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No greedy bases for matrix spaces with mixed
ℓp and ℓq norms ∗

Gideon Schechtman†

Abstract

We show that none of the spaces (
⊕∞

n=1 ℓp)ℓq , 1 ≤ p ̸= q < ∞ have
a greedy basis. This solves a problem raised by Dilworth, Freeman,
Odell and Schlumprect. Similarly, the spaces (

⊕∞
n=1 ℓp)c0 , 1 ≤ p < ∞,

and (
⊕∞

n=1 co)ℓq , 1 ≤ q < ∞, do not have greedy bases. It follows from
that and known results that a class of Besov spaces on Rn lack greedy
bases as well.

1 Introduction

Given a (say, real) Banach space X with a Schauder basis {xi}, an x ∈ X
and an n ∈ N it is useful to determine the best n-term approximation to x
with respect to the given basis. I.e., to find a set A ⊂ N with n elements and
coefficients {ai}i∈A such that

∥x−
∑

i∈A

aixi∥ = inf{∥x−
∑

i∈B

bixi∥; |B| = n, bi ∈ R}

or, given a C < ∞, at least to find such an A ⊂ N and coefficients {ai}i∈A

with
∥x−

∑

i∈A

aixi∥ ≤ C inf{∥x−
∑

i∈B

bixi∥; |B| = n, bi ∈ R}.

∗AMS subject classification: 46B15, 41A65, 46B45, 46E35. Key words: Greedy basis,
Matrix spaces, Besov spaces
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This problem attracted quite an attention in modern Approximation Theory.
Of course one would also like to have a simple algorithm to find such a set
{ai}i∈A. It would be nice if we could take {ai}i∈A to be just the set of the n
largest, in absolute value, coefficients in the expansion of x with respect to
the basis {xi}. Or, if this set is not unique, any such set. The basis {xi} is
called Greedy if for some C this procedure works; i.e., for all x =

∑∞
i=1 aixi, all

n ∈ N and all A ⊂ N, |A| = n, satisfying min{|ai|; i ∈ A} ≥ max{|ai|; i /∈ A},

∥x−
∑

i∈A

aixi∥ ≤ C inf{∥x−
∑

i∈B

bixi∥; |B| = n, bi ∈ R}.

Konyagin and Temlyakov [KT] provided a simple criterion to determine
whether a basis is greedy: {xi} is greedy if and only if it is unconditional and
democratic.

Recall that {xi} is said to be unconditional provided, for some C < ∞,
all eventually zero coefficients {ai} and all sequences of signs {εi},

∥
∑

εiaixi∥ ≤ C∥
∑

aixi∥.

{xi} is said to be democratic provided for some C < ∞ and all finite A,B ⊂ N
with |A| = |B|,

∥
∑

i∈A

xi∥ ≤ C∥
∑

i∈B

xi∥.

We refer to [DFOS] for a survey of what is known about space that
have or do not have greedy bases. In [DFOS] Dilworth, Freeman, Odell
and Schlupmrecht determined which of the spaces X = (

⊕∞
n=1 ℓn

p )ℓq , 1 ≤
p ̸= q ≤ ∞ (with c0 replacing ℓ∞ in case q = ∞) have a greedy basis. It
turns out that this happens exactly when X is reflexive. They also raise
the question of whether (

⊕∞
n=1 ℓp)ℓq , 1 < p ̸= q < ∞ have greedy bases.

Here we show that these spaces (as well as their non-reflexive counterparts)
do not have greedy bases. By the Konyagin-Temlyakov characterization it
is enough to prove that each normalized unconditional basis of (

⊕∞
n=1 ℓp)ℓq ,

1 ≤ p ̸= q ≤ ∞ (with c0 replacing ℓ∞ in case p or q are ∞) has two
subsequences, one equivalent to the unit vector basis of ℓp (c0 if p = ∞) and
one to the unit vector basis of ℓq (c0 if q = ∞).

