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Abstract

Let ωk
ϕ( f, δ)w,Lq be the Ditzian–Totik modulus with weight w, Mk be the cone of k-monotone

functions on (−1, 1), i.e., those functions whose kth divided differences are nonnegative for all selections
of k+ 1 distinct points in (−1, 1), and denote E(X,Pn)w,q := sup f ∈X infP∈Pn ∥w( f − P)∥Lq , where Pn

is the set of algebraic polynomials of degree at most n. Additionally, let wα,β (x) := (1 + x)α(1 − x)β be

the classical Jacobi weight, and denote by Sα,βp the class of all functions such that
wα,β f


Lp
= 1.

In this paper, we determine the exact behavior (in terms of δ) of sup
f ∈Sα,βp ∩Mk ω

k
ϕ( f, δ)wα,β ,Lq for

1 ≤ p, q ≤ ∞ (the interesting case being q < p as expected) and α, β > −1/p (if p < ∞) or α, β ≥ 0
(if p = ∞). It is interesting to note that, in one case, the behavior is different for α = β = 0 and for
(α, β) ≠ (0, 0). Several applications are given. For example, we determine the exact (in some sense) be-

havior of E(Mk
∩ Sα,βp ,Pn)wα,β ,Lq for α, β ≥ 0.
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1. Introduction and main results

Let wα,β(x) := (1+ x)α(1− x)β be the (classical) Jacobi weight, ∥ · ∥p := ∥·∥Lp[−1,1],

Lα,βp :=


f : [−1, 1] → R

 wα,β f


p <∞


,

and let Sα,βp be the unit sphere in Lα,βp , i.e., f ∈ Sα,βp iff
wα,β f


p = 1. It is convenient to

denote Jp := (−1/p,∞) if p < ∞, and J∞ := [0,∞). Clearly, 1 ∈ Lα,βp iff α, β ∈ Jp. We
note that more general than Jacobi weights can be considered, and many results in this paper are
valid and/or can be modified to be valid for those general weights. However, we only consider
Jacobi weights in order not to overcomplicate the proofs which are already rather technical,
and since the estimates of rates of unweighted polynomial approximation that have matching
converse results involve weighted moduli with classical Jacobi weights wr/2,r/2 = ϕr , r ∈ N
(see [8,9] or (8.2) with α = β = 0 for an example of such an estimate). Here, as usual,
ϕ(x) := w1/2,1/2 = (1− x2)1/2.

Let

∆k
h( f, x, [a, b]) :=


k

i=0


k

i


(−1)k−i f (x − kh/2+ ih), if x ± kh/2 ∈ [a, b],

0, otherwise,

be the kth symmetric difference, ∆k
h( f, x) := ∆k

h( f, x, [−1, 1]), and let

−→
∆ k

h( f, x) := ∆k
h( f, x + kh/2) and

←−
∆ k

h( f, x) := ∆k
h( f, x − kh/2)

be the forward and backward kth differences, respectively. The weighted main part moduli and
the weighted Ditzian–Totik (DT) moduli of smoothness (see [2, (8.1.2), (8.2.10) and Appendix
B]) are defined, respectively, as

Ω k
ϕ( f, δ)w,p := sup

0<h≤δ
∥w∆k

hϕ( f )∥Lp[−1+2k2h2,1−2k2h2]

and

ωk
ϕ( f, δ)w,p := Ω k

ϕ( f, δ)w,p +
−→
Ω k
ϕ( f, δ)w,p +

←−
Ω k
ϕ( f, δ)w,p, (1.1)

where
−→
Ω k
ϕ( f, δ)w,p := sup

0<h≤2k2δ2
∥w
−→
∆ k

h( f )∥Lp[−1,−1+2k2δ2]

and
←−
Ω k
ϕ( f, δ)w,p := sup

0<h≤2k2δ2
∥w
←−
∆ k

h( f )∥Lp[1−2k2δ2,1].

If α = β = 0, then ωk
ϕ( f, δ)1,p is equivalent to the usual DT modulus ωk

ϕ( f, δ)p =

sup0<h≤δ ∥∆
k
hϕ( f )∥p.

It is easy to see that Ω k
ϕ( f, δ)wα,β ,p ≤ c

wα,β f


p for all α, β ∈ R. (Throughout this paper,
c denote positive constants that may be different even if they appear in the same line.) At the



104 K.A. Kopotun / Journal of Approximation Theory 192 (2015) 102–131

same time, moduli ωk
ϕ( f, δ)wα,β ,p are usually defined with the restriction α, β ≥ 0 for all p ≤ ∞

and not just for p = ∞. The reason for this is that, on one hand, ωk
ϕ( f, δ)wα,β ,p ≤ c

wα,β f


p

if α, β ≥ 0, and, on the other hand, if α < 0 or β < 0, then there are functions f in Lα,βp for
which ωk

ϕ( f, δ)wα,β ,p = ∞. Indeed, suppose that p < ∞ and that δ > 0 is fixed. If f (x) :=
(x + 1 − ε)−α−1/pχ[−1+ε,−1+2ε](x) with α < 0 and 0 < ε < 2k2δ2, then

wα,β f


p ≤ c,wα,β f (· + ε)


p = ∞, and
wα,β f (· + iε)


p = 0, 2 ≤ i ≤ k, and so

−→
Ω k
ϕ( f, δ)wα,β ,p = ∞.

If α, β ≥ 0, then it is easy to see that, if f ∈ Lα,βp , 1 ≤ p <∞, then limδ→0+ ω
k
ϕ( f, δ)wα,β ,p

= 0. In the case p = ∞, the fact that f is in Lα,β∞ implies that ωk
ϕ( f, δ)wα,β ,∞ is bounded but

it is not enough to guarantee its convergence to zero if α2
+ β2

≠ 0 even if f is continuous
on (−1, 1) (consider, for example, f (x) = w−1

α,β(x)). One can show (see e.g. [3, p. 287] for a

similar proof) that, if α > 0 and β > 0, then for f ∈ C(−1, 1), limδ→0+ ω
k
ϕ( f, δ)wα,β ,∞ = 0 iff

limx→±1wα,β(x) f (x) = 0.
One can easily show that, for α, β ∈ R,

sup
f ∈Sα,βp

Ω k
ϕ( f, δ)wα,β ,q ∼ 1, 1 ≤ q ≤ p ≤ ∞. (1.2)

(Here and later in this paper, we write F ∼ G iff there exist positive constants c1 and c2 such
that c1 F ≤ G ≤ c2 F . These constants are always independent of δ, n and x but may depend on
k, α, β, p and q.) Indeed, since Ω k

ϕ( f, δ)wα,β ,q ≤ c
wα,β f


q , Hölder’s inequality implies the

upper estimate. The lower estimate follows, for example, from the fact that, for k ∈ N, α, β ∈ R,
0 < p, q ≤ ∞, and 0 < δ ≤ 1/(2k), the function

fδ(x) :=


(−1)i , if x ∈ [kδi, kδ(i + 1/2)] , 0 ≤ i ≤ ⌊1/(2kδ)⌋,
0, otherwise,

satisfies
wα,β fδ


p ∼ 1 and Ω k

ϕ( fδ, δ)wα,β ,q ≥ c > 0 (see Lemma 6.1 for details).

The restriction q ≤ p in (1.2) is essential since

sup
f ∈Sα,βp

Ω k
ϕ( f, δ)wα,β ,q = ∞, if p < q.

This, of course, is expected since Lα,βp ⊄ Lα,βq , if p < q, and follows, for example, from
Corollary 6.5.

If α, β ≥ 0, then

sup
f ∈Sα,βp

ωk
ϕ( f, δ)wα,β ,q ∼ 1, 1 ≤ q ≤ p ≤ ∞. (1.3)

This follows from (1.2) and the observation that, for α, β ≥ 0,
−→
Ω k
ϕ( f, δ)wα,β ,q ≤ c

wα,β f


q

and
←−
Ω k
ϕ( f, δ)wα,β ,q ≤ c

wα,β f


q .

In this paper, we show that if the suprema in (1.2) and (1.3) are taken over the subset of
Sα,βp consisting of all k-monotone functions, then these quantities become significantly smaller.
This will allow us to obtain the exact rates (in some sense) of polynomial approximation in the
weighted Lq -norm of k-monotone functions in Sα,βp .
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Recall that f : I → R is said to be k-monotone on I if its kth divided differences
[x0, . . . , xk; f ] are nonnegative for all selections of k + 1 distinct points x0, . . . , xk in I , and
denote by Mk the set of all k-monotone functions on (−1, 1). In particular, M0, M1 and M2

are the sets of all nonnegative, nondecreasing and convex functions on (−1, 1), respectively.
Note that if f ∈ Mk , k ≥ 2, then, for all j ≤ k − 2, f ( j) exists on (−1, 1) and is in Mk− j .
In particular, f (k−2) exists, is convex, and therefore satisfies a Lipschitz condition on any closed
subinterval of (−1, 1), is absolutely continuous on that subinterval, is continuous on (−1, 1),
and has left and right (nondecreasing) derivatives, f (k−1)

− and f (k−1)
+ on (−1, 1). We also note

that it is essential that (−1, 1) and not [−1, 1] is used in the definition of Mk since the set of all
k-monotone functions on the closed interval [−1, 1] contains only bounded functions (if k ∈ N).

Our main result is

Theorem 1.1. Let k ∈ N, 1 ≤ q < p ≤ ∞, α, β ∈ Jp, and 0 < δ < 1/4. Then,

sup
f ∈Sα,βp ∩Mk

ωk
ϕ( f, δ)wα,β ,q

∼


δ2/q−2/p, if k ≥ 2 and (k, q, p) ≠ (2, 1,∞),
δ2
|ln δ|, if k = 2, q = 1, p = ∞, and (α, β) ≠ (0, 0),

δ2, if k = 2, q = 1, p = ∞, and (α, β) = (0, 0),
δ2/q−2/p, if k = 1 and p < 2q,
δ1/q , if k = 1 and p > 2q.

(1.4)

If k = 1 and p = 2q, then

c
δ1/q
|ln δ|1/(2q)

|ln |ln δ| |λ/(2q)
≤ sup

f ∈Sα,β2q ∩M1

ω1
ϕ( f, δ)wα,β ,q ≤ cδ1/q

|ln δ|1/(2q), λ > 1. (1.5)

Remark 1.2. It is easy to see (and follows from Lemmas 2.1, 2.4 and Corollary 4.2) that, for
k ∈ N, 1 ≤ q ≤ p ≤ ∞, α, β ∈ Jp, and f ∈ Lα,βp ∩Mk ,

ωk
ϕ( f, δ)wα,β ,q ≤ c

wα,β f


p , δ > 0.

Hence, Theorem 1.1 needs to be proved only for “small” δ, and the restriction δ < 1/4 is chosen
for convenience only (to guarantee that none of the quantities in (1.4) and (1.5) are zero while
keeping them simple).

