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Abstract

We present a modification of Dykstra’s algorithm which allows us to avoid projections onto

general convex sets. Instead, we calculate projections onto either a half-space or onto the

intersection of two half-spaces. Convergence of the algorithm is established and special choices

of the half-spaces are proposed.

The option to project onto half-spaces instead of general convex sets makes the algo-

rithm more practical. The fact that the half-spaces are quite general enables us to

apply the algorithm in a variety of cases and to generalize a number of known projection

algorithms.

The problem of projecting a point onto the intersection of closed convex sets receives

considerable attention in many areas of mathematics and physics as well as in other fields of

science and engineering such as image reconstruction from projections.

In this work we propose a new class of algorithms which allow projection onto certain super

half-spaces, i.e., half-spaces which contain the convex sets. Each one of the algorithms that we

present gives the user freedom to choose the specific super half-space from a family of such
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half-spaces. Since projecting a point onto a half-space is an easy task to perform, the new

algorithms may be more useful in practical situations in which the construction of the super

half-spaces themselves is not too difficult.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The Dykstra algorithm is an iterative procedure which (asymptotically) finds the
nearest point projection (also called the orthogonal projection) of any given point
onto the intersection of a given family of closed convex sets. It iterates by passing
sequentially over the individual sets and projecting onto each one a deflected version

of the previous iterate. A precise description of the algorithm can be found in [26].
The algorithm was first proposed and analyzed by Dykstra [21] in 1983 for a family
of closed convex cones in Rn: Boyle and Dykstra [9] studied the algorithm for general
convex sets in Hilbert space. Han rediscovered the algorithm in 1988 [26] and
investigated its behavior in Rn by using the duality theory of mathematical
programming. Han and Lou [27] proposed a simultaneous version of the algorithm
in Rn:

Gaffke and Mathar [25] studied the Dykstra algorithm in Hilbert space from a
duality standpoint and showed its relation to the method of component-wise cyclic
minimization over a Cartesian product. They also proposed a fully simultaneous
Dykstra algorithm. Iusem and De Pierro showed in [32] convergence of the
simultaneous Dykstra algorithm in both consistent and inconsistent cases in Rn;
using Pierra’s [38] formalism, see also [31]. Crombez [17] did a similar analysis in
Hilbert space. Combettes [15] included the Dykstra algorithm in his review.
Bauschke and Borwein [3] analyzed the algorithm for two sets in Hilbert space and
generalized the work of Iusem and De Pierro [32] to this setting. Deutsch and
Hundal published a rate of convergence study for the polyhedral case in [20], and in
[30] established generalizations to an infinite family of sets and to random, rather
than cyclic, order control, see also [19].

Han [26], as well as Iusem and De Pierro [32], showed that for linear inequality
constraints and for linear interval inequality constraints (the polyhedral case), the
method of Dykstra becomes the Hildreth algorithm, first published in [29] and
studied further by D’Esopo [18], and by Lent and Censor [35].

Censor and Reich [13] proposed a synthesis of Dykstra’s algorithm with Bregman
distances and obtained a new algorithm that solves the best approximation problem
with Bregman projections. However, they established convergence of the resulting
Dykstra algorithm with Bregman projections only when the constraints are half-
spaces. Bauschke and Lewis [8] provided the first proof for general closed convex
constraint sets. Their analysis relies on some strong properties of Bregman distances
corresponding to Legendre functions which were treated earlier by Bauschke and
Borwein [5]. Bauschke and Lewis [8] also discovered the close relationship between
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the Dykstra algorithm with Bregman projections and the very general and powerful
algorithmic framework of Tseng [41]. Bregman, Censor and Reich show that the
Dykstra algorithm with Bregman projections is precisely the nonlinear extension of
the Bregman optimization algorithm in [11], see also Dykstra [22]. This recognition
goes beyond the fact that the two algorithms coincide in the linear constraint case, as
was shown by Censor and Reich [13]. It enables these authors to present a new proof
and convergence analysis of Dykstra’s algorithm with Bregman projections for
almost cyclic control sequences, which rests on Bregman’s original work [10]. Their
work also offers an intuitive geometric interpretation of the iterative steps.

