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Assume that M is a convex body with C2 boundary in Rd. The paper considers
polytopal approximation of M with respect to the most commonly used metrics,
like the symmetric difference metric $S , the Lp metric, 1�p��, or the
Banach�Mazur metric. In case of $S , the main result states that if Pn is a polytope
whose number of k faces is at most n then

$S (M, Pn)>
1

67e2?
}

1
d

} \|�M
}(x)1�(d+1) dx+

(d+1)�(d&1)

}
1

n2�(d&1) .

The analogous estimates are proved for all the other metrics. Finally, the optimality
of these estimates is verified up to a constant depending on the metric and the
dimension. � 2000 Academic Press
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1. INTRODUCTION

The history of approximation of convex bodies by polytopes with given
number of vertices or facets dates back to the middle of the century, and
even asymptotic formulae are known for the best approximation if the
boundary has positive curvature (see the comprehensive surveys [8] and
[9] of P. Gruber for detailed history of the problem).

In this paper, we consider the problem if the number of flags or the
number of k�faces is given. We determine the value of the best approxima-
tion up to a multiplicative constant depending on the problem (and inde-
pendent of the convex body). This problem was raised by I. Ba� ra� ny and
D. Larman in [1].
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There are various metrics used in the theory of polytopal approximation.
It is convenient to phrase some of the definitions in terms of the support
function hK (u)=maxx # K(x, u) of a convex body K. Let M and P be con-
vex bodies in Rd.

Symmetric difference metric. $S(M, P) is the volume of the symmetric
difference of M and P.

Banach�Mazur metric. Assume that M and P contains the origin o.
Then $BM (M, P) is the minimum of ln * such that there exists a linear
transformation T satisfying TP/M/* } TP.

Hausdorff metric. $H (M, P)=maxu # S d&1 |hM (u)&hP (u)|

Schneider's distance. If M contains P then $SCH (M, P) is the maximum
volume of a cap cut off from M by a supporting hyperplane of P

Lp metric for p�1. $p (M, P)=(�S d&1 |hM (u)&hP (u)| p du)1�p

In case of the Banach�Mazur metric, one usually considers o-symmetric
bodies. What is essential, that the origin is contained in the interior of both
bodies.

Observe that $H (M, P) (which is actually the L� metric) is the maxi-
mum of the distances of the points of M from P and the distances of the
points of P from M.

Assume that M is smooth and P/M is a polytope and �P is close to
�M. It can be proved that the supporting hyperplane of P which cuts off
the cap with maximum volume from M is the affine hull of a facet of P.

If P/M then $1 (M, P) is actually proportional with the deviation of the
mean width. The Lp metric, p>1, has no obvious geometric meaning, but
it is a useful tool. For example, various applications for the stability results
related to the isoperimetric inequality are presented in [7].

We note that there exists a general version of the symmetric difference
metric: If w(x) is a positive continuous function a neighborhood of �M in
Rd, then $w (M, P) is the integral of w(x) on the symmetric difference of M
and P.

Assume that the boundary �M of the convex body M is C2; namely, the
second fundamental form Qx exists at each x # �M. In particular, the Gau?
curvature }(x)=det Qx is a continuous function (see the book [14] of
R. Schneider, or Section 2 for some basic facts).

Next we define the integral expressions appearing in the formulae below.
The integration is with respect to the induced measure on �M, and the
exterior unit normal at a point x # �M is denoted by &(x).
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AS (�M)=ASCH(�M)=\|�M
}(x)1�(d+1) dx+

(d+1)�(d&1)

ABM (�M)=\|�M

}(x)1�2

h(&(x)) (d&1)�2 dx+
2�(d&1)

AH (�M)=\|�M
}(x)1�2 dx)2�(d&1)

Ap (�M)=\|�M
}(x) (d&1+ p)�(d&1+2p) dx+

(d&1+2p)�(p(d&1))

Note that the integral expression in AS (�M) is is the so called affine sur-
face area, and it is invariant under volume preserving affine transforma-
tions (see W. Blaschke [3], E. Lutwak [11] or K. Leichtwei? [10]). The
integral in ABM , the so called centro affine surface area, is invariant under
linear transformations (see K. Leichtwei? [10]).

In case of $w , the corresponding set function is

Aw (�M)=\|�M
w(x) (d+1)�(d&1)}(x)1�(d+1) dx+

(d+1)�(d&1)

.

Theorem A. Let $ be one of the metrics above in Rd, d�4, together
with the corresponding set function A, and set 0�k�d&1. Assume that M
is a convex body with C2 boundary. For large n, let Pn be the polytope whose
number of k faces is at most n and $(M, Pn) is minimal under this condition.

(i) If $=$S or $=$p then

$(M, Pn)>
1

67e2?
}

1
d

} A(�M) }
1

n2�(d&1) .

(ii) If $=$H , or that $=$BM and o # int M then

$(M, Pn)>
1

34e?
} d } A(�M) }

1
n2�(d&1) .