Theorem 1 Each normalized unconditional basis of the spaces (
⊕∞

n=1 ℓp)ℓq ,
1 ≤ p ̸= q < ∞ has a subsequence equivalent to the unit vector basis of ℓp
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and another one equivalent to the unit vector basis of ℓq. Similarly, each
normalized unconditional basis of the spaces (

⊕∞
n=1 ℓp)c0, 1 ≤ p < ∞ (resp.

(
⊕∞

n=1 co)ℓq , 1 ≤ q < ∞) has a subsequence equivalent to the unit vector
basis of ℓp (resp. c0) and another one equivalent to the unit vector basis of
co (resp. ℓq). Consequently, none of these spaces have a greedy basis.

For 1 ≤ p, q < ∞ the spaces (
⊕∞

n=1 ℓp)ℓq are isomorphic to certain Besov
spaces on Rn. We refer to [Me] for the definition of the Besov spaces Bs,q

p

and for the fact that they are isomorphic to (
⊕∞

n=1 ℓp)ℓq . See in particular
[Me, Section 6.10, Proposition 7] (and also [Me, Section 2.9, Proposition 4]).
We thank P. Wojtaszczyk for this reference.

Corollary 1 Let 1 ≤ p ̸= q < ∞ and let s be any real number, then the
space Bs,q

p does not have a greedy basis.

Recall that this stand in contrast with the main result in [DFOS] which states
that, in the reflexive cases, the corresponding Besov spaces on [0, 1] do have
greedy bases.

In the special case of 1 < q < ∞ and p = 2 the theorem above was
actually proved in [Sc]. There the isomorphic classification of the span of
unconditional basic sequences in (

⊕∞
n=1 ℓ2)ℓq , 1 < q < ∞, which span com-

plemented subspaces were characterize. Although it is not stated there, the
proof actually established the theorem above in these special cases. Shortly
after [Sc] appeared Odell [Od] strengthened the result and classified all the
complemented subspace of (

⊕∞
n=1 ℓ2)ℓq (thus there is no wonder that [Sc] was

forgotten...). We remark in passing that this special case of p = 2 was of par-
ticular interest since (

⊕∞
n=1 ℓ2)ℓq is isomorphic to a complemented subspace

of Lq[0, 1].
The first step in the proof in [Sc] is to reduce the case of a general uncon-

ditional basic sequence in (
⊕∞

n=1 ℓ2)ℓq whose span is complemented to one
which is also a block basis of the natural basis of (

⊕∞
n=1 ℓ2)ℓq . This reduc-

tion no longer hold for p ̸= 2. The complications in the present note stem
from this fact. The way we overcome it is by transferring the problem to
a larger space (of arrays {ai,j,k}) of mixed q, p and 2 norms. Unfortunately,
this makes the notations quite cumbersome.
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2 Preliminaries

Zq,p, 1 ≤ p, q < ∞ will denote here the space of all matrices a = {a(i, j)}∞i,j=1

with norm

∥a∥ = ∥a∥q,p = (
∞∑

j=1

(
∞∑

i=1

|a(i, j)|p)q/p)1/q.

If p or q are ∞ we replace the corresponding ℓp or ℓq norm by the ℓ∞ norm and
continue to denote by Zq,p the completion of the space of finitely supported
matrices under this norm. (Thus, c0 replacing ∞ would be a more precise
notation in this case but, since it would complicated our statements, we
prefer the above notation.) The spaces Zq,p are the subject of investigation
of this paper. They are more commonly denoted by ℓq(ℓp) or (

⊕∞
n=1 ℓp)ℓq

(as we have done in the introduction) but since we shall be forced to also
consider more complicated spaces with mixed norms we prefer the notation
above.

If {kn}∞n=1 is any sequence of positive integers, we shall denote by Zq,p;{kn},
the subspace of Zq,p consisting of matrices a satisfying a(i, j) = 0 for all
i > kj.

We also denote by Zq,p,r (we’ll use this only for r = 2) the spaces of arrays
a = {a(u, i, j)}∞u,i,j=1 with norm

∥a∥ = ∥a∥q,p,r = (
∞∑

j=1

(
∞∑

i=1

(
∞∑

u=1

|a(u, i, j)|r)p/r)q/p)1/q,

with the same convention as above when one of p, q (or r) is ∞. Simi-
larly, Zq,p;{kn},r denotes the subspace of Zq,p,r consisting of arrays a satisfying
a(u, i, j) = 0 for all i > kj.

