
Journal of Approximation Theory 162 (2010) 653–677
www.elsevier.com/locate/jat

Differential equations for deformed Laguerre
polynomials

Peter J. Forrester, Christopher M. Ormerod∗

The University of Melbourne, Department of Mathematics and Statistics, Parkville VIC 3010, Australia

Received 25 February 2009; received in revised form 10 July 2009; accepted 27 July 2009
Available online 3 August 2009

Communicated by Serguei Denissov

Abstract

The distribution function for the first eigenvalue spacing in the Laguerre unitary ensemble of finite
size may be expressed in terms of a solution of the fifth Painlevé transcendent. The generating function
of a certain discontinuous linear statistic of the Laguerre unitary ensemble can similarly be expressed in
terms of a solution of the fifth Painlevé equation. The methodology used to derive these results rely on two
theories regarding differential equations for orthogonal polynomial systems, one involving isomonodromic
deformations and the other ladder operators. We compare the two theories by showing how either can be
used to obtain a characterization of a more general Laguerre unitary ensemble average in terms of the
Hamiltonian system for Painlevé V.
c© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Objective

Spacing probabilities and moments of characteristic polynomials for random matrix ensem-
bles with unitary symmetry are intimately related to semi-classical orthogonal polynomials. By
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developing the theory of particular semi-classical polynomials, it has been possible to character-
ize these random matrix quantities in terms of both discrete and continuous Painlevé equations
[29,33,1,22,23,3,4,9,30,19–21,10,5]. Two methods of developing the theory for this purpose have
emerged. One has been to use a formulation in terms of Lax pairs for isomonodromic deforma-
tions of linear differential equations [26]. The other has proceeded via a theory of ladder operators
for orthogonal polynomial systems [11,14]. It is the purpose of this paper to compare these two
methods as they apply to the particular discontinuous semi-classical weight

w(x) = (1− ζθ(x − t))|x − t |αxµe−x , (1.1)

with support on R+, ζ < 1, where θ(y) denotes the Heaviside function θ(y) = 1 for y > 0,
θ(y) = 0 otherwise.

1.2. A random matrix context

The weight (1.1) is relevant to the Laguerre unitary ensemble LUEµN specified by the
eigenvalue probability density function

1
C

N∏
l=1

xµl e−xl
∏

1≤ j<k≤N

(xk − x j )
2, xl > 0. (1.2)

For µ a non-negative integer, this is realized by the so-called Wishart matrices XĎX where X
is an n × N (n ≥ N , µ = n − N ) complex matrix of independent standard complex Gaussian
matrices (see e.g. [18]). To see how (1.2) relates to (1.1), consider the random matrix average〈

N∏
l=1

(1− ζθ(xl − t))|xl − t |αxµl e−xl

〉
LUEµN

. (1.3)

This average is proportional to the multiple integral

∆N =
1
N !

∫
∞

0
dx1 · · ·

∫
∞

0
dxN

N∏
l=1

w(xl)
∏

1≤ j<k≤N

(xk − x j )
2, (1.4)

where w(x) is given by (1.1). Introducing the moments

µn :=

∫
∞

0
w(x)xn dx (1.5)

it is an easy result that

∆N = det[µ j+k−2] j,k=1,...,N . (1.6)

Moreover, the {∆n} can be calculated through a recurrence linking the orthogonal polynomials
{pn(x)} associated with w(x).

Introducing the bilinear form

〈 f, g〉 =
∫

I
f (x)g(x)w(x)dx (1.7)
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the orthogonal polynomials are specified by the requirements that pn be a polynomial of degree
n and 〈

pi , p j
〉
= δi, j . (1.8)

By way of application of the Gram–Schmidt process, the weight function and its associated
support completely specify the coefficients of each polynomial. Furthermore the orthonormality
of the polynomials implies the three term recurrence relation [32]

an+1 pn+1 = (x − bn)pn − an pn−1. (1.9)

It is the coefficient an herein which links with ∆n . Thus one has

a2
n =

∆n−1∆n+1

∆2
n

. (1.10)

Also relevant is the fact that the multiple integral

DN (y1, y2)[w(x)] :=
1
N !

∫
∞

0
dx1 · · ·

∫
∞

0
dxN

N∏
l=1

w(xl)(y1 − xl)(y2 − xl)

×

∏
1≤ j<k≤N

(xk − x j )
2 (1.11)

can be expressed in terms of the polynomials {pn} according to the Christoffel–Darboux
summation (see e.g. [18])

DN (y1, y2)[w(x)] =
∆N

γNγN+1

pN+1(y1)pN (y2)− pN+1(y1)pN (y2)

y1 − y2
. (1.12)

In random matrix theory the average (1.3) in the case µ = 0 is the generating function for
the sequence of probabilities that there are exactly k eigenvalues in the interval (0, t). In the case
ζ = 0 it gives the moment of the modulus of the characteristic polynomial

∏N
l=1(t − xl). More-

over, choosing the weight, w(x), as the coefficient of ζ in (1.1), taking α = 2 and substituting in
(1.11) shows

DN (s, s)[θ(x − t)(x − t)2xµe−x
]

=
1
N !

∫
∞

t
dx1 · · ·

∫
∞

t
dxN

N∏
l=1

(xl − t)2(xl − s)2xµl e−xl

N∏
j<k

(xk − x j )
2. (1.13)

After multiplying by

e−t−s(s − t)2(st)µ

this integral can be recognized as being proportional to the joint probability density function of
the first and second smallest eigenvalues, denoted s and t respectively, in the Laguerre unitary
ensemble [21]. According to (1.12) we can calculate (1.13) in terms of quantities relating to the
polynomial system for the weight (1.1).
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1.3. Main results

To present our main results requires some facts from the Okamoto τ -function theory of the
fifth Painlevé equation [28]. The fifth Painlevé equation,

y′′ =
( 1

2y
+

1
y − 1

)
(y′)2 −

1
t

y′ +
(y − 1)2

t2

(
α1 y +

α2

y

)
+
α3 y

t
+
α4 y(y + 1)

y − 1
, (1.14)

is one of the six non-linear differential equations identified by Painlevé and his students as being
distinct from classical equations and having the special property that all movable singularities
are poles. The Okamoto τ -function theory relating to (1.14) is based on the Hamiltonian system
with Hamiltonian specified by

t H = q(q − 1)2 p2
−

(
(v2 − v1)(q − 1)2 − 2(v1 + v2)q(q − 1)+ tq

)
p

+ (v3 − v1)(v4 − v1)(q − 1). (1.15)

Here v1, . . . , v4 are parameters constrained by

v1 + v2 + v3 + v4 = 0.