(iii) If Pn /M and $=$SCH then there exists c0 depending on d such
that

$SCH (M, Pn)>c0 } ASCH(�M) }
1

n(d+1)�(d&1) .
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We compare the value of the constant above to the constants appearing
in the known formulae: If k # [0, d&1] and the metric is $S , $1 , $H or $BM

then

$(M, Pn)<# } d } A(�M) }
1

n2�(d&1)

where # is an absolute constant (see [9] if the Gau? curvature is positive,
and [4] for general smooth convex bodies). The lower bound for $S and
for $p are new even if k # [0, d&1].

In case of d=3, Theorem A follows from the known asymptotic results
and by Euler's formula. Theorem A was independently proved by I. Ba� ra� ny
(unpublished) if P/M and $=$S using the theory of cap covering. His
proof gives no estimates on the constants.

Note that the assumption in Theorem A that �M is C2 can not be
relaxed if one wants to have a lower bound of order 1�n2�(d&1) for $(M, Pn)
(see [9]).

A flag of a polytope P is a sequence F 0/F 1/ } } } /F d&1 where F k is
a k-face of P. Observe that the number of flags is larger than the number
of k-faces for any k.

Next we present a partial converse to Theorem A. Call �M to be C 2
+ if

}(x)>0 for x # �M.

Theorem B. Let M be a convex body with C 2
+ boundary in Rd, d�4,

and let $ be one of the metrics above but $SCH together with the correspond-
ing set function A. If $=$BM then assume that o # int M. Then there exists
a c depending on the problem and a polytope Qn with at most n flags such
that

$(M, Qn)<c } A(�M) }
1

n2�(d&1) .

The same formula holds assuming that Qn is inscribed or circumscribed.
If $=$SCH then assume that Qn /M, and replace n&2�(d&1) by

n&(d+1)�(d&1).

Why not to have an asymptotic formula? The reason is that it is very
hard to control the number of k�faces, 1�k�d&2. On the other hand, it
will be done in a subsequent paper if d=3 and k=1.

Assume that M is a general convex body (with no assumption on the
boundary). P. M. Gruber conjectures (personal communication) that for
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any metric $ there exists a constant #(M) depending on M such that there
exists a polytope Qn with at most n flags satisfying

$(Qn , M)<
#(M)

n2�(d&1)

(and replace n&2�(d&1) by n&(d+1)�(d&1) if $=$SCH).
In case of the symmetric difference metric, I conjecture a more precise

statement: Let 0<t<1�e } V(M). The so called floating body Mt /M is
defined so that the closure of M"Mt is the union of the caps cut off from
M with volume t. If �M is C2 then

V(M"Mt)t
1
2 \

d+1
}d&1 +

2�(d+1)

|
�M

}(x)1�(d+1) dx } t2�(d+1)

where }d&1 is the content of the unit (d&1)-ball (see [3] or [10]).

Conjecture. If M is a convex body in Rd, d�4, then there exists a
polytope Q for small t such that Mt /Q/M and the number of flags of
Q is at most

c1 } V(M"Mt) }
1
t

where c1 depends only on d.
C. Schu� tt [15], and independently I. Ba� ra� ny (personal communication)

proved that a suitable Q exists if not the number of flags but the number
of vertices or facets is bounded. These results verify the conjecture if
d=2, 3.

In general, we present the proof for the symmetric difference metric in
full detail, and sketch the necessary changes for the other metrics
afterwards. We start with the proof of Theorem B in Sections 2 and 3
because it is much simpler. After that we verify Theorem A if the curvature
is positive everywhere in Sections 4�8, and then we complete the proof of
Theorem A in Section 9 by separating the ``flat part''.

2. THEOREM B FOR THE SYMMETRIC DIFFERENCE METRIC

We write f<<g or f =O(g) if there exists a constant c>0 depending on
the dimension d such that | f |<c } g. If f<<g and f>>g then write frg.

Let the convex body M have a C 2
+ boundary, and let x # �M. Identify

the tangent hyperplane at x with Rd&1. Then an open neighborhood U of

267POLYTOPAL APPROXIMATION



x in �M is the graph of a convex C2 function f defined in the projection
V of U into Rd&1.

Denote by lz the derivative of f at z and by qz the quadratic form
representing the second derivative of f. Fix some y # V. We deduce using
the Taylor expansion of f that

f (z)= f ( y)+ly (z& y)+ 1
2 qw (z& y)

where w= y+t(z& y) for some 0<t<1. Now qz is positive definite, and
a continuous function of z. Note that the second fundamental form at x is
Qx=qx .

2.1. Inscribed Polytope

If x # �M and s>0 then define C(x, s) as H+(x, s) & �M where H+(x, s)
is the open half space containing x whose bounding hyperplane is parallel
to the tangent at x and the distance of the bounding hyperplane and x is s.

Let V>0 be small (we specify the meaning of ``small'' in (3) below). For
any x # �M, set

s(x)=}(x)1�(d+1) } V2�(d+1). (1)

Let m=m(V, M) be maximal with the property that there exists a family
of pairwise disjoint sets C(x1 , s(x1)), ..., C(xm , s(xm)) on �M. Denoting
s(xi) by si and the complement of H +

i (xi , 5si) by H &
i , the approximating

polytope is defined as P=�m
i=1 H &

i .
Now consider a y # �M. Identify the tangent hyperplane H at y with

Rd&1, and let Ey (t) be the (d&1)-ellipsoid in H defined by 1
2 Qy (u)�t.

