integers and real num-
bers a and B satisfying (3.1) and (3.2), assume that (6.1) holds. Then o, 3 and
F are Jacobi admissible.

Proof. Proceeding as in [10], the theorem is an easy consequence of the following
complex orthogonality for the exceptional Jacobi polynomials.

Consider the path A encircling the points +1 and —1 first in a positive sense
and then in a negative sense, as shown in Fig. 2.1.

Figure 2.1: Path A

The point £ € (=1,1) is the beginning and endpoint of A. For «, 5 € C, we
consider
(1 _ Z)a(]. + Z)B — @ 10g(1—z)+,8(1+z).

It is a multi-valued function with branch points at oo and +1. However, if we
start with a value of (1 — 2)*(1 + 2)? at a particular value of A, and extend
the definition of (1 — 2)®(1 4 2)? continuously along A, then we obtain a single-
valued function on A (if we view A as a contour on the Riemann surface for the
function (1 —2)*(1+ 2)%). For definiteness, we assume that the starting point is
¢ € (—1,1), and the branch of (1—2)®(1+2)? is such that (1—£)%(1+£)? > 0. In
[24], it has been proved orthogonality for Jacobi polynomials using this contour.
This orthogonality can be extended for exceptional Jacobi polynomials. Indeed,
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given «, § satisfying (3.1) and (3.2) (o« and 5 can be also complex numbers) and
a pair F = (Fy, F») of finite sets of positive integers, the complex orthogonality
mentioned above for the exceptional Jacobi polynomials is the following: there
exists a contour A as described above such that

., wpr (1= 2)atk(] 4 z)fthi—ke
63) [ PGP :
A z 4 030 ()2
B 4em 8 sin(ra) sin(x3)

— a,f
- rapiy A )

dz

for every n,m ¢ Fi, where the function Ai-’ﬁ is defined in (2.22).

This complex orthogonality can be proved as the Lemma 1.3 in [10], using
the factorizations in Lemma 5.3 for the exceptional Jacobi polynomials instead
of those given in Lemma 2.2 in [10] for the exceptional Laguerre polynomials.
The proof of this Theorem is then similar to that of Theorem 1.2 in [10]. O

Using the complex orthogonality (6.3) one can easily deduce the norm of the
exceptional Jacobi polynomials.

Corollary 6.4. With the same hypothesis as in Theorem 6.2, we have for n &
Fy (that is, n+ur € or)

1 0B 1—¢ a+k 1 +x B+k1—k2 2a+[3+1 o
(P () Lm0 (L E ) dx = A2 (n),
. (27 (@))? nl

where the function A;-’ﬁ is defined in (2.22).

We guess that the converse of Theorem 6.3 is also true. But we have only been
able to prove it under the additional technical assumption that a+S+sz+1 > 0,
where the nonnegative integer sz is defined in (2.17). To prove that, we start
by proving Lemma 2.10 in Section 2.3.

Proof of Lemma 2.10. We take N big enough so that F; C {0,1,---,N} and
N>atfB+1.

Notices that the assumptions (2.21) and (2.23) in Lemma 2.10 are just (3.1)
and (3.2). It is then easy to see that «, § and N also satisfy (2.18), (4.2) and
4.3).
( V\ge first prove Part 1 of the Lemma. Hence, we assume that either o, 8 and F
are Jacobi admissible or o, 3, N and F are Hahn admissible for N > « +/ﬂ\+ 1.
We then have to prove that a + &k > —1 and §+ k; — ko > —1.

According to Remark 2.8, if o, 8 and F are Jacobi admissible, then for N >
o —T\ﬁ—i— 1 we have that «, 8, N and F are also Hahn admissible. So it is enough
to assume that «, 3, N and F are Hahn admissible for N > « —Tb\—k 1.

Consider the measure 7 defined by

R ()RR (PN (@)
urF

(6.4) ™N = " N_kl_i OYN 2
2. Q3" N (2)Q " (x + 1)

=0
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where
(6.5) YNz =1—2x/N.

Using Part 3 of Lemma 4.2, we see that the measure 7y is either positive or
negative.