An essential feature of the theory is that eliminating p in the Hamilton equations

q ′ =
∂H

∂p
, p′ = −

∂H

∂q

(the dashes denote differentiation with respect to t) gives that q satisfies (1.14) with

α1 =
1
2
(v3 − v4)

2, α2 = −
1
2
(v2 − v1)

2, α3 = 2v1 + 2v2 − 1, α4 = −
1
2
.

The first of our main results may now be stated.

Proposition 1.1. Let v1, . . . , v4 be such that

v3 − v4 = −µ, v3 − v1 = n + α, v3 − v2 = n, v2 − v1 = α,

and so

α1 =
µ2

2
, α2 = −

α2

2
, α3 = −(2n + α + 1+ µ), α4 = −

1
2

In terms of the coefficients {an, bn} in the three term recurrence (1.9) and the parameters α,µ, t
of the weight (1.1), let

θn = bn − 2n − 1− α − µ− t (1.16a)

κn =

(
n +

µ

2

)
t + a2

n −

n−1∑
i=0

bi . (1.16b)

We have that the Hamilton equations are satisfied by

q =
θn + t

θn
(1.17a)

p =
θn(t (n + α + µ/2)− κn)

t (t + θn)
, (1.17b)
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and so

θn =
t

q − 1
(1.18a)

κn = t (n + α + µ/2− pq). (1.18b)

This characterization is made unique by the specification (3.20) of the small t expansions of θn
and κn .

We can also express θn and κn in terms of a solution of the fifth Painlevé equation (1.14) with
parameters different to those given in Proposition 1.1. For this we require the fact [28] that (1.14)
is formally unchanged upon the transformations

(α, β, γ, δ) 7→ (−β,−α,−γ, δ) y 7→
1
y
.

Corollary 1.2. Suppose v1, . . . , v4 in (1.15) are such that

v2 − v1 = −µ, v3 − v4 = α, v2 − v4 = n + α + 1, v2 − v3 = n + 1,

and furthermore t 7→ −t , so that q satisfies (1.14) with

α1 =
α2

2
, α2 = −

µ2

2
, α3 = 2n + α + 1+ µ, α4 = −

1
2
.

(Note that mapping t 7→ −t in (1.14) is equivalent to mapping α3 7→ −α3.) In this case the
Hamilton equations are satisfied by

q =
θn

θn + t
(1.19a)

p =
(θn + t)(κn − µ/2+ θn(1+ 2n + t + α + µ+ θn))

tθn
, (1.19b)

and so

θn =
tq

1− q
(1.20a)

κn = tpq −
t2

(1− q)2
+

t
(

t + µ
2 − q

(
2n + α + 1+ 3µ

2

))
1− q

. (1.20b)

2. Differential equations for orthogonal polynomial systems

In the classical theory of orthogonal polynomials, the study of differential equations
satisfied by orthogonal polynomials has a long and distinguished history [31]. Under certain
conditions [8], given a system of orthogonal polynomials, the derivatives of the polynomials
may be expressed in terms of a linear combination of at most two polynomials of the same
system [25,8,11]. To describe these differential equations, we parameterize the coefficients of
the polynomials according to

pn(x) = γn xn
+ γn,1xn−1

+ · · · + γn,n . (2.1)
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In terms of this parameterization, it is clear from (1.9) that

an =
γn−1

γn

bn =
γn,1

γn
−
γn+1,1

γn+1
.

Important too is the Stieltjes function, defined by

f (x) =
∞∑

k=0

µk x−k−1
=

∫
I

w(s)

x − s
ds.

Following [26], our starting point is the requirement that the Stieltjes function, f , satisfies the
holonomic differential equation

W
d

dx
f = 2V f +U, (2.2)

where W , V and U are polynomials in x . It is shown in [26] that deg U ≤ max(deg W − 2,
deg V − 1) and that V and W relate to the weight function according to

d
dx

lnw(x) =
2V

W
. (2.3)

We now define the associated polynomials φn−1 and associated functions εn by the equation

f pn = φn−1 + εn . (2.4)

Explicitly

εn =

∫
I

pn(s)

x − s
w(s)ds (2.5a)

φn−1 =

∫
I

pn(s)− pn(x)

s − x
w(s)ds (2.5b)

showing that φn−1 is a polynomial of degree n − 1 and εn is meromorphic at x = ∞. Alterna-
tively, {φn} may be introduced as the second linearly independent (in addition to {pn}) polyno-
mial solution of the three term recurrence (1.9) (see e.g. the introductory section of [13]), and
from this it follows that {εn} also satisfies (1.9). We remark that by orthogonality

εn ∼ γ
−1
n x−n−1 (2.6)

as x tends to∞. Using (1.9) and (2.1), we have the large x expansions,

pn = γn

(
xn
− xn−1

n−1∑
i=0

bi + xn−2

(
n−1∑
i=1

i−1∑
j=0

bi b j −

n−1∑
i=1

a2
i

)
+ O

(
xn−3

))
(2.7a)

εn = γ
−1
n

(
x−n−1

+ x−n−2
n∑

i=0

bi + x−n−3

(
n∑

i=0

i∑
j=0

bi b j +

n+1∑
i=1

a2
i

)
+ O

(
xn−3

))
.

(2.7b)



P.J. Forrester, C.M. Ormerod / Journal of Approximation Theory 162 (2010) 653–677 659

Equating ( f pn)pn−1 with ( f pn−1)pn shows φn−1 pn−1+εn pn−1 = φn−2 pn+εn . This and (2.7)
give

pnεn−1 − pn−1εn = pn−1φn−1 − pnφn−2 =
1
an
. (2.8)

This also has the interpretation as the Wronskian identity relating to (1.9); see e.g. the introduc-
tory section of [13]. The above describes the notation and set formulae to be used in the following
sections.

2.1. Derivation via recurrence relations for moments and isomonodromy

In this section methods are outlined for obtaining differential equations satisfied by the
orthogonal polynomial system based on the existence of a recurrence for the moments of the
weight function, namely (2.2). This coupled with the theory of isomonodromic deformations
allows us to construct the differential equations that govern evolution of the polynomials in both
x and t .

