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Jacobi weights, fractional integration,
and sharp Ulyanov inequalities

Polina Glazyrina and Sergey Tikhonov

ABSTRACT. We consider functions LP-integrable with Jacobi weights on [—1,1] and prove
Hardy-Littlewood type inequalities for fractional integrals. As applications, we obtain the
sharp (Lp, Lq) Ulyanov-type inequalities for the Ditzian-Totik moduli of smoothness and
the K-functionals of fractional order.

1. Introduction

The following (Ly, L,) inequalities of Ulyanov-type between moduli of smoothness of
functions on T play an important role in approximation theory and functional analysis (see,
e.g., [7, 13, 15]):

W (1), < C ( i (W (f )" d—“)l/ql , (1.1)

U

4 q<x

where r € N, 0 < p < q < o0, a:%f%, and q; = { . Here the r-th moduli of

I, g=00
smoothness of a function f € L,(T) is given by

W' (f,0), = sup |ALf (@) por), 1<p<o0,
|h|<é

where
W (@) = A7 H(Anf(2)) and Anf(x) = f(z+h) = f(x).
Recently ([20, 23]) the sharp version of (1.1) was proved in the case 1 < p < ¢ < oc:

i, < ([ e, &) " (12)

where w"(f,u), is the moduli of smoothness of the (fractional) order r > 0. Moreover, it
turned out that (1.2) also holds if (p,q) = (1,00); see [21]. In this case 0 = 1 and one can
work with the classical (not necessary fractional) moduli of smoothness. On the other hand,
(1.2) is not true ([21]) for I=p<g<oocorl <p<gq=oc.

In the present paper, we consider a nonperiodic case, namely L, spaces with Jacobi
weights on an interval, and obtain inequalities similar to (1.2) for the fractional K-functionals
and Ditzian—Totik moduli of smoothness. We start with notation.

Key words and phrases. Jacobi weights, Landau type inequalities, Hardy—Littlewood type inequalities,
K-functionals, Ditzian—Totik moduli of smoothness, sharp Ulyanov inequality.
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2 POLINA GLAZYRINA AND SERGEY TIKHONOV

Denote by w(®®(z) = (1 — 2)%(1 + 2)’, a,b > —1, the Jacobi weight on [~1,1]. For
1 <p< oo, let Lz(ga’b) be the space of all functions f measurable on [—1,1] with the finite

norm
1 1/p
1l ) = ( [ r@pute <x>d:c) .

Ifa=b=0, wewrite L, = L;(;a’b)a Illp = I
and

,(0,0)- In the case p = oo, we set L}(,a’b) = C[-1,1]

£ lloc,@) = [Iflloo = max |f(z)].

z€[—1,1]

For an arbitrary interval [z1, 23], we set

T2 1/p
||f||L,,[m,x2}=</ |f<x>|pda:) 1<p<oo, Iliopey = max |f@)]

1 z€[z1,22]

For o, 8 > —1, denote by w,(f’ﬁ) (x), k = 0,1, ..., the system of Jacobi polynomials
orthogonal on [—1,1] with the weight w(®# and normalized by the condition

1 2
/ ‘wéa’ﬁ) (;L')‘ w P (z)da = 1.
-1
The Jacobi polynomials are the eigenfunctions of the differential operator
_ped) =L 4 ap) - a2 L
b=y = w(@B) () o ()1 —= )d:):’

2
Dy = (WD) ™ N = (kk ot 4 1)

For a function f € Léa’ﬁ ), 1 < p < o0, the Fourier-Jacobi expansion is defined as follows:

Flz) ~ S R (@), (1.3)
k=0

where {
J?]({a,ﬁ) — / f(x)q/;](ca’ﬁ) (x)w(a’ﬁ) (x)d:v, k=0,1,2,...
-1

Let o > 0. If there exists a function g € Lga’ﬁ )

the form .
g~ Z (A]ga7ﬁ)>0 J?,(Ca’ﬂ)%(ﬂa’ﬂ),
k=1

such that its Fourier—Jacobi expansion has

then we use the notation
g= 'D((Ta,ﬁ) f

and we call D}f"ﬁ ) f the fractional derivative of order o of the function f. If there exists a
function h € Lga’ﬂ ) such that its Fourier—Jacobi expansion has the form

B~ ]’f\éaﬂ) + Z (A]ga’ﬂ)) I f/.\]gaﬂ)w](gaﬂ)’

k=1
then we use the notation
b= Iéa’ﬂ) f
and we call Iéa’ﬁ ) f the fractional integral of order o of the function f. Notice that Iga’ﬁ ),

o > 0, is a bounded linear operator on Lga’ﬁ) (see, e.g., [3, Sec. 5, pp. 789-790]).
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The K-functional corresponding to the differential operator D@8 and a real positive
number r is defined by

K" (£, D, 8), (a0 = 0 {1 = gllp 0.0y + 1Dl a0 g€ Wi} (14)