Since the second fundamental form Qx is a continuous function of x, and
�M is compact, there exist a positive t0 depending only on M, and a
neighborhood Uy of y on �M with the following property: If t<t0 and
x # Uy then

v+0.99 } Ey (t)/?H (C(x, t))/v+1.01 } Ey (t) (2)

for some v where ?H( } ) is the projection into H. In particular, the condi-
tion on V is that

t0>50 } max
x # �M

}(x)1�(d+1) } V2�(d+1). (3)

Now the maximality of the system [C(xi , si)] yields that for any x # �M
there exists an xi such that C(xi , si) intersects C(x, s(x)). We deduce by (3) that

x # C(xi , 5si) and xi # C(x, 5s(x)), (4)

and hence P/M.
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Set Fi=H &
i & �P, and observe that the facets of P form a subset of [Fi].

We deduce by (2) and (4) that if Fi and Fj intersect then xj # C(xi , 21si).
Therefore there exists a constant c0 depending only on the dimension such
that the number of flags containing Fi is at most c0 , which in turn yields
that the total number of flags of P is at most c0 } m.

Let n be large. Choose V to be minimal such that n>c0 } m for the
corresponding m. Since

|C (xi , si)|r |Exi (si)|r
s (d&1)�2

i

}(xi)
1�2 , (5)

we deduce the estimate

|
�M

}(x)1�(d+1) dx > :
m

i=1
|

C(xi , si)
}(x)1�(d+1) dx

>> :
m

i=1

}(xi)
1�(d+1) }

s (d&1)�2
i

}(xi)
1�2=m } V (d&1)�(d+1) . (6)

Since (5) yields that

V(conv C(xi , 5si))<<
s (d+1)�2

i

}(xi)
1�2=V,

we conclude by nrm that

$S(M, P)<<m } V<<m } \|�M
}(x)1�(d+1) dx }

1
m+

(d+1)�(d&1)

<<\|�M
}(x)1�(d+1) dx+

(d+1)�(d&1)

}
1

n2�(d&1) .

2.2. Circumscribed Polytope

The proof is very similar to the inscribed case, only the necessary
changes are sketched.

For small V, the sets [C(xi , si)], i=1, ..., m, are constructed exactly the
same way. Now the approximating polytope Q is the intersection of the
supporting half spaces at x1 , ..., xm .

The basic change is to replace (2) with the corresponding statement
about cones: There exist a positive t0 depending only on M, and
a neighborhood Uy of y on �M with the following property: If t<t0 , the
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distance of z from M is t, and the closest point of M to z lies in Uy then
the tangent cone _(z) to M with apex z satisfies

v+0.99 } Ey (t)/?H (_(z) & �M)/v+1.01 } Ey (t)

for some v.
Denote by Fi the facet of Q touching at xi . Then the projection of Fi into

�M along the normals to �M is contained in C(xi , 5si). Therefore the
volume between Fi and its projection is at most 5si |C(xi , 5si)|<<V. On
the other hand, if Fi & Fj {< then xj # C(xi , 21si), and hence Q has at
most c0 } m flags. Now the proof can be finished as above.

2.3. The Inscribed Case Revisited

In case of the symmetric difference metric, there exists a rather natural
way to construct well approximating inscribed polytopes; namely, using
lattice polytopes.

Based on arguments of I. Ba� ra� ny and D. Larman in [1], the paper [2]
proves the existence of c1 depending on d with the following property: For
large n, define r by

n=c1 } |
�M

}(x)1�(d+1) dx } rd (d&1)�(d+1).

Then the number of flags of the polytope

Pr=conv \1
r

Zd & M+
is at most n. On the other hand, [2] also proves that

$S (M, Pr)<<|
�M

}(x)1�(d+1) dx }
1

r2d�(d+1)

<<\|�M
}(x)1�(d+1) dx+

(d+1)�(d&1)

}
1

n2�(d&1) .

Unfortunately, this method does not work for the other metrics because
the Hausdorff distance of M and Pr can be as large as 1�r .

I would like to point out that the proof of the results quoted above are
independent of this paper. On the other hand, [2] uses the lower bound
of Corollary 1 in Section 7 in order to verify that Pr has many k-faces.
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3. THEOREM B FOR THE OTHER METRICS

The arguments are quite analogous to the case of the symmetric dif-
ference metric. Therefore here we consider only the case of inscribed
polytopes.

In all cases, the number of flags is at most c0 } m with the constant c0

above. We provide only the corresponding definition of s(x), and some-
times the analogue of (6) or the final estimate.

In the case of Schneider's notion of distance, the same argument applies
word by word. Since $SCH(M, P)<<V, (6) gives the right estimate directly.

For $w , set

s(x)=
}(x)1�(d+1)

w(x)2�(d+1) } V2�(d+1).

Then the weighted volume of a cap is

|
conv C(xi , 5si)

w(x) dx<<
s(d+1)�2

i

}(xi)
1�2 } w(xi)=V,

and the analogue of (6) is

|
�M

w(x) (d&1)�(d+1)}(x)1�(d+1)dx

>> :
m

i=1

w(x) (d&1)�(d+1) } }(xi)
1�(d+1) }

s (d&1)�2
i

}(x i)
1�2=m } V (d&1)�(d+1).

