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Abstract

Let w{; (fs 3)w,JLq be the Ditzian—Totik modulus with weight w, MK be the cone of k-monotone
functions on (—1, 1), i.e., those functions whose kth divided differences are nonnegative for all selections
of k + 1 distinct points in (-1, 1), and denote £(X, Py )y, g := SUp rex infpep, w(f — P)||]Lq, where P,
is the set of algebraic polynomials of degree at most n. Additionally, let wy, g(x) := (1 + x)*(1 — x)/6 be
the classical Jacobi weight, and denote by S%”S the class of all functions such that || We,B.f H]Lp =1.

In this paper, we determine the exact behavior (in terms of §) of sup fES%ﬂ AMK a)](;(f ) 5)wa,5,]L,, for

1 < p,g < oo (the interesting case being g < p as expected) and o, 8 > —1/p (if p < c0)ore, 8 > 0
(if p = 00). It is interesting to note that, in one case, the behavior is different for « = g = 0 and for
(e, B) # (0, 0). Several applications are given. For example, we determine the exact (in some sense) be-

havior of E(M* N S%’ﬂ, P")wa_ﬁ,Lq fora, B > 0.
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1. Introduction and main results

Let wy, g(x) = (1 +x)%(1 — x)? be the (classical) Jacobi weight, | - ||, := I, —1.100
LZ"B = {f [-1,1]1— R ||wa,ﬁf||p < oo},

and let S‘;’ﬁ be the unit sphere in L% i, f € S‘Ix,’ﬁ iff || wa,ﬁf”p = 1. It is convenient to

denote J, = (—1/p,00) if p < 00, and J = [0, 00). Clearly, 1 € ]L;"S iff o, B € J,. We
note that more general than Jacobi weights can be considered, and many results in this paper are
valid and/or can be modified to be valid for those general weights. However, we only consider
Jacobi weights in order not to overcomplicate the proofs which are already rather technical,
and since the estimates of rates of unweighted polynomial approximation that have matching
converse results involve weighted moduli with classical Jacobi weights w22 = ¢", 7 € N

(see [8,9] or (8.2) with @« = B = O for an example of such an estimate). Here, as usual,
P(x) = wip i = (1—xH2
Let
- —kh/2+ih), ifx+tkh/2¢€]a,b],
A CF . 0, b = ;(l)< Y f(x — kh/2 +ih), ifx £kh/2 € [a, b]

0, otherwise,
be the kth symmetric difference, Aﬁ( f,x) = Alfl (f, x,[—1, 1]), and let
Ak (fox) = AK(fox +kh/2) and  AK(f.x) = AK(F x — kh/2)

be the forward and backward kth differences, respectively. The weighted main part moduli and
the weighted Ditzian—Totik (DT) moduli of smoothness (see [2, (8.1.2), (8.2.10) and Appendix
B]) are defined, respectively, as

Qy(f, 8)wp = sup NwAj (N, (—1262m2,1-24282)
§

O<h<
and
e
O Dy = O Oy + BE Oy + 25, D (L.D)
where
9
GEFDwp = sup MW Al 112
0<h<2k282
and
<~ <~
Q5 wp = sup  wARHL, o252, 1)-
0<h<2k282

Ifa = B = 0, then w’;(f, 8)1,p is equivalent to the usual DT modulus wé (f.8)p, =
supg <3 145, ()l .

It is easy to see that .Ql(;(f, Nwgpp =€ || wa,ﬁf”p for all , B € R. (Throughout this paper,
¢ denote positive constants that may be different even if they appear in the same line.) At the
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same time, moduli a)é‘)( f, 8w, g.p are usually defined with the restriction o, § > O for all p < oo
. _ . . k
and not just for p = oo. The reason for this is that, on one hand, @, (f, )w,4,p < ¢ || wwﬁf”[7

if o, B > 0, and, on the other hand, if « < 0 or 8 < 0, then there are functions f in }Lg‘ﬂ for
which wé(f, 8wy p,p = 00. Indeed, suppose that p < oo and that § > 0 is fixed. If f(x) =

x+1- 8)_0‘_1/17)([_14_5,_14_28]()6) witha < 0and 0 < & < 2k282, then ||wa’ﬁf||p <ec,

||wa,,3f(- +8)||p = 00, and ||wa,ﬁf(- +ie)||p =0,2<i <k, andso ﬁ’;(f, 8)%,5,,, = 0.

If a, B > 0, then it is easy to see that, if f € L%’ﬁ, 1 < p < oo, then limg_, o+ a)’(;(f, 8w p.p

= 0. In the case p = o0, the fact that f is in Lgf implies that a)g( J 8w, p,00 1s bounded but
it is not enough to guarantee its convergence to zero if «? + 8% # 0 even if f is continuous
on (—1, 1) (consider, for example, f(x) = w;}s(x)). One can show (see e.g. [3, p. 287] for a
similar proof) that, if « > 0 and 8 > 0, then for f € C(—1, 1), limg_, o+ w](;(f, 8wy p.00 = 0 iff
limy 41 we, () £ (x) = 0.

One can easily show that, for o, 8 € R,

sup 25 (f, Owg g ~ 1. 1<q=<p<oo. (1.2)
feS‘f;”S

(Here and later in this paper, we write F ~ G iff there exist positive constants ¢ and ¢ such
that c; F < G < ¢ F. These constants are always independent of §, n and x but may depend on
k, a, B, p and q.) Indeed, since Q£ (f, 5)wa,ﬂ»(1 <c H Wy, g f o Holder’s inequality implies the

upper estimate. The lower estimate follows, for example, from the fact that, fork e N, o, g € R,
0< p,g <o0,and 0 < § < 1/(2k), the function

(=D, ifx e [kSi kSG +1/2)], 0 <i < |1/(2k8)],
f3x) = {O, otherwise,

satisfies || We, 6 f5 ||p ~ 1 and Q(];(f(s, Nwgp.q =€ > 0 (see Lemma 6.1 for details).
The restriction ¢ < p in (1.2) is essential since

sup Q;f(f, S)Waﬂ,q =00, ifp<aqg.
fesy’f

This, of course, is expected since L‘Ix,’ﬂ 4 ]L‘,}"'3 ,if p < ¢, and follows, for example, from
Corollary 6.5.
If o, B > 0, then

sup @l (f. Ougpg ~ 1. 1<q<p <o (1.3)
feS'f,’ﬂ

This follows from (1.2) and the observation that, for «, 8 > 0, ﬁ’(;(f, 8)wa’ﬂ,q <c || We, g f ||q

Sk
and 2K (f,8)w,p.q <c ||wa,ﬁf}|q.
In this paper, we show that if the suprema in (1.2) and (1.3) are taken over the subset of

S‘Ix;ﬂ consisting of all k-monotone functions, then these quantities become significantly smaller.
This will allow us to obtain the exact rates (in some sense) of polynomial approximation in the

weighted IL;-norm of k-monotone functions in S‘;’ﬂ .
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Recall that f : I — R is said to be k-monotone on [ if its kth divided differences
[x0, ..., xk; f] are nonnegative for all selections of k + 1 distinct points xg, ..., x; in I, and
denote by M¥ the set of all k-monotone functions on (—1, 1). In particular, M?, M! and M?
are the sets of all nonnegative, nondecreasing and convex functions on (—1, 1), respectively.
Note that if f € MKk > 2, then, for all j<k-2, f(j) exists on (—1, 1) and is in ME—J,
In particular, f (k=2) exists, is convex, and therefore satisfies a Lipschitz condition on any closed
subinterval of (—1, 1), is absolutely continuous on that subinterval, is continuous on (—1, 1),
and has left and right (nondecreasing) derivatives, fik_l) and ff_k_]) on (—1, 1). We also note
that it is essential that (—1, 1) and not [—1, 1] is used in the definition of MF since the set of all
k-monotone functions on the closed interval [—1, 1] contains only bounded functions (if £k € N).

Our main result is

Theorem 1.1. Letk e N, 1 <g < p < o0, a, B € Jp, and 0 < § < 1/4. Then,

k
sup @y, (f, Owgp.q
feS‘,I,‘ﬂﬂMk
82197217 if k > 2 and (k,q, p) # (2,1, 00),
82lns|, ifk=2g=1 p=o0, and (a, B) # (0,0),

~ 152, ifk=2¢g=1p=o00,and (a, B) = (0,0), (1.4)
82147217 ifk =1and p < 2q,
s/, ifk=1and p > 2q.

If k =1and p = 2q, then

s!/4n 8|1/ 29

1 1 1/2
e D S SUP (i Dugpg S 8T ED, A > 1. (1.5)

Fessfam

Remark 1.2. It is easy to see (and follows from Lemmas 2.1, 2.4 and Corollary 4.2) that, for
keN,l§qSpfoo,a,ﬁeJp,andfeIL%’ﬂﬂMk,

O (fs upg < ¢ Jwapf],, 8>0.