Consider the positive integer sz and the pair Fy defined by (2.17) and (2.16),
respectively. We need the following limits

QFP (1 - 2)N/2) _

(66) Nli}iloo Nurtki - U%Q?—"ﬁ(x)v
QPN (1 —2)N/2+1) .
(67) NETOO - Nurtki = v305" (@),
. heBNF((1—2)N/2) F o
(09 NEIEOO - Nur = Uu}fpu;ﬂ,f(x%
a+k+(1—x)N/2\ (B+N—ko—(1—x)N/2
(6 9) i ( (1_(95)1\//)2 / )( N_kli(l(—x)]zl/z/ ) B (1 _ LL’)a+k(1 + x)6+k1_k2
. NlIEoo N a+B-+2k: = c ,

uniformly in compact sets of the interval (—1,1), where v:” and v are defined
by (5.3) and (5.10), respectively, and ¢ is given by

(6.10) =202 (0 4 k+ DB+ ky — ko + 1),

The first limit is (5.8). The second one is a consequence of (5.9). The third
one is (5.2). The forth one is consequence of the asymptotic behavior of I'(z +
u)/T(z 4+ v) when z — oo (see [15], vol. I (4), p. 47).

Lemma 5.1 shows that szf’ﬁ (£1) # 0. We take a real number v with 0 < u < 1
such that Q?_-’@(x) # 0 for x € [u, 1]. For a real number v with v < v < 1, write
I = [u,v], Then Q;-’ﬁ does not vanish in I. Applying Hurwitz’s Theorem to the
limits (6.6) and (6.7) we can choice a contable set X of positive integers with
limyex N = +oo such that Q2N ((1 — z)N/2)Q2" N (1 — 2)N/2 + 1) # 0,
rzecland N € X.

Hence, using (5.3) and (5.10), we can combine the limits (6.6), (6.7), (6.8)
and (6.9) to get

4

(6.11) N_>+h£;lzvex Hy(z) = TH($)7 uniformly in I, where

(Oz-‘rk‘-‘r(l—x)N/Q) (5+N—k2—(1—£)N/2) (ha,ﬂ7N)2((1 _ .'17)N/2)
uF

Hy(z) = (1-z)N/2 N—ki—(1—z)N/2
No+BQEON (1 - 2)N/2)QE N (1 - 2)N/2 +1)
Hiz) = (1 =) R (1 4 o)tk (PSf’N)Q(:v)_

(Q57)2(x)
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We now prove that

: 2ry(I) 4k
(6.12) N—H}lo{)nNeX Na+5+1 - /H

To do that, write Iy = {z € N: (1 —v)N/2 < 2z < (1 — u)N/2}, ordered in
decreasing size. The numbers yy ., * € Iy, form a partition of the interval I
with yn z+1 —Yn,z = 2/N (see (6.5)). Since the function H is continuous in the
interval I, we get that

/H(:c)d:r = lim S,
I N—-1;NeX

where Sy is the Cauchy sum

Sn = Z H(yn:) (YN z+1 = YN,z)-
z€ln
On the other hand, since = € Iy if and only if u < yy , < v (6.5), we get

2TN(I>
Noa+B+1 — Na+6+1 Z

z€ln

2
= N Z HN(yN,z) ~ Z HN(yN,a:)(yN,erl - yN’z).

xzeln zeln

() R (N P )

Q57N (@)05 " ()

The limit (6.12) now follows from the uniform limit (6.11).
Since H(xz) > 0, z € I, (6.12) gives that ¢ has the same sign as the measure
7N (let us remind that 7y is either a positive or a negative measure).

The identity (4.14) and (3.6) says that

[Trer (MO) = A() [T fer,(AO0) = A(f = B))
(@ + 1)k(B + 1)k —koWe 05,5 (0) '

™~(R) =
Using (2.28), one gets

(6.13) lim 2 (R®)

N—oTfoo NatB8+1 =d,

where d is certain non-null real number which has the same sign as the measure
7n- Hence ¢ and d have the same sign. We also have

(6.14) (1 {S 7n(R), if 7 is a positive measure,
. TN

> 7n(R), if 7 is a negative measure.

