Available at

; . : JOURNAL OF
[ www.ElIsevierMathematics.com Approximation

£ o e POWERED BY SCIENCE @DIREOT' Theory
ELSEVIE Journal of Approximation Theory 124 (2003) 194-218

http://www.elsevier.com/locate/j at

Finding the projection of a point onto the
intersection of convex sets via projections onto
half-spaces

Lev M. Bregman,® Yair Censor,”* Simeon Reich,® and
Yael Zepkowitz-Malachi®

& The Institute for Industrial Mathematics, 4 Yehuda Hanakhtom Street, Beer-Sheva 84311, Israel
® Department of Mathematics, University of Haifa, Mt. Carmel, Haifa 31905, Israel
€ Department of Mathematics, The Technion—Israel Institute of Technology, Haifa 32000, Israel

Received 9 May 2002; accepted in revised form 1 August 2003

Communicated by Frank Deutsch

Abstract

We present a modification of Dykstra’s algorithm which allows us to avoid projections onto
general convex sets. Instead, we calculate projections onto either a half-space or onto the
intersection of two half-spaces. Convergence of the algorithm is established and special choices
of the half-spaces are proposed.

The option to project onto half-spaces instead of general convex sets makes the algo-
rithm more practical. The fact that the half-spaces are quite general enables us to
apply the algorithm in a variety of cases and to generalize a number of known projection
algorithms.

The problem of projecting a point onto the intersection of closed convex sets receives
considerable attention in many areas of mathematics and physics as well as in other fields of
science and engineering such as image reconstruction from projections.

In this work we propose a new class of algorithms which allow projection onto certain super
half-spaces, i.e., half-spaces which contain the convex sets. Each one of the algorithms that we
present gives the user freedom to choose the specific super half-space from a family of such
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half-spaces. Since projecting a point onto a half-space is an easy task to perform, the new
algorithms may be more useful in practical situations in which the construction of the super
half-spaces themselves is not too difficult.

© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The Dykstra algorithm is an iterative procedure which (asymptotically) finds the
nearest point projection (also called the orthogonal projection) of any given point
onto the intersection of a given family of closed convex sets. It iterates by passing
sequentially over the individual sets and projecting onto each one a deflected version
of the previous iterate. A precise description of the algorithm can be found in [26].
The algorithm was first proposed and analyzed by Dykstra [21] in 1983 for a family
of closed convex cones in R". Boyle and Dykstra [9] studied the algorithm for general
convex sets in Hilbert space. Han rediscovered the algorithm in 1988 [26] and
investigated its behavior in R" by using the duality theory of mathematical
programming. Han and Lou [27] proposed a simultaneous version of the algorithm
in R".

Gaffke and Mathar [25] studied the Dykstra algorithm in Hilbert space from a
duality standpoint and showed its relation to the method of component-wise cyclic
minimization over a Cartesian product. They also proposed a fully simultaneous
Dykstra algorithm. Iusem and De Pierro showed in [32] convergence of the
simultaneous Dykstra algorithm in both consistent and inconsistent cases in R",
using Pierra’s [38] formalism, see also [31]. Crombez [17] did a similar analysis in
Hilbert space. Combettes [15] included the Dykstra algorithm in his review.
Bauschke and Borwein [3] analyzed the algorithm for two sets in Hilbert space and
generalized the work of ITusem and De Pierro [32] to this setting. Deutsch and
Hundal published a rate of convergence study for the polyhedral case in [20], and in
[30] established generalizations to an infinite family of sets and to random, rather
than cyclic, order control, see also [19].

Han [26], as well as Tusem and De Pierro [32], showed that for linear inequality
constraints and for linear interval inequality constraints (the polyhedral case), the
method of Dykstra becomes the Hildreth algorithm, first published in [29] and
studied further by D’Esopo [18], and by Lent and Censor [35].

Censor and Reich [13] proposed a synthesis of Dykstra’s algorithm with Bregman
distances and obtained a new algorithm that solves the best approximation problem
with Bregman projections. However, they established convergence of the resulting
Dykstra algorithm with Bregman projections only when the constraints are half-
spaces. Bauschke and Lewis [8] provided the first proof for general closed convex
constraint sets. Their analysis relies on some strong properties of Bregman distances
corresponding to Legendre functions which were treated earlier by Bauschke and
Borwein [5]. Bauschke and Lewis [8] also discovered the close relationship between
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the Dykstra algorithm with Bregman projections and the very general and powerful
algorithmic framework of Tseng [41]. Bregman, Censor and Reich show that the
Dykstra algorithm with Bregman projections is precisely the nonlinear extension of
the Bregman optimization algorithm in [11], see also Dykstra [22]. This recognition
goes beyond the fact that the two algorithms coincide in the linear constraint case, as
was shown by Censor and Reich [13]. It enables these authors to present a new proof
and convergence analysis of Dykstra’s algorithm with Bregman projections for
almost cyclic control sequences, which rests on Bregman’s original work [10]. Their
work also offers an intuitive geometric interpretation of the iterative steps.