Hence, Theorem 1.1 needs to be proved only for “small” §, and the restriction § < 1/4 is chosen
for convenience only (to guarantee that none of the quantities in (1.4) and (1.5) are zero while
keeping them simple).

In the case « = § = 0, all upper estimates and several lower estimates of Theorem 1.1 were
proved in [7], and so the upper estimates in (1.4) and (1.5) will only have to be established for
(e, B) # (0,0) in the current paper. We remark that the fact that the case k = 2, ¢ = 1 and
p = oo turned out to be anomalous for («, B) # (0, 0) causes rather significant difficulties in
the proof of Theorem 1.1 for k > 2, ¢ > 1 and p = oo, since the rather simple main approach
from [7] can no longer be used. (Section 5 is devoted to overcoming these difficulties.) We also
note that the restriction «, B € Jp, in Theorem 1.1 guarantees that the classes Sﬁ’ﬁ N M¥ contain
constants and so are rather rich. Without this restriction, we would have to deal with various
anomalous situations and vacuous statements of theorems. For example, S‘;’ﬁ nNM! = ¢gif

o, B < —1/p since, in this case, it is clear that Hf;,’ﬁ N M! contains only functions which are
identically 0 on (—1, 1). Similarly, it is possible to show that S%’ﬁ NM? =@ifa, B <—1/p—1.
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At the same time, putting restrictions on « and g in the statements of some of our theorems would
be a red herring (Lemma 4.1, for example, is an illustration of this). Hence, an interested reader
should keep in mind that even if a statement is given for all @, 8 € R, it may happen that it only
applies to trivial functions if o, 8 & J).

It is convenient to denote

§2/4=2/p, ifk > 2, and (k, q, p) # (2, 1, 0),
82|1n8|, ifk=2,qg=1, p=o00,and (a, B) # (0,0)
82 ifk=2,4=1,p=o00,and (o, B) = (0, 0),

C{,ﬂ — )
Ts7kea. p) = g21a-2p, ifk=1and p < 2g, (10

§4|Ins8|"/?9 | ifk =1and p = 2q,
st/ ifk=1and p > 2g.

The following is an immediate corollary of Theorem 1.1.

Corollary1.3. Letk e N, 1 < g < p < oo, a,B € Jp, f € /\/lkﬂ]LZ”3 and 0 < § < 1/4.
Then,

O (f, Dugpg < T3 U g, p) [wap £, (1.7)

where Tg’ﬁ(k, q, p) which is defined in (1.6) is best possible in the sense that (1.7) is no longer
valid if one increases (respectively, decreases) any of the powers of § (respectively, |Ind|) in its
definition.

Remark 1.4. The restriction g < p in the statement of Theorem 1.1 is essential since, if p < ¢,
then Corollary 6.5 implies that

k
sup @y, (f, O, p,qg = 00,
festPnmk

and, if p = g, then it is easy to see that
k
sup a)(p(f, S)wa,ﬂ,p ~ 1.
feS‘;’ﬁﬂM"

Let P, be the set of algebraic polynomials of degree at most n, and denote
E = inf - P
7 (g A lw(f = P)lly
and

5(X1 Pn)w,q ‘= sup Ey (f)w,q-
fex

It is rather well known that
S(S([xfﬁ, ]P)n)wa,ﬂ,q ~1, 1<g=<p<=<oo.

(This also follows from (1.3), (7.1) and Remark 6.2.) At the same time, for the class of
k-monotone functions from SZ’ﬂ , we have the following result.
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Theorem 1.5. Let 1 < g < p <00,k € N, and o, B8 > 0. Then, for any n € N,
g(Mk N Sl;’ﬁy ]Pn)wq,,g,q

n=2a+2p, if k> 2and (k,q, p) # (2,1, 00),
~1n2 ifk=2q=1p=oc,anda =8=0, (1.8)
p~min(2/q=2/p.1/q} ifk=1and p +2q.

Ifk=2,q=1, p=ocoand (a, B) # (0,0), then

en? < EM2NSEL  P)uy 1 < enn(n+ 1). (1.9)
If k =1and p = 2gq, then
en M1 < EM' NS5 Budug g < en” [ + 1]V, (1.10)
Additionally, if ¢ > 1, then for any ¢ > 0,
limsupn'/4[In(n + 1)~/ g(M! N ng, P g = 0O (1.11)
n— oo
In the case « = B = 0, (1.8) and the lower estimate in (1.10) were proved by

Konovalov, Leviatan and Maiorov in [5, Theorem 1]. The upper estimate in (1.10) and (1.11)
improve corresponding estimates in [5, Theorem 1] (considered there in the special case @ =
B =0).

We remark that it is an open problem if In(n 4 1) in (1.9) can be replaced by a smaller quantity
or removed altogether, and if [In(n+1)] 172 g necessary in (1.10) in the case (k, g, p) = (1, 1, 2).
Also, while it follows from (1.11) that, in the case ¢ > 1, the quantity [In(n + DY@ in (1.10)
cannot be replaced by [In(n + 1)]'/@9~¢ with ¢ > 0, the precise behavior of E(M! N Sg[’f ,
Pp)w, 4.4 is still unknown (see Section 7 for more details).

Finally, we mention that several other applications of Theorem 1.1 are given in Section 8.

2. “Truncated’ k-monotone functions

For k > 1, we denote

M’;::{feM"

f(x) =0, forall x (—1,0]}.

Note that, if f € M¥ ,then £ (0) =0,0 <i <k —2,and F*P(0) = 0.
In this section, we prove that it is sufficient to consider classes M’jr instead of M¥ in Theo-
rem 1.1 (see Lemma 2.4). This will significantly simplify the proofs of upper estimates.

Lemma2.l. LetkeN 1< p<oo,a, e Jyand f € MFK OL‘[”;’S. Then

|wapTec1 (N, < ¢ |wap £, -

where

k=2
Ti—1(f.x) = A0 k= D1+ F O/t @.1)

i=0
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Proof. It follows from [7, Lemma 3.7] that ||Tk_1(f)||]Lp[_1/2’1/2] < cllfllL,(~1/2.1/2)- There-
fore, taking into account that ” Wq, B ”p ~ 1and wy g(x) ~ 1 on[—1/2,1/2], we have

A

”woz,ﬂTk—](f) ||[, S clTi-1(Hlle = ¢ ||Tk—1(f)||]1,p[71/2,1/z]
cllfll,—1/2.1/2) = ¢ ||wa,5pr’

IA

where we used the fact that, for any py—1 € Pr_;and I C J,
IPk—1 (L) = clpa—1 (DL, y» ¢ =c, LI/,
which follows, for example, from [1, (4.2.10) and (4.2.14)]. O

The following lemma can be easily proved by induction.

Lemma 2.2. Let f € M¥, k € N, be such that f0(0) = 0,0 <i <k —2, and f*~"(0) = 0.
Then f is j-monotone on [0, 1) and (—1)*=7 f is j-monotone on (-1, 0], forall0 < j <k — 1.

Corollary 2.3. If k € Nand f € M~ then f € M‘i,for all0 < j<k-1

Lemma24. LetkeN, 1<qg<p=<oo,a fcJyandd > 0. Then

sup @ (fr Dwgpg ~  SUP O (f D pqt U @b (f Dy
fesyPnme fesyPnmt feshenmt

Proof. First of all, it is clear that

sup Wb (. Duwgpg = SUp  Ob(f Oupaqg- 2.2)
feS‘[’,‘ﬁﬂM" feSfﬁ’“ﬂMk

This immediately follows from the observation that f(x) € S5 N M¥ iff (—1)f f(—x) € SH®
N Mk,
Now, the estimate
2 sup &b (fDugpg = P O (FiDupgt U O (fDupag
feS‘;”SﬁMk feS%'ﬁﬂM"’ feSﬁ’aﬂ./\/l"
> sup b (fiDugpgt  SUP O (f O upag
feS‘,",‘ﬁﬂMﬁ feSfi‘“ nME

is obvious since M’jr c M*. To prove the estimate in the opposite direction, suppose that &,
o, B, 8, g and p satisfy all conditions of the theorem, and let f be an arbitrary function from
M+ N S%P . Denote

1) = (f(x) = Tr—1(f, X)) xpo,1(x) and  fo(x) == (f(x) — Tr—1(f, X)) x(-1,01(%),

where Tj—1(f) is the Maclaurin polynomial of degree < k — 1 defined in (2.1). It is clear that
fi(x) and fo(x) = (=D fo(—x) are both in M’i Taking into account that f — Tip_1(f) =
h+ L 1Al 1Rl =1+ £l

Hwa,ﬁf2 ||p = Hwﬁ,aszp and a)f;(fz, 8)wa,ﬂ,q = a)(’;(fz,a)wﬂmq,
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we have

[wap fill, + Hwﬁ,afZHP

[was il + [ was o], < ¢ Jwas Q11+ 152D]