In the case α = β = 0, all upper estimates and several lower estimates of Theorem 1.1 were
proved in [7], and so the upper estimates in (1.4) and (1.5) will only have to be established for
(α, β) ≠ (0, 0) in the current paper. We remark that the fact that the case k = 2, q = 1 and
p = ∞ turned out to be anomalous for (α, β) ≠ (0, 0) causes rather significant difficulties in
the proof of Theorem 1.1 for k ≥ 2, q > 1 and p = ∞, since the rather simple main approach
from [7] can no longer be used. (Section 5 is devoted to overcoming these difficulties.) We also
note that the restriction α, β ∈ Jp in Theorem 1.1 guarantees that the classes Sα,βp ∩Mk contain
constants and so are rather rich. Without this restriction, we would have to deal with various
anomalous situations and vacuous statements of theorems. For example, Sα,βp ∩ M1

= ∅ if

α, β ≤ −1/p since, in this case, it is clear that Lα,βp ∩M1 contains only functions which are

identically 0 on (−1, 1). Similarly, it is possible to show that Sα,βp ∩M2
= ∅ if α, β ≤ −1/p−1.
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At the same time, putting restrictions on α and β in the statements of some of our theorems would
be a red herring (Lemma 4.1, for example, is an illustration of this). Hence, an interested reader
should keep in mind that even if a statement is given for all α, β ∈ R, it may happen that it only
applies to trivial functions if α, β ∉ Jp.

It is convenient to denote

Υα,β
δ (k, q, p) :=



δ2/q−2/p, if k ≥ 2, and (k, q, p) ≠ (2, 1,∞),
δ2
|ln δ|, if k = 2, q = 1, p = ∞, and (α, β) ≠ (0, 0)

δ2, if k = 2, q = 1, p = ∞, and (α, β) = (0, 0),
δ2/q−2/p, if k = 1 and p < 2q,
δ1/q
|ln δ|1/(2q), if k = 1 and p = 2q,

δ1/q , if k = 1 and p > 2q.

(1.6)

The following is an immediate corollary of Theorem 1.1.

Corollary 1.3. Let k ∈ N, 1 ≤ q < p ≤ ∞, α, β ∈ Jp, f ∈ Mk
∩ Lα,βp and 0 < δ < 1/4.

Then,

ωk
ϕ( f, δ)wα,β ,q ≤ cΥα,β

δ (k, q, p)
wα,β f


p , (1.7)

where Υα,β
δ (k, q, p) which is defined in (1.6) is best possible in the sense that (1.7) is no longer

valid if one increases (respectively, decreases) any of the powers of δ (respectively, |ln δ|) in its
definition.

Remark 1.4. The restriction q < p in the statement of Theorem 1.1 is essential since, if p < q ,
then Corollary 6.5 implies that

sup
f ∈Sα,βp ∩Mk

ωk
ϕ( f, δ)wα,β ,q = ∞,

and, if p = q , then it is easy to see that

sup
f ∈Sα,βp ∩Mk

ωk
ϕ( f, δ)wα,β ,p ∼ 1.

Let Pn be the set of algebraic polynomials of degree at most n, and denote

En( f )w,q := inf
P∈Pn
∥w( f − P)∥q

and

E(X,Pn)w,q := sup
f ∈X

En( f )w,q .

It is rather well known that

E(Sα,βp ,Pn)wα,β ,q ∼ 1, 1 ≤ q ≤ p ≤ ∞.

(This also follows from (1.3), (7.1) and Remark 6.2.) At the same time, for the class of
k-monotone functions from Sα,βp , we have the following result.
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Theorem 1.5. Let 1 ≤ q < p ≤ ∞, k ∈ N, and α, β ≥ 0. Then, for any n ∈ N,

E(Mk
∩ Sα,βp ,Pn)wα,β ,q

∼


n−2/q+2/p, if k ≥ 2 and (k, q, p) ≠ (2, 1,∞),
n−2, if k = 2, q = 1, p = ∞, and α = β = 0,
n−min{2/q−2/p,1/q}, if k = 1 and p ≠ 2q.

(1.8)

If k = 2, q = 1, p = ∞ and (α, β) ≠ (0, 0), then

cn−2
≤ E(M2

∩ Sα,β∞ ,Pn)wα,β ,1 ≤ cn−2ln (n + 1). (1.9)

If k = 1 and p = 2q, then

cn−1/q
≤ E(M1

∩ Sα,β2q ,Pn)wα,β ,q ≤ cn−1/q
[ln(n + 1)]1/(2q). (1.10)

Additionally, if q > 1, then for any ε > 0,

lim sup
n→∞

n1/q
[ln(n + 1)]−1/(2q)+εE(M1

∩ Sα,β2q ,Pn)wα,β ,q = ∞. (1.11)

In the case α = β = 0, (1.8) and the lower estimate in (1.10) were proved by
Konovalov, Leviatan and Maiorov in [5, Theorem 1]. The upper estimate in (1.10) and (1.11)
improve corresponding estimates in [5, Theorem 1] (considered there in the special case α =
β = 0).

We remark that it is an open problem if ln(n+1) in (1.9) can be replaced by a smaller quantity
or removed altogether, and if [ln(n+1)]1/2 is necessary in (1.10) in the case (k, q, p) = (1, 1, 2).
Also, while it follows from (1.11) that, in the case q > 1, the quantity [ln(n + 1)]1/(2q) in (1.10)
cannot be replaced by [ln(n + 1)]1/(2q)−ε with ε > 0, the precise behavior of E(M1

∩ Sα,β2q ,

Pn)wα,β ,q is still unknown (see Section 7 for more details).
Finally, we mention that several other applications of Theorem 1.1 are given in Section 8.

2. “Truncated” k-monotone functions

For k ≥ 1, we denote

Mk
+ :=


f ∈ Mk

 f (x) = 0, for all x ∈ (−1, 0]

.

Note that, if f ∈ Mk
+, then f (i)(0) = 0, 0 ≤ i ≤ k − 2, and f (k−1)

− (0) = 0.
In this section, we prove that it is sufficient to consider classes Mk

+ instead of Mk in Theo-
rem 1.1 (see Lemma 2.4). This will significantly simplify the proofs of upper estimates.

Lemma 2.1. Let k ∈ N, 1 ≤ p ≤ ∞, α, β ∈ Jp, and f ∈ Mk
∩ Lα,βp . Thenwα,βTk−1( f )


p ≤ c

wα,β f


p ,

where

Tk−1( f, x) := f (k−1)
− (0)xk−1/(k − 1)! +

k−2
i=0

f (i)(0)x i/ i !. (2.1)
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Proof. It follows from [7, Lemma 3.7] that ∥Tk−1( f )∥Lp[−1/2,1/2] ≤ c ∥ f ∥Lp[−1/2,1/2]. There-

fore, taking into account that
wα,βp ∼ 1 and wα,β(x) ∼ 1 on [−1/2, 1/2], we havewα,βTk−1( f )


p ≤ c ∥Tk−1( f )∥∞ ≤ c ∥Tk−1( f )∥Lp[−1/2,1/2]

≤ c ∥ f ∥Lp[−1/2,1/2] ≤ c
wα,β f


p ,

where we used the fact that, for any pk−1 ∈ Pk−1 and I ⊆ J ,

∥pk−1( f )∥L∞(J ) ≤ c ∥pk−1( f )∥Lp(I ) , c = c (k, |I |, |I |/|J |) ,

which follows, for example, from [1, (4.2.10) and (4.2.14)]. �

The following lemma can be easily proved by induction.

Lemma 2.2. Let f ∈ Mk , k ∈ N, be such that f (i)(0) = 0, 0 ≤ i ≤ k − 2, and f (k−1)
− (0) = 0.

Then f is j -monotone on [0, 1) and (−1)k− j f is j -monotone on (−1, 0], for all 0 ≤ j ≤ k − 1.

Corollary 2.3. If k ∈ N and f ∈ Mk
+, then f ∈ M j

+, for all 0 ≤ j ≤ k − 1.

Lemma 2.4. Let k ∈ N, 1 ≤ q < p ≤ ∞, α, β ∈ Jp, and δ > 0. Then

sup
f ∈Sα,βp ∩Mk

ωk
ϕ( f, δ)wα,β ,q ∼ sup

f ∈Sα,βp ∩Mk
+

ωk
ϕ( f, δ)wα,β ,q + sup

f ∈Sβ,αp ∩Mk
+

ωk
ϕ( f, δ)wβ,α,q .

Proof. First of all, it is clear that

sup
f ∈Sα,βp ∩Mk

ωk
ϕ( f, δ)wα,β ,q = sup

f ∈Sβ,αp ∩Mk

ωk
ϕ( f, δ)wβ,α,q . (2.2)

This immediately follows from the observation that f (x) ∈ Sα,βp ∩Mk iff (−1)k f (−x) ∈ Sβ,αp
∩Mk .

Now, the estimate

2 sup
f ∈Sα,βp ∩Mk

ωk
ϕ( f, δ)wα,β ,q = sup

f ∈Sα,βp ∩Mk

ωk
ϕ( f, δ)wα,β ,q + sup

f ∈Sβ,αp ∩Mk

ωk
ϕ( f, δ)wβ,α,q

≥ sup
f ∈Sα,βp ∩Mk

+

ωk
ϕ( f, δ)wα,β ,q + sup

f ∈Sβ,αp ∩Mk
+

ωk
ϕ( f, δ)wβ,α,q

is obvious since Mk
+ ⊂ Mk . To prove the estimate in the opposite direction, suppose that k,

α, β, δ, q and p satisfy all conditions of the theorem, and let f be an arbitrary function from
Mk
∩ Sα,βp . Denote

f1(x) := ( f (x)− Tk−1( f, x)) χ[0,1](x) and f2(x) := ( f (x)− Tk−1( f, x)) χ[−1,0](x),

where Tk−1( f ) is the Maclaurin polynomial of degree ≤ k − 1 defined in (2.1). It is clear that
f1(x) and f̃2(x) := (−1)k f2(−x) are both in Mk

+. Taking into account that f − Tk−1( f ) =
f1 + f2, | f1| + | f2| = | f1 + f2|,wα,β f2


p =

wβ,α f̃2


p

and ωk
ϕ( f2, δ)wα,β ,q = ω

k
ϕ( f̃2, δ)wβ,α,q ,
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we havewα,β f1


p +

wβ,α f̃2


p
=
wα,β f1


p +

wα,β f2


p ≤ c
wα,β (| f1| + | f2|)


p

= c
wα,β ( f − Tk−1( f ))


p ≤ c

wα,β f


p ≤ c,

where the second last inequality follows from Lemma 2.1.
Now, if neither f1 nor f̃2 is identically equal to 0 on (−1, 1), using the fact thatwα,β f1

−1
p f1 ∈ Sα,βp ∩Mk

+ and
wβ,α f̃2

−1

p
f̃2 ∈ Sβ,αp ∩Mk

+

we have

ωk
ϕ( f, δ)wα,β ,q ≤ ω

k
ϕ( f1, δ)wα,β ,q + ω

k
ϕ( f2, δ)wα,β ,q = ω

k
ϕ( f1, δ)wα,β ,q + ω

k
ϕ( f̃2, δ)wβ,α,q

=
wα,β f1


p ω

k
ϕ

wα,β f1
−1

p f1, δ

wα,β ,q

+

wβ,α f̃2


p
ωk
ϕ

wβ,α f̃2

−1

p
f̃2, δ


wβ,α,q

≤ c sup
f ∈Sα,βp ∩Mk

+

ωk
ϕ( f, δ)wα,β ,q + c sup

f ∈Sβ,αp ∩Mk
+

ωk
ϕ( f, δ)wβ,α,q .