Other algorithms for finding the projection of a point onto the intersection of
convex sets are available. Haugazeau proposed such an algorithm in [28] and his
ideas were further abstracted and developed by Bauschke and Combettes [6]. The
latter was extended to Bregman projections by Bauschke and Combettes [7]. Earlier,
Pierra discussed yet another method, which is, however, related to Haugazeaue’s
work, in [37,38]. Combettes constructed a block-iterative outer approximations
method in [16], and Bauschke [2] extended an algorithm of Wittman.

In the present paper we propose an algorithmic scheme which is a modification of
Dykstra’s algorithm. It allows us to replace projections onto convex sets by
projections onto either a half-space or the intersection of two half-spaces. A method,
which replaces projections onto convex sets by projections onto either a half-space or
the intersection of two half-spaces, was proposed and studied by Iusem and Svaiter
[33,34], but in a different way. In our work, when we have to project onto the
intersection of two half-spaces, our scheme enables us to choose one of the half-
spaces from a family of possible half-spaces and the convergence theorem is true for
the whole family of possible half-spaces. This feature allows us to construct many
specific algorithms within our general scheme and to obtain the result of Iusem and
Svaiter (both the algorithm and the convergence theorem) as a special case by
making a specific choice of the half-spaces.

2. d-Super half-spaces and d-super hyperplanes: definitions and construction

The orthogonal projection x0 of a point x onto a nonempty closed convex set
EDRn can be viewed the orthogonal projection of x onto the particular hyperplane
H which separates x from E and supports E at x0; the closest point to x in E: (For
the definitions of a separating hyperplane and a supporting hyperplane consult any
book on convex analysis or optimization theory or look, e.g., in [14].)

But, of course, at the time of performing such an orthogonal projection neither the
point x0; nor the separating and supporting hyperplane H are available. In view of
the simplicity of performing an orthogonal projection onto a hyperplane, it is natural
to ask whether in the construction of iterative projection algorithms one could use
other separating supporting hyperplanes, instead of that particular hyperplane H

through the closest point to x:
Aside from theoretical interest, this approach leads to algorithms that can be used

in practice, provided that the computational effort of finding such other hyperplanes
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competes favorably with the work involved in performing orthogonal projections
directly onto the given sets.

Such an approach was taken by Aharoni et al. [1], where the ðd; ZÞ-algorithm for
the convex feasibility problem replaces orthogonal projections onto the convex sets
by projections onto separating hyperplanes (see also [14, Algorithm 5.5.1]).

In the present paper we use the rationale behind the ðd; ZÞ-algorithm to deal with
another class of mathematical problems, namely, finding the optimal point that
minimizes a given objective function over the intersection of given convex sets. We
construct a family of half-spaces and hyperplanes with particular properties and
replace projections onto convex sets by projections onto a half-space or a hyperplane
from this family or onto the intersection of two half-spaces.

In the next subsection we define d-super half-spaces and d-super hyperplanes which
play an important role throughout this work.

2.1. Definition and construction of d-super half-spaces and d-super hyperplanes

Let EDRn be a nonempty closed convex set defined by E :¼ fxARn j eðxÞp0g;
where e : Rn-R is a convex function, and let zARn be a given point. For zeE we
wish to construct a half-space which contains the set E; but does not contain any
point of the interior of a ball centered at z with radius deðzÞ; for some fixed d;
0odp1: Such a half-space will be called a d-super half-space (d-SHS for short) with
respect to the ball described above and E; and its boundary will be called a d-super
hyperplane (d-SHP for short). If zAE; then the only possible d-SHS is defined to be
Rn (see Fig. 1).