Next consider the Hausdorff distance. This is actually the simplest case
because s(x) can be chosen a constant s for small s, and

|
�M

}(x)1�2 dx>> :
m

i=1

}(x i)
1�2 }

s(d&1)�2

}(x i)
1�2=m } s(d&1)�2.

Since $H(M, P)<<s, this completes the proof.
Very similar is the case of the Banach�Mazur distance. Now let b>0 be

small, and set

s(x)=hM (&(x)) } b.

Then we have

|
�M

}(x)1�2 dx
hM (&(x)) (d&1)�2>> :

m

i=1

}(xi)
1�2 dx

hM (&(x i))
(d&1)�2 }

s(d&1)�2

}(xi)
1�2=m } b(d&1)�2.
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On the other hand,

$BM (M, P)<<max
i

ln
hM (&(xi))
hP (&(x i))

<<b.

Finally, consider the Lp metric, p�1. Note that

$p (M, P)=\|�M
|hM (&(x))&hP (&(x))| }(x) dx+

1�p

.

So let *>0 be small, and set

s(x)=
*2�(d&1)

}(x)1�(d&1+2p) .

The value of * is chosen in a way that the analogous argument as for (6)
gives

|
�M

}(x) (d&1+ p)�(d&1+2p)dx>>m } *.

Therefore we conclude that

$p (M, P)<<\ :
m

i=1
|

conv C (xi , 5si)
s p

i }(x) dx+
1�p

<<\ :
m

i=1

s p
i }(xi) }

s (d&1)�2
i

}(xi)
1�2+

1�p

=(m } *d&1+ p�d&1)1�p

<<\|�M
}(x) (d&1+ p)�(d&1+2p) dx+

(d&1+ p)�p(d&1)

}
1

m2�(d&1) .

With this last inequality, Theorem B has been established.

4. SOME AUXILIARY LEMMAS

This section collects some technical statements which are needed in the
proof of Theorem A. I advise the reader to skip this section just now, and
to return when a statement is needed.

A set S is called star shaped with respect to x if conv [x, y] is a subset
of S for any y # S. Star shaped sets will occur as the union subsets of the
tiles of a power diagram containing a fixed face F, which set St(F ) will be
star shaped with respect to the centroid v of F. Observe that for any rays
starting from v, the intersection of the ray and St(F ) is contained in one of
the tiles.
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Proposition 4.1. Let S be a Jordan measurable star shaped set in Rd&1

with respect to the origin o with non-empty interior. Consider the measurable
functions a(z) # Rd&1 and r(z) # R which are constant along the open rays
starting from o. Then for any positive definite quadratic form q, we have

max
z # S

|q(z&a(z))&r(z)|�
1

16e?
} d } (det q)1�(d&1) } |S|2�(d&1) (7)

|
S

|q(z&a(z))&r(z)| dz>
1

32e2?
}
1
d

} (det q)1�(d&1) } |S| (d+1)�(d&1). (8)

Proof. We may assume that q(z)=z2. Note that

min
a, r # R

max
t # [0, 1]

|(t&a)2&r|= 1
8

where the optimal values are a=1�2 and r=1�16.
The radial function of S is R(u)=suptu # S t for u # S d&2. Then

max
z # S

|(z&a(z))2&r(z)|� 1
8 max

u # S d&2
R(u)2,

while using polar coordinates yields that

|S|=
1

d&1
} |

S d&2
R(u)d&1 du.

In particular, we may assume that S is the unit (d&1)-ball Bd&1. Now
Stirling's formula

|Bd&1|=
?(d&1)�2

1 \d&1
2

+1+
<\ 2e?

d&1+
(d&1)�2

}
1

- ?(d&1)

yields (7) by simple computations.
Turning to (8), we start with

min
a, r # R

|
1

0
|(t&a)2&r| dt= 1

16

where the optimal values of a and r are again a= 1
2 and r= 1

16 . We deduce
that

min
a, r # R

|
1

0
|(t&a)2&r| td&2 dt>

1
e

} min
a, r # R

|
1

1&1d
|(t&a)2&r| dt=

1
16e

}
1

d 3 .
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Therefore using polar coordinates yield that

|
S

|(z&a(z))2&r(z)| dz�
1

16e
}

1
d 3 } |

Sd&2
R(u)d+1 du.

Now we may assume by Ho� lder's inequality that S is the unit (d&1)-ball,
and (8) is the consequence of Stirling's formula. K

The proof of Theorem A uses functions which are very close to be a
quadratic form.

For any a # Rd&1, let ga be a continuous non-negative function. Consider
a1 , ..., am # Rd&1, r1 , ..., rm # R and Jordan measurable sets 01 , ..., 0m such
that 01 , ..., 0m cover the sets gai (z&a i)�r i and gai (z&ai)&ri=
minj gaj (z&a j)&rj for z # 0 i .

Proposition 4.2. Assume that q is a positive definite quadratic form, the
sets 01 , ..., 0m are as above and q(z&ai)�gai (z&a i)�2q(z&ai) for every
ai . Then

(i) maxi maxz # 0i gai (z&ai)<<maxi maxz # 0i | gai (z&ai)&ri |.