(see [10, (1.9)]), where W;((sg)) {g g, Dﬁa”g)g c Lz(,aﬁ)}-

The main result of this paper is the following

THEOREM 1. Let 1 <p<g<oo,r>0,a>pF>—1, a>—1/2. Suppose also that

o= (20 +2) (%—1)

q
If f e Lj(oa’ﬂ) and

! —0 pr+0o «, g du
/ (u K + (fa D7(‘+5)7 )p,(a,ﬂ)) — < 00,
0 u

then f € Lff"m and

T « ! —0 10 7 du 1/q
K (f? D'g' ’ﬁ)at)q,(a,ﬂ) g C </0 ( K * (f7 7’+0' ’ )pv(avﬁ)> _> ’

u

The rest of the paper is organized as follows. In Section 2 we obtain the key result to
get sharp Ulyanov inequalities — the weighted inequalities of Hardy—Littlewood and Landau
type for functions defined on the interval [—1,1]. Section 3 contains the definition of frac-
tional K-functionals with Jacobi weights and sharp Ulyanov inequalities for K-functionals
(Theorem 3). In Section 4 analogous results for the Ditzian-Totik moduli of smoothness
are obtained. Namely, we study a relationship between these moduli and the corresponding
K-functionals and prove sharp Ulyanov inequalities for the Ditzian—Totik moduli in the case
of 1 < p < q< oo (Theorem 5).

2. Inequalities for fractional integrals with Jacobi weights

2.1. Landau-type inequalities. We will need the following Hardy-type inequality (see,
e.g., [5] and [19, Theorem 6.2, Example 6.8]). We set % =0 for g =0

THEOREM A. Let 1 < p < q < o0, (p,q) # (00,0), a > —%, T € (0,00). Then the
inequality

/(x)anrh’

x)x® - < C(p,q,a,T
1f (@)l 07 < C(p. g, 0,T) L0

holds for any locally absolutely continuous function f on (0,T] with the property f(T) =0 if
and only if h <1 — (%—%).

Let us mention that the quantity C(p, ¢, a,T) is nondecreasing with respect to T.
The following Landau—type inequality can be found in, e.g., [6, Ch. 2, Th. 5.6, p. 38].

THEOREM B. For1 < p < o0, > 2, there is a constant C({) such that for all r=0,...,0
and any function f with f¢=1 absolutely continuous on [—5, 5] and f© € L, [ 3 2] we have

< C(0) (IIfIIL - —%é]) '

As a corollary of Theorem A and Theorem B we get

1.

ll
— 22

11
272
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LEMMA 1. Suppose that 1 < p < q¢ < o0, (p,q) # (00,0), a,b > —é, c,d > —%, ris a
nonnegative integer, k is a positive integer, and

=k (-1,
p q

Then, there exists a constant C = C(p,q,a,b,c,d,r, k) such that for any function f with
FOHR=D absolutely continuous on (—1,1) and fr+Fy(ethb+h) ¢ [ we have

Jrowes], <o (Jrwen] ssemuemen] J

Inequality (2.1) is sharp in the following sense. If a —c < r + (— — —) then for any e > 0
there exists {f,} C C**"[—1,1] such that

Hfé”w(“’b)Hq . (Hf“w(c’d)Hl + “fér-i-k)w(a—k—h-i-e,b-i-h)Hp) N @ no o (2.2)

The analogous statement also holds with respect to the parameter b.

PROOF OF LEMMA 1. It is enough to verify inequality (2.1) for £ = 1. The proof in the
general case is by induction on k. Note that f(") is continuous on [ é, 2] by our assumption.
We take T € [ 2 2] such that

@) = min { |fO@)| rw e [-4,4] }.
Let g(z) = f")(z) — f)(Z), then
o] < ] o] oo
q q q

(a.b) ‘

sl o

<o) g e
-1,7]

Ly[#1] Lo[-1,1]

To estimate the first term, we apply Theorem A (for the interval [—1,7]| instead of [0,7])
with h =1 — (%fl):

q

' < 2|a| ! 1 b+h‘
o g sl Lo S g+, L
1_xa+h 1+xb+h‘
) ( ) LP[_LE]
<2 — glal+a+h| ¢ ”f(r+1)w(a+h,b+h)’ '
=) Lyl-11]
A similar estimate holds for H gw(“’b)H Lofma) 8 well.

To estimate ’ f (T) ’ we apply Theorem B:

< (Vg |

< olelHldl+lathl+b+hl (wa(c,d)‘

o<l

1 44)

i Hf(r+1)w

L [—1,1]) ’

LP[_LH
where C' depends only on 7 + 1. Thus, (2.1) follows.
Let us now show (2.2). Since for any 0 < 1 < e the estimate
w(a+h+82,b+h) (.CE) < 252—51w(a+h+51,b+h) (LU), = [_17 1]’

holds, we can assume
O<e<c—a+r+1/p—-1/q. (2.3)
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For m > r + k, consider the sequence of functions

fa@)=((z+1/n=1)4)", zel[-1,1],  ys=max{y,0}.
It is easy to verify that if 4 > 0 and v > —1/¢, then