= ¢ |wap (f — kal(f))“p =< CHwa,ﬁf”p =6

where the second last inequality follows from Lemma 2.1.
Now, if neither f] nor f; is identically equal to 0 on (—1, 1), using the fact that

-1 ~ -1 ~
” wa,,gfl ”p fi1 € S(;’ﬂ N M,j_ and ” w'g,afg Hp fr € S’g’a n M,j_
we have
OF (f, O wgpg < O 1 Owgpg T 052 Dy pig = @51, Oy pig + 05 (2. Oupag

= |wasfi]l, of (Jwapsil;' f1.8
P P

A

Wq,B,9

=1 .
w(]; (H Wa,o f2 ‘ f2, 3)
p p Whaq

<c sup (fidugpgtc  sup OE(f g
resy?nmh feshenmt

+ H wﬂ,oth

If f1 or f> is identically zero, the estimate is obvious. [
Lemma25. Letke N, 1 <g<p<oo,a,Bel,v,yeR and0 <6 < 1/k. Then

Sup  of (fOugpg ~ U @b (F Oy gt SUP OE(f Oy g
FestP Mk fesiPamk fespFinME
Proof. The lemma immediately follows from Lemma 2.4 and the observation that
Wa,p(X) ~ wy, g(x) and  wge(x) ~ wy, o(x), —1/2=<x <1,

[wak, o) [wal, o) 0<h=1/k

Ly(S) Ly (SN[=1/2,1])

and
lwfilL,s) = llwfllL,sno.1) -
for any f which is identically Oon [—1,0]. [

3. Auxiliary results and upper estimates for ¢ = 1

The proof of the following proposition is elementary and will be omitted.

Proposition 3.1. Let O < n < 1. Then the following holds.

(@) If |A| < /21, then the function x — x + Ao(x) is increasing on [—1 +n, 1 — n] and has the
inverse y — ¥ (A, y), where

— A /1_y2+)\‘2

Y
Y y) = e

3.1
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(d) If 1Al < /21, then

1—n
/ 8(x) f (x + Ap(x)) dx

—l+9
I=nth/ 2= oY (A, y)
= X, 3.2
/Hnﬂmf(y)g(w( V) ——— 3 (3.2)

©) If |x| < 1/+/4A2 +1, then l < W < 2. In particular, if |A| < /n/2, then
—<M<2f0rx€[ 1+77, —n],andhence%5%;"”52f0ry6[—1+n+

M2 =02 1T —n+ry2n —n?].

(d) If |x] = 1 —n, then p(x) < /2/n(1 — |x).

@ If M < /n/2and |x] < 1—mn, then (1 —x)/4 < 1 —x+ rp(x) < 2(1 — x) and
(14+x)/4<14+x+rp(x) <2(1 +x).

We are now ready to prove the main auxiliary theorem which will yield upper estimates in
Theorem 1.1 for ¢ = 1. In view of Lemma 2.5 we consider f € Mﬁ N ]L’f A noting that while
we could consider f € Mﬁ N ]L?’ﬁ , the symmetry makes things more convenient. We also note
that it is possible to use the same approach in order to prove this theorem for f € M¥* N L‘f’ﬂ ,
but the estimates become more cumbersome. Finally, recall that wg g(x) = (pzﬂ (x).

Theorem 3.2. Letk € N, € R, f € MX NLY*, and 0 < § < 1/(2k). Then
k
o (fs Duwgp1 < ¢ I wﬂ»ﬂf”]Ll[173k282 1]

G . 33
+co$23 1=y wg (N f () L0122 (3.3)

The following corollary immediately follows by Holder’s inequality and the fact that, for
1 <p' <oco(withl/p'+1/p=1),

WP ek > 2,
<cyma)V?, ifkp =2,

-7
I, if kp’ < 2.

]Lp/[0,172k2h2j
Corollary 33. Letk €N, € R, 1 < p < oo, f € MA NLEP and 0 < 5 < 1/(2k). Then

82—2/17’ ifk>3,0ork=2and1 < p < o0,
ork=1and 1< p <2,

@ (2 8w g1 gcuwﬁ,ﬂf”p 82Ins|, ifk=2and p = oo, (3.4)
8/IIn8|, ifk=1land p=2,
S, ifk=1land2 < p < 0.

Remark 3.4. If 8 = 0 and & is even, or if 8 = —1/2 and k is odd, then estimates (3.3) and (3.4)
can be improved (see Remark 3.7 and [7, Theorem 3.2]). In fact, if 8 = —1/2 and k = 1, then we

,foralll < p <ocoand f € ./\/ll nL, /2.~ ]/2,
and not only for 1 < p < 2 as (3.4) implies. However, this is not too exciting since, on one hand,
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B = —1/21isin J, only if 1 < p < 2 and, on the other hand, if p > 2 then the set M}r N

LI_,I/ 2712 consists only of functions which are identically equal to 0 on (—1, 1).

Remark 3.5. Corollary 3.3, together with Lemmas 2.4 and 2.5, implies the upper estimates in
Theorem 1.1 in the case ¢ = 1 (except for the case « = B = 0 when k = 2 and p = oo which
follows from [7]).

Now, if f € M’_i N L’g’ﬁ issuchthat f =0on|[0, 1 — ASZ], for some constant 0 < A < § 2,
then taking into account that

< c(A, k, p)s?/7,

sup K H(l — y2)k2
O0<h<$é

Lp/[lfA(Sz,lekzhz]

we have another corollary of Theorem 3.2.

Corollary 3.6. Letk € N, B € R, 1 < p < 00,0 < 8 < 1/(2k), and let f € M~ N1LEP be
such that f(x) =0forx € [0,1 — A32], for some positive constant A < 872, Then

k 2-2
w(p(f’ S)Wﬂ.ﬁs] = cé /» ” wﬂvﬂf”p
where ¢ depends on A.

Proof of Theorem 3.2. Let & € (0, §] be fixed. Taking into account that f € MK, A’;l o0 (f5X)
> 0 and Proposition 3.1(b) with n = 2k2h? and Ai=0—k/2)h,0<i <k, wehave

k
lwp, g Apg f L = 1426282, 120202

kK /k o p1-2k%R2
=3 (§) vt [ w0t dx
i=0 ?

-1+
k. /k - 1-2k2h2+Q2i—k)kh? A/ 1—-k2 12 IV i y)

= ) (=D "/ wp,p (Y (Ai, Y f () ————
,=0<l> —14+2K212+(2i —k)kh2/ 1—k2h? pr l dy
kK /k i 1-2k%h2—k>h%\/1—k2h? 1—-2k%h2+(2i —k)kh? \/ 1—k2h?

=y (F)ev{ +f
;( ) 0 1-2k2h2—k2h2A/ 1—k2h?

w V) 4

x wp,p (Y (his ) f (1) ———

=Y (i ) DT +T). (3.5
i=0

It follows from Proposition 3.1(e) that
wg g(x) ~ wg g(x + Ap(x)), for|x] <1—nand|A| <./n/2. (3.6)
In particular, this implies that

wpp(W A, y) ~wpp(y), foryel=14+n+r/2n—n% 1 —n+2r/2n—n%]

and |A] < \/77/2.
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Hence, noting also that Proposition 3.1(c) implies that |01 (A;, y)/dy| < 2,forall 0 <i <k,
we have

k. /k A
> <l> (—DFT,

1-k2h?
r = C,[_3k2h2 |wﬂ,ﬂ()’)f()’)| dy <c ” wﬂ’ﬂf”L][l—3k232,1] . (37)

Now,
Kk /k _ 1-2k2h% —k2h% A/ 1—k2h?
<.>(—1)k’1c = / FOAR(y, h)dy
i=o \! 0
1—2k2n?
5/0 PO ARG, Bl dy,
where
(K k—i ”
Ay =Y () D wg g Gi )T Gui, 3)
i=0
and
Ty WD) iy +y/ 1=y + 2
i»Y) = =

oy (1+ 22 /1 =y + 22

Suppose now that y € [0, 1 — 2k%h?] is fixed and, for convenience, denote ¥ := ¢(y). Then ¢ >

3kh.
Note that
Ar(y, by =" <1> (—DF gy (i /9) = Af 15 (gy.0),
i=0
where

gy (1) = wp (WO, YDV (D, ).
Recall that, if g is continuous on [x —m /2, x +mu/2], then for some & € (x —mu/2, x+
m/2),

A (g, x) = " g™ (&). (3.8)

Hence,
dk
ALy, ) = 1479 (8, 0)] < KD | gy (1) : (3.9)
C[—-1/2,1/2]

‘We now note that

oo,y =TI Y

1+ 12092 V142 -ty
and
ty + V1412 1 1

Vv, y) = = :
A+20D)V1 412 J1+12—ty 1412
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and, in particular,

~ (@D, y))
Jav,y) = L2
1412
Therefore, recalling that wg g = (pzﬁ we have
26+ (o (19, ; ~2p-1
g = D gyt (1o )
94/1 + 12 1412

Remark 3.7. If G, (¢) := (gy(t)—i—(—l)kgy(—t))/Z, then Ax(y, h) = A’,‘l/ﬂ(Gy, 0).Ifg=-1/2
and k is odd, then G is identically equal to 0, and so |Ax(y, h)| = 0. Also, if 8 = 0 and k is
even, then G, (1) = (1 + 292)~", and s0 |G® (1) < cv* and |A¢(y, h)| < ch*. Hence, (3.3)
can be improved in these cases.