Hence, using (6.12), (6.13), (6.14) and taking into account that 7, ¢ and d has
the same sign, one gets




That is

/y (1 _ l.)a+k(1 + x)ﬁ-s-kl—ka (Q;ISF»ﬁJFS}‘)Q(w) e d
w (QF")2(x) T a2 o

where we have use (5.5).

Notice that since «, 3 and F satisfy (3.1) and (3.2), a + s, 8+ sp and Fy
satisfy (3.1) and (3.2) as well. Using Lemma 5.1, we get Q?_-ISF’BJFSF(I) # 0.
Then, if a + k < —1, we would deduce

- v (1 _ x)a-&-k(l 4 x)ﬁ+k1—k2 (Q?:Is]:’ﬁ+sf)2(m)
v—1= S, (926)2(@

dx = 400,

which it is a contradiction. Hence ao + k > —1.
Proceeding in the same way but using = —1 instead of = 1, we can prove
that ﬁ+k1 — ko > —1.

We now prove Part 2 of Lemma 2.10. Since we have already proved that
a+k+1>0and f+k; — ke + 1> 0, we deduce that the constant ¢ (6.10) is
positive. The limit (6.12) then shows that the measure 7 (6.4) is also positive
for N big enough. That is, for x =0,--- , N — kq,

a+k+x +N—ko—2x
( T )(ngkli:v )

> 0.
Q3N (@) Q"N (2 +1)

Using now part ii of Lemma 4.2, we deduce that for N big enough the sign of
A(}_”ﬂ’N (2.19) is equal to the sign i(ﬁ+ r(8+ 1)k, —k,- It is now enough to
take into account that for N > «+ 3 + 1, the sign of Aa]_-’B’N does not depend

on N (2.20).

We now prove Part 3 of Lemma 2.10. Indeed, a direct computation gives

AP (2 4+ 1)

a+1,6+1 _
(6.15) AT @) = SE

Since F; = 0 (and hence k; = 0), using part 1 of Lemma 2.10, we have o+ ko >
—1and 8 — ko > —1, from where we get a+ 3 > —2. This shows that for x € N,
x4+ a+ 42 >0. Since o, § and F are Jacobi admissible, (6.15) shows that
a+ 1,6+ 1 and F are also Jacobi admissible.

O

We now prove that, under the technical assumption that a + 3+ sz +1 > 0,
the converse of Theorem 6.3 is also true.

Theorem 6.5. Given real numbers o and § satisfying (3.1) and (3.2) and a
pair F of finite sets of positive integers, assume that o, 8 and F are Jacobi
admissible. Then
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1. a+k>—-1and 8+ ky — ko > —1.
2. Ifin addition we assume a+fB+sz+1 > 0 then Q%ﬁ(x) #0 forxz € [-1,1].

Part 1 of Theorem 6.5 is included in Part 1 of Lemma 2.10.
To prove part 2 of Theorem 6.5 we need the following Lemma.

Lemma 6.6. With the same hypothesis of Theorem 6.5, assume in addition
that Q%" (x0) = 0 for some x¢ € (=1,1), then Q;Isf’ﬁ"rsf(xo) =0 as well.

Proof. We take a real number v with xyp < v < 1 such that Q;-ﬁ(x) # 0 for

x € (zg,v]. For a real number u with zg < u < v, write I = [u,v]. Then Q?_-"ﬁ
does not vanish in I. Proceeding as in the proof of Part 1 of Lemma 2.10, we
get

dr < .
(257)2() Tt

If Q;ISF”BJFSF (x0) # 0, since Q;-’ﬁ(xo) =0 we get

/v (1 —2)oth(1 4 g)hi—he(pFsr 0ty (g) g

- v (1 _ x)a+k(1 + x)ﬁ—&-kl—kz (Q-(;_Isfvﬂ+3f)2(x)

o dr = +o0.
u—ag Ju (QF7)2(2)

Hence Q;IS%BJFW (zg) = 0. O
If F} = (), the converse of Theorem 6.3 is true.