1

= — as n — oQ.
q nM+V+1/q

H ((1/n -1+ a:)+)“(1 — a:)”H

Here A,, < B,, as n — oo means that B,/C < A, < CB, for some positive constant C' and
all n. Using this, we get

anw(c’d)Hp a m’ (T) (a b)H nm-— 7“+a+1/q
Hf7(lr+k)w(a+h+a,b+h)H ~ 6 1

nmfr7k+a+h+5+1/p - pm—r+atet+l/q’

Under assumption (2.3) we have

1

(e,d) (r+k),, (a+h+e,b+h) o - @20
anw » + ||/ w p | mm-rtatetl/q’

and therefore,

]

4 =n® as n — 0o,

| frwed ||+ Hfr(lr"'k)w(a-i-h-i-s,b-i-h) H
concluding the proof. O

2.2. Hardy-Littlewood type inequalities. To prove Hardy-Littlewood type inequal-
ities for the fractional integral Zt(,a’ﬁ ), we will use the Muckenhoupt transplantation theorem

[18, Collorary 17.11], which is written in our notation as follows.

THEOREM C. If1<p<g<oo, @, 3,7, 0> -1, @, b,¢ d> —1,

ey
q P 2 2\p q) q P 2 2\p q)’
A

= (¢+1)/p—7 and B = (d+1)/p — 0 are not positive integers, M =
max{0, [A]}, N = max{0, [B e L&Y
{0, [A]}, {0,[Bl}, fe Ly,

the quantities

FOY—0, 0<k<M+N-—1,

h is an integer, v has the form

J—1
ve=Y cj(k+1) 7+ 0((k+1)")
j=0
with J >a+ f+ +64+2M + 2N and 0 < p < 1, then

0 a,
Zp v J/c;(cv )wl(c—i-iﬁz)( )

converges for every x € (—1,1),

1Tl ady < C 1 e -
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where C' is independent of p and f. Moreover, there is a function Tf in L((IF’B) such that
T,f converges to T f in Lfl_a’b) as p — 1—. If it is also assumed that @ +1 < (@ + 1)g and
b+ 1< (B+1)g, then
—~ (a,3) 0, 0<k<h-1
The = £(7.0)
l/k_hfk'i’h , max(0,h) < k.
The next Hardy—Littlewood inequality is a simple corollary of Theorem C.

COROLLARY 1. Let1<p<qg<oo,—1/2Za>=2b>—-1,a>203>—1, (a+1) < (a+1)p,
(b+1) < (B4 1)p, and

1 1
o= - ——.
P q
Let also f € L;a’b). Then there exists C' independent of f such that
(a,8)
7521 < Mty @4

In the special case (a, 3) = (a,b), the Hardy-Littlewood inequality (2.4) was studied by
Askey and Wainger [2, Sec. J] (see also [1]) and later by Bavinck and Trebels [3, Theorem
5.4], [4, Theorems 1 and 1’].

THEOREM D ([2, 4]). Let 1 <p<g<oo,a=2b>—-1,a+b>—1, and

o> (20 +2) (%—1)

q
If f e Lﬁ,a’b), then I((,a’b)f € L((Ja’b) and

‘If(fa’b)qu,m,b) <O 0,00 [l 0

For (o, 3) # (a,b) we have the following result.

THEOREM 2. Let 1l <p<g<oo,a=2b>—-1,a>-1/2, a>p> -1,
pla=p) <2(a—b) < qla—p), (2.5)

the quantities A = (a+1)/p — a and B = (b+ 1)/p — 3 be not positive integers, and either
a=a,ora>aandqg>2, ora<aandp<2. Let

1 1
o> (2a+2)(-—-), 2.6
( ) (p Q> (26)
fe Léa’b) N Lga’ﬁ) and
Fle? — 0, 0< k< max{0,[A]} + max {0, [B]} — 1. (2.7)
Then there exists C' independent of f such that
(c,8)
‘Ig qu,(a,b) S OHprv(avb). (28)

PRrROOF. It is sufficient to prove this theorem for polynomials. Indeed, suppose that (2.8)
holds for polynomials. Consider a sequence of polynomials {Q,,} convergent to f in L](Da’b)
and L(la’ﬁ ). Then {I((,a”g )Qm} is a Cauchy sequence in L((;l’b) and it converges to some function
g in Léa’b). Without loss of generality we can assume that {L(,a’ﬁ ) Qm} converges to g a.e. on

)

[—1,1]. Since the operator 75*#) is continuous in Lgaﬁ , the sequence {Io(-a’ﬂ)Qm} converges
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to Iga’ﬂ)f in L§a’ﬂ). There is a subsequence {I((,Q’B)Qmj} convergent to I((,a’ﬂ)f a.e. on [—1,1].

Therefore, g = I((Ta’ﬁ ) f.
Let f be a polynomial, i.e.,

o0
[= ZCk%ﬁa’ﬂ),
k=0
where ¢ :f(a’ﬁ) dc,=0for k>d
v = [ and ¢ or k > deg(f).
Case 1. Consider a > a, ¢ > 2. More precisely, under assumption of the theorem, the
following relations are possible: @ > a and ¢ > 2 or a« = a and ¢q > 2.
Now, we define a; and py. If a > a, then we set

_ qa—2a

aq ’

q—2
aq a oar—a 1/1 1
— =-—+ +={-——].
pPL P 2 2\p m

209 +1 2a+1 2(a—a)
= +
P1 P q—2

In this case, we have

and
1 1 1 1 1 1
(2a1+2)<———>—|————:(2a—|—2)<———>. (2.9)
P q p n p q
Notice that condition a > @ implies that a3 > max{a,«,0} and p < p; < q.