Definition 1 (d-Super half-space). Given are a point zARn; a real number d; 0odp1;
and a nonempty closed convex set E :¼ fxARn j eðxÞp0g; where e : Rn-R is a
convex function. For zeE define the ball

Bðz; deðzÞÞ :¼ fxARn j jjx 	 zjjpdeðzÞg ð1Þ
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and a half-space

SEðzÞ :¼ fxARn j/tEðzÞ; xSpyEðzÞg; ð2Þ

where tEðzÞa0 and yEðzÞAR: The set SEðzÞ will be called a d-super half-space with

respect to Bðz; deðzÞÞ and E if and only if the following two conditions hold:

yABðz; deðzÞÞ implies /tEðzÞ; ySXyEðzÞ; ð3Þ

i.e.,

SEðzÞ-int Bðz; deðzÞÞ ¼ | ð4Þ

and

EDSEðzÞ: ð5Þ

Definition 2 (d-Super hyperplane). If SEðzÞ is a d-SHS, as in Definition 1, and zeE;
then its bounding hyperplane is called a d-super hyperplane (d-SHP for short) with

respect to Bðz; deðzÞÞ and E: If zAE then the d-SHP is empty.

Here is an example of the construction of a d-SHS. This particular example plays
an important role in a special case of our new algorithm (see Section 5.1 below).

Example 3. Let E be a convex set, E :¼ fxARn j eðxÞp0g; where eðxÞ is a convex
function. Let z eE and denote by e0ðzÞ any subgradient of e at z: Assume that there
exists an M40 such that jje0ðzÞjjpM for all z in some bounded set GDRn: Then

H :¼ fxARn j eðzÞ þ/e0ðzÞ; x 	 zSp0g ð6Þ

is a d-SHS with respect to Bðz; deðzÞÞ and E for all zAG and dp1=M: In order to
prove this claim we need to show that (4) and (5) hold. Indeed, let yAH: Then

/e0ðzÞ; y 	 zSp	 eðzÞ; ð7Þ

by (6). It follows that

eðzÞpj/e0ðzÞ; y 	 zSjpjje0ðzÞjj jjz 	 yjj: ð8Þ

Using the assumption on the boundedness of the subgradients we obtain

eðzÞpMjjz 	 yjj ð9Þ

or

eðzÞ 1

M
pjjz 	 yjj: ð10Þ

The last inequality shows that whenever d is chosen such that dp1=M; we obtain ye
int Bðz; deðzÞÞ which implies that H- int Bðz; deðzÞÞ ¼ |: Next, we show that EDH:
Let xAE: Using the well-known subgradient inequality (see, e.g., [39, p. 214]) we
have

eðxÞ 	 eðzÞX/e0ðzÞ; x 	 zS: ð11Þ
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Since xAE; eðxÞp0: Thus

	eðzÞX/e0ðzÞ; x 	 zS; ð12Þ

which implies that xAH; by (6), and as a result of (7)–(12) we obtain that H is indeed
a d-SHS, as claimed.

The last example is very important because there are many algorithms that use
projections onto half-spaces of the form of (6), see, e.g., [23,24,33]. We will need to
make use of the following condition.

Condition 4. For any E, as in Definition 1, and any bounded set GDRn; there exists a

dAð0; 1Þ such that zAG and zeE imply that the intersection Bðz; deðzÞÞ-E is empty.

Remark 5. Condition 4 is necessary and sufficient to enable us to construct a d-SHS.
In our general algorithmic scheme, which will be presented next, we have to assume
that this condition holds. For the special cases of the algorithm, that we treat
separately, we show how to choose a d such that Condition 4 actually holds.
Example 3 illustrates such a special case. However, formulating a general suffi-
cient condition for Condition 4 to hold for our general algorithmic scheme still
eludes us.