Other algorithms for finding the projection of a point onto the intersection of
convex sets are available. Haugazeau proposed such an algorithm in [28] and his
ideas were further abstracted and developed by Bauschke and Combettes [6]. The
latter was extended to Bregman projections by Bauschke and Combettes [7]. Earlier,
Pierra discussed yet another method, which is, however, related to Haugazeaue’s
work, in [37,38]. Combettes constructed a block-iterative outer approximations
method in [16], and Bauschke [2] extended an algorithm of Wittman.

In the present paper we propose an algorithmic scheme which is a modification of
Dykstra’s algorithm. It allows us to replace projections onto convex sets by
projections onto either a half-space or the intersection of two half-spaces. A method,
which replaces projections onto convex sets by projections onto either a half-space or
the intersection of two half-spaces, was proposed and studied by Tusem and Svaiter
[33,34], but in a different way. In our work, when we have to project onto the
intersection of two half-spaces, our scheme enables us to choose one of the half-
spaces from a family of possible half-spaces and the convergence theorem is true for
the whole family of possible half-spaces. This feature allows us to construct many
specific algorithms within our general scheme and to obtain the result of Tusem and
Svaiter (both the algorithm and the convergence theorem) as a special case by
making a specific choice of the half-spaces.

2. J-Super half-spaces and J-super hyperplanes: definitions and construction

The orthogonal projection x’ of a point x onto a nonempty closed convex set
E < R" can be viewed the orthogonal projection of x onto the particular hyperplane
H which separates x from E and supports E at x’, the closest point to x in E. (For
the definitions of a separating hyperplane and a supporting hyperplane consult any
book on convex analysis or optimization theory or look, e.g., in [14].)

But, of course, at the time of performing such an orthogonal projection neither the
point x’, nor the separating and supporting hyperplane H are available. In view of
the simplicity of performing an orthogonal projection onto a hyperplane, it is natural
to ask whether in the construction of iterative projection algorithms one could use
other separating supporting hyperplanes, instead of that particular hyperplane H
through the closest point to x.

Aside from theoretical interest, this approach leads to algorithms that can be used
in practice, provided that the computational effort of finding such other hyperplanes
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competes favorably with the work involved in performing orthogonal projections
directly onto the given sets.

Such an approach was taken by Aharoni et al. [1], where the (9, 7)-algorithm for
the convex feasibility problem replaces orthogonal projections onto the convex sets
by projections onto separating hyperplanes (see also [14, Algorithm 5.5.1]).

In the present paper we use the rationale behind the (9, 7)-algorithm to deal with
another class of mathematical problems, namely, finding the optimal point that
minimizes a given objective function over the intersection of given convex sets. We
construct a family of half-spaces and hyperplanes with particular properties and
replace projections onto convex sets by projections onto a half-space or a hyperplane
from this family or onto the intersection of two half-spaces.

In the next subsection we define d-super half-spaces and o-super hyperplanes which
play an important role throughout this work.

2.1. Definition and construction of d-super half-spaces and o-super hyperplanes

Let ECR" be a nonempty closed convex set defined by E = {xeR"|e(x) <0},
where e: R"— R is a convex function, and let ze R” be a given point. For z¢ E we
wish to construct a half-space which contains the set E, but does not contain any
point of the interior of a ball centered at z with radius de(z), for some fixed 9,
0<0<1. Such a half-space will be called a J-super half-space (6-SHS for short) with
respect to the ball described above and E, and its boundary will be called a J-super
hyperplane (6-SHP for short). If ze E, then the only possible §-SHS is defined to be
R" (see Fig. 1).

Definition 1 (0-Super half-space). Given are a point ze R", a real number §, 0<o<1,

and a nonempty closed convex set E = {xeR"|e(x)<0}, where e: R">R is a
convex function. For z¢ E define the ball

B(z,5e(2)) = {xeR"|||x — z[| <de(=)} (1)

‘J’- §-super hyperplane

Sg (8-super halfspace)
L.

Fig. 1. Geometric description of a d-super half-space and a J-super hyperplane.
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and a half-space
Se(z) = {xeR"| {tf(2),x) <0p(z)}, (2)

where t£(z)#0 and 0g(z) e R. The set Sg(z) will be called a 5-super half-space with
respect to B(z,de(z)) and E if and only if the following two conditions hold:

yeB(z,de(z)) implies {F(z),y> =0(z), (3)
ie.,

Sg(z) int B(z, de(z)) = 0 (4)
and

EcSk(z). (5)

Definition 2 (0-Super hyperplane). If Sg(z) is a 0-SHS, as in Definition 1, and z¢ E,
then its bounding hyperplane is called a d-super hyperplane (5-SHP for short) with
respect to B(z,de(z)) and E. If ze E then the 6-SHP is empty.

Here is an example of the construction of a 6-SHS. This particular example plays
an important role in a special case of our new algorithm (see Section 5.1 below).