Theorem 2.1. The orthogonal polynomials corresponding to a weight w satisfy the differential
equation

W (x)
d

dx
pn(x) = (Ωn(x)− V (x))pn(x)− anΘn(x)pn−1(x) (2.9)

where Ωn and Θn are polynomials given by

Θn = W

(
εn

d
dx

pn − pn
d

dx
εn

)
+ 2V εn pn (2.10a)

Ωn = anW

(
εn−1

d
dx

pn − pn−1
d

dx
εn

)
+ an V (εn−1 pn + εn pn−1). (2.10b)

Proof. First we note from (2.2) and (2.4) that

W
d

dx

(
φn−1

pn

)
−

2Vφn−1

pn
−U =

2V εn

pn
−W

d
dx

(
εn

pn

)
.

Multiplying through by p2
n shows (2.10a) can be rewritten

Θn = W

(
pn

d
dx
φn−1 − φn−1

d
dx

pn

)
− 2Vφn−1 pn −U p2

n . (2.11)

This tells us that Θn is a polynomial, while (2.10a) bounds the degree. Explicitly, examining the
x →∞ behaviour, namely (2.1) and (2.6), shows

deg Θn ≤ max(deg W − 2, deg V − 1, 0) (2.12)

as noted in [26].
Using (2.8) and (2.11) we find

an(pn−1φn−1 − pnφn−2)Θn = W

(
pn

d
dx
φn−1 − φn−1

d
dx

pn

)
− 2Vφn−1 pn −U p2

n .
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By appropriately grouping the terms divisible by φn−1 and pn on opposite sides, we define the
polynomial Ωn to be the common factor according to

pnφn−1Ωn = φn−1

(
anΘn pn−1 +W

d
dx

pn + V pn

)
= pn

(
anΘnφn−2 +W

d
dx
φn−1 − Vφn−1 −U pn

)
. (2.13)

The first expression in (2.13) is equivalent to (2.9) provided (2.10b) can be verified. For this
purpose we use (2.10a) in (2.13) to obtain

Ωn =
anW pn−1εn

d
dx pn

pn
−

anW pn−1 pn
d

dx εn

pn
+

2V εn pn−1 pn

pn
+

W d
dx pn

pn
+ V .

By rearranging (2.8), we find anεn pn−1 = an pnεn−1 − 1, which we use to remove occurrences
of pn−1, giving (2.10b) as required. Examining the x → ∞ behaviour, by using (2.1) and (2.6)
in (2.10b), shows

deg Ωn ≤ max(W − 1, V ) (2.14)

which again appears in [26]. �

The origin of this theorem can be traced back to the work of Laguerre [25] and has since been
revisited by contemporaries [6,7,12,26]. The theorem provides a mechanical way of determining
the differential equation satisfied by polynomials provided one knows the rational logarithmic
derivative. One need only expand (2.10a) and (2.10b) to polynomial orders using (2.7b) to
produce a parameterization of the differential equation satisfied by the polynomials in terms
of the an’s and bn’s. A simple application of (1.9) gives us an expression for the derivative of
pn−1, which is but one column solution to a 2×2 linear differential equation in x . The following
corollary provides us with another solution [16,17].

Corollary 2.2. The function εn/w satisfies (2.9).

Proof. Consider the derivative of f pn in terms of εn and φn . According to (2.4)

W
d

dx
f pn = W

d
dx
φn−1 +W

d
dx
εn .

On the other hand, use of (2.9) and (2.2) shows

W
d

dx
f pn = f

(
W

d
dx

pn

)
+ pnW

d
dx

f

= (Ωn − V ) f pn − anΘn f pn−1 + 2V f pn +U pn

= (Ωn + V )φn−1 − anΘnφn−1 +U pn + (Ωn + V )εn − anΘnεn−1,

where in obtaining the final equality (2.4) has also been used. By canceling out the derivative of
φn−1 as calculated from the first expression for Ωn from the previous proof, we deduce that the
derivative of εn is given by

W
d

dx
εn = (Ωn + V )εn − anΘnεn−1.
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Hence

W
d

dx

εn

w
=
wW d

dx εn − εnW d
dxw

w2

=
(Ωn + V )εn − anΘnεn−1 − 2V εn

w
,

where use has also been made of (2.3), as required. �

As a linear system, we have two linearly independent solutions. As mentioned above, both
{pn} and {εn/w} satisfy (1.9) and (2.9), telling us that yn = pn−1 and yn = εn−1/w satisfy

W
d

dx
yn = anΘn−1 yn + (Ωn−1 − V − (x − bn))yn−1.

Hence, the matrix

Yn =

 pn
εn

w

pn−1
εn−1

w

 (2.15)

satisfies the matrix differential equation

d
dx

Yn = AnYn (2.16)

where

An =
1
W

(
Ωn − V −anΘn
−anΘn−1 Ωn−1 − V − (x − bn−1)Θn−1

)
.

Because {pn} and {εn} satisfy (1.9), Yn also satisfies

Yn+1 = MnYn (2.17)

where

Mn =

 x − bn

an+1
−

an

an+1

1 0

 .
Lemma 2.3. The polynomials Θn and Ωn satisfy the recurrence relations

W + a2
n+1Θn+1 − a2

nΘn−1 = (x − bn)(Ωn+1 − Ωn) (2.18a)

(x − bn−1)Θn−1 − (x − bn)Θn = Ωn − Ωn+1. (2.18b)

Proof. Eqs. (2.16) and (2.17) gives two ways of calculating d
dx Yn+1. The consistency may be

written as

Mn An −An+1 Mn +
dMn

dx
= 0.

This is an identity on the bottom two rows, however, in the first row, the consistency relation
gives (2.18a) and (2.18b). �
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This lemma can be found in Magnus [26]. Using (2.8), we have

det Yn =
1

anw
.

In general, for an equation of the form (2.16), we see from (2.15) that

d
dx

det Yn = Tr An det Yn

and so

d
dx

1
anw
= −

2V

wanW
= TrAn det Yn

giving the additional relation

(x − bn)Θn = Ωn+1 + Ωn . (2.19)

This also implies (2.18b). It further gives us a new parameterization of An , given by

An =
1
W

(
Ωn − V −anΘn
anΘn−1 −Ωn − V

)
as first derived in [26].