3. The d-SHS algorithm

3.1. The algorithm

We consider the optimization problem

min f f ðxÞ j xAQg; ð13Þ

where Q ¼
Tm

i¼1 Qi; Qi :¼ fxARn j qiðxÞp0g; and f ; fqigm
i¼1 are real-valued functions

the effective domains of which, dom f and dom qi; are subsets of Rn: We make the
following assumptions regarding the constraints:

Assumption A1. qiðxÞ is convex, 1pipm:
Assumption A2. Qa|:
Assumption A3. Q-ðdom f Þa| and Qi-intðdom f Þa|; for all i; 1pipm: (But

Q-intðdom f Þ may be empty.)
Assumption A4. The sets dom qi; 1pipm; are ‘‘wide enough’’ in the sense that all

points appearing in the new Algorithm 8, defined below, belong to
intðdom qiÞ; 1pipm:

We assume that f is a Bregman function with zone S ¼ intðdom f Þ (see the
definition of Df ðx; yÞ in, e.g., [12,14, Definition 2.1.1]).
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Remark 6. If f is a Bregman function with zone S ¼ intðdom f Þ and if a point
aAS ¼ intðdom f Þ satisfies rf ðaÞ ¼ 0; then the problem

minf f ðxÞ j xAQ-ðdom f Þg ð14Þ

achieves its minimum at the Bregman projection with respect to f of the point a onto
Q: This follows immediately from the definition of the Bregman projection of a point
onto Q; and the fact that rf ðaÞ ¼ 0; i.e.,

P
f
QðaÞ ¼ arg minfDf ðx; aÞ j xAQ-ðdom f Þg

¼ arg minf f ðxÞ 	 f ðaÞ 	/rf ðaÞ; x 	 aS j xAQ- %Sg

¼ arg minf f ðxÞ j xAQ-ðdom f Þg: ð15Þ

We add the next three assumptions on f to make sure that the algorithm is well
defined:

Assumption B1. The function f is co-finite, which, since it is a Bregman function,
implies that the mapping y ¼ rf ðxÞ is a one-to-one mapping of
intðdom f Þ onto Rn (see, e.g., [39, Theorem 26.5]).

Assumption B2. The function f is zone consistent with respect to any half-space
and with respect to the intersection of two half-spaces containing
points from intðdom f Þ:

Remark 7. Bauschke and Borwein showed in [5, Theorem 3.14] that if f is a
Legendre function, then it is zone consistent. Rockafellar [39, Lemma 26.7] gives a
characterization of co-finiteness for differentiable convex functions.

Assumption B3. The function f has a global minimum.

The precise description of the new algorithm that we propose for problem (13) is
as follows:

Algorithm 8. 1. Data at the beginning of the kth iterative step

1.1. Current approximation xkAintðdom f Þ:
1.2. m vectors ak

i ARn and m real numbers ak
i ; 1pipm; such that each pair ðak

i ; a
k
i Þ

defines a half-space Lk
i ;

Lk
i :¼ fxARn j/ak

i ; xSpak
i g; ð16Þ

containing Qi:
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2. Initialization

2.1. x0 is a (global) minimum point of f ðxÞ on Rn; i.e.,

rf ðx0Þ ¼ 0: ð17Þ

2.2. Set a0
i ¼ 0 and a0

i ¼ 0 for all 1pipm:
2.3. Choose a real dAð0; 1� such that Condition 4 holds for the bounded set

G ¼ fxARn j Df ðy; xÞpf ðyÞ 	 f ðx0Þg; for some yAQ-dom f ð18Þ

and for each Qi; i ¼ 1; 2;y;m: (Note that G is bounded because the partial level

sets of the Bregman distance Df are always bounded, see, e.g., [17 Definition

2.1.1].)