Noting that |¢]y/+/1 4 2 < 1, we have the following expansion into binomial series

—2p-1 00 iy
ty _ =28 — ity
<1 N +72> _;( i )(_ Yot

and so

ﬂ ; tiyi
=0 5 () N s

The derivatives of this series are uniformly convergent on [—1, 1] (to take a simple interval)
because it can be easily seen that, for |t]| < I,

k ¢ i1 min{i,k} It] i—j
- Y
S;KWH CZ(’“(J—z)

c(i + DHk2=i/2,

()
Estimate (3.9) now implies that

|Ak(y, h)| < chk9?P=K,

d* I
dtk (1 + 2)p+1+i/2

IA

Hence, for |t] < 1,

d* :
&0 < 0¥ Z (i + D*271/% < cv?P.
i=0

and so

kK /k , 1-2k21?
Z(l.)(—l)k—lzc < cht / (1 =y 2 ()1 dy. (3.10)
0

i=0
Together with (3.5), inequalities (3.7) and (3.10) imply that

Q(’;(f, Suwpp1 =¢ || wﬂ’ﬁf”]L][1—3k232,l]

Wk H 1 = y2)—k/2 H ) 3.11
+Coilf125 (L= w7 ) L1[0,1-2k2h2] GAb

Finally, Lemma 4.1 (that we prove in Section 4 for all ¢ > 1) with ¢ = 1, together with (3.11),
implies (3.3). O
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4. Upper estimates for ¢ > 1
Lemmad4.l. LetkeN, 1 <g <oo,a,BeR, and [ € Mﬁ ﬂ]Lg’ﬁ. Then

<~
R4 Ouwapg = ¢ [wapfly n_szse -

Proof. Corollary 2.3 implies that f is non-negative and non-decreasing on [0, 1] and so, for any
0 < h < 2k*8%, we have

<~ 1 k k\ 14 .
s BN | pingeyy <€ /1 D> [( l. )} w4 ()] f(x — i)|? dx
=

k

1
q q
= CZ/I s We p(ONf0)[*dx < ¢ ”w%ﬂf”ILq[]kazSz,l]’
i=0 v 1-2k%3

and it remains to take supremum over & € (0, 2k282]. O

By Holder’s inequality, the following corollary is an immediate consequence of Lemma 4.1.
Corollary4.2. LetkeN, 1 <g<p <oo,a,f R and f e M N ]L%’ﬂ. Then

<~ _
Qf;(f, Nwepg = cs¥a=2p ||wa,ﬁf“L,,[1—2k252,1]'

Lemmad4.3. Let 1l <g <oo,, B R andlet f € ILZ’ﬂ be nonnegative on [—1, 1. Then,

1 1 1/q
@ (f. 8wy g < cw(p(f‘l, 8)U)qa,q/3»1'

Remark 4.4. If f € Mlﬁ]LZ’ﬂ, 1 < g < 0o, is nonnegative on [—1, 1], then f9 e Mlﬂ]L?a’qﬁ.

Proof. Let 1 < g < oo, and let f € ]LZ"3 be nonnegative on [—1, 1]. It was shown in the proof
of [7, Lemma 3.4] (and is easy to see) that,

AL o|" = Ak o

This implies

, wn>0.

1-2h2

q
QN f. 8y = sup / e p (1) by (0| dx
¢ Heb T s J—14om2 P he()

IA

1-2h2
q 1 q _ 1/ rq
sup / w (x)‘A (f,x)‘dx_.(l(f,(S) wep.l
0<hzs J-14om2 *P ho ) Y Haeas

and, similarly,

< 1 « q
2Ly = sup / wa’lg(x)|A},(f,x)‘ dx
0<h<262 J1-252

IA

1 <« <~
sup / wl @) | DL 0] dx = DL Do
O<h<282J1-282

and, since ﬁ}p( f5 8w, 4.q can be estimated similarly, the proof is complete. [
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Lemmad4.5. Let 1 < g <00, ,B € R, and let f € MZn }Lg’ﬂ be nonnegative on [—1, 1].
Then, f4 € M?*nN I[,?a’qﬁ, and

2 2 !
O3 (f, O g < cop(f1, 0,0 .

Proof. It was shown in the proof of [7, Lemma 3.5] that, for any nonnegative convex function f,
q
(22¢0) =271 2210, p>o,
and the rest of the proof is analogous to that of Lemma 4.3. [

Now, taking into account that, for a nonnegative f, |wga,qs./|| ;//(f] = |wa.pf]| ,» and using

Lemmas 4.3, 4.5 and Corollary 3.3 (with p/q instead of p) we get the following result.

Corollary4.6. Let k = lork =2, B e R 1 < g < p < oo, f € M NLEP and
0 < 8 < 1/(2k). Then
o (f. Ows .
§2/a=2/p, ifk=2and p <oo,ork=1and p < 2q,
§2/4\ms|",  ifk=2and p = oo,
SC”wﬁ’ﬂf”p sY4In 81" ifk =1and p = 2q,
st/ ifk=1and p > 2q.

Lemmas 2.4 and 2.5 now imply upper estimates in Theorem 1.1 for k = 1 and k = 2 and
q > 1 except for the case (k, p) = (2, 00), which will be dealt with separately in the next section.

We will now finish the proof of the upper estimates in the case k > 3. It follows from
[2, Theorem 6.2.5] that

Q5 (f D wpg < C(f Ougpgr k= 3. @.1

Now, suppose that f € ./\/l’fF N }L',S,’ﬁ, k > 3. Corollary 2.3 implies that f € M?2, and so using
Corollary 4.2 and (4.1) we have

k(f,s 02(f, 8 AR
w(p(fa )wﬂ,ﬁ,q ¢ (p(f» )w,g,ﬂ,q+ (p(f» )w,s,ﬂ,q
2 2/q—2
oy (f, O)ugpq + 8717 wppf|,-

We have already proved that

A

IA

0 (fs g pig <8770 |wppf] . feMINLYP, 4.2)

in the case ¢ > 1 and p < oo, and will prove it for ¢ > 1 and p = oo in the next section, and so
upper estimates of Theorem 1.1 for k > 3 and g > 1 now follow from Lemmas 2.4 and 2.5.

Hence, in order to finish the proof of all upper estimates in Theorem 1.1 it remains to prove
(4.2) in the case ¢ > 1 and p = oo. This is done in Section 5 (see Lemma 5.3).

5. Improvement of estimates for convex functions if ¢ > 1

Forn € N, we define ¢; := cos(in/n), 0 <i <m,and [; := [t;,ti—1], 1 <i < n.Recall
that (¢;);; is the so-called Chebyshev partition of [—1, 1]. Some of its properties are stated in the
following proposition that can be verified by straightforward computations.
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Proposition 5.1. For each n € N, the following statements are valid.

(@) For2<i<n—1landx € I;,20(x)/n < |I;| < 5¢(x)/n, and 2n=? < |I;| = |I,| < 5n~2.
®) j-al/3 <Ll <3j1,2<i <n
() Foranyn e N, 1< j<nand ) <1/n, t; +Ap(t;) <tj_1 — Ao(tj_1).

Lemma 5.2. Let 0 < 8 < 1/100, B € R, and let f € M* N Lg’ﬁ, 1 < g < oo, be such that its
restrictions to [—1, —1 + 1008%] and [1 — 10082, 1] are linear polynomials. Then

05 (f.8) 26,4 < 89T Q2(f.8) 14170 .

Proof. First, note that, for O < h < §,if [x| > 1 — 8582 then [x] = he(x) >1— 10082, and so
Ao (fsx) = 0if x € [=1, =1 + 8561 U [1 — 8582, 1]. Therefore,

Qz(f S)U)ﬁ/gq = sup Hwﬁ ﬂAhw

0<h<$ Lyl— 14+-8h2,1—-8h2]

IA

sup ||weg, ﬁAh(ﬂ(f) ”

0<h<$ Lg[—1+8582,1— 85821

Now, note that, foreachm € Nandn > 2m+1,if n > 5m?/n?, then [—14n, 1=n] C [ty_m, tn].
Hence, if we let n := | 1/8] then [—1 4 8582, 1 — 8582] C [th—4, 4] = U::; I;, and so

05 )y pq < S Z/ wpp(X) Ay (f )| dx.

Since h < § < 1/n, Proposition 5.1(c) implies that if x € [;, then x = ho(x) € I~l = [tit1, ti—2].