(ii) �i �0i gai (z&ai) dz<<�i �0i | gai (z&a i)&r i | dz.

Proof. We prove (ii) since (i) readily holds.
Denote by _0 the part of _=� 0i which is contained in the union of the

sets gai (z&ai)<2ri , and set _1=_"_0 . Readily,

|
_1

gai (z&a i) dz�2 } |
_1

| gai (z&a i)&ri | dz.

Now number r1 , ..., rm , so that r1 is maximal, and gai (z&ai)�ri ,
i=1, ..., l, is a maximal disjoint family with the property that if the set
gaj (z&aj)�rj intersects the set gai (z&ai)�ri for j>i then rj�ri . We
deduce that

|
_0

gai (z&a i) dz<< :
l

i=0
|

q(z&ai)<ri

q(z&ai) dz

<< :
l

i=0
|

gai (z&ai)<ri

| gai (z&ai)&ri | dz

where the last expression is readily at most �_0
| gai (z&a i)&ri | dz. K
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We close the section with the following simple inequalities:

Proposition 4.3. Assume that +i , ni , i=1..., k, are positive numbers.
Then

(i) maxi (+i �n i) ��i +i � � i ni

(ii) for any p�1,

\:
i

+ (d&1+2p)�(d&1)
i }

1
n2p�(d&1)

i +
1�p

�\:
i

+ i+
(d&1+2p)�p(d&1)

}
1

(� i n i)
2�(d&1)

Proof. The first inequality readily holds. Turning to the second one,
Ho� lder's inequality yields that

\:
i

ni+
2p�(d&1+2p)

} \:
i

+ (d&1+2p)�(d&1)
i }

1
n2p�(d&1)

i +
(d&1)�(d&1+2p)

�:
i

+ i ,

and hence (ii) also holds. K

5. THEOREM A IF $=$S AND }(x)>0

Let the convex body M have a C 2
+ boundary.

The following lemma, which allows us to consider parts of �M which are
essentially paraboloid, can be proved via the standard methods.

Lemma 4. Assume that � (*) are positive continuous functions in a
neighborhood of �M in Rd (on �M). Let =>0.

Then there exist finitely many pairs of open Jordan measurable subsets
7; /7� ; of �M and hyperplanes H; , quadratic forms q; and constants �;

with the following properties:

(i) The closures of 7� ; are disjoint subsets of �M and

:
;
|

7;

*(x) dx>(1&=) } |
X

*(x) dx;

(ii) 7� ; (7;) is the graph of a C2 function f; on some 8� ; /H;

(8; /H;), and cl 8; /8� ; ;

(iii) if lz is the derivative of f; at z then &lz&<=;

(iv) For the quadratic form qz representing the second derivative of f;

at z, we have q;� 1
2 qz�(1+=) } q; ;

(v) There exists a neighborhood of 7� ; in Rd such that each point z in
this neighborhood satisfies �;<�(z)<(1+=) } �; .
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For some small =>0, consider the parts [7; , 7� ;] of �M provided by
Lemma 13 if *(x)=}(x)1�(d+1).

Since the number of flags is at least say the number of vertices, we con-
sider only the case if the number of k-faces of Pn is at most n, 0�k�d&1.

Let Pn be the polytope with at most n k�faces minimizing $S (M, Pn).
Since �M is C 2

+ , the maximal diameter of a facet of Pn tends to zero as n
tends to infinity. Assume that the projection of a facet G into H; intersects
8; and G is on the same side of �Pn where H; lies. Then the projection lies
completely in 8� ; . In addition, if the facet G$ has the same property with
respect to H;$ for some ;${; then G & G$=<.

Fix some ;. We want to work in H; so denote by n; the number of
k-faces of Pn which are on the side of H; and whose orthogonal projection
into H; meets 8� ; . Observe that �;n;<n.

Identify H; with Rd&1. To any facet Gi of Pn whose orthogonal projec-
tion 6i onto H; intersects 8� ; , define ai # Rd&1 by the fact that aff Gi is
parallel to the tangent hyperplane at the point (ai , f;(ai)) # �M. In par-
ticular, there exists some ri # R such that aff Gi is the graph of
f;(ai)+lai (z&ai)+ri . Now the part of �Pn above 8� ; is the graph of .;

where

.;(z)= f; (ai)+lai (z&ai)+r i

if z # 6i .
Define the functions gai by

f; (z)= f; (ai)+lai (z&a i)+ gai (z&ai).

We deduce by Taylor's formula that gai (z&ai)= 1
2 qw (z&ai) for some w

between a and z. Assume that z # 6i . Then

f;(z)&.; (z)= gai (z&ai)&ri and q;�gai�(1+=) q; ,

and in addition,

gai (z&ai)&ri=min
j

gaj (z&aj)&rj .

Finally, set

|(z)=| gai (z&ai)&ri | .

Using these notions, the volume between �M and �Pn and above 8� ; is
�8� ; |(z) dz.

Number the facets so that 61 , ..., 6t are the ones which intersect 8; .
Denote by T+ the union of the sets 6 i and the sets gai (z&ai)�ri ,
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i=1, ..., t, and let 0i be the set of z # T+ satisfying gai (z&ai)&
ri�gaj (z&aj)&rj , j=1, ..., t. We may assume that 0i /8� ; .