If a = a, then we set a1 = a, p1 = p.

We divide the rest of the proof in Case 1 into three steps.

Step 11 We apply Theorem C with (2.5) = (p1.p). (@.5) = (ar, 1), (7.8) = (o0,
(E’E):(CL?b)vh:O,SZUl: _ 1 and

1
D p1’
—0o1
Vi = <)\](€a1,a1)> .

Then we have @ = aq,

1/1 1 2(a — b) — —
=+ - (___) :ﬂ_ ((I ) p<a B)’ (210)
D1 2 2\p m D1 2p
1 1
a=12 R a, B= bl
p
Therefore, under condition (2.7) for any p € (0,1), we obtain the inequality
(o)
oy
o+ Zpk: (A]E:ahal)) Ckwl(cahm) < CHf pr(ab)> (2.11)
k=1 p1,(a1,b)

where C' is independent of f and p. Since f is a polynomial, the sum is finite, and we can
rewrite (2.11) as

00 oy

w+ X () M an | <l

k=t p1.(a1 B)
Relations (2.5) and (2.10) show that a; > b, and hence,
o0
Q1,0 — aq,o

co + Z <)\l(<: v 1)) Ckw](g ve) < CHf”p,(a,b)- (2.12)

k=1 p1,(1,001)
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Step 1.2. In view of (2.6) and (2.9), we have
1 1
o—o1 > (201 +2) <———),

bt q

we can apply Theorem D for the pair of spaces LEf”’““ and Ll(ffl’al) to get

co + i ()\;ahal))—"’ Ckwlgal,al) < C|leo + i ()\gn,al))—al Cklbl(fl’al)
k=1 P

q,(a1,a1)

p1,(a1,01)

(2.13)

Step 1.3. We use Theorem C once again with (,p) = (¢, q), (@, 8) = (a, 3), (7,6) = (a1, a1),
(¢,d) = (a1,1), and

ve = (A7 )

Then s =0, @ = a,

b — b —06)—2(a—0
v _ ap + B—aq _2_ Q(a 6) (a )’ (214)
g q 2 q 2q
and
1 1 1 1/1 1
A:B—a1+ — 1—@1(——1>+—<——<——1>+—<1, [A]:[B]:O
q q 2 \q q
‘We have
00 . > —c
co + Z (Al(gaﬁ)) Ck‘d)](gaﬁ) <COlleg + Z <)\](§a1,a1)> Cklb;(fal’al)
k=1 q7(a,_ k=1 q7(a1,o¢1)
Relations (2.5) and (2.14) show that b < b, and hence,
oo oo
co+ Z (Al(gaﬁ)) Ck:w]gaﬁ) < Qbfb co + Z ()\]((3‘%/@) CkT/J;E;a’ﬁ) (215)
k=1 q,(a,b) k=1 q,(a,b)

Finally, combining (2.12), (2.13), and (2.15), we obtain inequality (2.8).

Case 2. Consider a < a, p < 2. More precisely, under assumption of the theorem, the
following relations are possible: @ < a¢ and p < 2 or @« = a and p < 2.
Now, we define a; and q;. If o < a, then we set

2a — pa
(0% =
1 2

a o a—o 1(1 1>
2y (==
9 2 2\¢1 ¢

201 +1 2a+1 2a-—a)
= +
¢ q 2-p

)

In this case, we have

and (20, +2) (1 _ l) PRI (1 - 1) : (2.16)

p a @ q p q
Notice that condition o < @ implies that a3 > max{a,«,0} and p < ¢1 < gq.
If o = a, then we set a1 = a, 1 = ¢.

We can argue similarly to the proof in Case 1 dividing the rest of the proof into three
steps.
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Step 2.1. We are going to use Theorem C with (¢,p) = (p,p), (@, 3) = (a1,a1), (7,0) =

(o, ), (,d) = (a,b), h=0, s =0, and v = 1. Then @ = o,
p P 2 p 2p
1 1
_a+1  B= b+1
p p
Therefore, under condition (2.7) for any p € (0,1), we obtain the inequality
(2.18)

< Cllfllp,(ab)s

(e.¢]
ot 3 et
k=1

where C' does not depend on f and p. Since f is a polynomial, the sum is finite. Taking into
account (2.5) and (2.17), we conclude that a; > b, and hence, and we can rewrite (2.18) as

co+ Y e (2.19)
k=1

Pv(ahg)

& C”f”p,(a,b)‘

py(a1,01)

1 1). In view of (2.6) and (2.16), we have

Step 2.2. Set 01 =0 — (q1 7
1 1

o1 2(20&1—1—1) (———).
P @

We can apply Theorem D for the pair of spaces L((I?l’al) and Lz(f”’al) to get

co + Z (/\;al’al)) e Ck¢]ga1,a1) o+ Z Ck¢]ga1,a1)
k=1

k=1
Step 2.3. We use Theorem C once again with (¢,p) = (¢, 1), (@, 3) = (a, 8), (7,0) = (a1, 1),

(2.20)

<C

pv(alyal)

q1,(a1,01)

(¢,d) = (a1, 1), and
o —(o—01) a1,a «, g1
( ﬂ)) ()\I(c 1 1)/)\5C ﬂ)) .

