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BOUNDS FOR THE ASYMPTOTIC ORDER PARAMETER OF THE STOCHASTIC
KURAMOTO MODEL

ISTVÁN MEZŐ† AND ÁRPÁD BARICZ‡

Dedicated to Boróka, Eszter and Koppány

Abstract. Turán type inequalities for modified Bessel functions of the first kind are used to deduce
some sharp lower and upper bounds for the asymptotic order parameter of the stochastic Kuramoto
model. Moreover, approximation from the Lagrange inversion theorem and a rational approximation
are given for the asymptotic order parameter.

1. Introduction

The Kuramoto model describes the phenomenon of collective synchronization, more precisely it de-
scribes how the phases of coupled oscillators evolve in time, see [Ku] and [BGP, p. 271] for more details.
Recently Bertini, Giacomin and Pakdaman [BGP] were able to review some results on the Kuramoto
model from a statistical mechanics standpoint and they gave in particular necessary and sufficient con-
ditions for reversibility. In order to do this Bertini, Giacomin and Pakdaman [BGP, p. 278] deduced
some lower and upper bounds for the asympotic order parameter, which involves the modified Bessel
functions of the first kind of order zero and one. A few years later Sonnenschein and Schimansky-Geier
[SS] obtained the asymptotic order parameter in closed form, which suggested a tighter upper bound for
the corresponding scaling. Moreover, they elaborated the Gaussian approximation in complex networks
with distributed degrees. In their study Sonnenschein and Schimansky-Geier [SS, p. 3] proposed another
upper bound for the asymptotic order parameter, but they presented their result without mathematical
proof. All the same, by using Bernoulli’s inequality they verified that their upper bound is better than the
upper bound of Bertini, Giacomin and Pakdaman [BGP]. In this paper our aim is to make a contribution
to this subject by showing the followings:

• The bounds presented in the above mentioned papers are correct and their proofs are based on
some Turán type inequalities for modified Bessel functions of the first kind.

• The constants in the upper bounds presented by Bertini, Giacomin, Pakdaman [BGP] and
Sonnenschein, Schimansky-Geier [SS] are the best, and thus their bounds cannot be improved.

• The results presented in the above mentioned papers can be extended to modified Bessel functions
of the first kind of arbitrary order, based on some interesting new and recently discovered Turán
type inequalities for modified Bessel functions of the first kind.

• It is possible to obtain another approximation for the asymptotic order parameter (than in the
above mentioned papers) by means of the Lagrange’s inversion theorem and also a rational
approximation.

As far as we know the above mentioned subject was not studied yet in details from the mathematical
point of view and we believe that the obtained results may be useful for the people working in statistical
physics.

2. Bounds for the asymptotic order parameter

In this section our aim is to discuss, complement and extend the results from [BGP, SS] concerning
bounds for the asymptotic order parameter of the stochastic Kuramoto model. Some new and recently
discovered Turán type inequalities for modified Bessel functions of the first kind play an important role
in this section. For more details on Turán type inequalities for modified Bessel functions of the first kind
we refer to [B] and to the references therein.
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2.1. An alternative proof of a result on asymptotic order parameter. Let us consider the tran-
scendental equation r = Ψ(2Kr), where K > 1, Ψ(x) = I1(x)/I0(x) and I1, I0 stand for the modified
Bessel function of the first kind of order 1, and 0, respectively. Recently, Bertini, Giacomin and Pak-
daman [BGP, p. 278] in order to prove their main result about the spectrum of a self-adjoint linear
operator, presented the inequalities

(2.1)

√
1− 1

K
< r <

√
1− 1

2K
.

The clever proof of the left-hand side of (2.1) was based on the well-known Turán type inequality

I2
1 (x)− I0(x)I2(x) > 0.

In what follows we would like to show that in fact the right-hand side of (2.1) is also equivalent to a
Turán type inequality involving modified Bessel functions of the first kind. To proceed, we use the same
notation as in [BGP, p. 278]. To prove the right-hand side of (2.1) we need to show that

r2 +
1

2K
− 1 = Ψ2(2Kr) +

Ψ(2Kr)
2Kr

− 1 < 0,

that is, for x > 0 we have

(2.2) Ψ2(x) +
1
x

Ψ(x)− 1 < 0.

