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Abstract

The classical support vector machines regression (SVMR) is known as a regularized learning algorithm
in reproducing kernel Hilbert spaces (RKHS) with a ε-insensitive loss function and an RKHS norm
regularizer. In this paper, we study a new SVMR algorithm where the regularization term is proportional
to l1-norm of the coefficients in the kernel ensembles. We provide an error analysis of this algorithm, an
explicit learning rate is then derived under some assumptions.
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1. Introduction

Let X be a compact subset of Rn , Y ⊂ [−M, M] for some M > 0. The relation between the
input x ∈ X and the output y ∈ Y is described by a probability distribution ρ on Z := X × Y ,
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but ρ is known only through a set of samples z := {zi }
m
i=1 = {(xi , yi )}

m
i=1 ∈ Zm independently

drawn according to ρ. Given samples z the regression problem in learning theory aims at finding
a function fz : X → R, such that fz(x) is a satisfactory estimate of output y when a new input
x is given.

Support vector machines regression (SVMR) used the ε-insensitive loss function (ILF)

V (y, f (x)) = |y − f (x)|ε =


0, if |y − f (x)| < ε,

|y − f (x)| − ε, otherwise,
(1.1)

to measure the cost paid by replacing the true y with the estimate f (x). In [11], an interpretation
of ILF for SVMR is presented. It demonstrates that it is appropriate to use the ILF rather than the
quadratic loss function (QLF) used in least square regression (LSR) (see e.g. [5,10,8,17]) under
the assumption that the noise affecting the data is additive and Gaussian, but not necessarily zero
mean, and that its variance and mean are random variables, the mean has a distribution which
is uniform in the interval [−ε, ε]. This also helps us to understand the role of the parameter ε

in (1.1).
The error for a measurable function f is measured by the expected risk

E ( f ) :=


Z

V (y, f (x))dρ =


X


Y

V (y, f (x))dρ(y|x)dρX (x),

where ρX is the marginal distribution on X and ρ(·|x) is the conditional probability measure at
x induced by ρ. We will denote

f ∗
:= arg min E ( f ),

where the minimum is taken over all measurable functions. Obviously f ∗ is our ideal estimator
and it is often called the target function. By Theorem 4.1 in [15], we know f ∗ exists and

| f ∗(x)| ≤ M + ε, ∀x ∈ X.

We are interested in the kernel based learning algorithms. Recall a Mercer kernel K on X × X
which is continuous, symmetric and positive semidefinite, i.e. for any finite set of distinct points
{x1, x2, . . . , xl} ⊂ X , the matrix


K (xi , x j )

l
i, j=1 is positive semidefinite. The reproducing

kernel Hilbert space (RKHS) HK associated with a Mercer kernel K is defined (see [1]) as the
closure of the linear span of the set of functions {Kx := K (x, ·) : x ∈ X} with the inner product
⟨·, ·⟩K satisfying

⟨Kx , Ku⟩K = K (x, u),

and the reproducing property is given by

⟨Kx , f ⟩K = f (x), ∀x ∈ X, f ∈ HK .

The classical SVMR (see e.g. [4,10,16]) is then given by the following scheme:

f̃z,λ := arg min
f ∈HK


Ez( f ) + λ∥ f ∥

2
K


, (1.2)

where Ez( f ) :=
1
m

m
i=1 V (yi , f (xi )) is the empirical error with respect to z. The term λ∥ f ∥

2
K

is called the regularization term, λ is the regularization parameter, which is usually chosen to be
some function of m and limm→∞ λ(m) = 0, ∥ f ∥

2
K is the regularizer.
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The theoretical analysis of the regularized learning algorithms with the square RKHS norm
regularizer is well understood (see e.g. [5,6]). Especially [15] gave a quantitative convergence
result for scheme (1.2). In this paper, we consider a different regularized SVMR algorithm. In
our setting, the regularizer is rather than an RKHS norm but a l1-norm of the coefficients in the
kernel ensembles.

Definition 1.1. Let

HK ,z :=


m

i=1

ai Kxi : ai ∈ R, i = 1, 2, . . . , m


,

and

Ωz( f ) = inf


m

i=1

|ai | : f =

m
i=1

ai Kxi


.