Example 3. Let E be a convex set, E := {xe R"|e(x) <0}, where e(x) is a convex
function. Let z ¢ E and denote by ¢/(z) any subgradient of e at z. Assume that there
exists an M >0 such that ||¢/(z)||< M for all z in some bounded set G= R". Then

H = {xeR"|e(z) + {(z),x —z) <0} (6)

is a 6-SHS with respect to B(z,de(z)) and E for all ze G and 6<1/M. In order to
prove this claim we need to show that (4) and (5) hold. Indeed, let ye H. Then

<el(z)7y_z>< —e(z), (7)
by (6). It follows that

e(z)<I<€(2),y — 2> <@ Iz = ll- (8)
Using the assumption on the boundedness of the subgradients we obtain

e(z) <Mz — yl| 9)
or

e2)3; <z =l (10)

M SETIE

The last inequality shows that whenever J is chosen such that 6 <1/M, we obtain y ¢
int B(z, de(z)) which implies that H n int B(z, de(z)) = 0. Next, we show that E€ H.
Let xe E. Using the well-known subgradient inequality (see, e.g., [39, p. 214]) we
have

e(x) —e(z)= < (z),x—z). (11)
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Since x€ E, e(x)<0. Thus
—e(z)=<€(z),x — z), (12)

which implies that xe H, by (6), and as a result of (7)—(12) we obtain that H is indeed
a 0-SHS, as claimed.

The last example is very important because there are many algorithms that use
projections onto half-spaces of the form of (6), see, e.g., [23,24,33]. We will need to
make use of the following condition.

Condition 4. For any E, as in Definition 1, and any bounded set G< R", there exists a
0€(0,1) such that ze G and z¢ E imply that the intersection B(z,de(z)) N E is empty.

Remark 5. Condition 4 is necessary and sufficient to enable us to construct a 6-SHS.
In our general algorithmic scheme, which will be presented next, we have to assume
that this condition holds. For the special cases of the algorithm, that we treat
separately, we show how to choose a J such that Condition 4 actually holds.
Example 3 illustrates such a special case. However, formulating a general suffi-
cient condition for Condition 4 to hold for our general algorithmic scheme still
eludes us.

3. The 6-SHS algorithm
3.1. The algorithm

We consider the optimization problem
min {f(x)|xe 0}, (13)

where 0 = (1., 0, Qi = {xeR" | ¢;(x)<0}, and f, {¢;}}, are real-valued functions
the effective domains of which, dom f and dom ¢;, are subsets of R”. We make the
following assumptions regarding the constraints:

Assumption Al. g;(x) is convex, 1 <i<m.

Assumption A2. Q#0.

Assumption A3. O~ (domf)#0 and Q;nint(domf)#0, for all i,1<i<m. (But
QO nint(domf) may be empty.)

Assumption A4. The sets dom ¢;, 1 <i<m, are “wide enough” in the sense that all
points appearing in the new Algorithm 8, defined below, belong to
int(dom ¢;), 1 <i<m.

We assume that f is a Bregman function with zone S = int(domf) (see the
definition of Dy(x,y) in, e.g., [12,14, Definition 2.1.1]).
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Remark 6. If /' is a Bregman function with zone S = int(domf) and if a point
aeS = int(dom f) satisfies Vf(a) = 0, then the problem

min{ f(x) | xe Qn(domf)} (14)

achieves its minimum at the Bregman projection with respect to f of the point a onto
Q. This follows immediately from the definition of the Bregman projection of a point
onto Q, and the fact that Vf(a) =0, i.e.,

P"é(a) =argmin{Dy(x,a) | xe Qn(domf)}
=argmin{f(x) —f(a) — {Vf(a),x —a) [xeQnS}
=argmin{ f(x) | xe 0 (domy)}. (15)
We add the next three assumptions on f to make sure that the algorithm is well

defined:

Assumption B1. The function f is co-finite, which, since it is a Bregman function,
implies that the mapping y = Vf(x) is a one-to-one mapping of
int(dom ) onto R" (see, e.g., [39, Theorem 26.5]).

Assumption B2. The function f is zone consistent with respect to any half-space
and with respect to the intersection of two half-spaces containing
points from int(dom f).

Remark 7. Bauschke and Borwein showed in [5, Theorem 3.14] that if f is a
Legendre function, then it is zone consistent. Rockafellar [39, Lemma 26.7] gives a
characterization of co-finiteness for differentiable convex functions.

Assumption B3. The function f has a global minimum.

The precise description of the new algorithm that we propose for problem (13) is
as follows:

Algorithm 8. 1. Data at the beginning of the kth iterative step

1.1. Current approximation x* eint(dom f).
1.2. m vectors a*e R" and m real numbers o, 1 <i<m, such that each pair (a*,o~)
defines a half-space Lé‘,

L¥ = {xeR"| {d x) <o}, (16)

containing Q;.
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. Initialization
X" is a (global) minimum point of f(x) on R", i.e.,
V(x") =0. (17)
Set ) = 0 and o =0 for all 1<i<m.

Choose a real d€ (0, 1] such that Condition 4 holds for the bounded set
G = {xeR"|Ds(y,x)<f(y) —f(x")}, for some ye Qndomf (18)
and for each Q;, i = 1,2, ...,m. (Note that G is bounded because the partial level

sets of the Bregman distance Dy are always bounded, see, e.g., [17 Definition
2.1.1].)

. Iterative step

. Choose an operating control index i(k) from the almost cyclic control sequence.