Now, by applying the identity [OLBC, p. 251]

(2.3)
I1(x)
I0(x)

=
x

2

(
1 +

x

2
I2(x)
I1(x)

)−1

we obtain

1− 1
x

Ψ(x) =
(

1 +
1
x

I1(x)
I2(x)

)(
1 +

2
x

I1(x)
I2(x)

)−1

,

which implies that (2.2) is equivalent to

Ψ2(x)
(

1 +
2
x

I1(x)
I2(x)

)
< 1 +

1
x

I1(x)
I2(x)

,

which by means of the recurrence relation

(2.4) xI0(x) − xI2(x) = 2I1(x),

is equivalent to the Turán type inequality

I2
1 (x) − I0(x)I2(x) <

1
x

I0(x)I1(x).

But, in view of the well-known Soni inequality I1(x) < I0(x), the above Turán type inequality is a
consequence of the stronger inequality [B, eq. 2.5]

I2
1 (x)− I0(x)I2(x) <

1
x

I2
1 (x).

Since all of the above inequalities are valid for x > 0 it follows that the right-hand side of (2.1) is valid.

2.2. The proof of a claimed result on asymptotic order parameter. Recently, Sonnenschein and
Schimansky-Geier [SS, p. 3] proposed (without proof) an improvement of the right-hand side of (2.1) as
follows

(2.5) r <
4

√
1− 1

K
.

In the sequel we present a proof of (2.5), which is based also on a Turán type inequality. Note that to
prove (2.5) we need to show that

r4 +
1
K
− 1 = Ψ4(2Kr) +

2Ψ(2Kr)
2Kr

− 1 < 0,

that is, for x > 0 we have

(2.6) Ψ4(x) +
2
x

Ψ(x)− 1 < 0.



Now, by applying the identity (2.3) we obtain

1− 2
x

Ψ(x) =
(

1 +
2
x

I1(x)
I2(x)

)−1

,

which implies that (2.6) is equivalent to

Ψ4(x)
(

1 +
2
x

I1(x)
I2(x)

)
< 1,

which by means of the recurrence relation (2.4) is equivalent to the Turán type inequality

(2.7) I4
1 (x) < I3

0 (x)I2(x).

Since all of the above inequalities are valid for x > 0 it follows that (2.5) holds true, and consequently
the right-hand side of (2.1) is valid too. The Turán type inequality (2.7) is the limiting case of the next
Turán type inequality (see [Ba, p. 592]) when ν → −1

I3
ν+1(x)Iν+3(x) > Iν(x)I3

ν+2(x), x > 0, ν > −1,

and it was shown by Idier and Collewet [IC, p. 15] that we can take the limit and the inequality (2.7)
remains true.

2.3. Sharpness of the results concerning the asymptotic order parameter. It is important to
mention here that the powers in the left-hand side of the inequality (2.1), and in (2.5), that is

(2.8)

√
1− 1

K
< r <

4

√
1− 1

K
,

are the best possible. To show this observe that the inequality (2.8) is equivalent to

2 <
log
(
1− 1

K

)

log r
< 4 or to 2 <

log
(
1− 2

xΨ(x)
)

log Ψ(x)
< 4.

Here we used the inequality I1(x) < I0(x), where x > 0, which shows that Ψ maps (0,∞) into (0, 1), and
thus log Ψ(x) < 0 for x > 0. Now we show that in the above inequalities the constants 2 and 4 are the
best possible in the sense that the inequality

α <
log
(
1− 2

xΨ(x)
)

log Ψ(x)
< β

is valid for all x > 0 with the optimal parameters α = 2 and β = 4. This implies that in (2.8) the powers
1
2 and 1

4 are indeed the best possible. Thus, let

λ(x) =
log
(
1− 2

xΨ(x)
)

log Ψ(x)
.