If f1 or f̃2 is identically zero, the estimate is obvious. �

Lemma 2.5. Let k ∈ N, 1 ≤ q < p ≤ ∞, α, β ∈ Jp, γ1, γ2 ∈ R, and 0 < δ < 1/k. Then

sup
f ∈Sα,βp ∩Mk

ωk
ϕ( f, δ)wα,β ,q ∼ sup

f ∈Sγ1,β
p ∩Mk

+

ωk
ϕ( f, δ)wγ1,β ,q

+ sup
f ∈Sγ2,α

p ∩Mk
+

ωk
ϕ( f, δ)wγ2,α,q

.

Proof. The lemma immediately follows from Lemma 2.4 and the observation that

wα,β(x) ∼ wγ1,β(x) and wβ,α(x) ∼ wγ2,α(x), −1/2 ≤ x ≤ 1,w∆k
hϕ( f )


Lq (S)

=

w∆k
hϕ( f )


Lq (S∩[−1/2,1])

, 0 < h ≤ 1/k,

and

∥w f ∥Lp(S) = ∥w f ∥Lp(S∩[0,1]) ,

for any f which is identically 0 on [−1, 0]. �

3. Auxiliary results and upper estimates for q = 1

The proof of the following proposition is elementary and will be omitted.

Proposition 3.1. Let 0 < η < 1. Then the following holds.

(a) If |λ| ≤
√

2η, then the function x → x +λϕ(x) is increasing on [−1+ η, 1− η] and has the
inverse y → ψ(λ, y), where

ψ(λ, y) :=
y − λ


1− y2 + λ2

1+ λ2 . (3.1)
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(b) If |λ| ≤
√

2η, then 1−η

−1+η
g(x) f (x + λϕ(x)) dx

=

 1−η+λ
√

2η−η2

−1+η+λ
√

2η−η2
f (y) g (ψ(λ, y))

∂ψ(λ, y)

∂y
dy. (3.2)

(c) If |x | ≤ 1/
√

4λ2 + 1, then 1
2 ≤

∂(x+λϕ(x))
∂x ≤ 2. In particular, if |λ| ≤

√
η/2, then

1
2 ≤

∂(x+λϕ(x))
∂x ≤ 2 for x ∈ [−1+ η, 1− η], and hence 1

2 ≤
∂ψ(λ,y)
∂y ≤ 2 for y ∈ [−1+ η+

λ


2η − η2, 1− η + λ


2η − η2].
(d) If |x | ≤ 1− η, then ϕ(x) ≤

√
2/η(1− |x |).

(e) If |λ| ≤
√
η/2 and |x | ≤ 1 − η, then (1 − x)/4 ≤ 1 − x + λϕ(x) ≤ 2(1 − x) and

(1+ x)/4 ≤ 1+ x + λϕ(x) ≤ 2(1+ x).

We are now ready to prove the main auxiliary theorem which will yield upper estimates in
Theorem 1.1 for q = 1. In view of Lemma 2.5 we consider f ∈ Mk

+ ∩ Lβ,β1 noting that while

we could consider f ∈ Mk
+ ∩ L0,β

1 , the symmetry makes things more convenient. We also note

that it is possible to use the same approach in order to prove this theorem for f ∈ Mk
∩ Lα,β1 ,

but the estimates become more cumbersome. Finally, recall that wβ,β(x) = ϕ2β(x).

Theorem 3.2. Let k ∈ N, β ∈ R, f ∈ Mk
+ ∩ Lβ,β1 , and 0 < δ ≤ 1/(2k). Then

ωk
ϕ( f, δ)wβ,β ,1 ≤ c

wβ,β f


L1[1−3k2δ2,1]

+ c sup
0<h≤δ

hk
(1− y2)−k/2wβ,β(y) f (y)


L1[0,1−2k2h2]

. (3.3)

The following corollary immediately follows by Hölder’s inequality and the fact that, for
1 ≤ p′ ≤ ∞ (with 1/p′ + 1/p = 1),

(1− y2)−k/2


Lp′ [0,1−2k2h2]
≤ c

h−k+2/p′ , if kp′ > 2,
|ln h|1/p′ , if kp′ = 2,
1, if kp′ < 2.

Corollary 3.3. Let k ∈ N, β ∈ R, 1 ≤ p ≤ ∞, f ∈ Mk
+ ∩ Lβ,βp , and 0 < δ ≤ 1/(2k). Then

ωk
ϕ( f, δ)wβ,β ,1 ≤ c

wβ,β f


p


δ2−2/p, if k ≥ 3, or k = 2 and 1 ≤ p <∞,

or k = 1 and 1 ≤ p < 2,
δ2
|ln δ|, if k = 2 and p = ∞,

δ

|ln δ|, if k = 1 and p = 2,

δ, if k = 1 and 2 < p ≤ ∞.

(3.4)

Remark 3.4. If β = 0 and k is even, or if β = −1/2 and k is odd, then estimates (3.3) and (3.4)
can be improved (see Remark 3.7 and [7, Theorem 3.2]). In fact, if β = −1/2 and k = 1, then we
have ω1

ϕ( f, δ)w−1/2,−1/2,1 ≤ cδ2−2/p
wβ,β f


p, for all 1 ≤ p ≤ ∞ and f ∈ M1

+ ∩ L−1/2,−1/2
p ,

and not only for 1 ≤ p < 2 as (3.4) implies. However, this is not too exciting since, on one hand,
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β = −1/2 is in Jp only if 1 ≤ p < 2 and, on the other hand, if p ≥ 2 then the set M1
+ ∩

L−1/2,−1/2
p consists only of functions which are identically equal to 0 on (−1, 1).

Remark 3.5. Corollary 3.3, together with Lemmas 2.4 and 2.5, implies the upper estimates in
Theorem 1.1 in the case q = 1 (except for the case α = β = 0 when k = 2 and p = ∞ which
follows from [7]).

Now, if f ∈ Mk
+ ∩Lβ,βp is such that f ≡ 0 on [0, 1− Aδ2

], for some constant 0 < A ≤ δ−2,
then taking into account that

sup
0<h≤δ

hk
(1− y2)−k/2


Lp′ [1−Aδ2,1−2k2h2]

≤ c(A, k, p)δ2/p′ ,

we have another corollary of Theorem 3.2.

Corollary 3.6. Let k ∈ N, β ∈ R, 1 ≤ p ≤ ∞, 0 < δ ≤ 1/(2k), and let f ∈ Mk
+ ∩ Lβ,βp be

such that f (x) = 0 for x ∈ [0, 1− Aδ2
], for some positive constant A ≤ δ−2. Then

ωk
ϕ( f, δ)wβ,β ,1 ≤ cδ2−2/p

wβ,β f


p ,

where c depends on A.

Proof of Theorem 3.2. Let h ∈ (0, δ] be fixed. Taking into account that f ∈ Mk
+, ∆k

hϕ(x)( f, x)

≥ 0 and Proposition 3.1(b) with η = 2k2h2 and λi := (i − k/2)h, 0 ≤ i ≤ k, we have

∥wβ,β∆k
hϕ f ∥L1[−1+2k2h2,1−2k2h2]

=

k
i=0


k

i


(−1)k−i

 1−2k2h2

−1+2k2h2
wβ,β(x) f (x + λiϕ(x)) dx

=

k
i=0


k

i


(−1)k−i

 1−2k2h2
+(2i−k)kh2

√
1−k2h2

−1+2k2h2+(2i−k)kh2
√

1−k2h2
wβ,β(ψ(λi , y)) f (y)

∂ψ(λi , y)

∂y
dy

=

k
i=0


k

i


(−1)k−i

 1−2k2h2
−k2h2
√

1−k2h2

0
+

 1−2k2h2
+(2i−k)kh2

√
1−k2h2

1−2k2h2−k2h2
√

1−k2h2


×wβ,β(ψ(λi , y)) f (y)

∂ψ(λi , y)

∂y
dy

=:

k
i=0


k

i


(−1)k−i (Ic + Ir ) . (3.5)

It follows from Proposition 3.1(e) that

wβ,β(x) ∼ wβ,β(x + λϕ(x)), for |x | ≤ 1− η and |λ| ≤
√
η/2. (3.6)

In particular, this implies that

wβ,β(ψ(λ, y)) ∼ wβ,β(y), for y ∈ [−1+ η + λ


2η − η2, 1− η + λ


2η − η2]

and |λ| ≤
√
η/2.
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Hence, noting also that Proposition 3.1(c) implies that |∂ψ(λi , y)/∂y| ≤ 2, for all 0 ≤ i ≤ k,
we have k

i=0


k

i


(−1)k−i Ir

 ≤ c
 1−k2h2

1−3k2h2

wβ,β(y) f (y)
 dy ≤ c

wβ,β f


L1[1−3k2δ2,1] . (3.7)

Now,  k
i=0


k

i


(−1)k−i Ic

 =

 1−2k2h2

−k2h2
√

1−k2h2

0
f (y)Ak(y, h) dy


≤

 1−2k2h2

0
| f (y)||Ak(y, h)| dy,

where

Ak(y, h) :=
k

i=0


k

i


(−1)k−iwβ,β(ψ(λi , y))ψ(λi , y)

and

ψ(λi , y) :=
∂ψ(λi , y)

∂y
=

λi y +


1− y2 + λ2
i

(1+ λ2
i )


1− y2 + λ2

i

.

Suppose now that y ∈ [0, 1− 2k2h2
] is fixed and, for convenience, denote ϑ := ϕ(y). Then ϑ ≥√

3kh.
Note that

Ak(y, h) =
k

i=0


k

i


(−1)k−i gy(λi/ϑ) = ∆k

h/ϑ (gy, 0),

where

gy(t) := wβ,β(ψ(tϑ, y))ψ(tϑ, y).

Recall that, if g(m) is continuous on [x−mµ/2, x+mµ/2], then for some ξ ∈ (x−mµ/2, x+
mµ/2),

∆m
µ (g, x) = µm g(m)(ξ). (3.8)

Hence,

|Ak(y, h)| = |∆k
h/ϑ (gy, 0)| ≤ hkϑ−k

 dk

dtk gy(t)


C[−1/2,1/2]

. (3.9)

We now note that

ϕ(ψ(tϑ, y)) = ϑ
t y +
√

1+ t2

1+ t2ϑ2 =
ϑ

√
1+ t2 − t y

and

ψ(tϑ, y) =
t y +
√

1+ t2

(1+ t2ϑ2)
√

1+ t2
=

1
√

1+ t2 − t y
·

1
√

1+ t2
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and, in particular,

ψ(tϑ, y) =
ϕ(ψ(tϑ, y))

ϑ
√

1+ t2
.

Therefore, recalling that wβ,β = ϕ2β we have

gy(t) =
ϕ2β+1(ψ(tϑ, y))

ϑ
√

1+ t2
= ϑ2β(1+ t2)−β−1


1−

t y
√

1+ t2

−2β−1

.