Recall (see, e.g., [14, Definition 5.1.1]) that an almost cyclic control sequence on
{1,2,...,m} is a sequence {i(k)},—, such that 1<i(k)<m for all k=0 and there
exists a constant (called the almost cyclicality constant) T =m such that, for all k=0,

(1,2, . omy<{i(k + 1),i(k +2), ....i(k + T)}. (19)

Calculate zF € R" such that
Vf (Z) = VI (5*) + dfyy. (20)

Such a vector z¥eint(dom f) exists because of Assumption B1.
Set xK+1, ocf.‘(z;, al.'(z; by one of the following two possible options:

3.3.1. If g (x*) <0, then let X*' be the Bregman projection with respect to f of
ZK onto the half-space

Lf-‘(k) ={xeR"| <af(k),x><ozﬁk)}. (21)
That is,
if eLff(k), then let x**t' = Z¥ and define 3y =0,
if zkéLé‘(k), then x**' and J; are calculated from the Karush—Kuhn—
Tucker (see, e.g., [36]) conditions
Vf () = Vf () — dwddly
=0,

22
<a5f(k)7xk+l > <ai‘c(k)’ ( )
ik(<aff(k),xk“> - aff(k)) =0.

Next, set
k+1 __ k
ai(Z) = ’lk“i(ky
1 ) gk (23)
Uity = M%ik)-
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3.3.2. If iy (x¥) >0, then let X**' be the Bregman projection with respect to f of
2K onto the intersection of the following two half-spaces: Lf.‘(k> which was
defined by (21) and

S0 (xK) = {xeR"| (P x> <Oix}, (24)
which is a 5-SHS with respect to the ball B(xk,éq,-<k) (x*)) and Qiy- In
other words,

{ M) xy <Oy for all xeQyy),

, 25

M) xy =014 for all xeB(x*, 6q4)(x*)), @)
where 1) = &) (xK)3£0 and 0,4 = 0, (x*) (see Section 2 for the
definition and construction of the 6-SHS). Thus, we calculate the vector
XK Qe and . from the Karush—-Kuhn—Tucker conditions

Vf () = Vf (24) + dwddfyy + ™ =0,
j~k = 07 W= 07
<aﬁk)7 Xt > < af‘{(k)a

. 26
<tl(k), X+l S < Gi(k)a (26)
ik(<aﬁk)’ X > - O(gc(k)) = 0’
p (R XS — 0,4) = 0,
and then set
iy = Ay + et 27
ktl _ 9 ok + u,0; ( )
Uity = M%igrey T HicVick)-
3.4. For i#i(k) do not change d* and o i.e., set
aéﬂrl _ a£c7
o = oF, (28)

Fig. 2 describes geometrically the various possibilities of the iterative step of
Algorithm 8, in the following way: Cases (i)—(iii) describe iterative steps in which x*
belongs to the convex set Oy (but the modified point ZF can be in Oix), In Lﬁk) and
not in Qj), and not in Lf.‘(k), respectively). Case (iv) describes the iterative step in
which x* does not belongs to the convex set Oi)-

Note that the Bregman projection of a point onto a half-space or onto the
intersection of two half-spaces exists. According to Assumption B2 the projection
belongs to int(dom f), thus we have that x**!, 2, and g, in (22) and (26) exist and
x*leint(dom f).
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z*

Qi(k)
(IV) SQ.‘m (

(6-super halfspace)

Fig. 2. Geometric interpretation of Algorithm 8.

Remark 9. Observe that no relaxation parameters appear in our algorithm. Some of
the special cases discussed below employ a sequence {f;},~, of relaxation
parameters. Loosely speaking, these parameters overdo or underdo the move
prescribed in an iterative step. Relaxation parameters add an extra degree of freedom
to the way a method might actually be implemented, and have important
consequences for the performance of the method in practice. We, however, do have
the flexibility to choose a 3-SHS which will lie closer to x* at each iterate step. In this
way, some underrelaxation, i.e., e<ff;, <1 for some arbitrarily small ¢>0, can be
actually incorporated in our algorithm.

The three lemmas below will be used to prove the convergence of Algorithm 8.

Lemma 10. For any k, the half-space Lk;g)l = {xeR"| <ak+l x> <ock+ }, defined by

the pair (a k(z; 1”(+>') generated by Algorithm 8, contains Qj

Proof. When Step 3.3.1 in Algorithm 8 holds, 4; is nonnegative (see [14, Lemma
2.2.2]). Notice that there is a sign difference of A; between Lemma 2.2.2 in [14] and
our lemma, because of a different definition of the Lagrangian function). Thus, by
definition (23) of af.‘(;;)‘ and ocf.‘(z)] we obtain Lﬂ; = Lf,‘(k)7 and Lf.‘(k) contains Q; (by Step
1.2 of Algorithm 8). When Step 3.3.2 of Algorithm 8 holds, let x € Q;). We will show
that this implies that xeLf.‘(z)]. We have

<af~c(z)1,x>:)Lk<af~‘(k>,x>+uk<t x><,1ko¢ |+ Oy %17 (29)
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where the first equality uses (27), the inequality uses (21) and (24), and the last
equality again uses (27). We got that if x & Qj), then <af.‘<z)l x> < ocff(;(r)l, ie., xeLﬁZ;.
Thus, the lemma is true for Step 3.3.2 too. So Lemma 10 is true in all cases. [

Lemma 11. If {x*}, and {a}}, ., are generated by Algorithm 8, then, for all k, we
have

V() + ) d=0. (30)