Theorem 6.7. Given real numbers o and [ satisfying (3.1) and (3.2) and a
pair F = (0, Fy), assume that o, 3 and F are admissible. Then (6.1) holds.

Proof. We only have to prove that Q;’B(m‘) #0, -1 <z < 1. We prove it by
induction on ky. For ko = 1, we have that F; is a singleton F» = {f}, and then
Q(}:—B(x) = P}l’fﬁ(w). Since k1 = 0, k2 = 1, we have from the first part of Lemma
6.6 that & > —2 and § > 0. Hence, using the admissibility condition (2.22), we
deduce that either —1 < avand f < for 2 <a < —-land f-1< G < f.
In both cases, according to Theorem 6.72 in [34] the polynomial P’ F(z) does
not vanish in (—1,1).

Assume now that the theorem holds for ks < s, and take a finite set of positive
integers Fs, with k2 = s + 1 elements. According to the definition of sy, (2.9)
for F1 = 0, we have sp, = 1. Hence we also have sz = 1 (see (2.17)). If there
exists —1 < xg < 1 such that Q(}’ﬂ(xo) = 0, using the previous Lemma, we
get that also Qjﬁ_jl’ﬁﬂ(fm) = 0. Since F; = ), we have F = F| (see (2.16))

and then Q;‘_-H’ﬂﬂ(xo) = 0. If o, and F are admissible with F; = 0, then
a+ 1,841 and F are also admissible (see part 3 of Lemma 2.10). Proceeding
as before, we can conclude that Q;H’Bﬂ(:ro) =0,j=0,1,2,... Consider the
pair Fj rs11y defined by (2.15). Since F; = 0, from the definition of Jacobi
admissibility (2.22), we deduce that there exists hy € N such that for h > hy,
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a+h,B+ h and F {441y are admissible. Write & = a + ho, 8 = B+ ho. We

also have Qifj”gﬂ(xo) =0,7=0,1,2,...
For a positive integer m > s + max Fy +1 > s+ 1 consider the (s + 1) x m
matrix

1<r<m

M= (3= Fra(l+ xo)SH*TP?Hfl’fﬁirﬂ(950)
J ek

Write ¢;, ¢ = 1,...,m, for the columns of M (from left to right). For j > 0,
consider the (s +1) x s submatrix M; of M formed by the consecutive columns
Cjti, + = 1,---s, of M. Using (5.4), we see that the minor of M; formed

by its first s rows is equal to (1 + x)*(1=7) Hf€F2\{lel}(ﬁ~ - f)jﬂijiix(xo)

where the pair F5 (541} is defined by (2.15). Since the set Fy \ {fﬂ_l} has s
elements and & + 7, B +j and F5 (41 1) are admissible, the induction hypothesis
Qd+j75+j

Fa,{s+1}
are linearly independent. On the other hand, the consecutive columns c;,
i=1,---s+ 1, of M are linearly dependent because its determinant is equal
to (1+ 20) HVAD [T, (B — £);9577% (20) and Q57+ (zg) = 0. Using
Lemma 2.3, we conclude that rank M = s. Write now

says that (xo) # 0, and hence the columns c¢;y;, ¢ = 1,---s, of M

1<r<m

(6.16) N = | (1 +2) PR P ()
fer

Using (2.41), it is easy to see that rank M = rank M = s. Then there exist
numbers ey, f € F, not all zero such that the polinomial p(z) =3 cp, er(1+

:c)SP?’fﬁ(:c) is non null and has a zero of multiplicity m in xg. But the poly-
nomial p has degree at most s+ max F5, and since m > s+ max Fr +1 > degp,
this shows that p = 0, which it is a contradiction. This proves the theorem. [

We finally prove part 2 of Theorem 6.5

Proof. Write s = max F;. We proceed by complete induction on s. The case
s = —1 (i.e., F} = ) is just the previous Theorem (which it has been proved
without using the hypothesis a + 5+ sz + 1 > 0).