Remark 3.7. If G y(t) := (gy(t)+(−1)k gy(−t))/2, then Ak(y, h) = ∆k
h/ϑ (G y, 0). If β = −1/2

and k is odd, then G y is identically equal to 0, and so |Ak(y, h)| = 0. Also, if β = 0 and k is

even, then G y(t) = (1 + t2ϑ2)−1, and so |G(k)
y (t)| ≤ cϑk and |Ak(y, h)| ≤ chk . Hence, (3.3)

can be improved in these cases.

Noting that |t |y/
√

1+ t2 < 1, we have the following expansion into binomial series
1−

t y
√

1+ t2

−2β−1

=

∞
i=0


−2β − 1

i


(−1)i

t i yi

(1+ t2)i/2
,

and so

gy(t) = ϑ
2β
∞

i=0


−2β − 1

i


(−1)i

t i yi

(1+ t2)β+1+i/2 .

The derivatives of this series are uniformly convergent on [−1, 1] (to take a simple interval)
because it can be easily seen that, for |t | ≤ 1, dk

dtk

t i

(1+ t2)β+1+i/2

 ≤ c
k

j=0




t
√

1+ t2

i
( j)

 ≤ c
min{i,k}

j=0

(i + 1) j

|t |

√
1+ t2

i− j

≤ c(i + 1)k2−i/2.

Hence, for |t | ≤ 1, dk

dtk gy(t)

 ≤ cϑ2β
∞

i=0

−2β − 1
i

 (i + 1)k2−i/2
≤ cϑ2β .

Estimate (3.9) now implies that

|Ak(y, h)| ≤ chkϑ2β−k,

and so k
i=0


k

i


(−1)k−i Ic

 ≤ chk
 1−2k2h2

0
(1− y2)β−k/2

| f (y)| dy. (3.10)

Together with (3.5), inequalities (3.7) and (3.10) imply that

Ω k
ϕ( f, δ)wβ,β ,1 = c

wβ,β f


L1[1−3k2δ2,1]

+ c sup
0<h≤δ

hk
(1− y2)−k/2wβ,β(y) f (y)


L1[0,1−2k2h2]

. (3.11)

Finally, Lemma 4.1 (that we prove in Section 4 for all q ≥ 1) with q = 1, together with (3.11),
implies (3.3). �
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4. Upper estimates for q > 1

Lemma 4.1. Let k ∈ N, 1 ≤ q <∞, α, β ∈ R, and f ∈ Mk
+ ∩ Lα,βq . Then

←−
Ω k
ϕ( f, δ)wα,β ,q ≤ c

wα,β f


Lq [1−2k2δ2,1] .

Proof. Corollary 2.3 implies that f is non-negative and non-decreasing on [0, 1] and so, for any
0 < h ≤ 2k2δ2, we have

∥wα,β
←−
∆ k

h( f )∥qLq [1−2k2δ2,1]
≤ c

 1

1−2k2δ2

k
i=0


k

i

q

w
q
α,β(x)| f (x − ih)|q dx

≤ c
k

i=0

 1

1−2k2δ2
w

q
α,β(x)| f (x)|

q dx ≤ c
wα,β f

q
Lq [1−2k2δ2,1] ,

and it remains to take supremum over h ∈ (0, 2k2δ2
]. �

By Hölder’s inequality, the following corollary is an immediate consequence of Lemma 4.1.

Corollary 4.2. Let k ∈ N, 1 ≤ q < p ≤ ∞, α, β ∈ R, and f ∈ Mk
+ ∩ Lα,βp . Then

←−
Ω k
ϕ( f, δ)wα,β ,q ≤ cδ2/q−2/p

wα,β f


Lp[1−2k2δ2,1] .

Lemma 4.3. Let 1 < q <∞, α, β ∈ R, and let f ∈ Lα,βq be nonnegative on [−1, 1]. Then,

ω1
ϕ( f, δ)wα,β ,q ≤ cω1

ϕ( f q , δ)
1/q
wqα,qβ ,1

.

Remark 4.4. If f ∈ M1
∩Lα,βq , 1 < q <∞, is nonnegative on [−1, 1], then f q

∈ M1
∩Lqα,qβ

1 .

Proof. Let 1 < q < ∞, and let f ∈ Lα,βq be nonnegative on [−1, 1]. It was shown in the proof
of [7, Lemma 3.4] (and is easy to see) that,∆1

µ( f, x)
q ≤ ∆1

µ( f q , x)
 , µ > 0.

This implies

Ω1
ϕ( f, δ)qwα,β ,q = sup

0<h≤δ

 1−2h2

−1+2h2

wα,β(x)∆1
hϕ(x)( f, x)

q dx

≤ sup
0<h≤δ

 1−2h2

−1+2h2
w

q
α,β(x)

∆1
hϕ(x)( f q , x)

 dx = Ω1
ϕ( f q , δ)wqα,qβ ,1

and, similarly,

←−
Ω 1
ϕ( f, δ)qwα,β ,q = sup

0<h≤2δ2

 1

1−2δ2

wα,β(x)|←−∆ 1
h( f, x)

q dx

≤ sup
0<h≤2δ2

 1

1−2δ2
w

q
α,β(x)

←−∆ 1
h( f q , x)

 dx =
←−
Ω 1
ϕ( f q , δ)wqα,qβ ,1,

and, since
−→
Ω 1
ϕ( f, δ)wα,β ,q can be estimated similarly, the proof is complete. �
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Lemma 4.5. Let 1 < q < ∞, α, β ∈ R, and let f ∈ M2
∩ Lα,βq be nonnegative on [−1, 1].

Then, f q
∈ M2

∩ Lqα,qβ
1 , and

ω2
ϕ( f, δ)wα,β ,q ≤ cω2

ϕ( f q , δ)
1/q
wqα,qβ ,1

.

Proof. It was shown in the proof of [7, Lemma 3.5] that, for any nonnegative convex function f ,
∆2
µ( f, x)

q
≤ 2q−1∆2

µ( f q , x), µ > 0,

and the rest of the proof is analogous to that of Lemma 4.3. �

Now, taking into account that, for a nonnegative f ,
wqα,qβ f q

1/q
p/q =

wα,β f


p, and using
Lemmas 4.3, 4.5 and Corollary 3.3 (with p/q instead of p) we get the following result.

Corollary 4.6. Let k = 1 or k = 2, β ∈ R, 1 < q < p ≤ ∞, f ∈ Mk
+ ∩ Lβ,βp , and

0 < δ ≤ 1/(2k). Then

ωk
ϕ( f, δ)wβ,β ,q

≤ c
wβ,β f


p


δ2/q−2/p, if k = 2 and p <∞, or k = 1 and p < 2q,
δ2/q
|ln δ|1/q , if k = 2 and p = ∞,

δ1/q
|ln δ|1/(2q), if k = 1 and p = 2q,

δ1/q , if k = 1 and p > 2q.

Lemmas 2.4 and 2.5 now imply upper estimates in Theorem 1.1 for k = 1 and k = 2 and
q > 1 except for the case (k, p) = (2,∞), which will be dealt with separately in the next section.

We will now finish the proof of the upper estimates in the case k ≥ 3. It follows from
[2, Theorem 6.2.5] that

Ω k
ϕ( f, δ)wα,β ,q ≤ cΩ2

ϕ( f, δ)wα,β ,q , k ≥ 3. (4.1)

Now, suppose that f ∈ Mk
+ ∩ Lβ,βp , k ≥ 3. Corollary 2.3 implies that f ∈ M2

+, and so using
Corollary 4.2 and (4.1) we have

ωk
ϕ( f, δ)wβ,β ,q ≤ cΩ2

ϕ( f, δ)wβ,β ,q +
←−
Ω k
ϕ( f, δ)wβ,β ,q

≤ cω2
ϕ( f, δ)wβ,β ,q + δ

2/q−2/p
wβ,β f


p .

We have already proved that

ω2
ϕ( f, δ)wβ,β ,q ≤ δ

2/q−2/p
wβ,β f


p , f ∈ M2

+ ∩ Lβ,βp , (4.2)

in the case q > 1 and p <∞, and will prove it for q > 1 and p = ∞ in the next section, and so
upper estimates of Theorem 1.1 for k ≥ 3 and q > 1 now follow from Lemmas 2.4 and 2.5.

Hence, in order to finish the proof of all upper estimates in Theorem 1.1 it remains to prove
(4.2) in the case q > 1 and p = ∞. This is done in Section 5 (see Lemma 5.3).

5. Improvement of estimates for convex functions if q > 1

For n ∈ N, we define ti := cos (iπ/n) , 0 ≤ i ≤ n, and Ii := [ti , ti−1], 1 ≤ i ≤ n. Recall
that (ti )n0 is the so-called Chebyshev partition of [−1, 1]. Some of its properties are stated in the
following proposition that can be verified by straightforward computations.
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Proposition 5.1. For each n ∈ N, the following statements are valid.

(a) For 2 ≤ i ≤ n − 1 and x ∈ Ii , 2ϕ(x)/n ≤ |Ii | ≤ 5ϕ(x)/n, and 2n−2
≤ |I1| = |In| ≤ 5n−2.

(b) |I j−1|/3 ≤ |Ii | ≤ 3|I j−1|, 2 ≤ i ≤ n.
(c) For any n ∈ N, 1 ≤ j ≤ n and λ ≤ 1/n, t j + λϕ(t j ) ≤ t j−1 − λϕ(t j−1).

Lemma 5.2. Let 0 < δ < 1/100, β ∈ R, and let f ∈ M2
∩ Lβ,βq , 1 < q <∞, be such that its

restrictions to [−1,−1+ 100δ2
] and [1− 100δ2, 1] are linear polynomials. Then

Ω2
ϕ( f, δ)ϕ2β ,q ≤ cδ1/q−1Ω2

ϕ( f, δ)ϕ2β−1+1/q ,1.

Proof. First, note that, for 0 < h ≤ δ, if |x | ≥ 1 − 85δ2 then |x | − hϕ(x) ≥ 1 − 100δ2, and so
∆2

hϕ(x)( f, x) = 0 if x ∈ [−1,−1+ 85δ2
] ∪ [1− 85δ2, 1]. Therefore,

Ω2
ϕ( f, δ)qwβ,β ,q = sup

0<h≤δ

wβ,β∆2
hϕ( f )

q

Lq [−1+8h2,1−8h2]

≤ sup
0<h≤δ

wβ,β∆2
hϕ( f )

q

Lq [−1+85δ2,1−85δ2]
.

Now, note that, for each m ∈ N and n ≥ 2m+1, if η ≥ 5m2/n2, then [−1+η, 1−η] ⊂ [tn−m, tm].
Hence, if we let n := ⌊1/δ⌋ then [−1+ 85δ2, 1− 85δ2

] ⊂ [tn−4, t4] =
n−4

i=5 Ii , and so

Ω2
ϕ( f, δ)qwβ,β ,q ≤ sup

0<h≤δ

n−4
i=5


Ii

|wβ,β(x)∆2
hϕ(x)( f, x)|q dx .