Proof. For k = 0 the statement is true by (17) and Step 2.2 in the initialization of
Algorithm 8. Now we suppose that it is true for some k& and we prove it for k + 1.
For the proof we will use the fact (see Step 3.4 of Algorithm 8) that

m

i a1 = Z o 1)

(k) z;éz(k)

When Step 3.3.1 in Algorithm 8 holds, then using (22), (20), the induction
hypothesis, (31) and (23) we obtain

Vf () =Vf () = dndlyy = VI (35) + dfyy — Andlyy

m
= (‘ > “§> + g — i
i=1

m
= — Z af-(Jrl I(k) +a )ka (k)
i=1
i;léi(k)
— | _ S k41 k+1 k+1
|- 2>« Z (32)
—1 1
i k)

When Step 3.3.2 in Algorithm 8 holds, then we use (26), (20), the induction
hypothesis, (31) and(27), to obtain

Vf (¥ =vr(F) — /lka — ' = Vf (XK + ) - )vkaf(k) — ')

( Zak+a ) Ay = et
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iy k k k i(k
B Zl a1 | = diy + iy = Aadipy — et
ii(k)
S| S =
i=1 i=1
i#i(k)

This completes the proof of Lemma 11. [

Lemma 12. If {x*}, ., {a}}, = and {o}}, -, are generated by Algorithm 8, then, for
k=0, there exists an integer r = r(k)>=0 and r vectors

' 1 -1 .
ye{x’ x xR booly<r,

such that, for all i, 1 <i<m, d* can be represented as a finite linear combination of the
normal vectors t', generated in Step 3.3.2 of Algorithm 8, at y with nonnegative
coefficients, that is,

r

df = Z 7l (), 720, (34)

=1

and, for all i, 1<i<m, o¥ can be represented as
r
af =Y 90:7), 7,20, (35)
=
where the 0;(y/)s correspond to the t'(y')s generated above.

Proof. For k =0, the left-hand sides of (34) and (35) are zero by Step 2.2 of
Algorithm 8. So both statements are true with y; =0,/ = 1,2, ...,r. We now assume
that the lemma is true for some k and prove it for k + 1.

For i#i(k) both (34) and (35) hold, because aff and ocf‘ do not change, according to
Step 3.4 of the algorithm.

For i = i(k), in Step 3.3.1 or in Step 3.3.2 with g, = 0, (34) and (35) hold, because,
by (23) or (27) and the induction hypothesis,

aff(;g)l = }Lkaff(k) =l (Z yjti(yj)> (36)
=
and
Tk = Mgy = (Z 7100 (0 )>~ (37)
=

In Step 3.3.2 with w;, >0, (34) and (35) hold by (27), the induction hypothesis
and the fact that a vector x* is added to the set {x° x!,...,x*"'} so we have
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%) = ¢®)(3/) for some /. Thus we have

dE il = Ay 4t () = Ay (Z %) w)) + O, (38)

J=1

r

o) = Mgy + i Oige (¥) = Ax (Z 7,000 (Y )> +mliw(). O (39)

J=1

4. Convergence of Algorithm 8

We have to make now an additional assumption on the functions ¢;. Denote by I;
the subset of I = {1,2,...,m} for which the ¢; are affine functions.

Assumption A5. There exists a point je Qndomf such that ¢;(7)<0 for all
iGIz = 1\11.

4.1. The convergence theorem

Theorem 13. Let f be a Bregman function, let q;, 1 <i<m, be convex functions and let
Assumptions A1-AS and B1-B3 hold. Then any sequence {x*}, .. generated by
Algorithm 8, converges to the solution of (13).

Proof. The proof is divided into five steps. In Step 1 we define the sequence {¢; },~,
by

m

or =R+ (Kdf, x> —of) (40)
i=1

and show that it is increasing. Step 2 proves that
Jim Dy (X1 ¥ = 0. (41)
— 00

In Step 3 we show that the sequences {af},., are bounded for all i, unless
ok — (dk,y> =0 for all ye Q and for all k>0. We consider the index sets /; and I
separately and distinguish two possibilities for 7. Step 4 shows that the sequence
{x*}( converges to

x* = lim %, (42)

t— o0
where the sequence {x*},_ is defined below, and proves that x*€ Q. In Step 5 we
show that for all i, 1 <i<m, the limit

. k_ ¢k *ny —
k_)il’n}cew(“i {a;j,x*>)=0 (43)

holds for a certain set of indices W (defined in (66)) and from this and other
arguments presented there we obtain that Theorem 13 does indeed hold.
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Step 1: In order to prove that {¢,},, is increasing, we show that ¢, | — ¢, >0
for all k£>0. By definition of ¢, the fact that for i#i(k) we have, by (28), af-‘“ =dr

and of*! = o, the definition of Dy and Lemma 11 we get

Prr1 — Pk =/ = f (M) + Z Caf, XM =

i#i(k)

+ <ak+1 Ly kz)] (<“ﬁk)7xk> _ O‘f'{(k))
= Dy () + (V) T -+ Zm: b X xRy
pa
_ <al,‘ xk+1 _ xk> + <a5_c(41:)1,xk+1>
k+l (<a N ak )
=D (XHI )+ <akz>17 STy kJ/;)l
= (S, ™5 —alfy). (44)

In order to complete Step 1 we prove the next two assertions. First we show that in
all steps of Algorithm 8§,