Another useful relation comes from the multiplication of (2.18a) and (2.19), which gives

WΘn + a2
n+1Θn+1Θn − a2

nΘnΘn−1 = Ω2
n+1 − Ω2

n . (2.20)

Summing over n, given that Ω0 = V , shows

Ω2
n − a2

nΘnΘn−1 = V 2
+W

n−1∑
i=0

Θi . (2.21)

The roots of W are now the poles of An . If {x j } is the set of poles of Ai , then we may write
(2.16) as

d
dx

Yn = AnYn =

(∑
i

Ai,n

x − xi

)
Yn (2.22)

where

Ai,n =
1

W ′(xi )

(
Ωn(xi )− V (xi ) −anΘn(xi )

anΘn−1(xi ) −Ωn(xi )− V (xi )

)
.

This now places the differential equation into the context of isomonodromic deformations
[16,17]. In general, any solution to (2.22) is going to be multi-valued, with branch points at
{xi }(one possibly being ∞). Hence, by integrating around a path, say ρ : [0, 1] → C \ {xi }

where ρ(0) = ρ(1), the multi-valuedness can be expressed through the equation

Y (ρ(0)) = Y (ρ(1))Mρ

where Mρ is referred to as a monodromy matrix. The set of monodromy matrices, {Mρ}, forms
a representation of the fundamental group, π1(C \ {xi }).

By construction, one solution of (2.22) involves the polynomials, which are entire, and the
associated functions. The goal of monodromy preserving deformations is to describe a family
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of linear problems of the form (2.22) that share the same representation. A natural choice of
deformation parameter turns out to be the poles of An , giving rise to the classical result known
as the Schlesinger equations, given by

∂Ai

∂α j
=
[Ai , A j ]

αi − α j
i 6= j (2.23a)

∂Ai

∂αi
= −

∑
j 6=i

[Ai , A j ]

αi − α j
. (2.23b)

We shall assume that just one of the poles depends on a variable, t , which shall become the
deformation parameter. In the case that we have just one parameter that needs to be deformed,
we have that there is a matrix

Bn(x, t) =
∂Yn

∂t
Y−1

n . (2.24)

The form of this matrix, as implied by (2.23), is given by [15]

Bn = B∞,n −
∑

i

Ai,n

x − xi

∂xi

∂t
. (2.25)

By examining the large x behaviour of pn and ∂pi
∂t , we deduce that B∞,n is given by

B∞,n =


1
γn

∂γn

∂t
0

0 −
1

γn−1

∂γn−1

∂t

 . (2.26)

This gives us two linear differential equations for the one system, which must be consistent.
Hence we have the condition

∂

∂t

∂

∂x
Yn =

∂

∂x

∂

∂t
Yn,

which is equivalent to

AnBn −BnAn +
∂

∂t
An −

∂

∂x
Bn = 0. (2.27)

This completely determines the differential equation for the orthogonal polynomials and
associated functions in t .

2.2. Ladder operators

An alternative approach, developed by Chen and collaborators [11,14,5], is that of the ladder
operators. Below, we will give an account of some of the main results of this theory as required
for our purposes. We shall assume that the weight satisfies the same logarithmic differential
equation (2.3), and hence that the corresponding moments satisfy (2.2). However, this approach
typically concerns the monic versions of the orthogonal polynomials, given by

Pn =
1
γn

pn .
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In order to make comparisons to the previous section, we will deal primarily with pn rather than
Pn . Now pn , being a polynomial of degree n, when differentiated can be expressed as a linear
combination of {p j } j=0,...,n−1,

d
dx

pn =

n−1∑
i=0

αn,i pi . (2.28)

We may reduce this, via the use of (1.9), to a differential equation specified by the following
theorem of Bonan and Clark [7] and Bauldry [6].

Theorem 2.4. The orthogonal polynomial system {pn}, defined by the weight w, satisfies

d
dx

pn = −Bn pn + an An pn−1 (2.29)

where

An =

∫
I

(
pn(y)2

x − y

)(
2V (x)

W (x)
−

2V (y)

W (y)

)
w(y) (2.30a)

Bn = an

∫
I

(
pn(y)pn−1(y)

x − y

)(
2V (x)

W (x)
−

2V (y)

W (y)

)
w(y)dy. (2.30b)

Proof. Beginning with (2.28), we may use orthogonality and integration by parts to find

αn,i =

∫
I

p′n(y)pi (y)w(y)dy = −
∫

I
pn(y)

(
p′i (y)−

2pi (y)V

W

)
w(y)dy,

where the second equality requires that w vanishes at the endpoints of I (if w is a continuous
function of a parameter, such as for w(y) = yαe−y , the range of validity can be extended by
analytic continuation [2]). Since p′i is a polynomial whose degree is less than n, this term must
be destroyed by orthogonality, leaving

αn,i = −

∫
I

2V

W
pn(y)pk(y)w(y)dy.

The derivative of pn can therefore be written

p′n(x) = −
∫

I

n−1∑
i=0

pi (x)pi (y)
2V (y)

W (y)
w(y)dy.

However, if we replace 2V (y)/W (y) with 2V (x)/W (x), this would vanish by orthogonality,
hence we may add it to obtain

p′n(x) =
∫

I
pn(y)

(
n−1∑
i=0

pi (x)pi (y)

)(
2V (x)

W (x)
−

2V (y)

W (y)

)
w(y)dy.
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By exploiting the Christoffel–Darboux summation (1.12) and pulling out the polynomials in x ,
we arrive at

p′n(x) = an pn−1(x)
∫

I

(
pn(y)2

x − y

)(
2V (x)

W (x)
−

2V (y)

W (y)

)
w(y)dy

− an pn(x)
∫

I

(
pn(y)pn−1(y)

x − y

)(
2V (x)

W (x)
−

2V (y)

W (y)

)
w(y)dy,

which is (2.29). �

This allows us to define the ladder operator,

Ln,1 :=

(
d

dx
+ Bn

)
which has the effect

Ln,1 pn = An pn−1.