For any face F of some 6i , denote by s(F ) its center of mass. To each
sequence F k/F k+1/ } } } /F d&1 where F j is a j-face (and hence F d&1 is
some 6i), assign the polytope _=conv [F, s(F k+1), ..., s(F d&1)]. If the
k-face F intersect 8; then denote by St(F ) the union of all _ which con-
tain F, where St(F ) is star shaped with respect to s(F ). The family of these
star shaped sets cover 8; , and the interiors of any two of them are disjoint.

If a k-face F is contained in a 6i intersecting 8; , the estimate

:
i
|

6i & F
|q; (z&a i)&ri | dz�

1
32e2?d

} (det q;)1�(d&1) } |St(F )| (d+1)�(d&1)(9)

holds by (8). For large n, we have at most n; k-face of this kind, and their
stars naturally covers |8; |. We deduce by Jensen's inequality that

:
t

i=1
|

0i

|q; (z&ai)&ri | dz

�
1

32e2?d
} (det q;)1�(d&1) } |8; | (d+1)�(d&1) }

1
n;

2�(d&1) .

Observe that for z # 0i , we have

|q; (z&ai)&ri |�| gai (z&ai)&ri |+= } gai (z&ai).

Therefore Proposition 4.2(ii) yields that

:
t

i=1
|

0i

| gai (z&ai)&ri | dz

�(1&O(=)) }
1

32e2?d
} (det q;)1�(d&1) } |8; | (d+1)�(d&1) }

1
n;

2�(d&1) .

Since |(z)�| gai (z&a i)&ri | holds for z # 0i by the definition of 0i , we
conclude the estimate

|
8� ;

|(z) dz�(1&O(=)) }
1

32e2?d
} (det q;)1�(d&1) } |8; | (d+1)�(d&1) }

1
n;

2�(d&1) .

It is time to transfer the estimates onto the boundary of �M. The Gau?
curvature at x=(z, f;(z)) is

}(x)=
det qz

(1+&lz&2) (d+1)�2=(1+O(=)) } 2d&1 det q; .
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Therefore summing up the estimates for various ; yields that

$S (M, Pn)�(1&O(=)) }
1

64e2?d

:
; \|7;

}(x)1�(d+1) dx+
(d+1)�(d&1)

}
1

n2�(d&1)
;

.

Now apply Proposition 4.3(ii) (with p=1) and Lemma 5.1 in order to
obtain the global estimate; namely, the inequality

$S (M, Pn)�(1&O(=)) }
1

64e2?d
} \|�M

}(x)1�(d+1) dx+
(d+1)�(d&1)

}
1

n2�(d&1) .

Therefore choosing = small enough initially, we conclude Theorem A in this
case if n>n(=).

6. THEOREM A FOR MOST METRICS IF }(x)>0

First observe that the case of $w can be dealt with exactly the same way
as $S , only one assumes that w;<w(x)<(1+=) w; if x is in a small
neighborhood of 7� ; in Rd.

6.1. The Hausdorff Related Metrics

We start with the Hausdorff metric. Let =>0, and apply Lemma 5.1 with
*(x)=}(x)1�2. Denote by 2; the maximum of the distances of a point of 7� ;

from Pn and a point of �Pn near 7� ; from M. Since the derivative &lz&<=
at each z # 8� ; , we deduce that

2;=(1+O(=)) } max
z # 7� ;

|(z).

On the other hand, $H(M, Pn) is at least the maximum of these values.
Now apply the argument above, using maximum instead of integration or
summation. In particular, use (7) instead of (8), and (i) of Proposition 4.2
and Proposition 4.3 instead of (ii), and deduce Theorem A in this case.

Let us consider the Banach�Mazur distance. First we rewrite it in a form
which is more suitable in our context.

Let P be some polytope containing the origin in its interior. Assume that
[Fj] is the family of facets of P, and xj # �M is the point where the exterior
normals coincide with the exterior normals to Fj . Then M/P is equivalent
saying that for each j, we have hM (&(xj))�hM (&(xj)). Now assume that
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P/M and sj is the distance of x j from aff F j (the depth of the correspond-
ing cap). Therefore the minimal * satisfying M/Pn is

*=1+max
j \1&

sj

hM (&(xj))+
&1

}
sj

hM (&(xj))
.

To prove the lower bound, we may assume that Pn /M and $BM (M, Pn)
is the minimum of ln * such that M/*Pn .

Apply Lemma 5.1 with *(x)=}(x)1�2 and �(x)=h(&(x)). Therefore the
optimal * corresponding to 7; is

*;=1+(1+O(=)) }
maxz # 7� ; |(z)

h;
,

and similar argument works as above.
Finally, in case of Schneider's notion of distance, we search for the maxi-

mum volume of a cap cut off from M by the affine hull of some facet of Pn .
In this case, apply Lemma 5.1 with *(x)=}(x)1�(d+1).

For a positive definite quadratic form q(u), u # Rd&1, and for s>0, let C
be the cap of the graph of q of depth s at the origin. In other words,
(u, t) # C if and only if q(u)�t�s. Then the volume of the cap is

V(C)=
2}d&1

d+1
}

1

- det q
} s(d+1)�2.