By Pn we denote the natural projection onto the n-th column in Zq,p;
i.e, Pn({a(i, j)}) = {ā(i, j)}, where ā(i, j) = a(i, j) if j = n and ā(i, j) =
0 otherwise. Similarly, P k

n denotes the natural projection onto the first k
elements in the n-th column. QN denotes

∑N
n=1 Pn.

Given a Banach lattice X, an 1 < r < ∞ and x1, x2, · · · ∈ X one can
define the operation (

∑ |xn|r)1/r in a manner consistent with what we usually
mean by such an operation (when X is a lattice of functions or sequences,
for example). See e.g. [LT2, Section 1.d] for this and what follows.

In particular if X has a 1-unconditional basis {ei} (which is the only
kind of lattices we’ll consider here) then for xn =

∑∞
i=1 an

i ei, n = 1, 2, . . . , N ,

(
∑ |xn|r)1/r =

∑∞
i=1(

∑N
n=1 |an

i |r)1/rei.
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Recall that X is said to be r-convex (resp. r-concave) with constant K
if for all n and all x1, x2, . . . , xn ∈ X

∥(
n∑

i=1

|xi|r)1/r∥ ≤ K(
n∑

i=1

∥xi∥r)1/r (resp. (
n∑

i=1

∥xi∥r)1/r ≤ K∥(
n∑

i=1

|xi|r)1/r∥).

X is said to be r-convex (resp. r-concave) if it is r-convex (resp. r-concave)
with some constant K < ∞. Zq,p is easily seen to be min{p, q}-convex with
constant 1 and max{p, q}-concave with constant 1.

It is also known that X is r-convex (resp. r-concave) if and only if its
dual X∗ is r′-concave (resp. r′-convex) where r′ = r/(r − 1).

Given a Banach lattice X we denote by X(ℓ2) the (completion of the)
space of (finite) sequences x = (x1, x2, . . . ) of elements of X for which the
norm

∥x∥ = ∥(
∑

|xj|2)1/2∥
is finite. If X has a 1-unconditional basis {ej} then this is just the (completion
of the) space of matrices a = {a(i, j)} (with only finitely many non-zero
entries) with norm

∥a∥ = ∥
∞∑

j=1

(
∞∑

i=1

|a(i, j)|2)1/2ei∥.

The following two lemmas are well known but maybe hard to find so we
reproduce their proofs.

Lemma 1 Let {xi}∞i=1 be a normalized unconditional basic sequence in Zq,p,
1 ≤ p < q ≤ ∞. If for some ε > 0 and N ∈ N ∥QNxi∥ > ε for all i then
{xi}∞i=1 has a subsequence equivalent to the unit vector basis of ℓp.

Proof: Assume first p > 1. Given a sequence of positive εi-s and passing to
a subsequence (which without loss of generality we assume is the all sequence)
we can assume that there is a sequence of {yi} of vectors disjointly supported
with respect to the natural basis of Zq,p such that ∥xi−yi∥ < εi for all i. (Use
the fact that {xi} doesn’t have a subsequence equivalent to the unit vector
basis of ℓ1 and the argument for Proposition 1.a.12 in [LT1], for example).
{yi} is 1-dominated by the unit vector basis of ℓp and dominates {QNyi}
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which in turn C-dominates the unit vector basis of ℓp for C = 1/(ε− sup εi);
i.e,

(
∞∑

i=1

|ai|p)1/p ≥ ∥
∞∑

i=1

aiyi∥ ≥ (ε− sup εi)(
∞∑

i=1

|ai|p)1/p

for all scalars {ai}. If the εi-s are small enough a similar inequality holds for
the (sub)sequence {xi}.

If p = 1 then given a sequence of positive εi-s and passing to a subsequence
(which without loss of generality we assume is the all sequence) we can assume
that there is a vector y and sequence of {yi} of vectors all disjointly supported
with respect to the natural basis of Zq,p such that ∥xi − y − yi∥ < εi for all
i. If y ̸= 0 and the {εi} are small enough then, using the unconditionality
{xi} is clearly equivalent to the unit vector basis of ℓ1. If y = 0 the same
argument as for p > 1 works here too.