Since h ≤ δ ≤ 1/n, Proposition 5.1(c) implies that if x ∈ Ii , then x±hϕ(x) ∈ Ii := [ti+1, ti−2].
Now, for 5 ≤ i ≤ n− 4, let pi be the linear polynomial interpolating f at the endpoints of Ii ,

and let gi := f − pi . If x0 ∈ Ii is such that ∥gi∥C(Ii )
= |gi (x0)| (recall that convex functions are

continuous in the interior of their domains), using the fact that gi is convex (and so lies below its
secant lines) and is 0 at the endpoints of Ii , we get

1
2
|Ii | ∥gi∥C(Ii )

=
1
2
|Ii ||gi (x0)| ≤


Ii

|gi (x)| dx,

and so

∥ f − pi∥C(Ii )
≤ 2|Ii |

−1
∥ f − pi∥L1(Ii )

, 5 ≤ i ≤ n − 4.

Therefore, recalling that wβ,β = ϕ2β and using the fact that wβ,β(x) ∼ wβ,β(ti ), x ∈ Ii , and
Proposition 5.1(a) we have

Ω2
ϕ( f, δ)qwβ,β ,q ≤ sup

0<h≤δ

n−4
i=5


Ii

ϕ2β(x)∆2
hϕ(x)( f − pi , x)

q dx

≤ c
n−4
i=5

ϕ2βq(ti )|Ii | ∥ f − pi∥
q
C(Ii )

≤ c
n−4
i=5

ϕ2βq(ti )|Ii |
1−q
∥ f − pi∥

q
L1(Ii )
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≤ c
n−4
i=5

nq−1ϕ2βq−q+1(ti ) ∥ f − pi∥
q
L1(Ii )

≤ cnq−1


n−4
i=5

ϕ2β−1+1/q(ti ) ∥ f − pi∥L1(Ii )

q

,

where, in the last estimate, we used the inequality

|ai |

q
≤ (


|ai |)

q .
It follows from [6, Theorem 1] that

∥ f − pi∥L1(Ii )
≤ cω2( f, |Ii |,Ii )1, 5 ≤ i ≤ n − 4,

where Ii := [ti+2, ti−3] (since Ii is in the “interior” of Ii ), and ω2( f, µ, I ) is the usual second
modulus on I . Proposition 5.1(a, b) implies that n|Ii |/ϕ(x) ∼ 1, x ∈ Ii , and, in particular,
|Ii |/ϕ(x) ≤ c∗/n, for some absolute constant c∗. Now, [12, Lemma 7.2, p. 191] yields

ω2( f, µ, [a, b])1 ≤
c

µ

 µ

0

 b

a
|∆2

h( f, x, [a, b])| dx dh,

and hence

ω2( f, |Ii |,Ii )1 ≤ cω2( f, |Ii |/(2c∗),Ii )1

≤
c

|Ii |


Ii


|Ii |/(2c∗)

0
|∆2

h( f, x,Ii )| dh dx

≤
c

|Ii |


Ii


|Ii |/(2c∗ϕ(x))

0
ϕ(x)|∆2

hϕ(x)( f, x,Ii )| dh dx

≤ cn

Ii

 1/(2n)

0
|∆2

hϕ(x)( f, x)| dh dx .

Therefore,

Ω2
ϕ( f, δ)qwβ,β ,q ≤ cnq−1


n−4
i=5

ϕ2β−1+1/q(ti )n

Ii

 1/(2n)

0
|∆2

hϕ(x)( f, x)| dh dx

q

≤ cn2q−1

 1/(2n)

0

n−4
i=5


Ii

ϕ2β−1+1/q(x)|∆2
hϕ(x)( f, x)| dx dh

q

≤ cnq−1


sup

0<h≤1/(2n)

 t1

tn−1

ϕ2β−1+1/q(x)|∆2
hϕ(x)( f, x)| dx

q

≤ cnq−1


sup

0<h≤1/(2n)

 1−8h2

−1+8h2
ϕ2β−1+1/q(x)|∆2

hϕ(x)( f, x)| dx

q

≤ cnq−1Ω2
ϕ( f, 1/(2n))q

ϕ2β−1+1/q ,1
,

and it remains to recall that n = ⌊1/δ⌋ and so, in particular, 1/(2n) < δ ≤ 1/n. �

Lemma 5.3. Let β ∈ R, 1 < q <∞ and f ∈ M2
+ ∩ Lβ,β∞ . Then

ω2
ϕ( f, δ)wβ,β ,q ≤ cδ2/q

wβ,β f

∞
.
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Proof. Let 0 < δ < 1/100, denote x0 := 1− 100δ2, and define

f1(x) :=


f (x), if x ≤ x0,

f (x0)+ f ′+(x0)(x − x0), if x0 < x ≤ 1.

Clearly, f1 ∈ M2
+ and, since 0 ≤ f1(x) ≤ f (x), x0 ≤ x ≤ 1, we conclude that

wβ,β f1

∞

≤
wβ,β f


∞

. Also, f2 := f − f1 ∈ M2
+ is such that f2(x) = 0 if x ≤ x0 and

wβ,β f2

∞

≤
wβ,β f


∞

, and so Lemma 4.5 and Corollary 3.6 imply that

ω2
ϕ( f2, δ)wβ,β ,q ≤ cω2

ϕ( f q
2 , δ)

1/q
wqβ,qβ ,1

≤ c

δ2
wqβ,qβ f q

2


∞

1/q
≤ cδ2/q

wβ,β f

∞
.

Now, since
←−
Ω 2
ϕ( f1, δ)wβ,β ,q = 0, by Lemma 5.2 and Theorem 3.2 we have

ω2
ϕ( f1, δ)wβ,β ,q = Ω2

ϕ( f1, δ)wβ,β ,q ≤ cδ1/q−1Ω2
ϕ( f1, δ)ϕ2β−1+1/q ,1

≤ cδ1/q−1
ϕ2β−1+1/q f1


L1[1−12δ2,1]

+ cδ1/q−1 sup
0<h≤δ

h2
ϕ2β−3+1/q f1


L1[0,1−8h2]

≤ cδ1/q−1
ϕ2β f1


∞

ϕ−1+1/q


L1[1−12δ2,1]

+ cδ1/q−1
ϕ2β f1


∞

sup
0<h≤δ

h2
ϕ−3+1/q


L1[0,1−8h2]

≤ cδ2/q
wβ,β f


∞
,

where, in the last estimate, we usedϕ−γ L1[1−cδ2,1] ≤ cδ−γ+2, if γ < 2,

and ϕ−γ L1[0,1−ch2]
≤ ch−γ+2, if γ > 2. �

Together with Lemmas 2.4 and 2.5, this now completes the proof of the upper estimate in
Theorem 1.1 in the case k = 2, p = ∞ and q > 1.

6. Lower estimates of moduli

The following lemma verifies the lower estimate in (1.2).

Lemma 6.1. Let k ∈ N, α, β ∈ R, 0 < p, q ≤ ∞, and 0 < δ ≤ 1/(2k). Then the function

fδ(x) :=


(−1)i , if x ∈ Ji , 0 ≤ i ≤ ⌊1/(2kδ)⌋,
0, otherwise,

where Ji := [kδi, kδ(i + 1/2)], is such that
wα,β fδ


p ∼ 1, and

Ω k
ϕ( fδ, δ)wα,β ,q ≥ c > 0.

Proof. Since
⌊1/(2kδ)⌋

i=0 Ji ⊂ [0, 3/4],

wα,β fδ
p

p ∼

⌊1/(2kδ)⌋
i=0

|Ji | = (⌊1/(2kδ)⌋ + 1) kδ/2 ∼ 1.
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Now, note that, if x ∈ Ji and 0 < h ≤ δ, then x ± khϕ(x)/2 ∉ ∪ j≠i J j , and so

Ω k
ϕ( fδ, δ)

q
wα,β ,q ≥ sup

0<h≤δ

⌊1/(2kδ)⌋
i=0


Di

w
q
α,β(x) dx ∼ sup

0<h≤δ

⌊1/(2kδ)⌋
i=0

|Di |,

where

Di :=


x

 x + (k/2− 1)hϕ(x) ≤ kδi ≤ x + khϕ(x)/2

.

Since |Di | ∼ h, 0 ≤ i ≤ ⌊1/(2kδ)⌋, we have

Ω k
ϕ( fδ, δ)

q
wα,β ,q ≥ cδ⌊1/(2kδ)⌋ ≥ c. �

Remark 6.2. For each n ∈ N, letting k = 1 and δ := 1/(4n) in Lemma 6.1, noting that fδ is
positive on n+ 1 intervals and negative on n intervals Ji , and that any polynomial of degree ≤ n
can have at most n sign changes on [−1, 1], we conclude that

En( fδ)wα,β ,q ≥ c(nδ)1/q ≥ c > 0.

This implies that, for any α, β ∈ R and 0 < p, q ≤ ∞,

E(Sα,βp ,Pn)wα,β ,q ≥ c > 0.

The following result verifies the lower estimate in (1.4) in the case k = 1 and p > 2q. Its
proof is elementary and will be omitted.

Lemma 6.3. If f (x) = χ[0,1](x), α ∈ R and β ∈ Jp, then f ∈ M1,
wα,β f


p ∼ 1, and

ω1
ϕ( f, δ)wα,β ,q ∼ δ

1/q , for any 0 < δ < 1.

Lemma 6.4. Let k ∈ N, 0 < p, q ≤ ∞, α ∈ R, β ∈ Jp, δ > 0, and 0 < ε ≤ min{2k2δ2, 1}.
Then the function f (x) := λ(x − 1 + ε)k−1

+ , λ := ε−k−β−1/p+1, is such that f ∈ Mk ,wα,β f


p ∼ 1, and

ωk
ϕ( f, δ)wα,β ,q ≥ cε1/q−1/p.

Proof. It is straightforward to check that
wα,β f


p ∼ 1. Now, since Sε(h) := [1 − ε, 1 − ε +

min{ε, h}/2] ⊂ [1− 2k2δ2, 1] and
←−
∆ k

h( f, x) = f (x), x ∈ Sε(h), we have

←−
Ω k
ϕ( f, δ)qwα,β ,q = sup

0<h≤2k2δ2

wα,β←−∆ k
h( f )

q

Lq [1−2k2δ2,1]

≥ sup
0<h≤2k2δ2


Sε(h)
|wα,β(x) f (x)|q dx

≥ c sup
0<h≤2k2δ2


Sε(h)

εqβλq(x − 1+ ε)kq−q dx

≥ c sup
0<h≤2k2δ2

εqβλq(min{ε, h})kq−q+1

≥ cλqεqβ+kq−q+1.
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Therefore,

ωk
ϕ( f, δ)wα,β ,q ≥

←−
Ω k
ϕ( f, δ)wα,β ,q ≥ cε1/q−1/p.

If p and/or q are∞, the proof is similar. �

Since limε→0+ ε
1/q−1/p

= ∞ if p < q , we immediately get the following corollary.

Corollary 6.5. Let k ∈ N, α, β ∈ R, δ > 0, and 0 < p < q ≤ ∞. Then, for any A > 0, there
exists f ∈ Sα,βp ∩Mk such that

ωk
ϕ( f, δ)wα,β ,q ≥ A.

This corollary confirms that one cannot expect to get any useful upper estimates for the moduli
ωk
ϕ (even restricting classes to k-monotone function) if p < q .