Hence,s:a—alzqil—%,dza,
b 1/1 1 —B) —2(a —
9 @ 2 2\ ¢ q 2q
and
1 1 1/1 1
A:B:a1+ —041—041<—1>+—<—(—1>+—<1, [A]:[B]IO
Q1 Q1 Q1 2\q Q1
We have
(@D (@f) o (y(@a)) ™ (araa)
co + Z </\,€ ' ) cky < Clleg+ Z ()\k ’ ) cry
k=1 q,(a;b) k=1 q1,(a1,01)
Taking into account (2.5) and (2.21), we see that b < b, and hence,
co + Z ()\fga’ﬁ))7 ckw,ga’ﬁ) < 9b-b co + Z ()\I(Ca’ﬁ))7 cklb,(f”g) (2.22)
k=1 q,(a,b) k=1 q,(a,b)

Finally, combining (2.19), (2.20), and (2.22), we obtain inequality (2.8).
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3. Ulyanov-type inequalities for K-functionals

Definitions and facts, given in this section and in the next one, are based on the books
[14, 16]; see also [8, 10] and the recent survey [11].
In this section, we assume that 1 <p < o0, a,b > —1, o, > —1 and
a+1
p

b+ 1
—a <1, %—5<1. (3.1)

Z()Chb) C Lg-awg) ,

Then, since L the Fourier—Jacobi expansion (1.3) is well-defined for any

ferl?
Denote by II,, the set of all algebraic polynomials of degree at most n, II = U,>oll,.
Let Py = Pu(f)p,ap) Pns € Iln, be a near best polynomial approximant of a function

fe L,(Ja’b), that is,
Hf - Pﬂ,f”p,(a,b) < CEn(f)p,(a,b)v En(f)p,(a,b) = inf {Hf - P”p,(a,b) : Pe Hn} . (32)

The K-functional corresponding to the differential operator D(*#) and a real positive
number 7 is defined by

K" (£, D, 0), 0y = f {I1f = gllp ) + 1D gl 0y g€ Wit (3.3)

(see [10, (1.9)]), where W;’((:’b[i) = {g : g, D,(«a’ﬁ)g € Léa’b)}. The following realization result
holds:
K" ( £,D@9) 1 /n>

It is a corollary of Theorem 6.2 in [10]. To apply this theorem, we have to show that the
Cesaro operator CY given by

\a,

b) = Hf - Pn,f”p,(a,b) + nir‘|D£a’ﬁ)Pn,f|’p,(a,b)a 1<p <o (3'4)

n

N =3 (17 75) (1- 3k5) - (1 - ) Fewf™?

k=0
is bounded in Lz(,a’b) for some ¢. This fact is mentioned in [8, Sec. 3]. Moreover, from [18,
Theorem 1.10, p. 4] (see also [8, Theorem M)]) it easily follows that the operator C, is bounded
in L}(,a’b) for any

2(b+1)
o —B8-1

SECORY

) )

£>max{‘@—a—1

2(a+1) 1 1
‘T_a_ﬁ__

_1_1
P P 2 p

J2a-v (-]}

Note that one can equivalently consider the boundedness of the Riesz means, see [22, Theo-
rem 3.19)].

Now we formulate and prove the main result — Ulyanov type inequality for K-functionals
with Jacobi weights. Theorem 3 contains Theorem 1, stated in Introduction, as a particular
case.

THEOREM 3. Let 1 < p < g < oo and r > 0. Suppose that a,8 > —1, a > b > —1,
a > —1/2, inequalities (3.1) hold, and either (c, 3) = (a,b), or

pla—B) < 2(a—0b) < qla—p),
and o =a, ora>a,q>2, ora<a,p<?2.

Suppose also that
1 1
= (20+2) <___).
b q
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b
If f e Lj(ga’ ) and
! 70K7‘+0' D( a,B) 7 du
u (fv r+o )p,(a,b) ; < 00,
0

then f € Lff”’) and

t a du\ Y
Kr(f, Dﬁa’ﬂ),t)%(a,b) < c </0 ( UKT+U(f) H:g)a )p,(a,b)) _> . (35)

u

Theorem 3 extends the results of [13, Theorem 11.2] and [24, Section 3.3.1] in two
directions. First, our estimate involves the K-functional of order r + o, i.e., we get the sharp
estimate. Second, we consider the case when (a, 3) # (a,b). We also remark that the sharp
Ulyanov inequality for functions on S9~! was recently proved in [25].