Lemma 2 Let {xi} be a K-unconditional basic sequence in a Banach lat-
tice which is r-concave for some r < ∞ Let x̄i ∈ X(ℓ2) be defined by
(0, . . . , 0, xi, 0, . . . ), xi in the i-th place. Then the sequences {xi} in X and
{x̄i} in X(ℓ2) are equivalent.

If in addition X is also s-convex for some s > 1 and [xi], the closed linear
span of {xi}, is complemented in X then [x̄i] is complemented in X(ℓ2).

Proof: The first assertion, due to Maurey, can be found in [Ma] or [LT2,
Theorem1.d.6(i)]. The second is probably harder to find so we reproduce it.
Let P =

∑∞
i=1 x∗i ⊗ xi, with x∗i ∈ X∗, be the projection onto [xi]; i.e.,

P (x) =
∞∑

i=1

x∗i (x)xi x ∈ X.

Define P̄ =
∑∞

i=1 x̄∗i ⊗ x̄i (x̄∗i ∈ X∗(ℓ2) = X(ℓ2)
∗); i.e.,

P̄ (x) =
∞∑

i=1

x̄∗i (x)x̄i x ∈ X(ℓ2).

Using the facts that {x̄i} is equivalent to {xi}, {x̄∗i } is equivalent to {x∗i },
and {x̄∗i , x̄i} is a biorthogonal sequence, it is easy to see that P̄ is a bounded
projection on X(ℓ2) with range [x̄i].
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3 Proof of the main result, the reflexive case

Since the non-reflexive cases (i.e., when p or q are 1 or ∞) of Theorem 1
require a bit different treatment and since the problem raised in [DFOS]
was restricted to the reflexive cases only, we prefer to delay the proof of the
non-reflexive cases to the next section.

Proposition 1 Let {xi}∞i=1 be a normalized unconditional basic sequence in
Zq,p, 1 < p, q < ∞ such that [xi]

∞
i=1 is complemented in Zq,p. If no sub-

sequence of {xi}∞i=1 is equivalent to the unit vector basis of ℓp then [xi]
∞
i=1

isomorphically embeds in Zq,p;{n},2 as a complemented subspace.

Proof: We may clearly assume p ̸= q and by duality that q > p. Let {εn}∞n=1

be a sequence of positive numbers. By Lemma 1 for all n only finitely many
of the xi-s satisfy ∥Pnxi∥ ≥ εn. Consequently, for each n ∈ N there is a
kn ∈ N such that ∥(Pn − P kn

n )xi∥ < εn for all i. We denote Q =
∑∞

n=1 P kn
n .

In the case p = 2 we showed in [Sc] that without loosing generality we can
assume that {xi} is a block basis of the natural basis of Zq,p and then {Qxi}
and {(I − Q)xi} are also unconditional basic sequences. This is no longer
true when p ̸= 2. We overcome this difficulty by switching to the larger space
Zq,p,2. Define for each i x̄i ∈ Zq,p,2 by

x̄i(w, u, v) =

{
xi(u, v), if w = i;
0, if w ̸= i.

Let the projection P from Zq,p onto [xi] be given by

Px =
∞∑

i=1

x∗i (x)xi

where {x∗i } in Zq′,p′ = Z∗
q,p (p′ = p/(p−1), q′ = q/(q−1)) satisfy x∗i (xj) = δi,j,

i, j = 1, 2, . . . . Then by Lemma 2

P̄ x =
∞∑

i=1

x̄∗i (x)x̄i

is a bounded projection from Zq,p,2 onto [x̄i] and {xi}∞i=1 is equivalent to
{x̄i}∞i=1.