Corollary 6.6. Let k ∈ N, 0 < p, q ≤ ∞, α ∈ R, β ∈ Jp, 0 < δ ≤ 1/(2k), and ε := 2k2δ2.
Then the function f (x) := λ(x − 1 + ε)k−1

+ , λ := ε−k−β−1/p+1, is such that f ∈ Mk ,wα,β f


p ∼ 1, and

ωk
ϕ( f, δ)wα,β ,q ≥ cδ2/q−2/p.

This corollary verifies the lower estimates in (1.4) in the cases k ≥ 2 and (k, q, p) ≠ (2, 1,∞)
(unless α = β = 0), and k = 1 and p < 2q.

The following lemma yields the lower estimate in (1.4) in the case (k, q, p) = (2, 1,∞) and
(α, β) ≠ (0, 0).

Lemma 6.7 (Lower Estimate in the Case k = 2, q = 1 and p = ∞). Let β > 0 and f (x) :=
(1− x)−β . Then f ∈ M2

∩ S0,β
∞ and, if δ < 1/5,

Ω2
ϕ( f, δ)w0,β ,1 ≥ cδ2

|ln δ|.

Proof. It is obvious that f ∈ M2
∩ S0,β
∞ . Using the fact that

∆2
hϕ(x)( f, x) = h2ϕ2(x) f ′′(ξ), for some ξ ∈ (x − hϕ(x), x + hϕ(x)),

we have

Ω2
ϕ( f, δ)w0,β ,1 ≥ c

 1−8δ2

0
(1− x)βδ2ϕ2(x)| f ′′(ξx )| dx,

where ξx ∈ (x − δϕ(x), x + δϕ(x)). Now, Proposition 3.1(e) implies that

1− ξk ∼ 1− x ± δϕ(x) ∼ 1− x,

and so | f ′′(ξx )| ≥ c(1− x)−β−2. Therefore,

Ω2
ϕ( f, δ)w0,β ,1 ≥ cδ2

 1−8δ2

0
(1− x)−1 dx ≥ cδ2

|ln δ|. �

We conclude this section with the proof of the lower estimate in (1.5).

Lemma 6.8 (Lower Estimate in the Case k = 1 and p = 2q). Let 1 ≤ q < ∞, p = 2q,
β > −1/p, 0 < δ < 1/4, and λ > 1. Then there exists a function f ∈ Sβ,βp ∩ M1

+ such
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that

Ω1
ϕ( f, δ)wβ,β ,q ≥ c

δ1/q
|ln δ|1/(2q)

|ln |ln δ| |λ/(2q)
. (6.1)

Proof. Let n = 2m , where m = ⌊log2(1/δ)⌋ + 1, and note that 1/n < δ ≤ 2/n.
Suppose that ( fi )

n
1 is a non-increasing sequence of real numbers such that fi = 0, for i > n/2.

Now, recalling that ti = cos(iπ/n), 0 ≤ i ≤ n, and Ii = [ti , ti−1], 1 ≤ i ≤ n, define

f (x) := fi , ti < x ≤ ti−1, 1 ≤ i ≤ n.

In other words, f is a non-decreasing piecewise constant spline with knots at ti ’s which is
identically equal to 0 on [−1, 0], i.e., f ∈ M1

+.
Now, using Proposition 5.1, the fact that 2i/n ≤ ϕ(ti ) ≤ 4i/n, 1 ≤ i ≤ n/2, and denoting
:=
n/2

i=1, we havewβ,β f
p

p =


Ii

ϕ2βp(x)| f (x)|p dx ≤ c

|Ii |ϕ

2βp(ti ) f p
i

≤ cn−1


ϕ2βp+1(ti ) f p
i ≤ cn−2βp−2


i2βp+1 f p

i .

Now, let

Di (h) :=


x

 x − hϕ(x)/2 ≤ ti ≤ x + hϕ(x)/2


=

 ti − (h/2)


1− t2
i + h2/4

1+ h2/4
,

ti + (h/2)


1− t2
i + h2/4

1+ h2/4

 , 1 ≤ i ≤ n − 1.

We note that intervals Di (h), 1 ≤ i ≤ n − 1, have the following properties:

(i) if 0 < h ≤ 1/n, then Di (h) ∩ Di−1(h) = ∅ for all 2 ≤ i ≤ n − 1;
(ii) if 0 < h ≤ 1/(2n), then Di (h) ⊂ [−1+ 2h2, 1− 2h2

] for all 1 ≤ i ≤ n − 1;
(iii) |Di (h)| ≥ hϕ(ti )/2, 1 ≤ i ≤ n − 1.

In order to verify (i), we suppose that Di (h) ∩ Di−1(h) ≠ ∅. Then there is x ∈ [ti , ti−1] such
that x − hϕ(x)/2 ≤ ti and x + hϕ(x)/2 ≥ ti−1. Then, ti−1 − hϕ(x)/2 ≤ x ≤ ti + hϕ(x)/2,
which implies ti−1 − hϕ(x)/2 ≤ ti + hϕ(x)/2, and so

ti−1 − ti ≤ hϕ(x), for some x ∈ [ti , ti−1].

At the same time, it is known that |Ii | := ti−1 − ti satisfies ρn(x) ≤ |Ii |, for any 1 ≤ i ≤ n and
x ∈ [ti , ti−1], where ρn(x) :=

√
1− x2/n + 1/n2 (see e.g. [3], or this can be verified directly).

Therefore,

hϕ(x) ≤ ϕ(x)/n < ρn(x) ≤ ti−1 − ti ,

for any x ∈ [ti , ti−1], which is a contradiction.
In order to verify (ii), we note that, in the case i = 1 (which implies (ii) for all 1 ≤ i ≤ n−1),

(ii) follows from the observation that, if x = 1− 2h2, then x − hϕ(x)/2 > t1 = cos(π/n). This
inequality is equivalent to

cos(π/n) < 1− 2h2
− h2


1− h2 ⇐⇒ 2h2

+ h2


1− h2 < 2 sin2(π/(2n)),
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which is true since

(2h2
+ h2


1− h2)/2 ≤ 3h2/2 ≤ 3/(8n2) and

sin2(π/(2n)) ≥ [(2/π)π/(2n)]2
= 1/n2.

Finally, (iii) immediately follows from

|Di (h)| =
h


1− t2
i + h2/4

1+ h2/4
≥

hϕ(ti )

1+ h2/4
≥

hϕ(ti )

2
.

Therefore, letting h := 1/(2n) we have

Ω1
ϕ( f, 1/n)qwβ,β ,q ≥

 1−2h2

−1+2h2
ϕ2βq(x)


∆1

hϕ( f, x)
q

dx

≥


Di (h)

ϕ2βq(x)

∆1

hϕ( f, x)
q

dx

≥ c


Di (h)
ϕ2βq(ti ) ( fi − fi+1)

q dx ≥ c


hϕ2βq+1(ti ) ( fi − fi+1)
q

≥ cn−2βq−2


i2βq+1 ( fi − fi+1)
q .

Now, define

fi :=


22β(m−k)+2(m−k)/pζ

1/p
k , if 2k

≤ i ≤ 2k+1
− 1, 0 ≤ k ≤ m − 2,

0, if i ≥ 2m−1

where (ζk) is a non-increasing sequence to be chosen later. Observe that

2−2βk−2k/p


k is

non-increasing since β > −1/p. Then,

wβ,β f
p

p ≤ c
m−2
k=0

2k+1
−1

i=2k

i2βp+12−2βkp−2kζk ≤ c
m−2
k=0

ζk

and

Ω1
ϕ( f, 2−m)

q
wβ,β ,q ≥ c2−2βmq−2m

m−2
k=0

22βkq+k

×


22β(m−k)+2(m−k)/pζ

1/p
k − 22β(m−k−1)+2(m−k−1)/pζ

1/p
k+1

q

≥ c2−m
m−2
k=0


ζ

1/p
k − 2−2β−2/pζ

1/p
k+1

q

≥ c2−m


1− 2−2β−2/p
q m−2

k=0

ζ
1/2
k .

Now, let ζk := (k + 2)−1(ln(k + 2))−λ, where λ > 1. Then,wβ,β f
p

p ≤ c
∞

k=0

(k + 2)−1(ln(k + 2))−λ ≤ c
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and

Ω1
ϕ( f, 2−m)

q
wβ,β ,q ≥ c2−m

m−2
k=0

(k + 2)−1/2(ln(k + 2))−λ/2 ≥ c2−mm1/2(ln m)−λ/2.

Finally, recalling that 2−m < δ ≤ 21−m and replacing f with g :=
wβ,β f

−1
p f we get a

function in Sβ,βp ∩M1
+ such that

Ω1
ϕ(g, δ)wβ,β ,q ≥

wβ,β f
−1

p Ω1
ϕ( f, 2−m)wβ,β ,q ≥ c

δ1/q
|ln δ|1/(2q)

|ln |ln δ| |λ/(2q)
. �

Remark 6.9. One can improve the estimate (6.1) slightly by letting

ζk := (gm,λ(c(k + 1)))−1,

where

gm,λ(x) := x(ln x)(ln ln x) · · · (ln · · · ln  
m

x)(ln · · · ln  
m+1

x)λ,

with m ∈ N, λ > 1 and a sufficiently large constant c = c(m) that guarantees that gm,λ is well
defined on [c,∞).

7. Proof of Theorem 1.5

It was proved by Luther and Russo [10, Corollary 2.2] that, for α, β ≥ 0, there exists n0 ∈ N
such that

En( f )wα,β ,q ≤ cωk
ϕ( f, n−1)wα,β ,q , n ≥ n0. (7.1)

If α = β = 0, then this is a well known Jackson type estimate that was proved by Ditzian
and Totik in [2, Theorem 7.2.1]. Taking into account that, for 0 ≤ n < n0, En( f )wα,β ,q ≤
c
wα,β f


q ≤ c

wα,β f


p, if q ≤ p, we immediately get the following corollary of
Theorem 1.1 that implies all upper estimates in Theorem 1.5.

Corollary 7.1. Let 1 ≤ q < p ≤ ∞, k ∈ N, α, β ≥ 0, and let f ∈ Mk
∩ Lα,βp . Then, for any

n ∈ N,

En( f )wα,β ,q

≤ c
wα,β f


p



n−2/q+2/p, if k ≥ 2, and (k, q, p) ≠ (2, 1,∞),
n−2 ln(n + 1), if k = 2, q = 1, p = ∞, and (α, β) ≠ (0, 0),
n−2, if k = 2, q = 1, p = ∞, and α = β = 0,
n−2/q+2/p, if k = 1 and p < 2q,
n−1/q

[ln(n + 1)]1/(2q), if k = 1 and p = 2q,
n−1/q , if k = 1 and p > 2q.