Assume now that «, 8 and F are Jacobi admissible, o + 8+ s+ 1 > 0 and

(6.17) 0Pz #£0, —-1<z<l,

holds for max F; < s.

We now prove that if max Fy = s+ 1, and «, 8 and F are Jacobi admissible
with o+ 5+ sz + 1 > 0 then (6.17) also holds.

Consider the pair Fy = {(F1)y, F2} defined by (2.16). Since F; # (), we have
that max(Fy1)y < s. The part 4 of Lemma 2.9 says that if o + sz, § + sz and
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F, are Jacobi admissible as well. If we write & = a + sp, 8= B+ sp, we also
have & + B +s7, +1=(a+ [+ sr+1) +s5+ 55, > 0.
The induction hypothesis (6.17) then says that Q;Isf’ﬂﬂf (z) # 0 for —1 <

x < 1. The second part of Lemma 6.6 then gives that also Qj‘fﬁ(x) # 0, for
-l<z <1 0

We need the technical assumption a + 8+ sz + 1 > 0 in the previous proof
because otherwise we can not guarantee the admissibility of a+ sz, 6+ s» and
F from the admissibility of o, 8 and F, as the following example shows. Con-
sider « = —3/2, 8 = =9/7, F1 = {2, 3,4} and F; = {1, 2}, for which sx = 1 and
(F1)y = {1,2,3}. It is then easy to see that «, § and F = (F}, Fy) are admissible
but a+ sz, B+ sz and Fy = ((F1)y, F») is not (because A}ISI”B“F (0) is nega-
tive). But although «, 8 and F do not satisfy the assumption a+8+sz+1 > 0,
they are not a counterexample for the converse of Theorem 6.3 because it is easy
to check that Q?_-’ﬁ does not vanish in [—1,1].

7 Recurrence relations

The gaps in their degrees imply that exceptional Hahn or Jacobi orthogonal
polynomials do not satisfy three term recurrence relations as the usual orthog-
onal polynomials do. However, as happens with exceptional Charlier, Meixner,
Hermite or Laguerre polynomials, they also satisfy higher order recurrence re-
lations of the form

(7.1) T(z)pn(z) = Z An,jPn+js 1 2= No,

j=—r

where T is a polynomial of degree 7, (an ;)n, j = —7,--- ,T, are sequences of
numbers independent of = (called recurrence coefficients), with a,, , # 0, for n
big enough and ng is certain nonnegative integer. We say that this high order
recurrence relation has order 2r + 1. As shown in [12] this is a consequence of
the duality of the exceptional discrete and Krall discrete polynomials.

7.1 Exceptional Hahn polynomials

Our procedure to construct higher order recurrence relations for the exceptional
Hahn polynomials consists in applying duality to the higher order difference
operator with respect to which the associated Krall discrete polynomials (see
(3.5)) are eigenfunctions. Since we want to work with orthogonal polynomials
with respect to positive measures we assume that N is a positive integer, «, 5 and
N satisty (4.2) and (4.3) and that «, 8, N and F are Hahn admissible, although
these assumptions are not needed for the implementation of our method to find
higher order recurrence relations for the polynomials (3.3).
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Up to an additive constant, we define the polynomial T;’ﬂ N of degree wp

(see (2.12)) by solving the first order difference equation

(72) 157N (@) = T (@ - 1) = 057V ().
The polynomial Qg‘_-’ﬁ N enjoys a nice invariance property
7.3
( Q‘O}‘_)*B’N(I) _ d%57NQ§a_max Fi —max F>—2,—3—max Fj +max F5,— N —1+max F} (—,I)

where G = (I(F}),I(F3)), I is the involution defined by (2.8) and d;-’ﬁ’N is a
constant which does not depend on x (see Section 7 of [4]).

In [11], Corollary 5.2, it is proved that the polynomials ¢ (A(z +ux)), n > 0,
(see (3.5)) are eigenfunctions of a higher order difference operator Dz (which
can be explicitly constructed using [11], Theorem 3.1). The invariance (7.3)
shows that the associated eigenvalues are given by the polynomial T?‘_-’ﬁ ’N, SO
that D (g7 (A(x))) = T3 (n)g (\(2)).