Then SVMR with l1-regularizer is given as

fz,λ := arg min
f ∈HK ,z

{Ez( f ) + λΩz( f )} . (1.3)

l1-coefficient regularization generally leads to sparse representation, that is, it tends to result
in a solution with a few non-zero coefficients (see [9,21]), thus these methods have attracted
much attention recently (see e.g. [2,7,14]). However, it should be noticed that there exist essential
differences between algorithm (1.2) and (1.3). For example, in (1.3) both hypothesis space HK ,z
and regularizer Ωz( f ) are dependent of samples z, this causes a consequence that the classical
error decomposition approach (see [15]) cannot be applied to (1.3) any longer. There are some
studies in the theoretical analysis of the l1-regularized learning algorithms, but the research is
not very rich yet. Wu and Zhou [18] provide an error analysis of l1-regularized support vector
machines classification (SVMC) by setting a stepping-stone between the linear programming
SVMC and the classical quadratic programming SVMC, but it seems that this approach cannot be
applied to the loss functions other than hinge loss used in SVMC. A general analysis framework
is established in [19] for learning algorithms with sample dependent hypothesis space and
coefficient based regularization, they introduce a modified error decomposition technique by
means of an extra hypothesis error, while the sample errors and learning rates have not been
considered there. Xiao and Zhou [20] studied LSR with l1-regularizer, its key ideas for bounding
hypothesis error are from [19]. Unlike the QLF used in LSR, the ILF is not differentiable. It
causes some new technical difficulties, for example, an explicit expression of the solution fz,λ or
its coefficient az like Theorem 3.1 in [13] or Theorem 4 in [19] is not derived. As the same time,
the inequality (5.2) used to bound the sample error in [20] is not valid for ILF. We overcome this
difficulty by introducing a more general inequality under assumption (4.1) (see Section 4 below).

In this paper, we adopt the ideas from [19] and provide an error analysis of scheme (1.3), we
will mainly focus on estimating the excess risk

E (π( fz,λ)) − E ( f ∗), (1.4)

where π(·) is a projection operator defined in Section 2. The rest of paper is organized as follows.
In Section 2, we introduce the notations and some preliminary results. We bound the hypothesis
error and sample error in Sections 3 and 4, respectively. An explicit learning rate of scheme (1.3)
is derived eventually in Section 5.
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2. Preliminaries

We will write | · |2 for the Euclidean norm in Rn . We denote L1
ρX

the measurable functions
on X with norm ∥ f ∥L1

ρX
:=


X | f (x)|dρX (x), we also denote C(X) as the space of continuous

functions on X with the uniform norm ∥ · ∥∞.
Since the target function | f ∗(x)| ≤ M + ε, it is reasonable to restrict its approximation

functions to those also contained in [−M − ε, M + ε].

Definition 2.1. The projection operator π = πM+ε is defined on the space of measurable
functions f : X → R as

π( f )(x) =

M + ε, if f (x) > M + ε,

−M − ε, if f (x) < −M − ε,

f (x), if − M − ε ≤ f (x) ≤ M + ε.

Since V (y, π( f )(x)) ≤ V (y, f (x)), we have that

E (π( f )) ≤ E ( f ), Ez(π( f )) ≤ Ez( f ). (2.1)

So we take π( fz,λ) instead of fz,λ as our empirical target function and analyze the related
learning rates.

We have seen that the hypothesis space HK ,z depends on samples, to characterize the
approximation ability (independent of samples) of algorithm (1.3), we adopt the idea in [19]
of using a larger function space containing all of the possible hypothesis spaces.

Definition 2.2. Banach space H is defined as the function set on X containing all functions of
the form

f =

∞
j=1

a j Kx j , {a j }
∞

j=1 ∈ l1, {x j }
∞

j=1 ⊂ X,

with the norm

∥ f ∥ := inf


∞
j=1

|a j | : f =

∞
j=1

a j Kx j


.

Obviously,

HK ,z ⊂ H, ∀z ∈ Zm .

By the continuity of K and compactness of X , we have

κ := sup
x∈X

K (x, x) < ∞.