(7.2)

A matching inverse result to (7.1) is given by (see [2, Theorem 8.2.4])

ωk
ϕ( f, δ)wα,β ,q ≤ cδk


0≤i<1/δ

(i + 1)k−1 Ei ( f )wα,β ,q . (7.3)
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Since, for µ, λ ∈ R and 0 < δ < 1/4,

 1/δ

2
xµ(ln x)λ dx ∼


1, if µ < −1,
δ−µ−1

|ln δ|λ, if µ > −1,
1, if µ = −1, λ < −1,
|ln δ|1+λ, if µ = −1, λ > −1,
ln |ln δ|, if µ = −1, λ = −1,

estimate (7.3) implies, in particular, that if for a function f ∈ Sα,βp ∩Mk ,

En( f )wα,β ,q ≤ c(n + 2)µ−k+1
[ln(n + 2)]λ, n ∈ N0,

then

ωk
ϕ( f, δ)wα,β ,q ≤ c


δk, if µ < −1,
δk−µ−1

|ln δ|λ, if µ > −1,
δk, if µ = −1, λ < −1,
δk
|ln δ|1+λ, if µ = −1, λ > −1,

δk ln |ln δ|, if µ = −1, λ = −1.

Together with lower estimates in Theorem 1.1 this implies that none of the powers of n in (7.2)
can be decreased (except for some cases when q = 1 and k ≤ 2). This is made precise in
Corollaries 9.4 and 9.5 which imply lower estimates in (1.8)–(1.10).

Whether or not powers of ln(n + 1) in (7.2) can be decreased is more involved. In the case
k = 2, q = 1, p = ∞ and (α, β) ≠ (0, 0), we only know that

cn−2
≤ sup

f ∈M2∩Sα,β∞

En( f )wα,β ,1 ≤ cn−2 ln(n + 1)

(see Corollary 9.5 with r = 0 for the lower estimate), and so it is an open problem if ln(n + 1)
in this estimate can be replaced by o(ln(n + 1)) or removed altogether.

In the case k = 1 and p = 2q , if En( f )wα,β ,q ≤ c(n + 2)−1/q
[ln(n + 2)]λ, n ∈ N0

(i.e., µ = −1/q), for any function f ∈ M1
∩ Sα,βp , then

ω1
ϕ( f, δ)wα,β ,q ≤ cδ1/q

|ln δ|λ, if q > 1.

Together with lower estimates of Theorem 1.1 this implies that, if k = 1 and p/2 = q > 1, then
the quantity n−1/q

[ln(n + 1)]1/(2q) in (7.2) cannot be replaced by n−1/q
[ln(n + 1)]1/(2q)−ε, for

any ε > 0. Also, this yields (1.11).
If k = 1, q = 1 and p = 2, then we know that (see Corollary 9.4 with k = 1 for the lower

estimate)

cn−1
≤ sup

f ∈M1∩Sα,β2

En( f )wα,β ,1 ≤ cn−1
[ln(n + 1)]1/2,

and it is an open problem if [ln(n + 1)]1/2 in this estimate is necessary.

8. Other applications

1. Let 1 ≤ p ≤ ∞, r ∈ N. Then

Lα,βp,r :=


f : [−1, 1] → R

 f (r−1)
∈ ACloc(−1, 1) and

wα,β f (r)


p
<∞


,
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and for convenience denote Lα,βp,0 := Lα,βp . Note that, if α = β = r/2, then Lr/2,r/2
p,r = Br

p, the
classes discussed in [8,9].

The following lemma is a generalization of [9, Lemma 3.4].

Lemma 8.1. Let 1 ≤ p ≤ ∞, r ∈ N0, α, β ∈ R and let f ∈ Lα,βp,r+1. Then f ∈ Lα−γ,β−γp,r , for
any γ < 1 such that α − γ, β − γ ∈ Jp.

Proof. Given f ∈ Lα,βp,r+1, taking into account that
wα−γ,β−γ p <∞ and replacing f (x) with

f (x)− xr f (r)(0)/r ! we can assume that f (r)(0) = 0. Now, if p = ∞, thenwα−γ,β−γ f (r)

∞

≤

wα−γ,β−γ (x)  x

0
f (r+1)(u) du


∞

≤

wα,β f (r+1)

∞

wα−γ,β−γ (x)  x

0
w−1
α,β(u) du


∞

≤ c
wα,β f (r+1)


∞

.

Similarly, if p = 1, thenwα−γ,β−γ f (r)


1
=

 1

−1
wα−γ,β−γ (x)

 x

0
f (r+1)(u) du

 dx

≤

 1

−1
wα−γ,β−γ (x)

 x

0
wα,β(u)| f

(r+1)(u)|w−1
α,β(u) du

 dx

≤

wα,β f (r+1)


1

 1

−1
wα−γ,β−γ (x) max

u∈[0,x]
w−1
α,β(u)dx ≤ c

wα,β f (r+1)


1
.

Suppose now that 1 < p <∞ and denote p′ := p/(p − 1). Using Hölder’s inequality we havewα−γ,β−γ f (r)
p

p
=

 1

−1
w

p
α−γ,β−γ (x)

 x

0
f (r+1)(u) du

p

dx

≤

 1

−1
w

p
α−γ,β−γ (x)


 x

0
w
−p′

α,β (u) du

1/p′  x

0
|wα,β(u) f (r+1)(u)|p du

1/p


p

dx

≤

wα,β f (r+1)
p

p

 0

−1
+

 1

0


w

p
α−γ,β−γ (x)

 x

0
w
−p′

α,β (u) du

p/p′

dx

=:

wα,β f (r+1)
p

p
·


I−α,β,γ + I+α,β,γ


.

We will now show that I+α,β,γ ≤ c (the proof that the same estimate holds for I−α,β,γ is analogous).
Indeed, if βp′ ≠ 1, then

I+α,β,γ ≤ c
 1

0
(1− x)(β−γ )p

 x

0
(1− u)−βp′ du

p/p′

dx

≤ c
 1

0
(1− x)(β−γ )p


max{1, (1− x)−βp′+1

}

p/p′

dx

≤ c
 1

0
max


(1− x)(β−γ )p, (1− x)−γ p+p−1


dx ≤ c.
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Finally, if βp′ = 1 (and so β = 1− 1/p), then

I+α,β,γ ≤ c
 1

0
(1− x)(β−γ )p|ln (1− x)|p/p′ dx

≤ c
 1

0
(1− x)p(1−γ )−1

|ln (1− x)|p−1 dx ≤ c.

This completes the proof. �

Remark 8.2. We actually proved that, if f ∈ Lα,βp,r+1 is such that f (r)(0) = 0, thenwα−γ,β−γ f (r)


p
≤ c

wα,β f (r+1)


p

provided that γ < 1 and α − γ, β − γ ∈ Jp.

Corollary 8.3. Let 1 ≤ p ≤ ∞, r ∈ N0 and α, β ∈ Jp. Then

Lα+(r+1)/2,β+(r+1)/2
p,r+1 ⊂ Lα+r/2,β+r/2

p,r

and, in particular,

Lα+r/2,β+r/2
p,r ⊂ Lα,βp .

It was shown in [8, Theorem 5.1] that, if 1 ≤ q ≤ ∞, 0 < r < k, and f is such that f (r−1) is
locally absolutely continuous in (−1, 1) and wα,βϕr f (r) ∈ Lq [−1, 1], α, β ≥ 0, then

ωk
ϕ( f, δ)wα,β ,q ≤ ctrωk−r

ϕ ( f (r), δ)wα,βϕr ,q . (8.1)

Taking into account that wα,βϕr
= wα+r/2,β+r/2, together with (7.1), this implies the follow-

ing Jackson-type result for weighted polynomial approximation (see also [8, Theorem 5.2]).

Corollary 8.4. If k ∈ N, 0 ≤ r ≤ k − 1, 1 ≤ q ≤ ∞, α, β ≥ 0, and f ∈ Lα+r/2,β+r/2
q,r , then

there exists n0 ∈ N such that

En( f )wα,β ,q ≤ cn−rωk−r
ϕ ( f (r), n−1)wα+r/2,β+r/2,q , n ≥ n0. (8.2)

Now, let 1 ≤ q < p ≤ ∞, k ∈ N, 1 ≤ r ≤ k − 1, and let f ∈ Mk
∩ Lα+r/2,β+r/2

p,r . Using
Corollary 1.3 and the fact that f (r) ∈ Mk−r , we conclude that, for n ≥ n0,

En( f )wα,β ,q ≤ cn−rΥα+r/2,β+r/2
1/n (k − r, q, p)

wα+r/2,β+r/2 f (r)


p
. (8.3)

It is not hard to see that this estimate holds for r − 1 ≤ n < n0 as well. Indeed, given a
function f ∈ Lα+r/2,β+r/2

p,r , let Tr−1( f ) be its Maclaurin polynomial of degree≤ r−1 (see (2.1)).
Then, for r − 1 ≤ n < n0, we have using Remark 8.2

En( f )wα,β ,q ≤
wα,β( f − Tr−1( f ))


q ≤ c

wα,βϕr f (r)


q
≤ c

wα+r/2,β+r/2 f (r)


p
,

q ≤ p.
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Hence, the following is another corollary of Theorem 1.1.

Corollary 8.5. Let 1 ≤ q < p ≤ ∞, k ≥ 2, 1 ≤ r ≤ k − 1, α, β ≥ 0, and let
f ∈ Mk

∩ Lα+r/2,β+r/2
p,r . Then, for any n ≥ r ,

En( f )wα,β ,q ≤ c
wα+r/2,β+r/2 f (r)


p

×


n−r−2/q+2/p, if k − r ≥ 2 and (k − r, q, p) ≠ (2, 1,∞),
n−r−2 ln(n + 1), if k − r = 2, q = 1 and p = ∞,
n−r−2/q+2/p, if k − r = 1 and p < 2q,
n−r−1/q

[ln(n + 1)]1/(2q), if k − r = 1 and p = 2q,
n−r−1/q , if k − r = 1 and p > 2q.

It follows from Corollaries 9.4 and 9.5 that estimates in Corollary 8.5 are exact in the sense
that none of the powers of n can be decreased. Using the inverse theorem [9, Theorem 9.1] it is
also possible to show that, in the case α = β = 0, k = r+1 and p/2 = q > 1, the power 1/(2q)
of ln(n + 1) cannot be decreased.

2. Littlewood’s inequality ∥g∥q ≤ ∥g∥
θ
s ∥g∥

1−θ
p , 1/q = θ/s + (1− θ)/p, 1 ≤ s < q < p ≤

∞, implies that

Ω k
ϕ( f, δ)w,q ≤ Ω k

ϕ( f, δ)θw,sΩ
k
ϕ( f, δ)1−θw,p ,

with similar inequalities holding for
−→
Ω k
ϕ and

←−
Ω k
ϕ as well. Therefore,

ωk
ϕ( f, δ)w,q = Ω k

ϕ( f, δ)w,q +
−→
Ω k
ϕ( f, δ)w,q +

←−
Ω k
ϕ( f, δ)w,q

≤ Ω k
ϕ( f, δ)θw,sΩ

k
ϕ( f, δ)1−θw,p +

−→
Ω k
ϕ( f, δ)θw,s

−→
Ω k
ϕ( f, δ)1−θw,p

+
←−
Ω k
ϕ( f, δ)θw,s

←−
Ω k
ϕ( f, δ)1−θw,p

≤ 3ωk
ϕ( f, δ)θw,s ω

k
ϕ( f, δ)1−θw,p .