We prove that α = lim
x→0

λ(x) = 2. For small x the involved Bessel functions behave like

I0(x) = 1 +
x2

4
+

x4

64
+ O(x6) and I1(x) =

x

2
+

x3

16
+ O(x5).

Substituting these and applying the Bernoulli-l’Hospital’s rule we get that α = 2, as we stated. Note
that by using the Mittag-Leffler expansion of Ψ(x) it is also possible to obtain the above limit. Namely,
since

Ψ(x) =
I1(x)
I0(x)

=
∑

n≥1

2x

x2 + j2
0,n

,

where j0,n stands for the nth positive zero of the Bessel function J0, by using the Bernoulli-l’Hospital’s
rule twice we obtain that

lim
x→0

λ(x) = 8 lim
x→0

∑

n≥1

j2
0,n − x2

(x2 + j2
0,n)2

∑

n≥1

x

(x2 + j2
0,n)2

+
∑

n≥1

x

x2 + j2
0,n

∑

n≥1

j2
0,n − 3x2

(x2 + j2
0,n)3

4
∑

n≥1

2x

(x2 + j2
0,n)2

∑

n≥1

j2
0,n − x2

(x2 + j2
0,n)2

+


1− 4

∑

n≥1

1
x2 + j2

0,n


∑

n≥1

2x(x2 − 3j2
0,n)

(x2 + j2
0,n)3

= 2.



Now, we are going to prove that the best constant β equals to β = lim
x→∞

λ(x) = 4. The well known
asymptotic estimation

(2.9) Iν(x) =
ex

√
2πx

(
1− 4ν2 − 1

8x
+ O

(
1
x2

))

yields that as x grows

Ψ(x) =
8x− 4 + 1 + O

(
1
x

)

8x + 1 + O
(

1
x

) .

Substituting this into the definition of λ(x) we can see that asymptotically it equals to

λ(x) =
log(x− 2 + O

(
1
x

)
)− log(x)

log
(
8x− 4 + 1 + O

(
1
x

))
− log

(
8x + 1 + O

(
1
x

)) .

The differences of logarithms both in the numerator and denominator can be expanded at infinity by the
expansion

log(ax + b)− log(cx + d) = log(a)− log(c) +
(

b

a
− d

c

)
1
x

+ O

(
1
x2

)
, ac 6= 0.

What we get is the following

λ(x) =
2
x + O

(
1
x2

)
(

1
2

)
1
x + O

(
1
x2

) =
4 + O

(
1
x

)

1 + O
(

1
x

)

for large x, from which the result follows.

2.4. Extension of (2.1) to the general case. Let us consider the function Ψν : (0,∞) → (0,∞),
defined by Ψν(x) = Iν+1(x)/Iν (x), where Iν stands for the modified Bessel function of the first kind of
order ν. We are going to show that it is possible to extend the right-hand side of (2.1) to the general
case. Thus, we consider the transcendental equation r = Ψν(2Kr) and we show that, for all K > ν + 1,
ν ≥ 0 and r > 0, the next inequality holds true:

(2.10) r <

√
1− 1

2K
.

However, we first show that if ν ≥ 0 and K > ν + 1, then the equation

(2.11) r −Ψν(2Kr) = 0

has a positive real solution. Observe that our equation has a trivial solution at r = 0. Moreover, the
function r − Ψν(2Kr) tends to infinity as r grows. Hence, if the tangent of the continuous function
r−Ψν(2Kr) is negative at the origin then (2.11) surely has a positive real solution. The derivative is as
follows

(r −Ψν(2Kr))′ = 1 +
KIν+1(2Kr)(Iν−1(2Kr) + Iν+1(2Kr))

Iν(2Kr)2
− K(Iν(2Kr) + Iν+2(2Kr))

Iν(2Kr)
.