ProOOF. Using monotonicity properties of the K-functional, it is enough to verify inequal-
ity (3.5) for t =1/n, n € N. We have

K" (£,D,1/n)y a2y < C (If = Pasllaapy +0IDD Poslloany) s (3.6)

where P, ; is given by (3.2). To estimate the first term, we apply [13, Theorem 4.1, (4.6)’]
to get
00 1/q
o—1
1f = Pagllgap) <C (Z KU = Pl b>> :
k=n
In view of the realization result (3.4), we obtain

1/q
k=n )

4
1/q
o— rT0 a,ﬂ
<c (Z KT D AR, b>>

1f — P, <C

<C

t i o q du 1
(= K™ (£, D W) —) :
0 u

To estimate the second term in (3.6), we use Theorem D or Theorem 2 depending on whether
(@, B) = (a,b) or (e, B) # (a,):

pledp, fH < Cnfn~(rto)
q,(a,b)

To complete the proof of (3.5), we have

n-r o < Cn’K™(f, qu_,_’f), 1/n)p,(a)-

Dlr

p,(a,b)

1/n B q du Ha
TLUKT+U(f7 D'I(’—ﬁ-f)a 1/”)11 ((1 b < C </ ( UKT+U(f’ T+U ’u>p7(a b)) _> ’
1/2n v

4. Ulyanov-type inequalities for Ditzian—Totik moduli of smoothness
The (global) weighted modulus of smoothness of order r > 1 is given by
Wi (fs Dp,(ap) = Lp(fs)p,ap) + Péﬁf_l |(f = P) w”Lp[71,71+4k2t2}

+ (= Pl n-akee, 1),

r—1
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where w = (w(“’b))l/p,

Q:o(fv t)n(a,b) = OSLllet ||A7I;@fw“Lp[—1+4k2t2, 1—4k242]
< <

and
T

r Y
ot @) = 30 () (o4 52 h(o)
=0
Note that (see [16, (2.5.7)]) this definition is equivalent to the one given in [14, Chapter 6,
Appendix B].
Let K7 (f,t)p,ab), 7 €N, be the K-functional for the pair of spaces (LI(,a’b),W;(ayb)),

where W7 (ab) consists of functions g € Ll(,a’b) such that ¢U=1 € ACi,. and ¢"g(") € L;,a’b)

(see [14, (6.1.1)]):

KL Opany = 0 {17 = gl + 21970 o s 9 € Wan ) (A1)

It is known that K;(f, t)p7(.a7b) = Wi (fyt)p,(ap) for a,b > 05 see [14, Theorem 6.1.1]. Moreover,
we have the following realization result:

Loty = 1 = Patllpapy + 1 P M aryy  [1/8] =1 (4.2)

The proof of this equivalence (cf. [12]) is based on the Jackson-type inequality and the
estimate of t””||g0’”1/J(T)||p,(a7b) via Wi, (f,t)p () (the Nikolskii-Stechkin type inequality). The
Jackson-type inequality was obtained in [14, Theorem 7.2.1] for the unweighted case and in
[16, Sec. 2.5.2, (2.5.17)] for the weighted case. The unweighted version of the Nikolskii—
Stechkin type inequality was proved in [14, Theorem 7.3.1]. This argument can be used to
show the weighted version.

The relation between K-functionals (4.1) and (3.3) in the case when r is positive integer
follows from Corollary 2 below. Note that the case («, 5) = (a,b) is due to Dai and Ditzian
[8, Theorem 7.1] and is based on the Muckenhoupt transplantation theorem. We follow the
idea of their proof and first obtain the following result.

THEOREM 4. Let 1 < p < oo, 7 be a positive integer, and a, b, o, § > —1 be such that
(3.1) holds. Then there exists a constant C such that for any Q € II, we have

@l <€l

HD’("OC”B) <Q B Sﬁi’f)Q) Hp,(mb) pi(ab)

f)Q is the (r — 1)-th partial sum of the Fourier—Jacobi expansion of Q, i.e.,

r—1
Sii&ﬂ)@ — Z Q]E‘.a,ﬂ)qﬂé:a’ﬂ)'
k=0

(4.3)

)
p,(a,b)

< C‘ QW

(4.4)

where Sﬁ

PROOF. The proof of (4.3) and (4.4) is based on Theorem C. Since @,(ga’ﬁ) = 0 starting
from certain k, we obtain

Q=5 (o) Qe = S0 (e ap)

k=1 k=1—r

Q" = > A QL P o tron) = > )\k+r@;(fif)¢;(€a+r’ﬁ+r)a
k=r k=0
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where

Ak = Al Byr) = A0 et Lo,

To prove inequality (4.3), we apply Theorem C with (p,q) = (p,p), (@, B)=(a+rpB+r),
(775) = (Oé,ﬁ), (Ea d) = (CL, b)? h = =, and

Vi = Ak/ (}\](:é’ﬁ)) .
Then s = 0, (@,b) = (a +pr/2,b+pr/2), A= (a+1)/p—a,and B= (b+1)/p— . On

account of (3.1), we conclude that A < 1, B < 1, and therefore, all conditions of Theorem C
are satisfied. Hence, we get

( Q™

Let us now obtain (4.4). We remark that g = Df«a’ﬁ) ( S(a 8) ) is a polynomial and

o

<l

) polatpr/2.b+pr/2) pab)

its Fourier—Jacobi coefficients satisfy @(fﬁ ) =0 for 0 <k <r—1. We apply Theorem C with

(7,9) = (p,p), @,5) = (@, 8), (7.6) = (a+r,6+7), (€.d) = (a+pr/2,b+pr/2), h=r, and
v = (Aéa,,@))r /)\k.