In [11], Corollary 5.2, it is also proved that D is a difference operator of order
2wp+1, which can be written in terms of the shift operators §;, 5,(f) = f(z+7),
in the form

wF
(7.4) Dr= Y ¢;(®)5;,
Jj=—wr
where g;, j = —wp, - ,wF, are certain rational functions.

The duality (3.7) gives then the higher order recurrence relation for the poly-
nomials h%#N:F n € or (the proof is similar to Corollary 2.3 in [12] and it is
omitted).

Corollary 7.1. The exceptional Hahn polynomials satisfy a 2wp + 1 order re-
currence relation of the form

wF
(75) Y ATENT eI (@) = Y3 (@)ephy PN (2),  n >0,

Jj=—wr

where ¢, 18 a normalization constant (independent of N ) and the number wz
and the polynomial Tg‘;ﬁ’N are defined by (2.12) and (7.2), respectively. For
j=—wg, - ,wF, A?;F(n) is a rational function in n which does not depend
on x (and whose denominator does not vanish for n € N).

The expression we have found in [11] for the higher order difference operator
Dz makes difficult to find explicitly the coefficients of its expansion (7.4) in
terms of the shift operators §,,, n € Z. These coefficients are needed to find
explicit expressions for the recurrence coefficients (A4;)7__, in (7.5). We have
not been able to find explicit formulas for them in terms of arbitraries «, 3, N
and F, but such explicit formulas can be found for small values of wg. Here it
is an example. Consider F; = (), F5 = {1}. It is easy to see that for N > 3,
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a, B, N and F are Hahn admissible if and only if either —1 < « and 1 < 3 or
—2<a<-land0< fB<1.

We have wrp = 2 and then according to the Corollary 7.1, the polynomials
(h&-PN:F), satisfy a five term recurrence relation. Proceeding as in [12] we can
explicitly find the coefficients A?’ﬁ’N;}-, j=—2,---,2

(7.6)
3(8—a—2) (%) (at+n+1)(B+n—2)2(N—n+2)2(a+S+N+n—1) Fi_ o
(ot D) (otn—T1)(atB+2n—4), ) g =-2
2(a+B)(a+B+2N+2) (3 ) (a+n+1) (N —n+2) (a+B+N+n)(B+n—2), i1
(ot1)(atBt2n—4)(atft2n—2); , wgp=-4L
—(atn=1)(B+n—)A2J Y (n) | (a+n)(B+n-3)A% T (n)
} (atn+ 1) (B+n—2)(N—n+2)2 (atnd1)(B+n—2)(N—n+2)
A?’ﬁ’N’f(n) = 4 (atn42)(F+n—D)(N—n+ ) AT PN ()
(atn+1)(B+n—2)
((y+n+3)(ﬂ+n)(N n)s AL ENT () =0
(atn+1)(B+n—2) ’ =
(a+B)(a+B+2N+2)n(B+n— 2)(a+ﬁ+n)(a+n)z ifi=1
(et D) (et ft2nt2)(atfizn—2)s J=454
(B=a=2)n(B+n—2)(at+n)z(a+B+n)> ifi=9
2(a+1)(B+n)(a+B+2n—1)4 ’ J=
2
and TN (¢) = (B—a—-2)z% (2Ba+38—a+2N—2+2Na)z S

2(a+1) 2(a+1) ’

When N is a positive integer and F; C {0,1,2,---, N}, with max F} > N/2,
the order 2wz + 1 in the recurrence formula (7.5) can be improved. Indeed,
consider the measure

77 o an= [T O-AN=) [T A=A [[ A=A =B)wsasn,

feGy feG2 feaGs

where G = (G1,G2,G3) is a trio of finite set of positive integers. Notice that
for G4 =0, Go = Fy and G3 = Fy, we get the measure (3.6). Using appropriate
representations of the measure (3.6) in the form (7.7), it is proved in [11] that
(under mild conditions on the parameters) the orthogonal polynomials with
respect to the measure pgﬂ N are eigenfunctions of a higher order difference
operator of the form (7.4) with

B () () ()
fEF;f<N/2 fEF;f>N/2

where m; and mg are the number of elements of Gy = {N—f: f € Fy, f > N/2}
and Gy = {f : f € F1, f < N/2}, respectively. Notice that this number is less
than or equal to wg (2.12) (but equal to wx for N big enough).