We need to take the limit when r = 0. This can be done by using the Bernoulli-l’Hospital’s rule. It comes
after some simplification that

(r −Ψν(2Kr))′|r=0 = 1− K

ν + 1
,

from where it follows that in the case when 1− K
ν+1 < 0 then (2.11) has a positive real solution. Moreover,

as r → 0 we have Ψν(2Kr) = Kr
ν+1

(
1 + O(r2)

)
and thus the slope at r = 0 is greater than 1. Since

Ψν(x) → 1 as x →∞ and Ψν is increasing on (0,∞) for all ν ≥ − 1
2 , according to Watson [Wa], it follows

that (2.11) has one and only one positive solution.
Now, to prove the inequality (2.10) we need to show that

r2 +
1

2K
− 1 = Ψ2

ν(2Kr) +
Ψν(2Kr)

2Kr
− 1 < 0,

that is, for x > 0 we have

(2.12) Ψ2
ν(x) +

1
x

Ψν(x)− 1 < 0.

By applying the identity

(2.13)
Iν+1(x)
Iν(x)

=
x

2

(
ν + 1 +

x

2
Iν+2(x)
Iν+1(x)

)−1



we obtain

1− 1
x

Ψν(x) =
(

1 +
2ν + 1

x

Iν+1(x)
Iν+2(x)

)(
1 +

2(ν + 1)
x

Iν+1(x)
Iν+2(x)

)−1

,

which implies that (2.12) is equivalent to

Ψ2
ν(x)

(
1 +

2(ν + 1)
x

Iν+1(x)
Iν+2(x)

)
< 1 +

2ν + 1
x

Iν+1(x)
Iν+2(x)

,

which by means of the recurrence relation

(2.14) xIν(x) − xIν+2(x) = 2(ν + 1)Iν+1(x),

is equivalent to the Turán type inequality

I2
ν+1(x)− Iν(x)Iν+2(x) <

2ν + 1
x

Iν(x)Iν+1(x).

But, in view of the well-known Soni inequality Iν+1(x) < Iν(x), ν > − 1
2 , x > 0, the above Turán type

inequality is a consequence of the stronger inequality [B, eq. 2.5]

(2.15) I2
ν+1(x)− Iν(x)Iν+2(x) <

1
x

I2
ν+1(x),

which holds for ν ≥ − 1
2 and x > 0. Since all of the above inequalities are valid for x > 0 and ν ≥ 0, it

follows that indeed the inequality (2.10) is valid.
Moreover, it can be shown that the left-hand side of (2.1) can be also extended to the general case

when ν ≥ 1
2 , and the resulting inequality is reversed (comparative to the left-hand side of (2.1)) and

improves the inequality (2.10). To show the inequality

(2.16) r <

√
1− 1

K

it is enough to show that for x > 0 we have

(2.17) Ψ2
ν(x) +

2
x

Ψν(x)− 1 < 0.

By using the above steps in view of (2.13) we obtain that

1− 2
x

Ψν(x) =
(

1 +
2ν

x

Iν+1(x)
Iν+2(x)

)(
1 +

2(ν + 1)
x

Iν+1(x)
Iν+2(x)

)−1

,

which implies that (2.17) is equivalent to

Ψ2
ν(x)

(
1 +

2(ν + 1)
x

Iν+1(x)
Iν+2(x)

)
< 1 +

2ν

x

Iν+1(x)
Iν+2(x)

,

which by means of the recurrence relation (2.14) is equivalent to the Turán type inequality

(2.18) I2
ν+1(x) − Iν(x)Iν+2(x) <

2ν

x
Iν(x)Iν+1(x).

But, in view of the above Soni inequality the above Turán type inequality is a consequence of the stronger
inequality (2.15) when ν ≥ 1

2 .

Numerical experiments suggest that when ν ∈
(
0, 1

2

)
the equation

I2
ν+1(x)− Iν(x)Iν+2(x)− 2ν

x
Iν(x)Iν+1(x) = 0

has a solution which depends on ν. Since (2.16) is equivalent to (2.18), this implies that (2.16) is not true
for all K > ν + 1, ν ∈

(
0, 1

2

)
and r > 0.



2.5. Sharpness of the extension (2.16). Let us consider the extension of λ, that is,

λν(x) =
log
(
1− 2

xΨν(x)
)

log Ψν(x)
.

We are going to prove that the best constant βν for which λν(x) < βν for x > 0 and ν ≥ 0, equals to

βν = lim
x→∞

λν(x) =
4

2ν + 1
.