Hence, using (8.2) and Theorem 1.1 we have the following estimates for f ∈ Mk
∩

Lα+r/2,β+r/2
p,r , 0 ≤ r ≤ k − 1:

En( f )wα,β ,q ≤ cn−r ωk−r
ϕ ( f (r), n−1)wα+r/2,β+r/2,q

≤ cn−r ωk−r
ϕ ( f (r), n−1)θwα+r/2,β+r/2,s ω

k−r
ϕ ( f (r), n−1)1−θwα+r/2,β+r/2,p

≤ cn−r

Υα+r/2,β+r/2

1/n (k − r, s, p)
θ

×

wα+r/2,β+r/2 f (r)
θ

p
ωk−r
ϕ ( f (r), n−1)1−θwα+r/2,β+r/2,p.

If s is such that 1 < s < q and s ≠ p/2, then

Υα+r/2,β+r/2
1/n (k − r, s, p) =


n−2/s+2/p, if k − r ≥ 2,
n−2/s+2/p, if k − r = 1 and p < 2s,
n−1/s, if k − r = 1 and p > 2s,
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and so
Υα+r/2,β+r/2

1/n (k − r, s, p)
θ

=


n−2/q+2/p, if 0 ≤ r ≤ k − 2, or r = k − 1 and p < 2s,
n−(p−q)/q(p−s), if r = k − 1 and p > 2s.

We now note that one can choose s so that 1 < s < q and p < 2s iff p < 2q. Also, note that,

for any s > 1,

Υα+(k−1)/2,β+(k−1)/2

1/n (1, s,∞)
θ
= n−1/q .

Therefore, taking into account that, in the case p <∞, ωk−r
ϕ ( f (r), n−1)wα+r/2,β+r/2,p → 0 as

n→∞, and that ωk−r
ϕ ( f (r), n−1)wα+r/2,β+r/2,∞→ 0 as n→∞ provided that f (r) is continuous

on (−1, 1) and limx±1wα+r/2,β+r/2(x) f (r)(x) = 0, we have the following two corollaries of
Theorem 1.1.

Corollary 8.6. Let k ∈ N, 1 < q < p < ∞, 0 ≤ r ≤ k − 1, α, β ≥ 0, and let
f ∈ Mk

∩ Lα+r/2,β+r/2
p,r . Then

En( f )wα,β ,q = o


n−r−2/q+2/p

, n→∞,

where either 0 ≤ r ≤ k − 2, or r = k − 1 and p < 2q.

Corollary 8.7. Let k ∈ N, 1 < q <∞, 0 ≤ r ≤ k − 1, α, β ≥ 0, and let f ∈ Mk be such that
f (r) is continuous on (−1, 1) and limx±1wα+r/2,β+r/2(x) f (r)(x) = 0. Then

En( f )wα,β ,q = o


n−r−min{k−r,2}/q

, n→∞.

9. Lower estimates of polynomial approximation

The following Remez-type inequality follows from [11, (7.16), (6.10)].

Theorem 9.1. Let 1 ≤ p ≤ ∞, and let w be a doubling weight in the case 1 ≤ p < ∞ or an
A∗ weight in the case p = ∞. For every Λ ≤ n, there is a constant C = C(Λ) such that, if
E ⊂ [−1, 1] is an interval and


E (1− x2)−1/2dx ≤ Λ/n, then, for each pn ∈ Pn , we have 1

−1
|pn(x)|

pw(x) dx ≤ C

[−1,1]\E

|pn(x)|
pw(x) dx, if 1 ≤ p <∞,

or

∥pnw∥L∞[−1,1] ≤ C ∥pnw∥L∞([−1,1]\E) , if p = ∞.

We recall that w is a doubling weight if


2I∩[−1,1]w(x) dx ≤ L


I w(x) dx , for all intervals
I ⊂ [−1, 1] (2I is the interval twice the length of I and with midpoint at the midpoint of I ), and
it is an A∗ weight if, for all intervals I ⊂ [−1, 1] and x ∈ I , w(x) ≤ L


I w(x) dx/|I |.

Since w p
α,β , α, β > −1/p, is a doubling weight, and wα,β , α, β ≥ 0, is an A∗ weight, we

immediately get the following corollary (see also [4]).

Corollary 9.2. Let 1 ≤ p ≤ ∞, and let α, β ∈ Jp. For every Λ ≤ n, there is a constant
C = C(Λ) such that, if E ⊂ [−1, 1] is an interval and


E (1− x2)−1/2dx ≤ Λ/n, then, for each
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pn ∈ Pn , we havepnwα,β


Lp[−1,1] ≤ C
pnwα,β


Lp([−1,1]\E) .

We are now ready to construct (truncated power) functions which will yield lower estimates.
Note that, if k ∈ N, 1 ≤ p ≤ ∞, 0 ≤ r ≤ k − 1, 0 ≤ ξ < 1, α ∈ R, β ∈ Jp and
f (x) := (x − ξ)k−1

+ , thenwα,β f (r)


p
∼ (1− ξ)β+k−r−1+1/p. (9.1)

Lemma 9.3. Let 1 ≤ q ≤ ∞, k ∈ N, α, β ≥ 0, n ≥ 2k, 0 ≤ ξ ≤ 1 − 2k2n−2 and let
f (x) := (x − ξ)k−1

+ . Then

En( f )wα,β ,q ≥ cn−k+1−1/q(1− ξ)β+(k−1)/2+1/(2q),

for some constant c independent of n.

Proof. We only provide the proof for the case q <∞. If q = ∞, it is obvious what modifications
are needed. It is convenient to denote θn := kϕ(ξ)/(2n). Then, in particular, θn ≤ 1/4 and
ξ ± 2θn ∈ [−1, 1]. Now, let pn be an arbitrary polynomial from Pn , define

f̃n(x) := ∆k
ϕ(ξ)/n( f, x), fn(x) := f̃n((1− θn)x),

q̃n(x) := ∆k
ϕ(ξ)/n(pn, x), qn(x) := q̃n((1− θn)x),

and note that q̃n is a polynomial of degree ≤ n on Jn := [−1+ θn, 1− θn], and hence qn is a
polynomial of degree ≤ n on [−1, 1]. We also note that f̃n(x) = 0, for x ∉ Ĩn :=


ξ − θn,

ξ + θn

⊂ Jn , and hence fn(x) = 0, for x ∉ In := [(ξ − θn)/(1− θn), (ξ + θn)/(1− θn)] ⊂

[−1, 1].
Now,wα,β( fn − qn)

q
q =

 1

−1
w

q
α,β(x)| f̃n((1− θn)x)− q̃n((1− θn)x)|

q dx

≤ c
 1−θn

−1+θn

w
q
α,β(x/(1− θn))| f̃n(x)− q̃n(x)|

q dx

≤ c
 1−θn

−1+θn

w
q
α,β(x/(1− θn))

×

k
i=0

| f (x − θn + iϕ(ξ)/n)− pn(x − θn + iϕ(ξ)/n)|q dx

≤ c
k

i=0

 1−2θn+iϕ(ξ)/n

−1+iϕ(ξ)/n
w

q
α,β ((y + θn − iϕ(ξ)/n)/(1− θn)) | f (y)− pn(y)|

q dy

≤ c
wα,β( f − pn)

q
q ,

since wα,β ((y + θn − iϕ(ξ)/n)/(1− θn)) ≤ cwα,β(y).
It is straightforward to check that


In
(1− x2)−1/2 dx ≤ c(k)/n, and so Corollary 9.2 implies

that wα,βqn


q ≤ c
wα,βqn


Lq ([−1,1]\In)

.
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Therefore, recalling that fn(x) = 0, x ∈ [−1, 1] \ In , we havewα,β fn


q ≤
wα,β( fn − qn)


q +

wα,βqn


q

≤
wα,β( fn − qn)


q + c

wα,β( fn − qn)


Lq ([−1,1]\In)

≤ c
wα,β( fn − qn)


q

≤ c
wα,β( f − pn)


q .

Now, noting that f̃n(x) = f (x + θn) = (x + θn − ξ)
k−1, if x ∈ [ξ − θn, ξ − θn + ϕ(ξ)/n] we

have wα,β fn
q

q ≥ c
 1−θn

−1+θn

w
q
α,β(x/(1− θn))| f̃n(x)|

q dx

≥ c
 ξ−θn+ϕ(ξ)/n

ξ−θn

(1− θn − x)βq(x + θn − ξ)
(k−1)q dx

≥ c
 ξ+ϕ(ξ)/n

ξ

(1− y)βq(y − ξ)(k−1)q dy

≥ cn−(k−1)q−1(1− ξ)βq+(k−1)q/2+1/2,

and so
wα,β fn


q ≥ cn−k+1−1/q(1− ξ)β+(k−1)/2+1/(2q).

Hence, for any pn ∈ Pn ,wα,β( f − pn)


q ≥ cn−k+1−1/q(1− ξ)β+(k−1)/2+1/(2q),

and the proof is complete. �

The following two corollaries provide all lower estimates in Theorem 1.5 and show that none
of the powers of n in Corollary 8.5 can be decreased.

Corollary 9.4. Let 1 ≤ p, q ≤ ∞, k ∈ N, and α, β ≥ 0. Then, there exists a function
f ∈ Mk

∩ Lα+(k−1)/2,β+(k−1)/2
p,k−1 such that, for each n ∈ N,

En( f )wα,β ,q ≥ cn−k−1/q+1
wα+(k−1)/2,β+(k−1)/2 f (k−1)


p
, (9.2)

for some constant c independent of n.

Proof. We let f (x) := xk−1
+ and note that f ∈ Mk . Now, (9.1) implies thatwα+(k−1)/2,β+(k−1)/2 f (k−1)


p ∼ 1, and Lemma 9.3 implies En( f )wα,β ,q ≥ cn−k−1/q+1, for

n ≥ 2k. For 1 ≤ n < 2k, (9.2) follows from En( f )wα,β ,q ≥ E2k( f )wα,β ,q ≥ c. �

It follows from Corollary 8.7 that there does not exist f ∈ Ck−1(−1, 1) ∩ Mk which is
independent of n, satisfies limx±1wα+r/2,β+r/2(x) f (r)(x) = 0, and for which (9.2) holds.

Corollary 9.5. Let 1 ≤ p, q ≤ ∞, k ∈ N, 0 ≤ r ≤ k − 1, α, β ≥ 0, and n ∈ N. Then, there
exists a function fn ∈ Mk

∩ Lα+r/2,β+r/2
p,r such that

En( fn)wα,β ,q ≥ cn−r−2/q+2/p
wα+r/2,β+r/2 f (r)n


p
,

for some constant c independent of n.
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Proof. For 1 ≤ n < 2k, the statement is clearly true, for example, for fn(x) = xk−1
+ . If n ≥ 2k,

we let ξn = 1 − 2k2n−2 and fn(x) := (x − ξn)
k−1
+ . Then fn ∈ Mk , Lemma 9.3 implies that

En( fn)wα,β ,q ≥ cn−2β−2k+2−2/q , and (9.1) yields
wα+r/2,β+r/2 f (r)n


p
∼ n−2β−2k−2/p+2+r .

Therefore, En( fn)wα,β ,q/

wα+r/2,β+r/2 f (r)n


p
≥ cn−r−2/q+2/p. �

It is interesting to note that Corollary 8.6 implies that fn in Corollary 9.5 cannot be replaced
by a function which is independent of n.
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