Now, for 5 <i < n —4,let p; be the linear polynomial interpolating f at the endpoints of Z ,
andlet g; .= f — p;. If xo € [; is such that || g; ”(C(IN,-) = |gi(xp)| (recall that convex functions are
continuous in the interior of their domaini), using the fact that g; is convex (and so lies below its
secant lines) and is O at the endpoints of /;, we get

1 ~ 1 ~
Sl ille ) = 51718 (o)l < f[ 18 ()] dx,
and so

If = pilley <2017 If = pilly, @), S<i<n—4

Therefore, recalling that wg g = ¢*# and using the fact that wg g(x) ~ wg g(#), x € I;, and
Proposition 5.1(a) we have

05(f. 85 4.q

IA

q
sup Z/; “pzﬂ(x)A%(p(x)(f_piax) dx

0<h=<é ;=3

cszﬂq(mw If = pillg,z,

i=5

-
e D PN = il 7

IA

IA
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IA

-
-1 _2Bq—qg+1
e Y TP @y I f = pill]

IA

n—4 q
cn?”! (Z P9y || f — pi IIL]@.)) :

i=5

where, in the last estimate, we used the inequality > |a; [ < (O |a;|)9.
It follows from [6, Theorem 1] that

If = pilly, i) < con(f 11 T, 5<i<n—4,

where Z = [ti42, t;—3] (since 7 is in the “interior” of I) and oy (f, 1, I) is the usual second
modulus on . Proposition 5.1(a, b) implies that n|I |/p(x) ~ 1, x € I,, and, in particular,
|I |/@(x) < ci/n, for some absolute constant c,. Now, [12, Lemma 7.2, p. 191] yields

C H 2
w2(f, w, [a, b < —f / |[AL(f, x, [a, b])|dx dh,
mJo Ja
and hence

w2 (£ 1T1, I < con(f, 111/ (2ex), T

¢ h/eey -
T/Af | Aj; (f, x, I;)|dh dx
\I;] JT; Jo

<

¢ 171/ e () 5 ~
< W/A/o 0182, (f,x, T dhdx
<

1/(2n) s
cn/A/ |Ah¢(x)(f,x)|dhdx.
I; JO

Therefore,

n—4 1/(2n) q
021,800 < ent™1 30 g1y /A /0 142, (f, 0 dh dx
i=5 I
1/<2n>n —4 4
2g—1 / [ 28— 1+l/q(-x)|Ah(p(x)(f .X)ldx dh
0

q
3]
cnd! ( sup / <P2ﬁ_l+l/q(x)|Ai<p(x)(f’ x| dx)
th—1

0<h<1/(2n)

IA

IA

1-8h2 a
<t sup f G101 A2 L (f 0l dx

0<h<1/(2n) J —1+8h2
< canlh(zg(f, 1/(2n))22ﬂ,1+1/q’1,
and it remains to recall that n = | 1/8] and so, in particular, 1/(2n) <6 < 1/n. O

Lemmas5.3. LeteR 1 <g <ooand f € Mi ﬂng,ﬁ. Then

wi(f, wpp.g = c8/ ” wﬂyﬂfuoo
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Proof. Let0 < 6 < 1/100, denote xg := 1 — 10082, and define

[ f@). if x < xo,
il = {f(xo) + (ko) (x = x0), ifxo <x < 1.

Clearly, fi € M3 and, since 0 < fi(x) < f(x), xo < x < 1, we conclude that ||wg s f1
< |wppflly- Also, fo == f — fi € M3 is such that f>(x) = 0if x < xo and |wggf2|
< || wﬁﬁf”oo’ and so Lemma 4.5 and Corollary 3.6 imply that

@4 (f2: Oy .q < C"’i(fzq"s)zlu/i ol = (5 |wap.ap 13 | ) < 8?0 Jwppf]

Now, since f(?é(f], S)wﬁ.ﬁ,q = 0, by Lemma 5.2 and Theorem 3.2 we have

2 (1. Owpspg = 20 (f1. g g < 87 Q2(f1.8) 2510110

< cslla- 1” 26—1+1/q H sl/a—1 hz‘ 28-3+1/q H
c @ S L1252, 1]+c oil;gs h

= et o] Jomtr]
- )

¢ L1[0,1—8A2]
Li[1-1282,1]
SR T NN ]

0 0<h<$ L[0,1—8h2]
2
< 8 Jwppf|,
where, in the last estimate, we used

-v STVT2
HL][l—csZ,l] =cb , ify <2,

and

H(p_ HIL][OI ch?] <ch™ y+2, ify >2. O

Together with Lemmas 2.4 and 2.5, this now completes the proof of the upper estimate in
Theorem 1.1 inthe case k =2, p =ocoand g > 1.

6. Lower estimates of moduli
The following lemma verifies the lower estimate in (1.2).

Lemma6.1. Letk € N, o, B € R, 0 < p.q < 00, and 0 < § < 1/(2k). Then the function
B = {( 1, ifxedi, 0<i<]|1/(2ks)],

otherwise,

where Ji = [k8i, k§(i + 1/2)], is such that |wa.p fs] , ~ 1, and

05 (f5: g pq = ¢ > 0.

Proof. Since UU/(ZI“”J Ji C[0,3/4],

L1/(2k8)]
lwapfollh ~ D il = (L1/2k&)] + Dks/2~ 1.

i=0
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Now, note that, if x € J; and 0 < h < §, then x £ kho(x)/2 € U4 J;, and so

[1/(2k8)] [1/(2ks)]
Q8 (f5. ) bupg = sUp / wlh 5()dx ~ sup Y |Djl,
0<h=<s 20 D; 0<h=<s 20

where

D,‘ = {x

Since |D;| ~ h,0 <i < |1/(2kd)], we have
05 (f52 8 pq = €811/ (2k8)] = c. O

X+ (k)2 — Dho(x) < k8i < x + kh(p(x)/Z} .

Remark 6.2. For each n € N, letting k = 1 and § := 1/(4n) in Lemma 6.1, noting that f;s is
positive on n 4 1 intervals and negative on n intervals J;, and that any polynomial of degree < n
can have at most n sign changes on [—1, 1], we conclude that

En(fé)wa,ﬂ,q > C(n(s)l/q >c>0.
This implies that, for any o, 8 € Rand 0 < p, g < oo,
ESYP Pi)uypq = ¢ > 0.

The following result verifies the lower estimate in (1.4) in the case k = 1 and p > 2gq. Its
proof is elementary and will be omitted.

Lemma 6.3. If f(x) = xj0.11(x), « € Rand B € J,, then f € M,
a)é,(f, S)wa,ﬁ,q ~ 81/‘1,forany0 <d§ < 1.

}wa,ﬁf”p ~ 1, and

Lemma6.4. Letk e N, 0 < p,g <o, @ € R, € J,, 8§ > 0, and 0 < ¢ < min{2k?52, 1}.
Then the function f(x) = A(x — 1+ s)lffl, o= e kPP s such that f e ME,
||wa,ﬁfﬂp ~ 1, and

O (f. 8wy g = ce'/17P

Proof. It is straightforward to check that || We, g f ”p ~ 1. Now, since S.(h) = [1 —¢e,1 — e+
min{e, h}/2] C [1 — 2k?*82, 1] and ‘Zg(f, x) = f(x), x € Sg(h), we have

<« <~ q
O hpg = sup  |wapAR(H)
ol Dupa 0<h§2[;c262 wt A0S Lg[1-2k282,1]
= sup / lwa,p(x) f(x)|7 dx
0<h<2k282 J S (h)
>c¢ sup / ePrl(x — 1+ )7 ax
0<h<2k282 J Se(h)

>c¢ sup &PA9(min{e, h})ka—1T!

0<h<2k252
> cAdgdbtka—q+1
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Therefore,
& —
C()](;(f, S)wa,ﬂ,q > Qg(f, S)wmﬂ’q > cgl/q I/P.
If p and/or g are oo, the proof is similar.  [J

Since lim,_, g+ £//971/7 = 00 if p < ¢, we immediately get the following corollary.

Corollary 6.5. Letk e N, a, 8 € R, 6 > 0,and 0 < p < q < oo. Then, for any A > O, there
exists f € SZ’ﬂ N M¥ such that

O (f 8wy g = A

This corollary confirms that one cannot expect to get any useful upper estimates for the moduli
a)f; (even restricting classes to k-monotone function) if p < q.

Corollary 6.6. Letk € N, 0 < p,g <00, € R, B € J,, 0 <8 < 1/(2k), and ¢ = 2k*5>,
Then the function f(x) = A(x — 1+ s)ﬁ__l, A o= ek BVPt s such that f e Mk,
||wa,,3f||p ~ 1, and

O (f. 8wy g = 821720,

This corollary verifies the lower estimates in (1.4) in the cases k > 2 and (k, g, p) # (2, 1, 00)
(unlessae = B =0),andk =1 and p < 2gq.
The following lemma yields the lower estimate in (1.4) in the case (k, g, p) = (2, 1, c0) and

(@, B) # (0, 0).