3. Iterative step

3.1. Choose an operating control index iðkÞ from the almost cyclic control sequence.
Recall (see, e.g., [14, Definition 5.1.1]) that an almost cyclic control sequence on

f1; 2;y;mg is a sequence fiðkÞgNk¼0 such that 1piðkÞpm for all kX0 and there

exists a constant (called the almost cyclicality constant) TXm such that, for all kX0;

f1; 2;y;mgDfiðk þ 1Þ; iðk þ 2Þ;y; iðk þ TÞg: ð19Þ

3.2. Calculate zkARn such that

rf ðzkÞ ¼ rf ðxkÞ þ ak
iðkÞ: ð20Þ

Such a vector zkAintðdom f Þ exists because of Assumption B1.
3.3. Set xkþ1; akþ1

iðkÞ ; akþ1
iðkÞ by one of the following two possible options:

3.3.1. If qiðkÞðxkÞp0; then let xkþ1 be the Bregman projection with respect to f of

zk onto the half-space

Lk
iðkÞ :¼ fxARn j/ak

iðkÞ; xSpak
iðkÞg: ð21Þ

That is,

if zkALk
iðkÞ; then let xkþ1 ¼ zk and define lk :¼ 0;

if zkeLk
iðkÞ; then xkþ1 and lk are calculated from the Karush–Kuhn–

Tucker (see, e.g., [36]) conditions

rf ðxkþ1Þ ¼ rf ðzkÞ 	 lkak
iðkÞ;

lkX0;

/ak
iðkÞ; xkþ1Spak

iðkÞ;

lkð/ak
iðkÞ; xkþ1S	 ak

iðkÞÞ ¼ 0:

8>>>><
>>>>:

ð22Þ

Next, set

akþ1
iðkÞ ¼ lkak

iðkÞ;

akþ1
iðkÞ ¼ lkak

iðkÞ:

(
ð23Þ
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3.3.2. If qiðkÞðxkÞ40; then let xkþ1 be the Bregman projection with respect to f of

zk onto the intersection of the following two half-spaces: Lk
iðkÞ which was

defined by (21) and

SQiðkÞ ðx
kÞ :¼ fxARn j/tiðkÞ; xSpyiðkÞg; ð24Þ

which is a d-SHS with respect to the ball Bðxk; dqiðkÞðxkÞÞ and QiðkÞ: In

other words,

/tiðkÞ; xSpyiðkÞ for all xAQiðkÞ;

/tiðkÞ; xSXyiðkÞ for all xABðxk; dqiðkÞðxkÞÞ;

(
ð25Þ

where tiðkÞ ¼ tiðkÞðxkÞa0 and yiðkÞ ¼ yiðkÞðxkÞ (see Section 2 for the

definition and construction of the d-SHS). Thus, we calculate the vector

xkþ1; lk and mk from the Karush–Kuhn–Tucker conditions

rf ðxkþ1Þ 	 rf ðzkÞ þ lkak
iðkÞ þ mktiðkÞ ¼ 0;

lkX0; mkX0;

/ak
iðkÞ; xkþ1Spak

iðkÞ;

/tiðkÞ; xkþ1SpyiðkÞ;

lkð/ak
iðkÞ; xkþ1S	 ak

iðkÞÞ ¼ 0;

mkð/tiðkÞ; xkþ1S	 yiðkÞÞ ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

ð26Þ

and then set

akþ1
iðkÞ ¼ lkak

iðkÞ þ mktiðkÞ;

akþ1
iðkÞ ¼ lkak

iðkÞ þ mkyiðkÞ:

(
ð27Þ

3.4. For iaiðkÞ do not change ak
i and ak

i ; i.e., set

akþ1
i ¼ ak

i ;

akþ1
i ¼ ak

i : ð28Þ

Fig. 2 describes geometrically the various possibilities of the iterative step of

Algorithm 8, in the following way: Cases (i)–(iii) describe iterative steps in which xk

belongs to the convex set QiðkÞ (but the modified point zk can be in QiðkÞ; in Lk
iðkÞ and

not in QiðkÞ; and not in Lk
iðkÞ; respectively). Case (iv) describes the iterative step in

which xk does not belongs to the convex set QiðkÞ:

Note that the Bregman projection of a point onto a half-space or onto the
intersection of two half-spaces exists. According to Assumption B2 the projection

belongs to intðdom f Þ; thus we have that xkþ1; lk and mk in (22) and (26) exist and

xkþ1Aintðdom f Þ:
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Remark 9. Observe that no relaxation parameters appear in our algorithm. Some of
the special cases discussed below employ a sequence fbkgkX0 of relaxation

parameters. Loosely speaking, these parameters overdo or underdo the move
prescribed in an iterative step. Relaxation parameters add an extra degree of freedom
to the way a method might actually be implemented, and have important
consequences for the performance of the method in practice. We, however, do have

the flexibility to choose a d-SHS which will lie closer to xk at each iterate step. In this
way, some underrelaxation, i.e., epbko1 for some arbitrarily small e40; can be
actually incorporated in our algorithm.

The three lemmas below will be used to prove the convergence of Algorithm 8.

Lemma 10. For any k; the half-space Lkþ1
iðkÞ :¼ fxARn j/akþ1

iðkÞ ;xSpakþ1
iðkÞ g; defined by

the pair ðakþ1
iðkÞ ; a

kþ1
iðkÞ Þ; generated by Algorithm 8, contains QiðkÞ:

Proof. When Step 3.3.1 in Algorithm 8 holds, lk is nonnegative (see [14, Lemma
2.2.2]). Notice that there is a sign difference of lk between Lemma 2.2.2 in [14] and
our lemma, because of a different definition of the Lagrangian function). Thus, by

definition (23) of akþ1
iðkÞ and akþ1

iðkÞ we obtain Lkþ1
iðkÞ ¼ Lk

iðkÞ; and Lk
iðkÞ contains Qi (by Step

1.2 of Algorithm 8). When Step 3.3.2 of Algorithm 8 holds, let xAQiðkÞ: We will show

that this implies that xALkþ1
iðkÞ : We have

/akþ1
iðkÞ ; xS ¼ lk/ak

iðkÞ; xSþ mk/tiðkÞ; xSplkak
iðkÞ þ mkyiðkÞ ¼ akþ1

iðkÞ ; ð29Þ
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where the first equality uses (27), the inequality uses (21) and (24), and the last

equality again uses (27). We got that if xAQiðkÞ; then /akþ1
iðkÞ ; xSpakþ1

iðkÞ ; i.e., xALkþ1
iðkÞ :

Thus, the lemma is true for Step 3.3.2 too. So Lemma 10 is true in all cases. &

Lemma 11. If fxkgk and fak
i gkX0 are generated by Algorithm 8, then, for all k; we

have

rf ðxkÞ þ
Xm

i¼1

ak
i ¼ 0: ð30Þ

Proof. For k ¼ 0 the statement is true by (17) and Step 2.2 in the initialization of
Algorithm 8. Now we suppose that it is true for some k and we prove it for k þ 1:
For the proof we will use the fact (see Step 3.4 of Algorithm 8) that

Xm

i¼1
iaiðkÞ

akþ1
i ¼

Xm

i¼1
iaiðkÞ

ak
i : ð31Þ

When Step 3.3.1 in Algorithm 8 holds, then using (22), (20), the induction
hypothesis, (31) and (23) we obtain

rf ðxkþ1Þ ¼rf ðzkÞ 	 lkak
iðkÞ ¼ rf ðxkÞ þ ak

iðkÞ 	 lkak
iðkÞ

¼ 	
Xm

i¼1

ak
i

 !
þ ak

iðkÞ 	 lkak
iðkÞ

¼ 	
Xm

i¼1
iaiðkÞ

akþ1
i

0
BB@

1
CCA	 ak

iðkÞ þ ak
iðkÞ 	 lkak

iðkÞ

¼ 	
Xm

i¼1
iaiðkÞ

akþ1
i

0
BB@

1
CCA	 akþ1

iðkÞ ¼ 	
Xm

i¼1

akþ1
i : ð32Þ

When Step 3.3.2 in Algorithm 8 holds, then we use (26), (20), the induction
hypothesis, (31) and(27), to obtain