7.2 Exceptional Jacobi polynomials

Since we want to work with orthogonal polynomials with respect to positive
measures we assume that o, satisfy (3.1) and (3.2) and that (6.1) holds (a
sufficient condition for this last assumption is given in Theorem 6.5), although
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these assumptions are not needed for the implementation of our method to find
higher order recurrence relations for the polynomials (5.1). Up to an additive
constant, we define the polynomial T, g.7 of degree wr as the solution of the
first order differential equation

(78) T pr() = 95°(2).

where Q%7 is the Wronskian type determinant (5.4).
We then have.

Corollary 7.2. The exceptional Jacobi polynomials satisfy a 2wx + 1 order
recurrence relation of the form

wF
(7.9) 3 ACIF ()P () = Yo pir (2)en PO (),
j=—wgF

where ¢, is a normalization constant (independent of N ) and the number wz
and the polynomial Yo p.7 are defined by (2.12) and (7.8), respectively. For
j=—wg, -, WF, A?’B;f(n) s a rational function in n which does not depend
on x and whose denominator does not vanish for n € N.

Proof. We only sketch the proof which proceeds by taking limit in Corollary 7.1
using (5.2).

Taking into account the limit (5.8) and the definition of the polynomials
T(}’B’N (7.2) and Y4 .7 (7.8), it is not difficult to see that (after a suitable
normalization at 0 of these polynomials)

BN a
oy TEON (A —a)N/2) v
N—oo Nur+ki+1 - 2

Taﬁ;]:(.%'),

where v$ is given by (5.10).

We fix n in the recurrence formula (7.5), change x to (1 — z)N/2, normalized
dividing both sides in (7.5) by N"*t“#+F1 and then take limit when N goes to
infinity. This limit gives the recurrence (7.9), where

o F a,B,N;F
a.BF _ Unki o A
A’ =-2——— lim ——
f vgus T N N

and 027 and v$ are defined by (5.3) and (5.10), respectively.
O

Consider F; = (§, F, = {1}. Since a > —2 and 8 > 0, and sx = 1, we get
that Q?_-’g(x) # 0 for x € [—1,1] is equivalent to the admissibility of «, 8 and
F. And it is easy to see that this happens if and only if either —1 < « and
l<fBor—-2<a<—1land0< < 1. By taking limit in (7.6), we get that
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the exceptional Hahn polynomials (P%#%), satisfy the five order recurrence
relation (7.9) where wp = 2,

(B—a—2)(a+n+1)(a+n—2)(B8+n—2)2 ifi—_9
2(at1)(at+B+r2n—4), ) ny=-5
—2(a+8)(a+n—1)(a+n+1)(B+n—2)2 ifi= 1
(a+1)(a+B+2n—4)(a+B+2n—2)3 J= )
(=) (n=2)(B+n—-4) A% (n)  (n—1)(a+n)(B+n-3)A% 7 (n)
(a+n—2)(a+n+1)(B+n—2) . (a+n—1)(a+n+1)(B+n—2)
ACBF () = _ (e4n+2)(a+n)(B+n—1D) AT (n)
g n(a+n+1)(B+n—2)
_ (a+n+3)(a+n) (B+n) A3 7 (n) =0
n(nt1)(B+n—2) ) J="Y
—2(atB)n(atn+1)(B+n—2)(a+f+n) =1
(af1)(a+B+2n+2)(atp+2n—2)5 ° J=454
(B—a=2)("11) (B+n—2)(a+B+n)2

(et D(Brn)(atpren—1s  ° ifj=2
1-— 243 — 2
TO}QB(ZC):< D)2+3a+f+(a=f+ >)$,andcn:1.
8(ar+1)
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