<a.;c(}:l k+1 > k;:l -0 (45)

holds. Indeed in Step 3.3.1, (45) is true by (23) and (21). In Step 3.3.2, we obtain from
(27) and (29):

<ai‘{(z)l’xk+l> - O‘fc(zl /1<a (k)» X SR +ll<ti(") Ky —}Loc’.‘ ) — 1ik)
:i(<ai(k k+l> )+,Lt(<t k+1> zk))
=0. (46)

Secondly, in all steps of Algorithm 8 we have
<af?(k),xk“> — ocﬁk) <0. (47)

This is true because in both Steps 3.3.1 and 3.3.2, x¥ eLk By (44), (45) and (47)

we have
P11 — ¢k>Df(xk+laxk) =0, (48)

which shows that the sequence {¢, }, - is increasing. We also get, using (44) and (45)
in (47) that

Prr1 — P =gy — {aljgy, X1 >0. (49)
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Step 2: Let yedom f. Then, by the definition of the Bregman projection with
respect to f, Lemma 11 and (40), we have

Dy(y,x) =f(y) = (") = <Vf (&), p =5
_ +<iaf‘,y—x>
i=1
10— =3 (s — )13 (Cdby> — )
i=1 i=1
=f() - ¢k+z (Kdfyy —of). (50)
i=1

Since ye Q, we have that, for all i, {a¥,y» —a¥<0, by the definition of L¥ and
(16). Hence, from (50), the last inequality and Step 1,

Dy (v, xX)<f () = e <F ) — 90 = f () = f(x") (51)

and the sequence {x*},_, is bounded by the definition of a Bregman func-
tion, (see [14, Definition 2.1.1(iv)]). By the left-hand side inequality of (51),
we have

0 <f(y) for all yeQndomf. (52)

Thus the sequence {¢;}~ is bounded and limy _, . ¢, exists. This fact and (48)
imply that (41) holds. Another inequality that follows from (50) is

zm: (af — (d*,y))<f(y) — @, for all yeQndomf. (53)

i=1
Since ¥ — (a¥,y> >0 for all i and for all ye Qndomf, we see that
of — (ak,yy <f(y) — @, forall iand for all ye Qndomy. (54)

Observe that the derivation of (51) does not depend on ¢ and could have been
reached at even if instead of SQi(k) in 3.3.2 of Algorithm 8 we would have taken any

hyperplane that separates x* from Oi(k)- Therefore, (51) shows that xFe G, defined by
(18), for all £=0. Thus, 0 is well defined.
Step 3: This step is divided into three cases.

Step 3(i): Assume that ie I} and (b',y» — B, = 0 for all ye Q. In this case we claim
that

(df,yy —of =0 for all k=0 and for all ye Q. (55)
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To show that (55) holds, recall that for ie [}, the functions ¢; are affine functions,
i.e.,

qi(x) = (b, x> = B, Of(x) = {b'}. (56)
By Lemma 12, there exist nonnegative numbers 7y, such that
af‘{ = b, O‘f‘c = b (57)
If y, >0, then
b = “—f’c, B = i (58)
Yk Yk

Substituting b’ and f; of (58) in (b',x> — B; =0, we get that (55) holds, as
claimed. If y, = 0 then af-‘ =0 and oc’,’-‘ = 0 and (55) holds too.

Step 3(ii): Assume that iel; and {b',y» — B;#0 for some ye Q. In this case the
sequences {a‘},., are bounded for all i. To show this, let je Qndom f satisfy
B; — {b',7> =&>0. Using (54) with y = y we have

o — (a7 <[ (D) = 9o, (59)
and by (57) we obtain
O(ff— <af€,.)7> :Vk(ﬁ[_ <bia.}7>):yk8' (60)

Hence, by (59) and (60), y,e<f(y) — ¢y, which means that the numbers y, are
bounded by (f(§) — ¢y)/z, so, by (57), the sequences {af},-, are indeed bounded.

Step 3(iii): Assume that iel,. For all vectors ¢, generated in Step 3.3.2 of
Algorithm 8, we have

0,=><t,y> for all yeQ.. (61)

Since j, the existence of which is assumed in Assumption A5, is an interior point of
Q;, there exists a ball B(y,¢) contained in Q;. Therefore, y=7+
et'/||f']| e B(7, &) = Q;. Note that ##0 by (24) and Definition 1.

Hence

0;— <1, py=Ltyy = 3> =<y =7y =«llf]|. (62)

Using Lemma 12, we have

r r
af — Caf,py = 0 0:0)) = ) za Y ylld o] (63)

J=1 Jj=1

From (54) and the last inequality we obtain

r

f) - (P0>€iz il OO, (64)

J=1

which means that 37, 7[|#()')|| is bounded by (f(7) — @o)/c:-
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From this fact and (34) we have

Sty

=1

k
a1 =

< Z IO () — 00)/er, (65)

which proves that the sequences {a'}, ., are bounded when i€ D,.