Lemma 6.7 (Lower Estimate in the Case k =2, q = 1 and p = 00). Let B > 0 and f(x) =
(1 —x)"B. Then f € M2NSYF and, if § < 1/5,

00 (f2 8)wg .1 = c8°|In 3.

Proof. It is obvious that f € M? N Sg’oﬁ . Using the fact that
A7 ooy (f.x) = R (x) f7(§),  forsome & € (x — hp(x), x + ho(x)).
we have

1—852
00 (f. 8w g1 = € /0 (1 = x)P 820> ()| f" (&) dx,

where &, € (x — 8¢p(x), x + 8¢ (x)). Now, Proposition 3.1(e) implies that
1—§& ~1—x+£8px)~1—ux,
and so | f”(£,)| = ¢(1 — x)#~2. Therefore,

1-8682
00 (f2 8wyt = c82/ (1 —x)"'dx > c8*Ings|. O
0

We conclude this section with the proof of the lower estimate in (1.5).

Lemma 6.8 (Lower Estimate in the Case k = 1 and p = 2q). Let 1 < g < oo, p = 2g,
B> —1/p,0 <8 < 1/4 and » > 1. Then there exists a function | € Sg’ﬁ N ./\/1_1,_ such
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that
s1/4|1n 8|1/ 20

Skl 6.1
“Jin [Ins| /@D @

1
‘Qq)(fs S)Wﬁyﬂ,q 2

Proof. Let n = 2", where m = |log,(1/8)] + 1, and note that 1/n < § < 2/n.
Suppose that (f;)! is a non-increasing sequence of real numbers such that f; = 0, fori > n/2.
Now, recalling that t; = cos(in/n), 0 <i <n,and I; = [t;,t;—1], 1 <i < n, define

f&x)=fi, ti<x<ti_1,1<i<n.

In other words, f is a non-decreasing piecewise constant spline with knots at #;’s which is
identically equal to O on [—1, 0], i.e., f € ML
Now, using Proposition 5.1, the fact that 2i /n < ¢(t;) < 4i/n, 1 < i < n/2, and denoting

Y =2 we have
lws.p 1, = Z/I_ PP DI dx < ¢ Y 110 1) fF

<en ! Zw2ﬂp+1(ti)fip < cn—Zﬂp—ZZiZﬂp-ﬁ—lfiP.

Now, let

Di(h) = {x x—hex)/2 <t =x+ h(ﬂ(x)/z}

ti — (h/2)\J1 — 2+ h2/4 t; + (h/2)\/1 — t? + h2/4

= s . 1515}1—1

1+ h%/4 1+ h2/4

We note that intervals D;(h), 1 <i < n — 1, have the following properties:

(i) if 0 < h < 1/n, then D;(h) N D;_1(h) =P forall2 <i <n — 1;
(i) if 0 < i < 1/(2n), then D;(h) C [—1 +2h%, 1 —2h%] forall | <i <n — 1;
(i) |D;(h)| = ho(t)/2,1 <i <n-—1.

In order to verify (i), we suppose that D; (k) N D;_1(h) # @. Then there is x € [t;, t;—1] such
that x — heo(x)/2 < t; and x + heo(x)/2 > t;_1. Then, t;_1 — ho(x)/2 < x < t; + he(x)/2,
which implies #;_1 — ho(x)/2 < t; + he(x)/2, and so

ti-1 —t; < he(x), forsomex € [t,ti—1].

At the same time, it is known that |[;| := t;_| — t; satisfies p,(x) < |[;|, forany 1 <i < n and
x € [t;, ti_1], where p,(x) == v/1 —x2/n + l/n2 (see e.g. [3], or this can be verified directly).
Therefore,

ho(x) < p(x)/n < pp(x) < ti—1 — 1,

for any x € [t;, t;—1], which is a contradiction.

In order to verify (ii), we note that, in the case i = 1 (which implies (ii) forall 1 <i <n—1),
(ii) follows from the observation that, if x = 1 — 2A2, then x — ho(x)/2 > t; = cos(wr/n). This
inequality is equivalent to

cos(m/n) < 1 —2h> — h*V/1 —h? < 2h> + h>V1 — h? < 2sin’(/(2n)),
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which is true since

(2h* + h*>V1 = h2)/2 <3h*/2 <3/(8n%) and
sin(rr/(2n)) > [(2/m)m/(2n)])* = 1/n?.

Finally, (iii) immediately follows from

WL AR o) he

1+h2/4 ~1+h2a~ 2

|Di ()| =

Therefore, letting 1 := 1/(2n) we have

1-2h2

DLWy > f}

—142h2
= Z/ D;(h)

> cZ/ " 0P (fi — fre)? dx = ¢ > hePIH @) (fi — fig1)
D;

> en PN P (f — fi)T

Now, define

921(x) (A}, f,x))q dx

01) (Ah,(£0)" dx

_ 92B(m—k)+2(m— k)/pé.l/l’ if 2k <i S2k+1 —1,0<k<m-2,
= o. ifi >2m!

where (¢x) is a non-increasing sequence to be chosen later. Observe that (2_2'3"_2"/ p)k is
non-increasing since 8 > —1/p. Then,

m—22k+1_1

Hwﬂﬂf”p<cz Z 12/3[7+12 2Bkp—2k k<cZ§k

k=0 =02k

and

(f:27" Vs

v

m—2
CZ—Zﬂmq—Zm Z 22/3kq+k
k=0
« (22ﬂ(m—k)+2(m—k)/p§k1/P 92B(m—k—1)+2(m—k— 1)/p§.1/l7>

o2 Z ( 1/p 2ﬁ—2/pC]JJ/r;;)q
cm (1 728~ 2/p) Zé

Now, let ¢ := (k +2)~'(In(k + 2))~*, where » > 1. Then,

v

v

lwsp 10 <ed k+2) " Intk+2)* < ¢
k=0
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and
m—=2
0)(f. 2V pg = 27" (k+2)7 2 (Ink +2) M = 27" m 2 (Inm) M2,
k=0
Finally, recalling that 27" < § < 2!~ and replacing f with g = || w,g,ﬁf“;l f we geta

function in Sg’ﬂ N M}r such that
s1/4|1n 8|/ 20

1 -1 51 _
00(8: wppq 2 ”wﬁ,ﬂf”p (24 (1.2 Muppg = C|1n|ln8| |*/Ca)

Remark 6.9. One can improve the estimate (6.1) slightly by letting
&= (gmalek + D)7,

where
gm(x) = x(Inx)(Inlnx) - (In---In x)(In- - -In x)*,
m m+1

withm € N, A > 1 and a sufficiently large constant ¢ = c(/m) that guarantees that g, , is well
defined on [c, 00).

7. Proof of Theorem 1.5

It was proved by Luther and Russo [10, Corollary 2.2] that, for «, 8 > 0, there exists ng € N
such that

En(Pwgpg < coly(fon Duy g, 1 =no. (7.1)

If « = B = 0, then this is a well known Jackson type estimate that was proved by Ditzian
and Totik in [2, Theorem 7.2.1]. Taking into account that, for 0 < n < ng, Ey(f)u, pg =
c || Wa, g f ||q < ¢ || Wo, g f Hp, if ¢ < p, we immediately get the following corollary of
Theorem 1.1 that implies all upper estimates in Theorem 1.5.

Corollary 7.1. Let 1 <g < p<oo, k e N, a, 8 > 0, and let f € MFN ]L‘[x,’ﬂ. Then, for any
neN,

En(Nunpg
n=2at2/p, ifk>2 and (k,q, p) # (2,1, 00),
I’l—2 1n(n —+ 1), lfk = 2, q= 1, p = 0, and (Ol, ﬂ) ?é (0’ 0)’

-2 5

n ifk=2qg=1,p=o0,anda = =0,

< clwapfl, ,-2ar2n k= Land p = 2. (12)
n~Valnn + D]V if k= land p = 2gq.
n=, ifk=1and p > 2q.

A matching inverse result to (7.1) is given by (see [2, Theorem 8.2.4])

O (fr Owgpg <8 Y G+ D E(Pugpg- (1.3)
0<i<l1/8
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Since, for u, A e Rand 0 < 6 < 1/4,

1, ifpu<—1,

176 s Nms)h, ifu > —1,
/ xH(nx)dx ~ {1, ifpu=—1,1<-1,
2 lIns|'**, ifu=—1,1>—1,
In|lnd|, ifu=—1,1r=—1,

estimate (7.3) implies, in particular, that if for a function f € S‘;,’ﬂ N Mk,

En(Fugpg < c+2" " n( +2)1*,  n e N,

then
sk, ifp < —1,
s Nmst, ifpu > —1,
O (8w g < € {65, ifp=—1,1<~—1,
sF|In 8|1+, ifu=—1,1>—1,
sK1n|In s, ifu=—1,1=—1.