We denote by P̄n = Pn⊗Iℓ2 on Zq,p,2; i.e, P̄n(x)(w, u, v) = Pn(x(w, ·, ·))(u, v).
We also similarly denote P̄ k

n = P k
n ⊗ Iℓ2 , Q̄N = QN ⊗ Iℓ2 , and Q̄ = Q ⊗ Iℓ2 .
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Note that now {Q̄x̄i} and {(I−Q̄)x̄i} are also unconditional basic sequences.
We would like to show that if εn → 0 fast enough, then {Q̄x̄i} is equivalent
to {x̄i} and thus to {xi} and that [Q̄x̄i] is complemented.

Now,

(I − Q̄)P̄ Q̄x̄n =
∞∑

i=1

x̄∗i (Q̄x̄n)(I − Q̄)x̄i, n = 1, 2, . . . .

The operator (I − Q̄)P̄ sends the span of the unconditional basic sequence
{Q̄x̄n} to the span of the unconditional basic sequence {(I − Q̄)x̄n} thus the
diagonal operator D defined by

DQ̄x̄n = x̄∗n(Q̄x̄n)(I − Q̄)x̄n, n = 1, 2, . . . .

is bounded (see e.g. [To] or [LT1, Proposition 1.c.8]). If we show that
x̄∗n(Q̄x̄n) are uniformly bounded away from zero this will show that {Q̄x̄n}
dominates {(I − Q̄)x̄n} and thus also {x̄n} = {(I − Q̄)x̄n + Q̄x̄n}. That
{Q̄x̄n} is dominated by {x̄n} is clear from the boundedness of Q̄. This will
show that {Q̄x̄n} is equivalent to {xn}. To show that x̄∗n(Q̄x̄n) are uniformly
bounded away from zero note that

x̄∗n(Q̄x̄n) = 1− x̄∗n((I − Q̄)x̄n)

and that

|x̄∗n((I − Q̄)x̄n)| ≤ ∥P̄ (I − Q̄)x̄n∥ ≤ ∥P̄∥
∞∑

i=1

εi.

So, if ∥P̄∥∑∞
i=1 εi < 1/2, then x̄∗n(Q̄x̄n) ≥ 1/2 for all n.

We still need to show that [Q̄x̄n] is complemented. Note that { x̄∗n
x̄∗n(Q̄x̄n)

, Q̄x̄n}
is a biorthogonal sequence such that {Q̄x̄n} is equivalent to {x̄n} and { x̄∗n

x̄∗n(Q̄x̄n)
}

is dominated by {x∗n}. It follows that

x →
∞∑

n=1

x̄∗n(x)

x̄∗n(Q̄x̄n)
Q̄x̄n

defines a bounded projection with range [Q̄x̄n].
We have shown that [xi] embeds complementably into Zq,p;{kn},2 for some

sequence of positive integers {kn}. This last space is clearly isometric to a
norm one complemented subspace of Zq,p;{n},2.
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In the case p = 2 the argument above simplifies and actually shows that
under the assumptions of Proposition 1 we can strengthen the conclusion to:
[xi] embeds complementably in Zq,2;{n} (which is isomorphic to ℓq). We will
not dwell on it farther as this is contained in [Sc]. The next proposition com-
bined with the previous one will show in particular that any unconditional
basis of Zq,p contains a subsequence equivalent to the unit vector basis of ℓp.
We’ll need to use this also in the next section so we include the non-reflexive
cases here as well.

Proposition 2 Let 1 ≤ p, q ≤ ∞. If p ̸= 2, q, then ℓp (c0 in case p = ∞)
does not embed into Zq,p;{n},2.

Proof: Assume ℓp or c0 embeds into Zq,p;{n},2. Passing to a subsequence of
the image of the unit vector basis of ℓp or c0, taking successive differences (this
is needed only in the case p = 1) and using a simple perturbation argument,
we may assume that some normalized block basis {xi} of the natural basis of
Zq,p;{n},2 is equivalent to the unit vector basis of ℓp (c0 if p = ∞). Let Pn,m,
m = 1, 2 . . . , 1 ≤ n ≤ m, denote the canonical projection onto the n,m copy
of ℓ2 in Zq,p;{n},2:

Pn,m({a(w, u, v)}) = {ā(w, u, v)}
where

ā(w, u, v) =

{
a(w, u, v), if u = n, v = m;
0, otherwise.