Lemma 2.5. The terms An and Bn satisfy the recurrence relations

Bn+1 + Bn = (x − bn)An −
2V

W
(2.31a)

(Bn+1 − Bn)(x − bn) = a2
n+1 An+1 − a2

n An−1 + 1. (2.31b)

Proof. Using (2.30b),

Bn + Bn+1 =

∫
I

(
pn(y)(an pn−1(y)+ an+1 pn+1(y))

x − y

)(
2V (x)

W (x)
−

2V (y)

W (y)

)
w(y)dy

=

∫
I

(
pn(y)2(y − bn)

x − y

)(
2V (x)

W (x)
−

2V (y)

W (y)

)
w(y)dy

= (x − bn)An +

∫
I

pn(y)
2
(

2V (x)

W (x)
−

2V (y)

W (y)

)
w(y)dy

= (x − bn)An −
2V

W
.

By consistency of (2.29) with (1.9) we obtain the second required expression. �

By multiplying and rearranging (2.31a) and (2.31b) we obtain

B2
n+1 − B2

n −
2V

W
(Bn+1 − Bn) = a2

n+1 An+1 An − a2
n An−1 An + An . (2.32)

Hence, by summing over n and appropriately evaluate initial conditions, we obtain

B2
n −

2V

W
Bn − a2

n An An−1 = −

n−1∑
i=0

Ai . (2.33)

Note the structural correspondence of (2.32) and (2.33) with (2.20) and (2.21) respectively.
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3. Derivations of PV

We now turn to the polynomials specified by (1.7) with the weight specified by (1.1). The
above formulae for the derivatives in x should be considered as partial derivatives. The formula
(1.5) for the moments is a hypergeometric integral, which may be evaluated to give

µk = (1− ζ )Γ (1+ k + α + µ)1 F1

(
−α

−k − α − µ

∣∣∣∣− t

)

+

(
1+

(ζ − 1) sin(πµ)
sin(π(α + µ))

)
Γ (µ+ k + 1)Γ (α + 1)

Γ (2+ k + α + µ)

× t1+k+α+µ
1 F1

(
1+ k + µ

2+ k + α + µ

∣∣∣∣− t

)

= C1(ζ, µ, k, α)1 F1

(
−α

−k − α − µ

∣∣∣∣− t

)

+C2(ζ, µ, k, α)t1+k+α+µ
1 F1

(
1+ k + µ

2+ k + α + µ

∣∣∣∣− t

)
(3.1)

where

C1(ζ, µ, k, α) = (1− ζ )Γ (1+ k + α + µ)

C2(ζ, µ, k, α) =

(
1+

(ζ − 1) sin(πµ)
sin(π(α + µ))

)
Γ (µ+ k + 1)Γ (α + 1)

Γ (2+ k + α + µ)

and 1 F1 is the confluent hypergeometric function. We seek the corresponding differential
equations satisfied by the orthogonal polynomial system, as implied by the theory of Sections 2.1
and 2.2.

To derive the differential equation satisfied by the orthogonal polynomials from the theory of
Section 2.1, we remark that since the factor of (1+ ζθ(x − t)) plays the role of a multiplicative
constant almost everywhere, the logarithmic derivative of w coincides with the logarithmic
derivative of (x − t)αxµe−x almost everywhere. Hence we write

x(x − t)
∂xw

w
∼=

(
−x2
+ (α + µ+ t)x − µt

)
where ∼= is to be interpreted as equals almost everywhere, and so independent of ζ

W = x(x − t)

2V = −x2
+ (α + µ− t)x + µt.

Recall that the form of the logarithmic derivative is the essential ingredient in both Theorems 2.1
and 2.4.

3.1. Recurrence of moments approach

Now that W and V have been defined, determining the differential equation satisfied for this
particular family of orthogonal polynomials is simply a matter of applying Theorem 2.1.
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Corollary 3.1. The polynomials pn corresponding to the weight (1.1) satisfy the differential
equation

∂x

(
pn

pn−1

)
=

{
A∞ +

A0

x
+

At

x − t

}(
pn

pn−1

)
(3.2)

where

A0 =
1
t

κn −
µt

2
−anθn

anθn−1 −κn −
µt

2


At =

1
t

(n +
µ

2

)
t − κn an(θn + t)

−an(θn−1 + t) κn −

(
n + α +

µ

2

)
t


A∞ =

(
0 0
0 1

)
and

θn = bn − 2n − 1− α − µ− t

κn =

(
n +

µ

2

)
t + a2

n +
γn,1

γn
.

Proof. By way of application of (2.10b) and (2.10a) using (2.7) one obtains for the explicit form
of Ωn and Θn ,

Ωn = −
x2

2
+ x

(
2n + α + µ+ t

2

)
−

2n + µt

2
− a2

n −
γn,1

γn

Θn = −x + 2n + 1+ α + µ+ t − bn,

which we subsequently decompose into the form seen above. �

We also require these equations to be written in terms of the κn and θn alone. For this, we note
that recurrence relations for θn and κn are implied by (2.18a) and (2.19).

Corollary 3.2. The associated functions, θn and κn , satisfy the recurrences

κn+1 + κn = −θn(θn + t + 2n + α + 1+ µ) (3.3a)

θn

θn + t

θn−1

θn−1 + t
=

κ2
n −

µ2t2

4(
κn −

(
n + α + µ

2

)
t
) (
κn −

(
n + µ

2

)
t
) . (3.3b)

Proof. The relation (2.18b) is equivalent to (3.3a) when one uses the definitions of Θn and Ωn in
terms of θn and κn . Evaluating (2.21) at x = 0 and x = t shows

a2
nθnθn−1 = κ

2
n −

µ2t2

4
(3.4)

a2
n(t + θn)(t + θn−1) =

(
κn −

(2n + 2α + µ)t
2

)(
κn −

(2n + µ)t

2

)
(3.5)

respectively. The ratio of these identities is (3.3b). �
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The relation (3.3b) may be used to eliminate the occurrence of θn−1 in (3.2). Note that (3.2)
is the form of (2.22), where only one of the poles depends on t . Hence, the evolution in t is
governed by (2.24). In this regard, the derivations of the time derivatives for θn and κn and the
methods of Forrester and Witte [21] contrast with the methods of Basor and Chen [5]. Once the
derivatives in x are found, one may apply the theory of isomonodromic deformations [24] to
obtain appropriate derivatives in t . This approach, as seen in [21] extends the evolution of the
orthogonal polynomials in the t direction via the following result.

Corollary 3.3. In addition to (3.2), the orthogonal polynomials satisfy

∂t

(
pn

pn−1

)
=

{
B −

At

x − t

}(
pn

pn−1

)
(3.6)

where

B =
1
2t

(
θn + t 0

0 −θn−1 − t

)
.