Together with lower estimates in Theorem 1.1 this implies that none of the powers of n in (7.2)
can be decreased (except for some cases when ¢ = 1 and k < 2). This is made precise in
Corollaries 9.4 and 9.5 which imply lower estimates in (1.8)—(1.10).

Whether or not powers of In(n + 1) in (7.2) can be decreased is more involved. In the case
k=2,qg=1, p=o0and («, B) # (0,0), we only know that

en < sup En(Pugga <cn 2ln(n+1)

Ffem2nssf
(see Corollary 9.5 with r = 0 for the lower estimate), and so it is an open problem if In(n + 1)

in this estimate can be replaced by o(In(n + 1)) or removed altogether.
In the case k = 1 and p = 2gq, if En(f)waﬁ,q < ctn+2)Yin(n + 21, n € Ny

(i.e., u = —1/q), for any function f € M! ﬂS%’ﬂ, then
0y (f, Oy g <8 Ins)>, ifg > 1.

Together with lower estimates of Theorem 1.1 this implies that, if k = 1 and p/2 = ¢ > 1, then
the quantity n~"/4[In(n + 1)]'/?9) in (7.2) cannot be replaced by n=/4[In(n + 1)]"/CD ¢ for
any ¢ > 0. Also, this yields (1.11).

Ifk=1,9g = 1and p = 2, then we know that (see Corollary 9.4 with k = 1 for the lower
estimate)

cn™!

IA

sup  En(Plugs1 < cn”'[In(n + D12,
feM‘ﬁSg’ﬁ

and it is an open problem if [In(n + 1)]!/? in this estimate is necessary.
8. Other applications

1.Let1 < p <oo,r € N. Then

Lk = {f =111 R | £D € ACe(~1, 1) and Hwa,ﬁf“) H < oo},
P
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and for convenience denote L‘;’,o = L‘;‘,”g . Note that, if « = g = r/2, then ]Lr/ 2r/2

classes discussed in [8,9].

= BI’,, the
The following lemma is a generalization of [9, Lemma 3.4].

Lemma8.1. Let 1 < p < oo, r € Ny, a, ,BERandletfeIL
anyy < lsuchthato —y,B —y € Jp.

i1 Then f € ]Ll;,,_ry’ﬂ_y,for

Proof. Given f € IL +1’ taking into account that |wy—y, gy ||p < oo and replacing f (x) with
fx) —x"f(0) /r! we can assume that f)(0) = 0. Now, if p = oo, then

x
” wa—y,ﬁ—yf(r) Hoo =< wa—y,ﬁ—y(x)[) f(r+l)(u) du

o0

X
< Hwa,ﬁf(rH)HOO Hway,ﬂy(x)/o w;}g(u)du <c Hw“'ﬂf(m)Hoo
o

Similarly, if p = 1, then

/ FOY ) dul dx
0

1
H wa—%ﬁ—yf(r) Hl = / | Wo—y,f—y (X)

| g LV @l L o) du| dx
0 ,

1
S/ wa—y,ﬁ—y(x)
-1
< Hwa’ﬂf(r+l)H1/ Wy—y,p—y(X) Max w ﬁ(u)dx <cHw lgf(’H)H

uel0,x]

Suppose now that 1 < p < oo and denote p’ := p/(p — 1). Using Holder’s inequality we have
p 1 x | p
.= /_ 1 Wy_y gy () /0 SO ) du

. S 1p s px e /p|P
< - d o 4 rd
<[l (/0 A u) (/0 .5 ) £+ )| u)

e { ° 1 x p/p'
“wa,ﬁf(r+)“ /; +/(; ws—y,ﬂ—)/(x) A wa,lf)} (u) du
(r+1) +
s H (lapr + 1)

+
We will now show that / wpy =

Indeed, if Bp’ # 1, then

1 x , p/p
c/ (1 —x)B-rrp (/ (1 —u)~Pp du) dx

[ a- )(/3 Y)p <max{l 1—x)" Bp _H})p/p

dx

” wa—y,ﬂ—yf(r)

dx

IA

dx

< c¢ (the proof that the same estimate holds for I~ By is analogous).

+
Iaﬁy

IA

| /\

IA

1
c/ max{(l —x0)B-1r —x)—VP+P—1] dx <c.
0
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Finally, if Bp" = 1 (and so 8 = 1 — 1/p), then

I+

1
ey < c/o (1 —x)BVPIn (1 —x)|P/7 dx

IA

1

cf 1 —=x)P4 N - )P tdx <.
0

This completes the proof. [

Remark 8.2. We actually proved that, if f € IL 41 is such that f ) (0) = 0, then

provided thaty < landa —y, B8 —y € J,.

wai%ﬂiyf(r) Hp <c H wa,ﬂf(r+1) Hp

Corollary 8.3. Let 1 < p <oo,r e Ngyand o, B € Jp. Then

at+(r+1)/2,B+r+1)/2 _ o atr/2,p+r/2
Lp,r—i—l = ]Lp,r

and, in particular,

a+r/2,B+r/2 ,
Ly cLyP.

It was shown in [8, Theorem 5.1] that, if 1 < g < 00,0 < r < k, and f is such that f(’_l) is
locally absolutely continuous in (—1, 1) and wa,,gga’f(r) € Ly[—-1,1],, B = 0, then

O (f. O pg < " (F 8y por g 8.1)

Taking into account that wy, g¢" = We4r/2,a+r/2, together with (7.1), this implies the follow-
ing Jackson-type result for weighted polynomial approximation (see also [8, Theorem 5.2]).

Corollary 84. [f k e N O <r <k—1,1<g <00, f >0, and f € Li>PT2 then
there exists ng € N such that

En(Pwagg <o (£ 0 Vs pprrpgs 1= Mo (8.2)
Now,letl <g < p <00, ke N, 1 <r <k—1,andlet f e/\/lkﬂ]LO[H/z’BJrr/2 Using
Corollary 1.3 and the fact that £ e MK we conclude that, for n > ny,
_ 2,B+r/2
EvPuapg < n” T2 p) fwnsep pren ] (83)

It is not hard to see that this estimate holds for r — 1 < n < ng as well. Indeed, given a

function f € ]L‘Hr/ 2.B+r/2 ,let T, _1(f) be its Maclaurin polynomial of degree < r—1 (see (2.1)).
Then, for r — 1 < n < ng, we have using Remark 8.2

En(f)wa,ﬁ,q = ||wa,ﬁ(f - Tr—l(f))Hq =c Hwa,ﬁgprf(r)
q=p.

<c H Watr/2,pir2 f " H ,
q P
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Hence, the following is another corollary of Theorem 1.1.

Corollary8.5. Let 1 < g < p <00,k > 2,1 <r < k-1 a8 > 0, and let
feMtn L%jr/z’f”r/z. Then, for any n > r,

En(f)wu,ﬁ;q <c H w“+"/2,ﬂ+r/2f(r) Hp

—r=2/q+2/p ifk—r>2and (k —r, q,p) # 2,1, 00),
2 + 1), ifk—r=2¢q=1and p = 0,
—r—=2/q+2/p

ifk—r=1and p < 2q,
= Vanm + D1YP, ifk—r=1and p =2q,

n
n
x {n
n
n~"Va, ifk—r=1and p > 2q.

It follows from Corollaries 9.4 and 9.5 that estimates in Corollary 8.5 are exact in the sense
that none of the powers of n can be decreased. Using the inverse theorem [9, Theorem 9.1] it is
also possible to show that, inthe caseoo = § =0,k =r+1and p/2 = g > 1, the power 1/(2q)
of In(n + 1) cannot be decreased.

2. Littlewood’s inequality [lgll, < llgll% Igll, . 1/g =6/s+ (1 —6)/p.1<s <q<p<
oo, implies that

QS 8 g < 25 (£, 8)0, 28 (f8)0 1

with similar inequalities holding for 62 and 52 as well. Therefore,

K Dug = LD g + LEL g + 25(F. Dy

QK1 8) L8+ B8 BE LY
+ 02580, 2oL

<30l (£.8)) b (£.8)070.

IA

Hence, using (8.2) and Theorem 1.1 we have the following estimates for f e M* N
L(;,)tr/z’ﬁw/z, 0<r<k-1:

—r  k— -1
En(f)wa,ﬁ,q <cn’ Wy r(f(r)7 n )wa+r/2,ﬂ+r/2,q
—r k—r,p(r) —1\60 k—rp(r)y —1\1-6
=cn Cl)(p (‘f 1 )wa+r/2,/5+r/ZsS a)(P (f N )wa+r/2,ﬁ+r/2>p

0
cn”" [Tfl/y/z’ﬁH/z(k -rs, p)]

IA

(l)(/zfi’(f‘(r‘)7 n*l)l*f)

(r)
X ” wa+r/2’ﬂ+r/2f Wo+r/2,p41/2:P"

[4
p
If sissuchthat 1 <s < g and s # p/2, then
nTEHSHUP ik —r > 2,
T;x/:r/z’ﬂﬂﬂ(k —r5,p)=n 2P ifk—r =1and p < 2s,
nVs ifk—r=1andp > 2s,
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and so
6
(72 = s )]
B n~2/a+2/p, if0<r<k—2,orr=k—1and p < 2s,
T P94 ifp =k —1and p > 2s.