Assume first p > 2. For each n,m Pn,m acts as a compact operator from [xi]
to ℓ2 as every bounded operator from ℓp, p > 2 or c0 to ℓ2 do. Consequently,
given a sequence of positive numbers {εn,m}, we can find kn,m ∈ N such that

∥(Pn,m − P
kn,m
n,m )|[xi]∥ < εn,m for all n,m. Then, if

∑
n,m εn,m is small enough

(
∑

n,m

P kn,m
n,m )|[xi]

is an isomorphism and we get that [xi] embeds into Zq,p;{n},2;{kn,m}. Now
for each finite m and k the ℓm

p sum of ℓk
2-s 2-embeds into ℓN

p for some N
depending only on p,m and k. It thus follows that [xi] embeds into Zq,p;{kn}
for some sequence of positive integers {kn}. Passing to a farther subsequence
of {xi}, we get that the unit vector basis of ℓp (or c0 in the case p = ∞) is
equivalent to that of ℓq which is a contradiction.
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The case 1 ≤ p < 2 is just a bit more complicated. Here Pn,m doesn’t
act as a compact operator from [xi] to ℓ2 but it is still strictly singular.
Consequently, for each n,m and l we can find a normalised block basis of
{xi}∞i=l such that ∥(Pn,m)|[xi]∞i=l

∥ < εn,m and consequently there is a block
basis of {xi} whose first l−1 terms are just x1, . . . , xl−1, and kn,m,l such that

∥(Pn,m − P
kn,m,l
n,m )|[xi]∥ < εn,m.

A simple diagonal argument will now produce a normalised block basis {zi}
of {xi} and natural numbers kn,m-s such that

(
∑

n,m

P kn,m
n,m )|[zi]

an isomorphism. Since {zi} is equivalent to the unit vector basis of ℓp we get
that ℓp embeds into Zq,p;{n},2;{kn,m}. The rest of the proof in this case is the
same as in the case p > 2.

We are now aiming at proving that every normalized unconditional basis
of Zq,p contains a subsequence equivalent to the unit vector basis of ℓq.

Proposition 3 Let {xi}∞i=1 be a normalized unconditional basic sequence in
Zq,p, 1 < p, q < ∞ such that [xi]

∞
i=1 is complemented in Zq,p. If no sub-

sequence of {xi}∞i=1 is equivalent to the unit vector basis of ℓq then [xi]
∞
i=1

isomorphically embeds in Zp,2 as a complemented subspace.

Proof: We may assume q < p. We first claim that for each ε > 0 there is
an N such that ∥(I −QN)xi∥ < ε for each i = 1, 2, . . . . Indeed if this is not
the case then there is an ε > 0, a sequence 0 = N1 < N2 < · · · in N and a
subsequence {yi} of {xi} such that ∥(Qi+1 −Qi)yi∥ ≥ ε for all i. Passing to
a further subsequence and a small perturbation we may assume that {yi} is
a block basis of the natural basis of Zq,p. Then, since q < p, for all scalars
{ai},

(
∞∑

i=1

|ai|q)1/q ≥ ∥
∞∑

i=1

aiyi∥ ≥ ∥
∞∑

i=1

ai(Qi+1 −Qi)yi∥ ≥ ε(
∞∑

i=1

|ai|q)1/q

in contradiction to the fact that no subsequence of the {xi} is equivalent to
the unit vector basis of ℓq.
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The rest of the proof is now similar to that of Proposition 1, only a bit
simpler. Fix an ε > 0 and let N be as in the beginning of this proof. Let
P =

∑∞
i=1 x∗i ⊗ xi be the projection onto [xi] and let {x̄i} (in Zq,p,2), P̄ and

Q̄N be as in the proof of Proposition 1. Consider the operator (I − Q̄N)P̄
as acting from the span of the unconditional basic sequence {Q̄N x̄i} to the
span of the unconditional sequence {(I − Q̄N)x̄i}:

(I − Q̄N)P̄ Q̄N x̄n =
∞∑

i=1

x̄∗i (QN x̄n)(I − Q̄N)x̄i, n = 1, 2, . . . .