Therefore around 7; , the maximum volume of a cap cut off by the affine
hull of a facet of Pn is

(1+O(=)) }
2}d&1

d+1
}

1

- det q;

} \max
z # 7� ;

|(z)+
(d+1)�2

.

Using this estimate, Theorem A follows also in this case.

6.2. L1 Metric

In this case, the main tool is polarity. Assume that K is a convex body
containing the origin o in its interior. Then the polar K* of K is

K*=[ y | \x # K(x, y)�1].

The polar is also a convex body, and K**=K. If �K is C 2
+ then �K* is

also C 2
+ . On the other hand, if K is a polytope then K* is also a polytope,

and the number of k-faces of K is the same as the number of (d&1&k)-
faces of K*. All these properties can be found say in [14].
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Set w(x)=&x&&(d+1) for x{o. The fundamental observation is that

$1(M, P)=$w (M*, P*)

(see [6]). In particular, the polytope P minimizing $1 (M, P) with at most
k n-faces is the polar of the best approximating polytope of M* with
respect to $w having at most n (d&1&k)-faces. Now Theorem A is a con-
sequence of (see [6])

|
�M*

1
&x&d&1 } }(x)1�(d+1) dx=|

�M
}(x)d�(d+1) dx.

So far Theorem A has been proved for all the metrics but Lp , p>1 in
the C 2

+ case. In order to handle Lp , p>1, we need to understand how to
approximate subsets of �M.

7. SMOOTH SUBSETS OF A CONVEX HYPERSURFACE

We say that X is a convex C 2
+ hypersurface if it is an open, Jordan

measurable subset of a convex body M with C2 boundary, the origin lies
in the interior of M, and }(x)>0 if x # cl X.

Similarly, Y is called a convex polytopal hypersurface if it is a Jordan
measurable subset of a polytope P and the origin lies in the interior of P.
If Y approximates X then we make the following assumptions: If the
approximation is with respect to the symmetric difference metric (or $w)
then define Y/�P as the radial projection of X. Otherwise, for any x # X
consider the points y # �P where the exterior normals at x to M are also
exterior normals at y to P, and Y is the union of these sets. We say that
Y is inscribed if Y/M, and Y is circumscribed if Y & int M=<. The faces
of Y are the intersections of the faces of P with the interior of Y.

Now we extend the notions of distances to X and Y. Observe that for
x # X, we have

hP (&(x))&hM (&(x))=max
y # Y

(&(x), y&x).

Symmetric difference metric and $w . $S(X, Y ) is the volume of the part
of the cone over X which lies between X and Y, and $w(X, Y ) is the
integral of w on this part.

Banach�Mazur metric. Assume that Y is inscribed. Then $BM(X, Y ) is
the minimum of ln * such that *Y is circumscribed.
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L1 metric. $1(X, Y )=�X |maxy # Y(&(x), y&x) | }(x) dx.

Hausdorff metric. $H(X, Y )=maxx # X | maxy # Y (&(x), y&x) |

Schneider's distance. If Y is inscribed into X then $SCH(X, Y) is the
maximum volume of a cap cut off from M by the affine hull of a facet of Y.

Let us justify the definitions above. Observe that for almost all the
metrics, if X=�M (and hence Y=�P) then $(X, Y)=$(M, P). In case of
Schneider's notion of distance we have to assume that �P is close to �M.

The only real exception is the Banach�Mazur distance, in this case the
definition has been substantially altered. On the other hand, the lack of
linear transformation is irrelevant in our context because linear transforma-
tions keep the family of faces.

Fix X, and an open, Jordan measurable subset X$ of X whose closure lies
in X. For some polytope P, let Y be the subset of �P corresponding to X.
Now the positive curvature condition yields =>0 for any metric $ with the
following property: Assume that Y is a convex polytopal surface satisfying
$(X, Y)<=. If the projection of X$ intersects the facet F then the closure of
F lies in the interior of Y. Here projection is the same as the one to be used
to define Y.

Therefore the arguments for closed hypersurfaces generalize in a direct
way to our case for all metrics but $1 . Observe that the boundary of X on
�M causes no problem because it has zero (d&1)-measure.

Turning to the L1 metric, we have a closer look at the properties of
polarity. If u{o then define u* to be the hyperplane H=[z: (z, u)=1],
and set H*=u. Observe that if v # u* then u # v*.

Let X be a convex C 2
+ hypersurface, which then lies on the boundary of

a convex body M where M contains the origin in its interior. Define X* to
be the set of polar images of the tangent hyperplanes at the points of X.
Then X* is also convex C 2

+ hypersurface lying on the boundary of M* (see
[14]). Observe that X**=X.

Let Y/�P be a convex polytopal surface approximating X with respect
to $1 . Consider the tangent hyperplanes at the points of Y which are
parallel to the tangent hyperplane at some point of X, and denote by Y*
the set of polar images of them. Then Y*/�P* is a convex polytopal
hypersurface approximating X* in the sense of $w .

Now there exists a one to one correspondence between the k-faces of Y
whose closure does not intersect the boundary of Y and the (d&1&k)-
faces of Y*.