Proof. This almost directly follows from the corollary of the Schlesinger equations, (3.2) and
(2.25). We use the fact that in the context of orthogonal polynomials B has the explicit form
(2.26). By equating the residues of the left- and right-hand side of the compatibility relation
(2.27) at x = ∞, the diagonal entries reveal

2∂tγn

γn
= 1+

θn

t
(3.7a)

2∂tγn−1

γn−1
= 1+

θn−1

t
(3.7b)

while the off diagonal entries are 0. This gives the required form for B above. �

One may easily calculate the derivatives in t of θn and κn via the compatibility of (2.16) and
(2.24),

∂tA − ∂xB +A B −BA = 0, (3.8)

to define the evolution of θn and κn . Using the above recursion relations allows one to express
the derivatives of θn and κn in terms of themselves. Alternatively, using the general framework
of [26], the derivatives of an and bn are expressible in terms of the functions Θn and Ωn evaluated
at the movable finite singular points of (2.16) via the expression

d
dt

ln an =
1
2

m∑
r=1

Θn(xr )−Θn−1(xr )

W ′(xr )

d
dt

xr (3.9a)

d
dt

ln bn =

m∑
r=1

Ωn+1(xr )− Ωn−1(xr )

W ′(xr )

d
dt

xr , (3.9b)

where in the case of (2.16), m = 1, and the only point is x1 = t . This leads to the equations

2t

an

dan

dt
= 2+ bn−1 − bn (3.10a)

t
dbn

dt
= a2

n − a2
n+1 + bn . (3.10b)
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We know that (3.9) is equivalent to (3.10). Using (3.8) and (3.10) in conjunction with (3.3) to
eliminate occurrences of a2

n and θn−1 gives a differential system for {θn, κn}.

Corollary 3.4. The associated functions, θn and κn satisfy the coupled differential equations in t

t
∂

∂t
θn = 2κn + (2n + α + 1+ µ+ t + θn)θn (3.11a)

t
∂κn

∂t
=

(
1

θn + t
+

1
θn

)
κ2

n +

(
2n + α + µ+ 1− (2n + α + µ)

t

θn + t

)
κn

−

(
n2
+

(
n +

µ

2

)
(α + µ)

)
t −

µ2t2

4θn
+

(
n +

µ

2

) (
n + α +

µ

2

) t2

θn + t
. (3.11b)

Proof. This simply follows from the evaluation of (2.27). The first relation follows from (3.7),
namely

2ta′n
an
= θn−1 − θn .

The two other relations that arise are

tθ ′n = 2κn + (2n + α + 1+ µ+ t + θn)θn

tκ ′n = κn − a2
n(θn − θn−1).

The first of these is (3.11a). By using (3.4) to eliminate a2
n and (3.3b) to eliminate θn−1, one

obtains (3.11b). �

Now that one has the derivatives of κn and θn , the remaining task is to find the transformation
which allows them to be identified as the Hamilton equations for a Painlevé V system. But before
doing this, we want to show how differential equations equivalent to the coupled system (3.11)
can be derived from the formalism of Section 2.2.

3.2. Ladder operator approach

We want to specialize (2.29) to the weight (1.1).

Proposition 3.5. With the weight (1.1) the coefficients An and Bn in (2.29) are given by

An =
Rn

x − t
+

1− Rn

x

Bn =
rn

x − t
−

n + rn

x

where for α ≥ 1

Rn = α

∫
∞

0

w(y)pn(y)2

(t − y)
dy

rn = α

∫
∞

0

w(y)pn(y)pn−1

(t − y)
dy.
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Proof. We note that

2V (x)

W (x)
−

2V (y)

W (y)
=

(
−

α

(t − x)(t − y)
−
µ

xy

)
(x − y),

and hence the integrals that define An and Bn simplify to

An =

∫
∞

0
pn(y)

2
(
−

α

(t − x)(t − y)
−
µ

xy

)
w(y)dy

Bn =

∫
∞

0
pn(y)pn−1(y)

(
−

α

(t − x)(t − y)
−
µ

xy

)
w(y)dy,

or equivalently

An =
α

x − t

∫
∞

0
(1− ζθ(y − t))(y − t)α−1 yµe−y pn(y)

2dy

−
µ

x

∫
∞

0
(1− ζθ(y − t))(y − t)α yµ−1e−y pn(y)

2dy

Bn =
α

x − t

∫
∞

0
(1− ζθ(y − t))(y − t)α−1 yµe−y pn(y)pn−1(y)dy

−
1
x

∫
∞

0
(1− ζθ(y − t))(y − t)α yµ−1e−x pn(y)pn−1(y)dy.

Now define

Rn = α

∫
∞

0
(1− ζθ(y − t))(y − t)α−1 yµe−y pn(y)

2dy

= α

∫
∞

0

w(y)pn(y)2

(t − y)
dy

rn = α

∫
∞

0
(1− ζθ(y − t))(y − t)α−1 yµe−y pn(y)pn−1(y)dy

= α

∫
∞

0

w(y)pn(y)pn−1

(t − y)
dy.

We apply integration by parts, orthogonality and the known value of w(x, t) at 0, t and ∞, to
express the second part of the integrals in An and Bn in terms of Rn and rn respectively, giving

An =
Rn

x − t
−

1
x

∫
∞

0

(
αw(y, t)p2

n(y)

t − y
− w(y, t)p2

n(y)

)
dy

Bn =
rn

x − t
−
µ

x

∫
∞

0

(
αw(y, t)pn(y)pn−1

t − y
+ w(y, t)pn−1(y)

∂pn

∂y

)
dy.

Using orthogonality and the expression

∂pn(y)

∂y
=

n

an
pn−1(y)+ lower order terms

gives the stated formulae. �
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Now that the forms of An and Bn are known, the differential equation satisfied by the polyno-
mials can be written

d
dx

(
pn

pn−1

)
=


n + r

x
−

rn

x − t
an

(
1− Rn

x
+

Rn

x − t

)
−an

(
1− Rn−1

x
+

Rn−1

x − t

)
rn

x − t
−

n + rn

x
−

2V

W

( pn
pn−1

)

where the second row is a consequence of (1.9) and (2.31a).