It implies that H is a subset of C(X), and

∥ f ∥∞ ≤ κ∥ f ∥, ∀ f ∈ H. (2.2)

H is called the universal hypothesis space associated with scheme (1.3). The approximation error
of f ∗ in H is defined as

D(λ) := inf
f ∈H

{E ( f ) − E ( f ∗) + λ∥ f ∥}.
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D(λ) is independent of sample, it is usually estimated by rich knowledge from approximation
theory (see [12]). It is easy to see that E ( f ) − E ( f ∗) ≤ ∥ f − f ∗

∥L1
ρX

. Hence D(λ) concerns the

approximation of f ∗ in L1
ρX

by functions from H, it can be characterized by requiring f ∗ to lie
in some interpolation spaces of the pair (L1

ρX
, H) (see e.g. [3,15]).

Definition 2.3. We say the target function f ∗ can be approximated in H with exponent 0 < β ≤

1 if there exists a constant cβ such that

D(λ) ≤ cβλβ , ∀λ > 0. (2.3)

To formulate a error decomposition of (1.4), we introduce

fλ := arg min
f ∈H

{E ( f ) + λ∥ f ∥},

and thus

D(λ) = E ( fλ) − E ( f ∗) + λ∥ fλ∥. (2.4)

Now we can give the following error decomposition for the excess risk (1.4).

Proposition 2.1. Let

S(z, λ) :=


E (π( fz,λ)) − Ez(π( fz,λ))


+ {Ez( fλ) − E ( fλ)} ,

and

P(z, λ) :=


Ez(π( fz,λ)) + λΩz( fz,λ)


− {Ez( fλ) + λ∥ fλ∥} .

Then we have

E (π( fz,λ)) − E ( f ∗) ≤ S(z, λ) + P(z, λ) + D(λ).

Proof. Since

E (π( fz,λ)) − E ( f ∗)

≤ E (π( fz,λ)) − E ( f ∗) + λΩz( fz,λ)

=


E (π( fz,λ)) − Ez(π( fz,λ))


+


Ez(π( fz,λ)) + λΩz( fz,λ)


+ {Ez( fλ) − E ( fλ)} − {Ez( fλ) + λ∥ fλ∥} +


E ( fλ) − E ( f ∗) + λ∥ fλ∥


= S(z, λ) + P(z, λ) + D(λ),

the conclusion is proved. �

S(z, λ) is usually called the sample error, and P(z, λ) is called the hypothesis error. We will
estimate them respectively in the next two sections.

3. Hypothesis error

The hypothesis error P(z, λ) is caused by replacing the hypothesis space HK ,z by the
universal hypothesis space H. In order to estimate it, we need to give some assumptions on
input X , kernel function K and marginal distribution ρX .
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Definition 3.1. Let F be a subset of a metric space. For any r > 0 the covering number N (F , r)

is defined to be the minimal integer l ∈ N such that there exist l balls with radius r covering F .

Covering numbers are used to describe the complexity of X , we shall assume that for some
α > 0 and cα > 0,

N (X, r) ≤ cα(1/r)α, ∀r > 0. (3.1)

Definition 3.2. We say the kernel K satisfies a Lipschitz condition of order γ with 0 < γ ≤ 1 if
there exists some cγ > 0 such that

|K (x, u) − K (x, u′)| ≤ cγ |u − u′
|
γ

2 , ∀x, u, u′
∈ X. (3.2)

Definition 3.3. The marginal distribution ρX is said to satisfy condition Lτ with 0 < τ < ∞ if
for some cτ > 0 and any ball B(x, r) := {u ∈ X : |u − x |2 < r}, one has

ρX (B(x, r)) ≥ cτ r τ , ∀x ∈ X, 0 < r ≤ 1. (3.3)

Definition 3.4. A set {x1, x2, . . . , xm} ⊂ X is said to be ∆-dense if for any x ∈ X there exists
some 1 ≤ i ≤ m such that |x − xi |2 < ∆.

By Lemma 3 in [20], we can get the following.

Proposition 3.1. If X satisfies (3.1), ρX satisfies (3.3), and {xi }
m
i=1 is drawn independently

according to ρX . Then for any t > 1, with confidence at least 1−e−t , {xi }
m
i=1 is cα,τ


log m+t

m

 1
τ

-

dense, where cα,τ is a constant depends only on α and τ .