Set w(x)=&x&&(d+1) for x{o. Then the same argument as above yields
that

$1 (X, Y )=$w(X*, Y*).
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This way the problem of best approximation of X with respect to $1

bounding the number of k-faces is translated into best approximation of
X* with respect to $w bounding the number of (d&1&k)-faces.

Define the expressions A(X) by replacing the integration over �M by
integration over X in the definitions for all the metrics we have considered.
Then the arguments above lead to

Corollary 1. Let $ be any of the metrics of this section but $SCH

together with the corresponding set function A. Assume that Yn is the
polytopal surface whose number of k faces or the number of flags is at most
n and $(X, Yn) is minimal under this condition. One may impose the addi-
tional restriction that Yn is inscribed or circumscribed. Then

1
65e2?

}
1
d

} A(X) }
1

n2�(d&1)<$(X, Yn)<c } A(�X) }
1

n2�(d&1)

where c depends only on the problem.
If $=$SCH then the analogous statement holds with different constants,

only n2�(d&1) should be replaced by n(d+1)�(d&1).

8. Lp METRIC, p>1

Let X be a convex C2
+ hypersurface, and consider a convex polytope P

containing the origin in its interior. Then the part Y of �P associated to X
is defined as for the L1 metric: for any x # X consider the points y # �P
where the exterior normals at x to M are also exterior normals at y to P,
and Y is the union of these sets. In particular, the Lp distance of X and Y
is

$p(X, Y )=\|X
|max

y # Y
(&(x), y&x) | p }(x) dx+

1�p

.

Now let M be a convex body with C 2
+ boundary and fix 0�k�d&1

and p>1.
For large n, consider the polytope Pn which has at most n k-faces and

$p(M, Pn) is minimal under this condition. We prove that

$p (M, Pn)>
1

66e2? d

\|�M
}(x) (d&1+ p)�(d&1+2p) dx+

(d&1+2p)�p(d&1)

}
1

n2�(d&1) . (10)
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So let =>0, and consider the open, Jordan measurable subsets 7; of �M
given by Lemma 5.1. We need the following properties in the sequel: the
closures of 7; 's are pairwise disjoint,

:
;
|

7;

}(x) (d&1+ p)�(d&1+2p) dx>(1&=) } |
�M

}(x) (d&1+ p)�(d&1+2p) dx (11)

and there exists a positive }; for each 7; such that

}(x)=(1+O(=)) } }; for x # 7; . (12)

Denote by Y; the part of �Pn associated to 7; . Observe that for large
n, if the facets G and G$ of �Pn intersect Y; and Y;$ , respectively, and
;{;$ then G & G$=<. Therefore the number n; of k-faces of Y; satisfies
�n;<n.

Now start the estimate on $p(M, Pn) by estimating each $p (7; , Y;). We
deduce applying first Ho� lder's inequality, then using Corollary 1 that

$p (7; , Y;)�
�7; |maxy # Y (&(x), y&x) | }(x) dx

(�7; }(x) dx) (p&1)�p

>

1
65e2? d

} \|7;

}(x)d�(d+1) dx+
(d+1)�(d&1)

}
1

n;
2�(d&1)

(�7; }(x) dx) p&1�p .

Here the condition (12) yields that

(�7; }(x)d�(d+1) dx) (d+1)�(d&1)

(�7; }(x) dx) (p&1)�p

=(1+O(=)) } \|7;

}(x) (d&1+ p)�(d&1+2p) dx+
(d&1+2p)�p(d&1)

where O( } ) depends on d and p.
Therefore we conclude by Proposition 4.3 and (11) the estimate

$p (M, Pn)>\:
;

$p (7; , Y;) p+
1�p

>(1+O(=)) }
1

65e2? d

_\|�M
}(x) (d&1+ p)�(d&1+2p) dx+

(d&1+2p)�p(d&1)

}
1

n2�(d&1) .

Choosing = small enough initially, this proves (10) for large n. In particular,
the proof of Theorem A in the C 2

+ case is now complete.
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Similar arguments can be used for general convex C 2
+ hypersurfaces to

verify

Corollary 2. Let X be a Jordan measurable C 2
+ convex hypersurface

and let p>1. Assume that Yn is the polytopal surface whose number of k
faces or the number of flags is at most n and $p (X, Yn) is minimal under this
condition. One may impose the additional restriction that Yn is inscribed or
circumscribed. Then for large n,

1
66e2? d

} Ap (X) }
1

n2�(d&1)<$p (X, Yn)<c } Ap (X) }
1

n2�(d&1)

where c depends only on p and d.

9. IF }(x) MIGHT BE ZERO

Let $ be one of the metrics defined in the Introduction, and denote by
A the corresponding set function.

For a convex body M with C2 boundary in Rd, assume that the origin
is contained in the interior of M. Choose a Jordan measurable, open
X/�M&t such that }(x)>0 if x lies in the closure of X and
A(X)>0.99 } A(�M).

Assume that Pn is the polytope minimizing $(M, Pn) under the condition
that the number of k-faces of Pn is at most n for large n where Pn /M if
$=$SCH or $=$BM . Denote by Yn the part of Pn corresponding to X (see
Section 7). Then the number of k-faces of Yn is at most n. Since
$(M, Pn)�$(X, Yn), we conclude Theorem A by Corollaries 1 and 2.
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