Lemma 3.6. The functions Rn and rn satisfy the recurrences

rn+1 + rn − α = Rn(µ+ α + 2n + 1+ t Rn − t) (3.12a)

Rn Rn−1

(Rn − 1)(Rn−1 − 1)
=

rn(rn − α)

(rn + n)(rn + n + µ)
. (3.12b)

Proof. The residue in x of (2.31a) at t and∞ using these definitions for An and Bn in terms of
Rn and rn shows

bn = 2n + 1+ α + µ+ t Rn (3.13)

rn+1 + rn − α = Rn(t − bn)

which gives (3.12a). The evaluation of the result of multiplying (2.31b) by x2(x − t)2 at 0 and t
reveals

rn(rn − α) = a2
n Rn−1 Rn (3.14)

(n + rn)(n + µ+ rn) = a2
n(Rn − 1)(Rn−1 − 1)

giving (3.12b) in an analogous manner to the previous section. �

In addition to (3.13), there is a further relation obtained by eliminating Rn−1 from (3.14) by
using (3.12b), giving

a2
n =

(rn − α)rn

Rn
−
(n + rn)(n + µ+ rn)

Rn − 1
. (3.15)

Lemma 3.7. The recursion coefficients of (1.9) satisfy the differential equations

2
an

dan

dt
= Rn−1 − Rn (3.16a)

dbn

dt
= rn − rn+1. (3.16b)

Proof. We take the derivative of (1.8) in the case i = j = n to see that

0 =
d
dt

∫
∞

0
pn(y)

2w(y)dy

with respect to t . We recall that α is a non-negative integer by assumption. Hence, w(x, t) is
continuous at x = t and w(t, t) = 0, and so
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0 =
d
dt

(∫ t

0
dy −

∫ t

∞

dy

)
w(y)pn(y)

2

=

(
lim

x→t−
− lim

x→t+

)
w(x)p2

n(x)−

(∫ t

0
dy −

∫ t

∞

dy

)
∂

∂t

(
pn(y)

2w(y)
)

= −α

∫
∞

0

w(y)p2
n(y)

y − t
dy +

∫
∞

0
2pn

∂pn

∂t
w(y)dy

where we have used

∂w(x, t)

∂t
= −

αw(x, t)

x − t
.

Using

∂pn

∂t
=
γ ′n

γn
γn xn

+ lower order terms

gives us that

Rn = 2
γ ′n

γn

and hence

2
an

dan

dt
= 2

(
γn−1

γn

)−1 d
dt

(
γn−1

γn

)
= 2

γ ′n−1

γn−1
− 2

γ ′n

γn
= Rn−1 − Rn .

Similarly, differentiating (1.8) in the case of i = j + 1 = n with respect to t shows

rn =

∫
∞

0

(
γ ′n yn

+ γ ′n,1 yn−1
)

pn−1(y) dy

=
γ ′n

γn

∫
∞

0
γn yn pn−1w(y)dy +

γ ′n

γn

∫
∞

0
γ ′n,1 yn−1 pn−1w(y)dy.

We use the fact that

γn xn
= pn(x)− γn,1xn−1

+ lower order terms

in this expression to obtain

rn =

∫
∞

0

(
γ ′n,1 −

γn,1γ
′
n

γn

)
yn−1 pn−1w dy

=
γn

γn−1

∫
∞

0

(
γ ′n,1γn − γ

′
nγn,1

γ 2
n

)
p2

n−1w dy

=
d
dt

(
γn,1

γn,1

)
since

bn =
γn,1

γn
−
γn+1,1

γn+1

Eq. (3.16b) follows. �
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Theorem 3.8. The coefficients, Rn and rn , satisfy the system of differential equations

t R′n = 2rn − α + Rn(t Rn + 2n + α + µ− t) (3.17a)

tr ′n =

(
1− 2Rn

Rn(1− Rn)

)
r2

n − n(n + α)
Rn

1− Rn

+ (2n + α + µ)rn +
(2n + µ)rn

Rn − 1
−
αrn

Rn
. (3.17b)

Proof. To obtain the first equation, note that

dbn

dt
= Rn + t R′n = rn − rn+1

which gives (3.17a) under the substitution of rn+1 in accordance with (3.12a).
To obtain (3.17b) differentiate (3.15). Knowing a′n in terms of an , rn and Rn from (3.16a)

removes a′n while we may use (3.14) to remove the remaining instances of a2
n . (3.17a) and

(3.12b) are used to eliminate R′n and Rn−1 to obtain an equivalent reformulation of (3.17b). �

We observe that the differential equations of Corollary 3.2 and Theorem 3.8 are identical upon
setting

Rn =
t + θn

t

rn =
κn

t
−

(
n +

µ

2

)
.

This demonstrates an equivalence between the characterization of the polynomial system
corresponding to (1.1) as implied by the method of isomonodromic deformation, and the method
of ladder operators.

3.3. Main results

Recall that our remaining task is to relate the differential equations of corollary to the
Hamilton equations for a Painlevé V system. The work in [21,5] both provide clues regarding
relevant transformations. Explicitly, they suggest two Möbius transforms

y ∼
θn

t + θn

y ∼
θn + t

θn

both of which send∞ to 1, and send 0 and −t to 0 and∞ in different ways.

Proof of Proposition 1.1. We are required to show that q satisfies (1.14) using (3.11). We first
find the derivatives of q in terms of θn and κn ,

q =
θn + t

θn

q ′ =
θn − tθ ′n
θ2

n

= −
2κn + θn(θn + 2n + t + α + µ)

θ2
n
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q ′′ =
θ ′n((2n + t + α + µ)θn + 4κn)

θ3
n

−
1
θn
−

2κn + θn

θ2
n

.

However, using (3.11a) we have

2κn = tθ ′n − θn(θn + 1+ 2n + t + α + µ)

giving

q ′′ =
t (2t + 2θn)θ

′2
n

2θ3
n (t + θn)

−
(2t + θn)θ

′
n

θ2
n (t + θn)

−
1

2θn(t + θn)
−

θ2
n

t (t + θn)

+
µ2(t + θn)

2
− θ2

n (t
2
+ α2)

2θ3
n (t + θn)

+
1
2

(
t

t + θn
− 2(1+ 2n + α + µ)

t + θn

tθn
− 5

)
.