Proof. We know from [20, Lemma 3] that if ρX satisfies condition Lτ with τ > 0 and ∆ satisfies

− log N


X,
∆
2


+

mcτ∆τ

2τ
≥ t, (3.4)

then {xi }
m
i=1 is ∆-dense with confidence at least 1 − e−t . So what we only to do is finding a

solution ∆ to (3.4). To this end, we consider a strictly increasing function

h1(ν) := − log N


X,
ν

2


+

mcτν
τ

2τ
, ν ∈ (0, +∞).

Let ν∗ is the unique positive solution of the equation h1(ν) = t , by assumption (3.1),

t = h1(ν
∗) ≥

mcτν
∗τ

2τ
− log


cα


2
ν∗

α
.

If ν∗ > 2


1
m

 1
τ

, we have

t ≥
mcτν

∗τ

2τ
− log cα −

α

τ
log m.
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Hence

ν∗
≤ 2


log cα +

α
τ

log m + t

mcτ

 1
τ

≤ 2

 log cα +
α
τ

+ 1

cτ

 1
τ

+ 1

 log m + t

m

 1
τ

. (3.5)

If ν∗
≤ 2


1
m

 1
τ

, (3.5) still holds.

Consequently by taking ∆ = cα,τ


log m+t

m

 1
τ

with cα,τ := 2


log cα+

α
τ
+1

cτ

 1
τ

+ 1


, we get

ν∗
≤ ∆, and thus ∆ satisfies (3.4). �

We now bound P(z, λ) by the following theorem.

Theorem 3.1. If X satisfies (3.1), K satisfies (3.2), and ρX satisfies (3.3), then for any t > 1,
with confidence at least 1 − e−t , there holds

P(z, λ) ≤ C1


log m + t

m

 γ
τ D(λ)

λ
,

where C1 is a constant independent of λ, m or t.

Proof. We know from (2.4) that ∥ fλ∥ ≤
D(λ)

λ
. So for any η > 0, fλ can be written as

fλ =


∞

j=1 b j Ku j with u j ∈ X and

∥ fλ∥ ≤

∞
j=1

|b j | < ∥ fλ∥ + η ≤
D(λ)

λ
+ η. (3.6)

At the same time, there exists some N ∈ N such that


∞

j=N |b j | < η, and thus N
j=1

b j Ku j − fλ


∞

≤ κ

∞
j=N

|b j | ≤ κη. (3.7)

Proposition 3.1 ensures us {xi }
m
i=1 is cα,τ


log m+t

m

 1
τ

-dense with confidence at least 1 − e−t , it

implies that under the same confidence, for each u j there is some x(u j ) ∈ {xi }
m
i=1 such that

|x(u j ) − u j |2 ≤ cα,τ


log m+t

m

 1
τ

. So by (3.2) and (3.6), N
j=1

b j Ku j −

N
j=1

b j Kx(u j )


∞

≤ cγ cγ
α,τ


log m + t

m

 γ
τ

N
j=1

|b j |

≤ C1


log m + t

m

 γ
τ


D(λ)

λ
+ η


, (3.8)
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where C1 := cγ cγ
α,τ . Since

N
j=1 b j Kx(u j ) ∈ HK ,z, we know from (1.3) and (2.1)

Ez(π( fz,λ)) + λΩz( fz,λ) ≤ Ez( fz,λ) + λΩz( fz,λ)

≤ Ez


N

j=1

b j Kx(u j )


+ λ

N
j=1

|b j |

≤ Ez


N

j=1

b j Kx(u j )


+ λ(∥ fλ∥ + η).

Note that for any f1, f2 ∈ H,

|V (y, f1(x)) − V (y, f2(x))| ≤ ∥ f1 − f2∥∞.

This together with (3.7) and (3.8) impliesEz


N

j=1

b j Kx(u j )


− Ez( fλ)

 ≤

 N
j=1

b j Kx(u j ) − fλ


∞

≤

 N
j=1

b j Kx(u j ) −

N
j=1

b j Ku j


∞

+

 N
j=1

b j Ku j − fλ


∞

≤ C1


log m + t

m

 γ
τ


D(λ)

λ
+ η


+ κη.

Hence,

Ez(π( fz,λ)) + λΩz( fz,λ) ≤ Ez( fλ) + λ∥ fλ∥ + λη

+ C1


log m + t

m

 γ
τ


D(λ)

λ
+ η


+ κη.