Then s =0, (a,b) = (a,b), A=(a+1)/p—a—-r/2<1l,and B=(b+1)/p—B—-r/2<1.
Therefore, all conditions of Theorem C are satisfied, and we arrive at

o (0 se7a) |, <l

p,(a,b) p,(a+pr/2,b+pr/2) - ‘ p,(a,b) '

O

COROLLARY 2. Under assumptions of Theorem 4, there exists a constant C such that for
any f € L (@b gnd t e (0,t0) we have

KL (f, Op(ap) < CK"(f, DY) 1), 0 (4.5)
and
Kr(fa Dﬁa’ﬁ)v t)p,(a,b) < C (K;(f> t)p,(a,b) + tTHpr,(a,b)) .
ProOOF. First, (4.3) and the realization result (4.2) yield that
K (Do) < 1F = Pagllnan + 2197 Bl sy
<C (IF = Pasllpgary + T ID Pagllp ) < CK (£, DD, ) (0,

which is (4.5).
Second, under condition (3.1), the operator A : IT — II,_; given by

AQ) =Dr057Q
is bounded in Lj(f,a’b)7 ie.,

1D S DQI @y < C0ya, b, 8,7)|Qp(an) - (4.6)

Using this, we obtain

Kr(f D o0) t)p,(a b) X Hf P ,f”p,(a b) + tTHD(a ﬂ n,f”p,(a,b)
<|If - P, 1D (P, s = S Py ey + 1P S Pyl
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Finally, (4.4) and (4.6) imply

K (£, D )y < C (I = Pasllpary + 16" P oy + 1Py
< CEL oy + IS

)

|p,(ab)
O

It is proved in [13, Theorem 11.2] that for f € L,, 0 < p < ¢ < 00, and integer r > 1 the
following Ulyanov-type inequality holds:

t d 1/q1
wz,(f,t)q@[ [ i) —“] ,

u

, < o0
where ¢1 = ¢ 4 , 0=2 (l — —) The next theorem refines this result.
1, ¢g=00 P

THEOREM 5. Let 1 < p<qg<o00,a=b2>0,r bea positive integer, and

1 1
=(2a+2 (— = —) .
( ) p
Suppose that f € LI(,a’b) and

1
—o, r+[o] an d_u
/0 (u wo N (f,u)p, ab)) - <00

Then f € L((;l’b) and

1
a du

t /@
Wy, (f,t)q,(a,b)éc[/o ( oWt g, )p,(a,b)) Z] + Ct"Er—1(f)p,(a,)> (4.7)

where

{q7 q < 00,
Q1 =
1, g=oo0.

REMARK. (A). In particular, (4.7) implies

t /a1
G, <l [ )™ | e B,

, 1 <p<g<oo,and

D=

d
C/ 207 f,u)17“+CtTEr_1(f)1.

(B). Corollary 2 shows that for 1 < p < ¢ < oo and positive integer o Theorem 5 follows
from Theorem 3.

PrOOF. The proof is similar to the proof of Theorem 3. The only substantial difference
is that we use Lemma 1 instead of Theorem D and Theorem 2.

Using monotonicity properties of the moduli of smoothness, it is enough to verify inequal-
ity (4.7) for t = 1/n, where n is a positive integer. Let P, ¢ be defined by (3.2). Taking into
account that wi,(f,t)q,(a.b) =< K5 (f,t)g,(ap), We obtain

W (£ D0ty < C (1 = Paslagary + 27718 P g an ) - (48)



JACOBI WEIGHTS, FRACTIONAL INTEGRATION, AND SHARP ULYANOV INEQUALITIES 15

To estimate the first term, we apply Theorem 4.1 from [13]. Assumption (4.3) of this
theorem is exactly the Nikol’skii inequality
2a+2)(1-1
1Palgoy < OnC G Bl gy, P € T

where C' = C(p, q,a,b), proved in [9, Theorem 4] (see also [17, Ch. 6, Theorem 1.8.4, 1.8.5]).
Therefore, we have

o0

1/q1
1f = Pofllg(ap < C (Z koY f — P, f|\q,(a b)) )

k=n
Applying (4.2) and replacing the sum by the integral, we get

o0

1/q1
If — Pn,qu,(a,b) <C (Z kqwﬂHf — Pk,f”gf(a,b)>

k=n

o] /¢
<o (S, |

k=n

t 1/q1
o o] o du
<o [ (e Pite)" L) -

To estimate the second term in (4.8), we use Lemma 1:

TP(T’) ‘ .P P (r) < P — P._ H T+2[O’]—JP(T+[0D ‘ )
[P0 oy = e @ = P <P = Pl + St I
Further we need the following two-weight inequality proved in [9, Theorem 4]:
r+2lo]=o p(r-+[o]) ‘ < Cno 1l || ol plrto]) ‘ .
ng p,(a,b) sp " p?(avb)
Therefore, using monotonicity properties of moduli of smoothness, we get
gl R % STV W
p:(a,b)
/¢
1/n a1 du
< C —o, ,r+[o] o )
/1 on (vl o)
To complete the proof we note that || P, — Pr—1|lp, (a,p) < 2Er—1(f)p,(ab)- O

Acknowledgement. The authors would like to thank F. Dai, Z. Ditzian, and G. Mas-
troianni for fruitful discussions and useful comments on the fractional K-functionals, and the
referee for reading the paper carefully and several valuable comments.