Inverting the expression for q in terms of θn gives us

θn =
t

q − 1

θ ′n =
q − tq ′ − 1

(q − 1)2
,

and using these expressions show

q ′′ =

(
1

q − 1
+

1
2q

)
q ′2 −

q ′

t
+
(q − 1)2

t2

(
µ2q

2
−
α2

2q

)
−
(1+ 2n + α + µ)q

t
−

q(1+ q)

2(q − 1)
.

This is (1.14) where

α1 =
µ2

2
α2 = −

α2

2

α3 = −(2n + 1+ α + µ) α4 = −
1
2
.

To obtain the corresponding p variable, we remark that the equation for q ′, as specified by the
Hamiltonian in (1.15), is linear in p, hence determines p uniquely in terms of θn and κn . �

For the differential equations to uniquely characterize θn, κn , boundary values must be
specified. For this purpose, we note from (3.1) that the small t leading order asymptotics for
µk are

µk = C1

(
1−

α

k + α + µ
t +

α(α − 1)
2(k + α + µ)(k + α + µ− 1)

t2

−
α(α − 1)(α − 2)

6(k + α + µ)(k + α + µ− 1)(k + α + µ− 2)
t3
+ · · ·

)
+C2t1+k+α+µ

(
1−

1+ k + µ

2+ k + α + µ
t +

(1+ k + µ)(2+ k + µ)

2(2+ k + α + µ)(3+ k + α + µ)
t2

−
(1+ k + µ)(2+ k + µ)(3+ k + µ)

6(2+ k + α + µ)(3+ k + α + µ)(4+ k + α + µ)
t3
+ · · ·

)
.
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From this the determinant (1.6) that defines ∆n may be evaluated to leading orders by using the
identity (see e.g. [27])

det(Γ (zk + j)) j,k=0,...,n−1 =

n−1∏
k=0

Γ (zk)
∏

0≤ j<k<n

(zk − z j ). (3.18)

In particular, by letting zk = 1+ α + µ+ k we have

∆n(0) = (1− ζ )n
n−1∏
k=1

k!
n−1∏
k=0

Γ (1+ α + µ+ k).

Recalling (1.10) then gives

a2
n(0) = n(n + α + µ),

and knowing this (3.10) at t = 0 implies

bn(0) = 2n + α + 1+ µ.

To determine the rest of the expansion of (1.6), we first make use of (3.18) to compute the
leading form of the analytic and non-analytic components as

∆n(t) = ∆n(0)
(

1+
α

α + µ
nt + O(t2)+ χn t1+α+µ(1+ O(t)+ O(t1+α+µ))

)
where

χn =

(
1+

(ζ − 1) sin(πµ)
sin(π(α + µ))

)
Γ (µ+ 1)Γ (α + 1)Γ (α + µ+ n + 1)

(1− ζ )(n − 1)!Γ (α + µ+ 1)Γ (α + µ+ 2)2
.

It follows from this and (1.10) that the expansion of a2
n is

a2
n = n(n + α + µ)−

n(α + µ+ n)

(µ+ α)2(µ+ α − 1)(µ+ α − 1)
t2
+ O(t3)

+ t1+α+µ
(

1+
(ζ − 1) sinπµ
sinπ(α + µ)

)
Γ (µ+ 1)Γ (α + 1)
(1− ζ )(n − 1)!

×
Γ (n + α + µ+ 1)

Γ (α + µ)Γ (α + µ+ 1)Γ (α + µ+ 2)
+ O(t2+µ+α)+ O(t2µ+2α+2),

and subsequently consistency with regard to (3.10) demands

bn = 2n + α + µ+ 1−
µ

α + µ
t +

αµ(2n + α + µ+ 1)

(α + µ− 1)(α + µ)2(α + µ+ 1)
t2
+ O(t3)

−t1+α+µ
(

1+
sinπµ

sinπ(α + µ)

)
Γ (µ+ 1)Γ (α + 1)Γ (α + µ+ n + 1)

n!(1− ζ )Γ (α + µ+ 1)3

+O(t2+µ+α)+ O(t2+2µ+2α).
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Substitution into (1.16) then shows

θn = −
µ

α + µ
t +

αµ(2n + α + µ+ 1)

(α + µ− 1)(α + µ)2(α + µ+ 1)
t2
+ O(t3)

− t1+α+µ
(

1+
sinπµ

sinπ(α + µ)

)
Γ (µ+ 1)Γ (α + 1)Γ (α + µ+ n + 1)

n!(1− ζ )Γ (α + µ+ 1)3

+ O(t2+µ+α)+ O(t2+2µ+2α) (3.19)

κn =
µ(2n + α + µ)t

2(α + µ)
−

2nαµ(n + α + µ)t2

(α + µ)2(α + µ+ 1)(α + µ− 1)
+ O(t3)

+

(
1+

(ζ − 1) sinπµ
sinπ(α + µ)

)
Γ (α + 1)Γ (µ+ 1)Γ (α + µ+ n + 1)

(1− ζ )(n − 1)!Γ (α + µ+ 1)3

+ O(tα+µ+2)+ O(t2+2α+µ). (3.20)

In particular, the small t asymptotics for q is therefore

q =
θn + t

θn
= −

α

µ
−

µ(2n + α + µ+ 1)
α(α + 1)(α + µ− 1)

t + O(t2)

− tα+µ
(

1+
(ζ − 1) sinπµ
sinπ(α + µ)

)
Γ (α)Γ (µ+ 1)Γ (α + µ+ n + 1)

n!(1− ζ )Γ (α + µ)3α

+ O(t1+µ+α)+ O(t2µ+2α).
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[5] E. Basor, Y. Chen, Painlevé V and the distribution function of discontinuous linear statistics in the Laguerre Unitary

Ensembles, J. Phys. A: Math. Theor. 42 (3) (2009) 035203.
[6] W.C. Bauldry, Estimates of asymmetric Freud polynomials on the real line, J. Approx. Theory 63 (2) (1990)

225–237.
[7] S. Bonan, D.S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approx. Theory 63 (2) (1990)

210–224.
[8] S. Bonan, P. Nevai, Orthogonal polynomials and their derivatives I, J. Approx. Theory 40 (1984) 134–147.
[9] A. Borodin, P. Deift, Fredholm determinants, Jimbo-Miwa-Ueno tau-functions and representation theory, Commun.

Pure Appl. Math. 55 (2002) 1160–1230.
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