Let η → 0, we get

Ez(π( fz,λ)) + λΩz( fz,λ) ≤ Ez( fλ) + λ∥ fλ∥ + C1


log m + t

m

 γ
τ D(λ)

λ
.

This proves the theorem. �

4. Sample error

For a measurable function f : Z → R, denote E f :=


Z f (z)dρ. In order to estimate the
sample error, one always assumes a variance–expectation bound for the pair (V, ρ) with the
exponent s ∈ [0, 1] and some cs > 0

E{V (y, f (x)) − V (y, f ∗(x))}2
≤ cs{E ( f ) − E ( f ∗)}s, ∀∥ f ∥∞ ≤ M + ε. (4.1)

It is easy to see that assumption (4.1) always holds for s = 0 and cs = 4(M + ε)2.
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Write S(z, λ) as

S(z, λ) = {[E (π( fz,λ)) − E ( f ∗)] − [Ez(π( fz,λ)) − Ez( f ∗)]}

+ {[Ez( fλ) − Ez( f ∗)] − [E ( fλ) − E ( f ∗)]}

=: S1(z, λ) + S2(z, λ).

To bound S2(z, λ), we need the following one-sided Bernstein inequality (see [5]).
Let ξ be a random variable on a probability space Z with mean Eξ = µ and variance

σ 2(ξ) = σ 2. If |ξ − µ| ≤ B almost everywhere, then for all η > 0

Probz∈Zm


1
m

m
i=1

ξ(zi ) − µ ≥ η


≤ exp

−
mη2

2

σ 2 +

1
3 Bη


 .

Proposition 4.1. If assumption (4.1) holds, then for any t > 1 with confidence at least 1 − 2e−t ,
one has

S2(z, λ) ≤


7κ D(λ)

6mλ
+

8(M + ε)

3m
+


2cs

m

 1
2−s


t + D(λ).

Proof. Denote ξ1 := V (y, fλ(x))− V (y, π( fλ)(x)), ξ2 := V (y, π( fλ)(x))− V (y, f ∗(x)), then
S2(z, λ) = {

1
m

m
i=1 ξ1(zi ) − Eξ1} + {

1
m

m
i=1 ξ2(zi ) − Eξ2}. By (2.2) and (2.4), we can see that

∥ fλ∥∞ ≤ κ∥ fλ∥ ≤ κ
D(λ)

λ
.

So it is easy to check that 0 ≤ ξ1 ≤ κ
D(λ)

λ
and σ 2(ξ1) ≤ κ

D(λ)
λ

Eξ1.
Applying the one-sided Bernstein inequality to ξ1 we have with confidence at least 1 − e−t ,

1
m

m
i=1

ξ1(zi ) − Eξ1 ≤
2κt D(λ)

3mλ
+


2κt D(λ)E(ξ1)

mλ

≤
2κt D(λ)

3mλ
+

κt D(λ)

2mλ
+ Eξ1

=
7κt D(λ)

6mλ
+ Eξ1.

For ξ2, noting that both π( fλ)(x) and f ∗(x) are contained in [−M − ε, M + ε], we know
from assumption (4.1)

|ξ2| ≤ |π( fλ)(x) − f ∗(x)| ≤ 2(M + ε), σ 2(ξ2) ≤ cs(E(ξ2))
s .

Applying the one-sided Bernstein inequality again, with confidence at least 1 − e−t , we have

1
m

m
i=1

ξ2(zi ) − Eξ2 ≤
8(M + ε)t

3m
+


2tcs(Eξ2)s

m

≤
8(M + ε)t

3m
+

s

2
Eξ2 +


1 −

s

2

2cs t

m

 1
2−s

≤
8(M + ε)t

3m
+


2cs t

m

 1
2−s

+ Eξ2,
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where in the second inequality we have used the elementary inequality

1
p

+
1
q

= 1, with p, q > 1 ⇒ ab ≤
1
p

a p
+

1
q

bq , ∀a, b > 0. (4.2)

Since Eξ1 + Eξ2 = E ( fλ) − E ( f ∗) ≤ D(λ), the proposition is proved. �

It is more difficult to bound S1(z, λ), because fz,λ depends on samples z and thus runs over a
set of functions in H. We need a uniform probability inequality which involves the complexity
of H described by covering number.