rf ðxkþ1Þ ¼rf ðzkÞ 	 lkak
iðkÞ 	 mktiðkÞ ¼ rf ðxkÞ þ ak

iðkÞ 	 lkak
iðkÞ 	 mktiðkÞ

¼ 	
Xm

i¼1

ak
i þ ak

iðkÞ

 !
	 lkak

iðkÞ 	 mktiðkÞ
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¼ 	
Xm

i¼1
iaiðkÞ

akþ1
i

0
BB@

1
CCA	 ak

iðkÞ þ ak
iðkÞ 	 lkak

iðkÞ 	 mktiðkÞ

¼ 	
Xm

i¼1
iaiðkÞ

akþ1
i

0
BB@

1
CCA	 akþ1

iðkÞ ¼ 	
Xm

i¼1

akþ1
i : ð33Þ

This completes the proof of Lemma 11. &

Lemma 12. If fxkgkX0; fak
i gkX0 and fak

i gkX0 are generated by Algorithm 8, then, for

kX0; there exists an integer r ¼ rðkÞX0 and r vectors

yjAfx0; x1;y; xk	1g; 1pjpr;

such that, for all i; 1pipm; ak
i can be represented as a finite linear combination of the

normal vectors ti; generated in Step 3.3.2 of Algorithm 8, at yj with nonnegative

coefficients, that is,

ak
i ¼

Xr

j¼1

gj t
iðyjÞ; gjX0; ð34Þ

and, for all i; 1pipm; ak
i can be represented as

ak
i ¼

Xr

j¼1

gjyiðyjÞ; gjX0; ð35Þ

where the yiðyjÞs correspond to the tiðyjÞs generated above.

Proof. For k ¼ 0; the left-hand sides of (34) and (35) are zero by Step 2.2 of
Algorithm 8. So both statements are true with gj ¼ 0; j ¼ 1; 2;y; r: We now assume

that the lemma is true for some k and prove it for k þ 1:

For iaiðkÞ both (34) and (35) hold, because ak
i and ak

i do not change, according to

Step 3.4 of the algorithm.
For i ¼ iðkÞ; in Step 3.3.1 or in Step 3.3.2 with mk ¼ 0; (34) and (35) hold, because,

by (23) or (27) and the induction hypothesis,

akþ1
iðkÞ ¼ lkak

iðkÞ ¼ lk

Xr

j¼1

gj t
iðyjÞ

 !
ð36Þ

and

akþ1
iðkÞ ¼ lkak

iðkÞ ¼ lk

Xr

j¼1

gjyiðkÞðyjÞ
 !

: ð37Þ

In Step 3.3.2 with mk40; (34) and (35) hold by (27), the induction hypothesis

and the fact that a vector xk is added to the set fx0; x1;y; xk	1g; so we have
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tiðkÞ ¼ tiðkÞðyjÞ for some yj: Thus we have

akþ1
iðkÞ ¼ lkak

iðkÞ þ mktiðkÞðxkÞ ¼ lk

Xr

j¼1

gj t
iðkÞðyjÞ

 !
þ mktiðkÞðyjÞ; ð38Þ

akþ1
iðkÞ ¼ lkak

iðkÞ þ mkyiðkÞðxkÞ ¼ lk

Xr

j¼1

gjyiðkÞðyjÞ
 !

þ mkyiðkÞðyjÞ: & ð39Þ

4. Convergence of Algorithm 8

We have to make now an additional assumption on the functions qi: Denote by I1

the subset of I ¼ f1; 2;y;mg for which the qi are affine functions.

Assumption A5. There exists a point %yAQ-dom f such that qið %yÞo0 for all
iAI2 :¼ I\I1:

4.1. The convergence theorem

Theorem 13. Let f be a Bregman function, let qi; 1pipm; be convex functions and let

Assumptions A1–A5 and B1–B3 hold. Then any sequence fxkgkX0; generated by

Algorithm 8, converges to the solution of (13).