Its diagonal defined by

DQ̄N x̄n = x̄∗n(QN x̄n)(I − Q̄N)x̄n, n = 1, 2, . . .

is bounded ([To] or [LT1]). So if we show that x̄∗n(Q̄N x̄n) are bounded away
from zero then the sequence {Q̄N x̄i} will dominate the sequence {(I−Q̄N)x̄i}
and thus also {x̄i} and {xi}. This will also show that

x →
∞∑

n=1

x̄∗n(x)

x̄∗n(Q̄N x̄n)
Q̄N x̄n

defines a bounded projection from Q̄NZq,p,2 (which is isomorphic to Zp,2)
onto [Q̄N x̄i] (which is isomorphic to [xi]).

To show that x̄∗n(Q̄N x̄n) are bounded away from zero note that

x̄∗n(Q̄N x̄n) = 1− x̄∗n((I − Q̄N)x̄n)

and that
|x̄∗n((I − Q̄N)x̄n)| ≤ ∥P̄ (I − Q̄N)x̄n∥ ≤ ∥P̄∥ε.

So, if ∥P̄∥ε < 1/2, then x̄∗n(Q̄x̄n) ≥ 1/2 for all n.

Remark 1 With a bit more effort one can strengthen the conclusion of
Proposition 3 to: [xi]

∞
i=1 is isomorphic to ℓp. This is done by first show-

ing that one can embed [xi]
∞
i=1 as a complemented subspace in Zp,2;{n} which

is isomorphic to ℓp and using the fact that any infinite dimensional comple-
mented subspace of ℓp is isomorphic to ℓp.
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Proof of Theorem 1 in the reflexive case: Propositions 1 and 2 show
that any normalized unconditional basis of Zq,p, 1 < p, q < ∞, has a subse-
quence equivalent to the unit vector basis of ℓp. To show that any such basis
also has a subsequence equivalent to the unit vector basis of ℓq we need, in
view of Proposition 3, only prove that Zq,p doesn’t embed complementably
into Zp,2 for 1 < q ̸= p < ∞. This can probably be done directly (especially
in the case q ̸= 2 in which case it is also true that ℓq does not embed into
Zp,2) but it also follows from the main theorems of [Sc] and [Od] in which
the complemented subspaces of Zp,2 (in [Sc] only those with unconditional
basis) where characterized.

4 Proof of the main result, the non-reflexive

case

Recall that the subscript ∞ in Z∞,p refers, by our convention, to the c0

(rather than ℓ∞) sum. Similatly, the subscript ∞ in Zq,∞ refers to the q sum
of c0. We are going to show that any unconditional basis of each of the spaces
Zq,p, p ̸= q, when at least one of p or q is 1 or ∞ contains a subsequence
equivalent to the unit vector basis of ℓp (c0 if p = ∞) and another subsequence
equivalent to the unit vector basis of ℓq (c0 if q = ∞).

The spaces Z1,∞ and Z∞,1 (as well as Z1,2 and Z∞,2) have unique, up
to permutation, unconditional bases [BCLT]. These bases clearly contain a
subsequence equivalent to the unit vector basis of c0 and another one equiv-
alent to the unit vector basis of ℓ1, so we only need to deal with the spaces
Z∞,p, 1 < p < ∞, and their duals Z1,p′ and with Zq,∞, 1 < q < ∞, and their
duals Zq′,1.

We shall need some classical results concerning unconditional bases and
duality. These can be found conveniently in sections 1.b. and 1.c. of [LT1].
ℓ1 does not isomorphically embed into Z∞,p, 1 < p < ∞, (resp. into Zq,∞,
1 < q < ∞) (this follows for example from the fact that these spaces are p
(resp. q) convex). It thus follows from a theorem of James [Ja] or see [LT1,
Theorem 1.c.9] that any unconditional basis of these spaces is shrinking. See
[LT1, Proposition 1.b.1] for the the definition of a shrinking basis as well
as for the fact that then the biorthogonal basis is an unconditional basis of
the dual space Z1,p′ , 1 < p < ∞, (resp. Zq′,1, 1 < q < ∞). Thus, in order
to prove Theorem 1 in the non-reflexive cases, if would be enough to show
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that any normalized unconditional basis of Z1,p, 1 < p < ∞, (resp. Zq,1,
1 < q < ∞) contains a subsequence equivalent to the unit vector basis of ℓ1

and another subsequence equivalent to the unit vector basis of ℓp (resp. ℓq).
Let {xn} be a normalized unconditional basis of X∗ = Z1,p, 1 < p < ∞,