In particular, β0 = β = 4. The steps are the same as in the special case above when ν = 0. The asymptotic
estimation (2.9) yields that as x grows

(2.19) Ψν(x) =
8x− 4(ν + 1)2 + 1 + O

(
1
x

)

8x− 4ν2 + 1 + O
(

1
x

) .

Substituting this into the definition of λν(x) we can see that asymptotically it equals to

λν(x) =
log(x− 2 + O

(
1
x

)
)− log(x)

log
(
8x− 4(ν + 1)2 + 1 + O

(
1
x

))
− log

(
8x− 4ν2 + 1 + O

(
1
x

)) ,

and consequently

λν(x) =
2
x + O

(
1
x2

)
(

(ν+1)2

2 − ν2

2

)
1
x + O

(
1
x2

) =
4 + O

(
1
x

)

2ν + 1 + O
(

1
x

)

for large x, from which the result follows. The above discussion actually shows that when ν ≥ 1
2 the

extension (2.16) is far from being the best possible one. The next natural extension of (2.8) improves
the extension (2.16) when ν ≥ 1

2 and the power ν
2 + 1

4 appearing in the inequality is the best possible

(2.20) r <
4

√(
1− 1

K

)2ν+1

.
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Figure 1. The graph of the function x 7→ 2a+1
√

Ψ4
a(x) + 2

xΨa(x) − 1 on [0, 10] in the
case when a ∈ {0, 1, 2, 3}.



2.6. Sharp extension of (2.1) to the general case. Now, we are going to show that (2.20) is valid
for all K > ν + 1, ν ≥ 0.3 and r > 0. Note that the inequality (2.20) is equivalent to

(2.21) 2ν+1
√

Ψ4
ν(x) +

2
x

Ψν(x)− 1 < 0,

where ν ≥ 0, x > 0. Using the Amos type bound Ψν(x) < Ων(x), where ν ≥ 0, x > 0 and [HG, p. 94]

Ων(x) =
x√

x2 +
(
ν + 1

2

) (
ν + 3

2

)
+ ν + 1

2

,

we obtain that
2ν+1
√

Ψ4
ν(x) +

2
x

Ψν(x) − 1 < 2ν+1
√

Ω4
ν(x) +

2
x

Ων(x) − 1 < 0,

where ν ≥ 0.3 and x > 0. Here we used the fact that, based on numerical experiments, the smallest value
of ν for which the expression 2ν+1

√
Ω4

ν(x)+ 2
xΩν(x)−1 is still negative for each x > 0 is 0.3. When ν = 0.3

the above expression tends to zero as x → 0. We believe, but were unable to prove that (2.20) is also
valid when ν ∈ (0, 0.3), K > ν + 1 and r > 0. Numerical experiments (see also Fig. 1) strongly suggest
the validity of the above claim.

It is also worth to mention that the inequality (2.21) is actually equivalent to the Turán type inequality

2ν+1

√(
Iν+1(x)
Iν(x)

)4

· Iν(x)
Iν+2(x)

< 1 +
2ν

x

Iν+1(x)
Iν+2(x)

,

where ν ≥ 0.3 and x > 0. This Turán type inequality is new, and we believe, but were unable to prove that
it is true also when ν ∈ (0, 0.3) and x > 0. Moreover, if we use the asymptotic expansion Iν(x) ∼ ex/

√
2πx

as ν is fixed and x →∞, the above Turán type inequality becomes equality for large values of x. We also
note that the case ν = 0 of the above inequality has been already considered in (2.7).

2.7. Another sharp extension of (2.1) to the general case. In this subsection our aim is to propose
that it would be possible to extend the inequality (2.1) in another way such that to keep the sharpness.
We believe that if ν ≥ 0, K > ν + 1 and r > 0, then we have

(2.22) r <
4(ν+1)

√(
1− ν + 1

K

)2ν+1

.