We now note that one can choose s sothat 1 < s < g and p < 2s iff p < 2¢. Also, note that,
6
forany s > 1, [Tf‘/:(k—l)/Z,ﬂHk—l)/z(L s, oo)] ———
Therefore, taking into account that, in the case p < 00, " (f "), n™ Ny, 5000 p = 08
n — oo, and that f ™" (£, 1™ .,/ 510200 = 0 asn — oo provided that £ is continuous
on (=1, 1) and limy+1 Wo4r/2,4r/2(X) f (’)(x) = 0, we have the following two corollaries of
Theorem 1.1.

Corollary 8.6. Let k €¢ N, 1 < g < p < 00,0 <r < k-1 a8 > 0, and let
feMkn ]L‘;[,,tr/z’ﬁ”/z. Then

En(fluwgpq =0 (n—r_z/q+2/p) . n— oo,
where either 0 <r <k —2,0orr =k —1and p < 2q.

Corollary 8.7. Letk e N, 1 <g <00, 0<r <k —1,0a,8>0,andlet f € M be such that
£ is continuous on (—1, 1) and lim,4 wa+r/2,ﬁ+r/2(x)f(’)(x) = 0. Then

En(fwgpq =0 (nfrfmin{kfr,Z}/q> . n— oo

9. Lower estimates of polynomial approximation
The following Remez-type inequality follows from [11, (7.16), (6.10)].

Theorem 9.1. Let 1 < p < 00, and let w be a doubling weight in the case 1 < p < o0 or an
A* weight in the case p = 00. For every A < n, there is a constant C = C(A) such that, if
E C [—1, 1] is an interval and fE(l —xHV2gx < A/n, then, for each p, € P,, we have

1
/ 1P () Pw(x)dx < C/ Ipn)IPw(x)dx, if 1 <p <oo,
—1 [—1,1N\E

or
IlPnwlLi—1,11 = CllpawlLy -1,y ¥ P =00.

We recall that w is a doubling weight if fzm[—l,l] w(x)dx < L [, w(x)dx, for all intervals
I C [—1, 1] (21 is the interval twice the length of / and with midpoint at the midpoint of /), and
itis an A* weight if, for all intervals I C [—1,1]andx € I, w(x) < L fl w(x)dx/|I].

Since w‘f ,a,B > —1/p, is a doubling weight, and wq g, @, 8 > 0, is an A* weight, we

immediately’ get the following corollary (see also [4]).

Corollary 9.2. Let 1 < p < oo, and let a, B € J,. For every A < n, there is a constant
C = C(A) such that, if E C [—1, 1] is an interval and fE(l —x2)~Y2dx < A/n, then, for each
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Pn € Py, we have
<
”inmﬂ”Lp[—l,l] =C ||1’nwa,ﬂ||1Lp([—1,1]\E)'

We are now ready to construct (truncated power) functions which will yield lower estimates.
Note that, if k € N, 1 < p < 00,0 <r <k-1,0=<$& < 1l,a e R, € J, and

fx) = (x — &)~ 7", then

~ (11— E)ﬁ+k—r—l+l/p. 9.1)

s
P

Lemma9.3.Let 1 < g <oo, k e Na,f>0n>2k0<£&<1-2n"2 and let
Fx) = (x — &L Then

En(f)w 54 Z Cn—k-l—l—l/q(l _ %-)ﬂ+(k—l)/2+1/(2q)’
for some constant c independent of n.

Proof. We only provide the proof for the case ¢ < oco. If ¢ = o0, it is obvious what modifications
are needed. It is convenient to denote 0, := k¢(&)/(2n). Then, in particular, 8, < 1/4 and
& £20, € [—1, 1]. Now, let p, be an arbitrary polynomial from [P, define

P = ALy (F ), fu) = (1= 6a)x),
Gn () = A ey n(Pns X))y @a(X) = G (1 = 6p)x),

and note that g, is a polynomial of degree < n on J,, := [~—1 +6,,1—06,], angl hence g, is a
polynomial of degree < n on [—1, 1]. We also note that f,(x) = 0, forx & [, = [E — 6,,
";: + ‘9n] C Ju, and hence fn(x) = 0, for x ¢ I, = [(5 - Qn)/(l — 6w, (E +9n)/(1 —06y)] C
[—1,1].

Now,

1 ~
”wa,ﬂ(fn - Qn)HZ = / . wg’ﬂ(x”fn((l = 0n)x) = Gn((1 = 6,)x)|7 dx

IA

1-6, ~
o[l /1= B = ot d

n

1-0,
c/ we 5 (x/(1 = 61))

146y

IA

k
X Y 1f G =0 +i9E)/n) = palx — Oy +ig(E)/m)|4 dx

i=0
k 1=20,+ip(§)/n
< CZ/ w5 (v + 6, —igE)/n)/ (A =0)) 1 f(y) = pa()I? dy
i—0 Y —1+ip&)/n
< ¢ Jup(/ — ol

since wo, g ((y + 6y — i@(§)/n) /(1 — 1)) < cwa,p(y).
It is straightforward to check that f I, (1 —x2)~124dx < ¢(k)/n, and so Corollary 9.2 implies
that

lwe.pan ”q < ¢ |wa.pan ”]Lq([—l,l]\ln) :



130 K.A. Kopotun / Journal of Approximation Theory 192 (2015) 102-131

Therefore, recalling that f,(x) =0, x € [—1, 1]\ I,,, we have

lwasful, = lweap (o = anl, + lwepanl,

IA

” wa,ﬂ(fn - Cln)”q +c ”wa,ﬂ(fn - qn)”]Lq([—l,l]\In)

A

c ” We,(fn — Qn)“q

IA

¢ |wap(f =P, -

Now, noting thatf~n(x) =fx+6y) =x+6, — S)k_l,ifx €& —6,,&—0,+ @&)/n] we
have

v

1-6, y
ol = e [ 0 e/ =001l da

n

v

E—Op+o(&)/n
c / (1= 6y — )P (x + 6, — )% D4 dx
f—@n

v

§+p©)/n
c/g (1 =Py —e)*Vay

en~k=Da=1(1 _ g)Ba+k=1g/2+1/2,

v

and so ||wa,g fu ||q > cn k1= (] — g)P+k=1/2+1/Qq)
Hence, for any p, € P,,

H Wap(f — Pu) ”q > en k1=l () _ g)BHE=D/241/Q0)
and the proof is complete. [
The following two corollaries provide all lower estimates in Theorem 1.5 and show that none

of the powers of n in Corollary 8.5 can be decreased.

Corollary 9.4. Let 1 < p,q < oo, k € N, and o, B > 0. Then, there exists a function

feMkn LZ;(_]CI_])/Z’SH](_I)Q such that, for eachn € N,

En(fuwg pq = cn KMt H Wart k—1)/2.p+h—1y2.f * 7 H,, : 9.2)

for some constant c independent of n.

Proof. We let f(x) = x_kfl and note that f € M¥ . Now, (9.1) implies that
|| wa+(k_1)/2,ﬁ+(k_1)/2f(k’1)Hp ~ 1, and Lemma 9.3 implies E,(fw, 4.4 > cen~*—Vatl for
n > 2k.For 1 <n < 2k, (9.2) follows from Ey,(f)w, .q = Eu(fwgp.q = ¢ U

It follows from Corollary 8.7 that there does not exist f € CK~1(—1,1) N M¥ which is
independent of n, satisfies limy41 Watr/2, g4r/2(x) £ (x) = 0, and for which (9.2) holds.

Corollary 9.5. Let 1 < p,g <00,k e NNO<r <k—1,a,8 >0, and n € N. Then, there

exists a function f, € Mk N ]L‘;,’tr/ 2BHI2 such that

En(fn)wa,,g,q = Cn7r72/q+2/p H w0l+r/2»/3+"/2fn(r) Hp ’

for some constant c independent of n.
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Proof. For 1 < n < 2k, the statement is clearly true, for example, for f,(x) = xﬁ_l. If n > 2k,

welet&, = 1 —2k*n~2 and f,(x) = (x — én)’ffl. Then f, € M*, Lemma 9.3 implies that

En(f)wep.q = cn 2P72F272/4 and (9.1) yields H wa+r/2,ﬂ+r/2fn(r) ” ~ p2B2k=2 p 2t
p

Therefore, Ey(fn)wqy .9/ ) > cn~'2/at2/p O

wa+r/2,ﬁ+r/2fn(r) H )

It is interesting to note that Corollary 8.6 implies that f; in Corollary 9.5 cannot be replaced
by a function which is independent of .
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