(resp. X∗ = Zq,1, 1 < q < ∞) such a basis is boundedly complete and its
biorthogonal basis spans a space isomorphic to X = Z∞,p′ ( resp. X = Zq′,∞).

We begin with a proposition which replaces Propositions 1 and 2 for the
current cases.

Proposition 4 Let {xn} be a normalized unconditional basis of Z1,p, 1 <
p < ∞, (resp. Zq,1, 1 < q < ∞). Then {xn} contains a subsequence
equivalent to the unit vector basis of ℓp (resp. ℓ1).

Proof: By proposition 2, ℓp does not embed into Z1,p:{n},2 for 1 < p < ∞
and ℓ1 does not embed into Zq,1:{n},2 for 1 < q < ∞. It is thus enough to
show that if {xn} contains no subsequence equivalent to the unit vector basis
of ℓp (resp. ℓ1) then [xn] embeds in Z1,p:{n},2 (resp. Zq,1:{n},2).

The case of Zq,1, 1 < q < ∞: We proceed as in the proof of Proposition 1.
Since q > 1 the beginning of the proof works for p = 1 as well. The problem
arise when we need to show that P̄ is bounded as this no longer follow from
Lemma 2. But here we can use instead [LT2, Theorem 1.d.6(ii)] to prove
that P̄ is bounded in a very similar way to the proof of Lemma 2. The rest
of the proof of Proposition 1 carries over.

The case of Z1,p, 1 < p < ∞: Assume {xn} be a basis of Z1,p, 1 < p < ∞.
Let {x∗n} be the biorthogonal basis (of Z∞,p′). By the assumption that {xn}
doesn’t contain a subsequence equivalent to the unit vector basis of ℓp, [x∗n]
doesn’t contain a subsequence equivalent to the unit vector basis of ℓp′ . The
proof of Proposition 1 works for Z∞,p′ , 1 < p′ < ∞, as well, with the same
modification for the proof that P̄ is bounded as in the previous paragraph,
to show that in this case [x∗n] embeds (even complementably) into Z∞,p′:{n},2.

The next proposition replaces Proposition 3 in the non-reflexive case.

Proposition 5 (i) Let {xn} be a normalized unconditional basis of Z1,p,
1 < p < ∞. Then the unit vector basis of ℓ1 is equivalent to a subsequence
of {xn}.

(ii) Let {xn} be a normalized unconditional basis of Zq,1, 1 < q < ∞.
Then the unit vector basis of ℓq is equivalent to a subsequence of {xn}.
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Proof: The proof of Proposition 3 works for Zq,p also in the case q = 1 <
p < ∞. We thus get that under the assumption of (i), if no subsequence
of {xn} is equivalent to the unit vector basis of ℓ1 then [xn] embeds into
Zp,2. On the other hand Zp,2 has type min{p, 2} so ℓ1 and thus also Z1,p,
1 < p < ∞, do not embed into it. This proves (i).

(ii) It is enough to show that the unit vector basis of ℓq′ is equivalent to
a subsequence of {x∗n} (the biorthogonal basis to {xn}) which is an uncon-
ditional basis of Zq′,∞. The proof of Proposition 3 gives that if this is not
the case then Zq′,∞ isomorphically embeds as a complemented subspace in
Z∞,2. Now if Zq′,∞ isomorphically embeds as a complemented subspace in
Z∞,2 then an easy application of Pe lczynski’s decomposition method gives
that Zq′,∞ ⊕ Z∞,2 is isomorphic to Z∞,2 but this immediately presents an
unconditional basis for Z∞,2 which is not equivalent to a permutation of
the cannonical basis of Z∞,2. This stands in contradiction to a result from
[BCLT] and thus proves (ii).
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