Step 4: From Step 2 we know that the sequence {xk}k>0 is bounded, so it must
have cluster points. Choose a convergent subsequence {x*},_, of {x*},_ such that
i(k;) = 1. Let {x*'} converge to some point x*. Since Dy(x**!, x¥) -0 as k— oo, the
definition of Bregman functions (see [40]) implies that {xk’+l},>0 converges to the
point x*. Repeating this, we get that all the subsequences {xkf+1}t>0,
{xkit2} g, o {7} converge to x*, where T is the almost cyclic control
constant. Let

8

w=J U k+ih (66)

=1 j=0

i.e., W is the union of the indices belonging to all of the above sequences. It is clear
that the sequence {x*}, _;- also converges to x*. Let us show next that x* € Q. If Step
3.3.1 appears infinitely many times for {xk’}go, that is, ¢;(x")<0 for some
subsequence of {x*},_, then ¢ (x*) = lim,_, ,, ¢;(x") <0. Hence we have x* € Q; by
the definition of Q). If Step 3.3.1 appears a finite number of times, then Step 3.3.2
appears infinitely many times. For Step 3.3.2 we know that

xkett g int(B(x*t, 6 (x*1)) because x¥*! is the Bregman projection of z* onto the
intersection of the two half-spaces L% i(k,y and Sg,, .. Therefore,

[t — X > 0 ("), (67)

kil _ k)| = 0 (because lim,_, ., XK1 = lim,_, ,, x**) and >0,
we have lim,_, ., ¢;(x*')<0. Hence ¢ (x*) = lim,_, ., ¢1(x*')<0, so x* € Q;. Choosing
a subsequence {x**1} (0<j,<T) with i(k, +j;) = 2 which converges to the same
point x*, we see that x* € 0,. Repeating this argument for 1 <i<m we obtain x*e Q.

Step 5: We now show that (43) holds. Take some i, | <i<m. If of — (a¥,y> =0
for all ye Q and for all k, then (43) is true for this i. Otherwise, we know that {aff},@o
is bounded (by Step 3).

If ke W, then W contains a set Wy, = {p,p + 1, ...,p + T} containing k. We know
that the set {i(p),i(p+ 1), ...,i(p + T — 1)} contains i (by the choice of the almost
cyclic control index). Let re Wy, r<p + T — 1, be the nearest integer to k such that
i(r) = i. We distinguish between two cases according to the values of r and k.

Step 5(1): Assume that r<k. In this case (r + 1) e W (from the definition of W)
1 of = o1 since there is no change in a/ and o/ for r + 1</ <k (by

anda—a , 0 = oL
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(38)). Using the last two equations and (45), we obtain
o — Xy =t = at XD
_ar(+1 . <ar+1 r+1> + <a;~+l’xr+1 — X
*<a2(+rl7 XXy, (68)
By definition of L* and the last equation, we get
0<ar — Caf, x> <laf |||t = x7). (69)
Step 5(ii): Assume that r>k. In this case ¢* = a/ and of = o because a/ and «/ do

not change for k</<r (by 3.4, in the iterative step of Algorithm 8). Hence by the
last two equalities and (49),

ocf‘ — (af,x*) = — {aj,x*)
=0l — <a;(r),x"+1> + {d, X=Xty
<@y — @, + a, X=Xy, (70)
Therefore
0<e — <af, X" S| IXF = X+ @ppy — - (71)

Since r tends to infinity together with k, r+ 1€ W, the sequences {a}},., are
bounded and {¢;},-, converges, we see that (69) and (71) imply (43). Since (43)
holds for all i, we have

m

i k— k* =
ML‘F}W;“I' (df,x"y) =0. (72)

Applying (50) with y = x*, we get

Dy(x*, ¥ = <pk+2 b xty —db). (73)
By the definition of a Bregman function (see [14, Definition 2.1.1]), one has

li D 4

po dim DX ) =o0. (74)

Hence (72)~(74) imply that the subsequence {¢;},~, k€ W, tends to f(x*), and
since limy_, o, ¢, exists,

lim g =f(x") (75)
Since, by (52), limk_, o, ¢, <min{ f(x) | xe Q}, we obtain

J(x*) = min{f(x) | xeQ}. (76)

From the fact that f is strictly convex (because it is a Bregman function) and has a

unique minimum in Q, it follows that the whole sequence {x"}k>0 converges to x*,
and the proof is complete. [
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5. Particular cases

It is natural to ask, but quite complicated to answer, in what situations all
assumptions made in the previous sections hold. We have no simple answer to this
question at this time except for the particular cases discussed next. In these cases the
choice of the half-spaces is constructively given. First, we show that the 6-SHS
SQ,<k>( *) can be defined via some subgradients at the current point x*. The second

special case deals with the construction of these 6-SHS’s, via interior points in the
convex sets (using the assumption that in each set we know an interior point). The
idea of generating such a case is based on the (9, n)-algorithm for convex inequalities
with interior points (see, e.g., [14, Algorithm 5.5.3]).

5.1. Construction of Sg,,, (x*) via subgradient vectors

We show here a specific choice of the 6-SHSs SQ ( %), made by constructing each
of the 0-SHSs via subgradients. In this case we use underrelaxation parameters to
define Sg,, (x").

Let {Bi}r>o be an infinite sequence of underrelaxation parameters such that
0<e<p, <1 forall k>0, with some arbitrarily small given ¢. Let v/®) = 1) (x*) be a
subgradient of ¢ at xk.