References

[1] R. Askey and S. Wainger, On the behavior of special classes of ultraspherical expansions, I. J. Analyse
Math., 15 (1965), 193-485.

[2] R. Askey and S. Wainger, A convolution structure for Jacobi series, Amer. J. Math., 91, no. 2 (1969),
463-485.

[3] H. Bavinck, A special class of Jacobi series and some applications, J. Math. Anal. Appl., 37 (1972),
T67-797.

[4] H. Bavinck, W. Trebels, On M} multipliers for Jacobi expansions, Fourier analysis and approximation
theory (Proc. Colloq., Budapest, 1976), Vol. I, Colloq. Math. Soc. Jénos Bolyai, 19, North-Holland,
Amsterdam-New York, 1978, 101-112.

[5] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull., 21 (1978), 405-408.

[6] R. DeVore, G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.



16

(7l
(8]
(9]

[10]
(11]

[12]
[13]

[14]
(15]

[16]
[17]
18]

[19]
20]

[21]
[22]
23]
[24]

[25]

POLINA GLAZYRINA AND SERGEY TIKHONOV

R. DeVore, S. Riemenschneider, R. Sharpley, Weak interpolation in Banach spaces, J. Funct. Anal., 33
(1979), 58-94.

F. Dai, Z. Ditzian, Littlewood-Paley theory and a sharp Marchaud inequality, Acta Sci. Math. (Szeged),
71 (2005), no. 1-2, 65-90.

I. K. Daugavet, S. Z. Rafal’son, Certain inequalities of Markov—Nikolskii type for algebraic polynomials,
Vestnik Leningrad. Univ., 1 (1972), 15-25.

Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar., 81, no. 4 (1998), 323-348.
Z. Ditzian, Polynomial approximation and wg(f,t) twenty years later, Surv. Approx. Theory, 3 (2007),
106-151.

Z. Ditzian, V. H. Hristov, K. G. Ivanov, Moduli of smoothness and K-functionals in L,, 0 < p < 1,
Constr. Approx., 11, no. 1 (1995), 67-83.

Z. Ditzian, S. Tikhonov, Ul'’yanov and Nikol’skii-type inequalities, J. Approx. Theory 133, no. 1 (2005),
100-133.

Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, 1987.

D. Haroske, H. Triebel, Embeddings of function spaces: a criterion in terms of differences, Compl. Var.
Ell. Eq., 56, no. 10-11 (2011), 931-944.

G. Mastroianni, G. Milovanovié¢, Interpolation Processes. Basic Theory and Applications, Springer, Berlin,
2008.

G. V. Milovanovi¢, D. S. Mitrinovi¢, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequal-
ities, Zeros. World Scientific Publishing, NJ, 1994.

B. Muckenhoupt, Transplantation theorems and multiplier theorems for Jacobi series, Mem. Amer. Math.
Soc. 64, no. 356 (1986).

B. Opic, A. Kufner, Hardy-type Inequalities, Longman Scientific & Technical, Harlow, 1990.

B. Simonov, S. Tikhonov, Sharp Ul’yanov-type inequalities using fractional smoothness, Journal of Ap-
prox. Theory, 162, no. 9 (2010), 1654-1684.

S. Tikhonov, Weak type inequalities for moduli of smoothness: the case of limit value parameters,
J. Fourier Anal. Appl., 16, no. 4 (2010), 590-608.

W. Trebels, Multipliers for (C, «)-bounded Fourier expansions in Banach spaces and approximation the-
ory, Lecture Notes in Mathematics, 329, Springer-Verlag, 1973.

W. Trebels, Inequalities for moduli of smoothness versus embeddings of function spaces, Arch. Math., 94
(2010), 155-164.

W. Trebels, U. Westphal, On Ulyanov inequalities in Banach spaces and semigroups of linear operators,
J. Approx. Theory, 160, no. 1-2 (2009), 154-170.

S. Wang, A generalized Ul’yanov type inequality on the sphere S%~1, Acta Math. Sin., Chin. Ser. 54,
no. 1 (2011), 115-124.

P.Yu. GLAZYRINA, SUBDEPARTMENT OF MATHEMATICAL ANALYSIS AND THEORY OF FUNCTIONS, URAL

FEDERAL UNIVERSITY, PR. LENINA 51, 620083 EKATERINBURG, RUSSIA

E-mail address: polina.glazyrina@usu.ru

S. TikHONOV, ICREA AND CENTRE DE RECERCA MATEMATICA, APARTAT 50 08193 BELLATERRA,

BARCELONA, SPAIN

E-mail address: stikhonov@crm.cat