It is important to mention here that by using the Bernoulli inequality (1+x)a ≥ 1+ax, for x = − 1
K > −1

and a = ν + 1 > 0, then clearly we have

4(ν+1)

√(
1− ν + 1

K

)2ν+1

<
4

√(
1− 1

K

)2ν+1

,

or in other words the inequality (2.22) improves (2.20). To prove (2.22) we would need to show that

(2.23) Ψ
4(ν+1)
2ν+1

ν (x) +
2(ν + 1)

x
Ψν(x)− 1 < 0.

By applying the identity (2.13) and the recurrence relation (2.14) we obtain

1− 2(ν + 1)
x

Ψν(x) =
(

1 +
2(ν + 1)

x

Iν+1(x)
Iν+2(x)

)−1

=
Iν+2(x)
Iν(x)

,

which implies that (2.23) is equivalent to the Turán type inequality

(2.24) I4ν+4
ν+1 (x) < I2ν+1

ν+2 (x)I2ν+3
ν (x),

which can be written as
Ψ2ν+3

ν (x) < Ψ2ν+1
ν+1 (x),

where x > 0 and ν ≥ 0. However, we were able to show the Turán type inequality (2.24) only for small
values of x. All the same, we believe that (2.24) is true for all x > 0 and ν ≥ 0, and this open problem
may of interest for further research. Using the recurrence relation

Ψν(x)
(

2(ν + 1)
x

+ Ψν+1(x)
)

= 1



and the Amos bound Ψν(x) > Γν(x), where ν ≥ 0, x > 0 and [Am]

Γν(x) =
x√

x2 +
(
ν + 3

2

)2 + ν + 1
2

,

we obtain that

Ψ2ν+1
ν+1 (x)

Ψ2ν+3
ν (x)

= Ψ2ν+1
ν+1 (x)

(
2(ν + 1)

x
+ Ψν+1(x)

)2ν+3

> Γ2ν+1
ν+1 (x)

(
2(ν + 1)

x
+ Γν+1(x)

)2ν+3

> 1

for x ∈ (0, xν) and ν ≥ 0, where xν is the unique positive root of the equation

Γ2ν+1
ν+1 (x)

(
2(ν + 1)

x
+ Γν+1(x)

)2ν+3

= 1.

Note that if we use the asymptotic expansion Iν(x) ∼ ex/
√

2πx as ν is fixed and x → ∞, then the
Turán type inequality (2.24) becomes equality for large values of x. This also suggest the validity of the
inequality (2.24).

Finally, we mention that the inequality (2.22) is also sharp. Namely, if we consider another extension
of λ, that is,

ξν(x) =
log
(
1− 2(ν+1)

x Ψν(x)
)

log Ψν(x)
,

then the best constant γν for which ξν(x) < γν for x > 0 and ν ≥ 0, equals to

γν = lim
x→∞

ξν(x) =
4(ν + 1)
2ν + 1

.

In particular, γ0 = β = 4. The steps here are also the same as in the special case above when ν = 0.
Recall that the asymptotic estimation (2.9) yields that as x grows we have (2.19) and substituting this
into the definition of ξν(x) we can see that asymptotically it equals to

ξν(x) =
log(x− 2(ν + 1) + O

(
1
x

)
)− log(x)

log
(
8x− 4(ν + 1)2 + 1 + O

(
1
x

))
− log

(
8x− 4ν2 + 1 + O

(
1
x

)) ,

and consequently

ξν(x) =
2(ν+1)

x + O
(

1
x2

)
(

(ν+1)2

2 − ν2

2

)
1
x + O

(
1
x2

) =
4(ν + 1) + O

(
1
x

)

2ν + 1 + O
(

1
x

)

for large x, from which the result follows.

3. Approximation of r(K) from Lagrange’s inversion and a rational approximation

In this section our aim is to propose two other approximations for the asymptotic order parameter of
the stochastic Kuramoto model. The first one is deduced by using the Lagrange inversion theorem, and
the second one is a rational approximation.

3.1. Approximation from Lagrange inversion. We introduce the function f : (0,∞) → R, defined
by f(r) = r−Ψ(2Kr). If 0 < K ≤ 1, then there is only one non-negative real root of the equation f(r) = 0
and this is r = 0. But if K > 1, there is an additional, non-trivial solution for this transcendental equation
which we denote by r(K). Recall the inequality (2.1) and the fact that a sharper upper estimation is
valid, see (2.5)

r(K) <
4

√
1− 1

K
.