For R > 0, denote B R = { f ∈ H : ∥ f ∥ ≤ R}. By (2.2) B R is a bound set in C(X), we denote
the uniform covering number of unit ball B1 as N (r) := N (B1, r), ∀r > 0. The following
lemma has been proved in [20].

Lemma 4.1. If X satisfies (3.1) and K satisfies (3.2), then for any 0 < r ≤ 1,

log N (r) ≤ cα


4cγ

r

 α
γ

log


2 +
4κ

r


.

The next lemma is adopted from [18], it is a uniform law of large numbers for a class of
function.

Lemma 4.2. Let 0 ≤ s ≤ 1, B > 0, c ≥ 0, and G be a set of functions on Z such that for every
g ∈ G, Eg ≥ 0, |Eg − g| ≤ B and Eg2

≤ c(Eg)s . Then for any η > 0,

Probz∈Zm

sup
g∈G

Eg −
1
m

m
i=1

g(zi )

√
(Eg)s + ηs

> 4η1−
s
2

 ≤ N (G, η) exp

 −mη2−s

2


c +
1
3 Bη1−s


 .

Proposition 4.2. Let R > 0, if X satisfies (3.1), K satisfies (3.2) and (4.1) holds, then for any
t > 1, with confidence at least 1 − e−t , there holds

{E (π( f )) − E ( f ∗)} − {Ez(π( f )) − Ez( f ∗)}

≤
1
2
{E (π( f )) − E ( f ∗)} + C2t




R
α
γ

m

 1
2−s+α/γ

+


R

α
γ

+1

m

 1
3−s+α/γ

+


1
m

 1
2−s

 ,

for all f ∈ B R , where C2 is a constant independent of m, R or t.

Proof. Let F R := {V (y, π( f )(x)) − V (y, f ∗(x)) : f ∈ B R}, then for each function g ∈ F R

∥g∥∞ ≤ 2(M + ε), |g − Eg| ≤ 4(M + ε),

Eg = E (π( f )) − E ( f ∗) ≥ 0,
1
m

m
i=1

g(zi ) = Ez(π( f )) − Ez( f ∗).

Assumption (4.1) tells us Eg2
≤ cs(Eg)s . So applying Lemma 4.2 to function set F R , we have

Probz∈Zm


sup
f ∈B R

{E (π( f )) − E ( f ∗)} − {Ez(π( f )) − Ez( f ∗)}
√

(E (π( f )) − E ( f ∗))s + ηs
> 4η1−

s
2


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≤ N (F R, η) exp

 −mη2−s

2


cs +
4
3 (M + ε)η1−s


 .

Note that for any f1, f2 ∈ B R and (x, y) ∈ Z ,

|V (y, π( f1)(x)) − V (y, π( f2)(x))| ≤ |π( f1)(x) − π( f2)(x)| ≤ ∥ f1 − f2∥∞.

We get

log N (F R, η) ≤ log N (B R, η) = log N
 η

R


≤ cα


4cγ R

η

 α
γ

log


2 +
4κ R

η


.

Here the last inequality follows from Lemma 4.1. Choose η̃ to be the positive solution of the
equation

h2(η) :=
mη2−s

2


cs +
4
3 (M + ε)η1−s

 − cα


4cγ R

η

 α
γ

log


2 +
4κ R

η


= t,

then for any f ∈ B R with confidence at least 1 − e−t ,

{E (π( f )) − E ( f ∗)} − {Ez(π( f )) − Ez( f ∗)}

≤ 4η̃1−
s
2


(E (π( f )) − E ( f ∗))s + η̃s

≤ 4η̃ +
s

2
{E (π( f )) − E ( f ∗)} +


1 −

s

2


4

2
2−s η̃

≤ 20η̃ +
1
2
{E (π( f )) − E ( f ∗)},

where in the second inequality we have used the elementary inequality (4.2) again.
It remains to estimate η̃. Since

{E (π( f )) − E ( f ∗)} − {Ez(π( f )) − Ez( f ∗)} ≤ 4(M + ε),

we only need to consider the range η ≤ M + ε. In this range,

h2(η) ≥
mη2−s

2


cs +
4
3 (M + ε)2−s

 − cα


4cγ R

η

 α
γ


log 2 +
4κ R

η


:= h3(η).