Theorem 14. Assume that 9q;(G) is bounded for any bounded subset G=dom g;, for all
i=1,2,...,m. If in Algorithm 8 one uses, for all k=0,

01 (") = v'™ e dg;) (") (77)
and

Oi) = <", x> — Brgip (+%) (78)

to construct Sg, (x (xk) by (24) whenever g (x*)>0, then S0 ( ) is a 5-SHS.
Proof. Let So, (x*) be the half-space defined by (77) and (78), i.e.,
S0 () = {xeR"| (W™, x — x> < — Brgip (+F)} (79)
In order to conclude that the half-space Sp. ) (x¥) is a §-SHS, we must show that
SQi(k) (x*) nint B(xF, 5qi(k)(xk)) =0 (80)
and, by Definition 1, that

S0, (") 2 Qiry.- (81)
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First we show that (80) holds. In Step 3.3.2 of Algorithm 8, x**! is the Bregman
projection of zF onto the intersection Lf.‘(k) N So, (x¥). This implies that

X eSg,,, (), that is,
U X — 3RS < = Brgip (XH). (82)
It follows that
Bty () <[ o™ 5k — KU < [ [[]]xF — 5K (83)

According to the comment in the last sentence of Step 2 of the proof, x* belongs to
the set G, defined by (18). Using the assumption on the boundedness of the
subgradients, we have |[o'¥)||< M. Hence

Brdtigr (X*) < M| x* — X1, (84)

which implies that

B () <t — 2| (55)
Taking any
5<inf{i Be k>0} = (86)
M M
we get
X ¢int B(xk,éq,-(k)(xk)) for all k>0, (87)

which implies that (80) is true. We now show that (81) also holds. Let xe Q), i.e.,
qitk) (x) <0. By the subgradient inequality we have

i) (x) — Gigey (F) = (0™ x — Ky (88)
Thus

~qi (x) = (' x = (89)
Since ;) (x¥)>0, both sides of (89) are negative. Hence

—Bidi) (¥) = ('™ x = Xy (90)

ie., xeSQl.(k) (x*) by (79), which implies that (81) does indeed hold. This completes
the proof. [
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Fig. 3. Geometric description of the construction of SQW (x*) via interior points in the sets.

5.2. Construction of SQi(k) (x*) via interior points in the sets

In Case 3.3.2 of Algorithm 8 we can construct the half-spaces SQi(k) (x*) for (24) by
still another method.

Assumption C. There are m given interior points y'eint Q;, 1 <i<m.

Method for the construction of the half-spaces SQi(k) (xF) by (24):

If gir) (x¥)>0 (i.e., we are in Case 3.3.2 of Algorithm 8), choose some 0<A<]1,
define

%(h) = hy'™ 4 (1 — h)x*, (91)
and solve the nonlinear equation

qik) (X(h)) = 0. (92)
Denote by /i the smallest value of & for which (/) solves (92) and set

= x(hy). (93)
Then calculate a subgradient

1) € 0g; () (94)

(if gk is differentiable at (%) then ¥ = Vg, (%)) and
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k
and define Sp, , (x*) by

S0y (¥) = {xeR"| (1™, x) <M, 745 ). (96)

See Fig. 3 for a geometric description of the construction of SQi(k> (x¥) via interior
points in the sets.

Theorem 15. Under Assumption C, whenever g (x¥)>0 in Algorithm 8 and we use
the method described above to construct S0 (x*), then there exists a §>0 such that

S0 (x*) is a 5-SHS.

Proof. We first show that (81) holds. If xeQyx), then gjy)(x)<0. Using the
subgradient inequality

W x — 5 <qin (%) — qigy (39), (97)
and the fact that g (x) <0 and g4 (%%) = 0, we obtain
() x — 7 <0, (98)
In other words,
AR xSy <R gRy (99)
Thus xe Sg,,, (x¥), by (96). We show now that (80) holds. Let
Hypy = {xeR" | <1V, xy = (W, 51, (100)

Since x* ¢ Qi) (otherwise we do not use (96)), we have, by a simple geometric
consideration,

1% = SEIHY Y = Py ")
Iy ®) — 3K]]

1Py (x*) = 2*|| = ; (101)

where PHi(/ (x*) is the orthogonal projection of x* onto Hiy (see also [14, Fig. 5.8]).

Since {x* }eso is bounded (see the comment in the last sentence of Step 2), (101)
implies that there is a positive M such that for all k>0,

% — ¥ <M. (102)

By Bauschke and Borwein [4, Proposition 7.8 and Corollary 7.9], g;) is Lipschitz
continuous. Hence there is a positive L such that

i) (x) = iy () < L Ix* — 7| (103)
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Since qi<k)(>‘ck) =0 by (92) and (93), we obtain
G () < LI |* = 7]. (104)
We also have
1Y) = Pr ("= d (Y, bd Qi) = d >0, (105)
where
d = min{d(y',bdQ;) | 1 <i<m}. (106)
It follows from (101), (102), (104) and (105) that

Gigr) (x*)d

1Prgy () = =75 (107)

Let x**'eSg,, (x*). Then we also obtain
i) (X*)d
¥t = K2 1P () = 2| >, (108)
d
Taking 6 <——. we have th
aking o UL we have that
X etint B(x¥, g, (x*))  for all k>0. (109)

This completes the proof of Theorem 15. [
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