Thanks to the analyticity of f in the neighbor of its root, one can use the Lagrange inversion theorem in
its simplest form to establish a better approximation to r(K). This approximation for K > 1 reads as

(3.1) L(K) = A(K) +
Ψ(s)−A(K)

1−Ψ(s)/A(K) + 2KΨ2(s)− 2KI2(s)/I0(s)
,

where

A(K) = 4

√
1− 1

K
, and s = 2KA(K).
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Figure 2. The graph of the function K 7→ r(K) on [0, 3] together with the bounds and
the approximation.

The above expression is nothing else but the zeroth order approximation plus the first order term in the
inverse series of f around the root estimation A(K). The performance of this approximation is drawn

on Fig. 2. Here the upper, blue plot belongs to the upper bound A(K) = 4

√
1− 1

K , the bottom red plot

belongs to the lower bound
√

1− 1
K , the black one is the theoretical solution r(K), while the grey plot

is our approximation L(K). One can see that for all K > 1 the Lagrange estimation (3.1) approximates
the theoretical r(K) best. Numerical calculations show that if K ≥ 2.8 then L(K) already gives 6 digits
accuracy. That L(K) is really better than A(K) can easily be seen independently from the above graph.
Indeed, the series defined by the Lagrange inversion theorem converges to the solution if the center is
close enough to the theoretical solution. Since we started the approximation from the point A(K), this
latter requirement satisfies, and A(K) is the zeroth order approximation. Then one more term in the
Lagrange formula (resulting L(K)) gets even closer to r(K).

3.2. A rational approximation. The advantage of A(K) is that it is algebraic. While L(K) approx-
imates the theoretical solution better, it is transcendental since it contains transcendental functions. In
this section we find an approximation which is not simply algebraic but rational. We use the well known
expansion (2.9), that is,

Iν(x) =
ex

√
2πx

(
1− 4ν2 − 1

8x
+

(
4ν2 − 1

) (
4ν2 − 9

)

128x2
−
(
4ν2 − 1

) (
4ν2 − 9

) (
4ν2 − 25

)

1536x3
+ O

(
1
x4

))
.

We truncate this at the “O” term, and substitute it into (3.1). Thus, we get a fraction in which the
numerator and denominator are polynomials of K and A(K). Since A(K) ≈ 1 as K grows, we simply
write 1 in place of A(K). After a simplification we get the following expression

(3.2) Lpol(K) =
4K
(
1048576K5− 393216K4− 276480K3 + 40320K2− 7560K − 1575

)

4194304K6− 524288K5− 843776K4 + 376320K3 + 3936K2 + 540K + 3375
.

This is not, of course, better than L(K). But Lpol(K) offers a rather good rational approximation to
r(K) comparable at least with A(K). The performance of Lpol(K) is shown in Fig. 3. Here the blue plot
represents A(K), the grey line is of Lpol(K), while the bottom black plot is of r(K). For some values we
calculated the differences of Lpol(K) and A(K) with the theoretical solution
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Figure 3. The graph of the function K 7→ r(K) on [0, 4] together with the rational approximation.

K 1.5 2.0 5.0 10 100
A(K)− r(K) 0.035677 0.009434 0.0001994 0.00001936 1.59 · 10−8

Lpol(K)− r(K) 0.02818 0.0042565 −0.000234 −0.0000372 −4.25 · 10−8

One of the referees suggested that considering higher K terms in A(K) one can provide a better approx-
imation for L(K) than that of (3.2). If we expand it in terms of 1

K it reads as

L(K) ∼ 1− 1
4K

− 3
32K2

− 9
128K3

− 141
2048K4

− 651
8192K5

− 6831
65536K6

− . . ., K →∞,

while expanding our approximation (3.2) of Lpol(K) we obtain

Lpol(K) ∼ 1− 1
4K

− 3
32K2

− 29
256K3

− . . ., K →∞.
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