If we take η∗ to be the unique positive solution to the equation h3(η) = t , then h2(η̃) = t =

h3(η
∗) ≤ h2(η

∗). Because h2(η) is strictly increasing on (0, +∞), we know η̃ ≤ η∗. By a basic
calculation, we can bound

η∗
≤ max




6 log 2cα(4cγ )
α
γ


cs +

4
3
(M + ε)2−s


R

α
γ

m

 1
2−s+α/γ

,


24κcα(4cγ )

α
γ


cs +

4
3
(M + ε)2−s


R

α
γ

+1

m

 1
3−s+α/γ

,


6


cs +
4
3
(M + ε)2−s


t

m

 1
2−s

 .
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This proves the proposition by taking

C2 := 20


6 log 2cα(4cγ )

α
γ


cs +

4
3
(M + ε)2−s

 1
2−s+α/γ

+


24κcα(4cγ )

α
γ


cs +

4
3
(M + ε)2−s

 1
3−s+α/γ

+


6


cs +
4
3
(M + ε)2−s

 1
2−s


. �

Taking f = 0 in (1.3), we can see that

λ∥ fz,λ∥ ≤


Ez( fz,λ) + λΩz( fz,λ)


≤ Ez(0) ≤ M.

So for any z ∈ Zm , fz,λ ∈ B R with R =
M
λ

. This together with Proposition 4.2 gives the
following.

Corollary 4.1. If X satisfies (3.1), K satisfies (3.2) and (4.1) holds, then for any t > 1, with
confidence at least 1 − e−t , there holds

S1(z, λ) ≤
1
2
{E (π( fz,λ)) − E ( f ∗)}

+ C3t


1

mλ
α
γ

 1
2−s+α/γ

+


1

mλ
α
γ

+1

 1
3−s+α/γ

+


1
m

 1
2−s


,

where C3 := C2


M

α
(2−s)γ+α + M

α+γ
(3−s)γ+α + 1


.

5. Learning rates

Combining the estimation in Sections 3 and 4, we can finally derive an explicit learning rate
for scheme (1.3).

Theorem 5.1. Suppose X satisfies (3.1), K satisfies (3.2), ρX satisfies (3.3), and assump-

tion (2.3) and (4.1) hold, by taking λ =


1
m

min


γ
τ
,

γ
α+γ+(3−s)γβ+αβ


, we have for any 0 < δ < 1,

with confidence at least 1 − δ,

E (π( fz,λ)) − E ( f ∗) ≤ C


log

4
δ

+ log m

max{1,
γ
τ }  1

m

min


γβ
τ

,
γβ

α+γ+(3−s)γβ+αβ


,

where C is a constant independent of m or δ.

Proof. Putting Theorem 3.1, Proposition 4.1, Corollary 4.1 and assumption (2.3) into
Proposition 2.1, we find for any t > 1, with confidence at least 1 − 4e−t ,

E (π( fz,λ)) − E ( f ∗)

≤
1
2
{E (π( fz,λ)) − E ( f ∗)}
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+ C3t


1

mλ
α
γ

 1
2−s+α/γ

+


1

mλ
α
γ

+1

 1
3−s+α/γ

+


1
m

 1
2−s


+


7κcβ

6mλ1−β
+

8(M + ε)

3m
+


2cs

m

 1
2−s


t

+ C1cβ


log m + t

m

 γ
τ

λβ−1
+ 2cβλβ .

Therefore,

E (π( fz,λ)) − E ( f ∗)

≤ C4 (log m + t)max{1,
γ
τ }


1

mλ
α
γ

 1
2−s+α/γ

+


1

mλ
α
γ

+1

 1
3−s+α/γ

+


1
m

 1
2−s


+


1

mλ1−β
+

1
m

+


1
m

 γ
τ

λβ−1
+ λβ


,

where C4 := 2


C3 +
7κcβ

6 +
8(M+ε)

3 + (2cs)
1

2−s + C1cβ + 2cβ


.

By the choice of λ, we can easily check that
1

mλ
α
γ

 1
2−s+α/γ

≤ λβ ,


1

mλ
α
γ

+1

 1
3−s+α/γ

≤ λβ ,

1
m

≤


1
m

 1
2−s

≤ λβ ,
1

mλ1−β
≤ λβ ,


1
m

 γ
τ

λβ−1
≤ λβ .

So our theorem follows by taking C = 7C4 and t = log 4
δ
. �
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