Proof. The proof is divided into five steps. In Step 1 we define the sequence fjkgkX0

by

jk :¼ f ðxkÞ þ
Xm

i¼1

ð/ak
i ; xkS	 ak

i Þ ð40Þ

and show that it is increasing. Step 2 proves that

lim
k-N

Df ðxkþ1; xkÞ ¼ 0: ð41Þ

In Step 3 we show that the sequences fak
i gkX0 are bounded for all i; unless

ak
i 	/ak

i ; yS ¼ 0 for all yAQ and for all kX0: We consider the index sets I1 and I2

separately and distinguish two possibilities for I2: Step 4 shows that the sequence

fxkgkX0 converges to

x� ¼ lim
t-N

xkt ; ð42Þ

where the sequence fxktgtX0 is defined below, and proves that x�AQ: In Step 5 we

show that for all i; 1pipm; the limit

lim
k-N; kAW

ðak
i 	/ak

i ; x�SÞ ¼ 0 ð43Þ

holds for a certain set of indices W (defined in (66)) and from this and other
arguments presented there we obtain that Theorem 13 does indeed hold.
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Step 1: In order to prove that fjkgkX0 is increasing, we show that jkþ1 	 jkX0

for all kX0: By definition of jk; the fact that for iaiðkÞ we have, by (28), akþ1
i ¼ ak

i

and akþ1
i ¼ ak

i ; the definition of Df and Lemma 11 we get

jkþ1 	 jk ¼ f ðxkþ1Þ 	 f ðxkÞ þ
X

iaiðkÞ
/ak

i ; xkþ1 	 xkS

þ/akþ1
iðkÞ ; xkþ1S	 akþ1

iðkÞ 	 ð/ak
iðkÞ; xkS	 ak

iðkÞÞ

¼Df ðxkþ1; xkÞ þ/rf ðxkÞ; xkþ1 	 xkSþ
Xm

i¼1

/ak
i ; xkþ1 	 xkS

	/ak
iðkÞ; xkþ1 	 xkSþ/akþ1

iðkÞ ; xkþ1S

	 akþ1
iðkÞ 	 ð/ak

iðkÞ; xkS	 ak
iðkÞÞ

¼Df ðxkþ1; xkÞ þ/akþ1
iðkÞ ; xkþ1S	 akþ1

iðkÞ

	 ð/ak
iðkÞ; xkþ1S	 ak

iðkÞÞ: ð44Þ

In order to complete Step 1 we prove the next two assertions. First we show that in
all steps of Algorithm 8,

/akþ1
iðkÞ ; xkþ1S	 akþ1

iðkÞ ¼ 0 ð45Þ

holds. Indeed in Step 3.3.1, (45) is true by (23) and (21). In Step 3.3.2, we obtain from
(27) and (25):

/akþ1
iðkÞ ; xkþ1S	 akþ1

iðkÞ ¼ l/ak
iðkÞ; xkþ1Sþ m/tiðkÞ; xkþ1S	 lak

iðkÞ 	 myiðkÞ

¼ lð/ak
iðkÞ; xkþ1S	 ak

iðkÞÞ þ mð/tiðkÞ; xkþ1S	 yiðkÞÞ

¼ 0: ð46Þ

Secondly, in all steps of Algorithm 8 we have

/ak
iðkÞ; xkþ1S	 ak

iðkÞp0: ð47Þ

This is true because in both Steps 3.3.1 and 3.3.2, xkþ1ALk
iðkÞ: By (44), (45) and (47)

we have

jkþ1 	 jkXDf ðxkþ1; xkÞX0; ð48Þ

which shows that the sequence fjkgkX0 is increasing. We also get, using (44) and (45)

in (47) that

jkþ1 	 jkXak
iðkÞ 	/ak

iðkÞ; xkþ1SX0: ð49Þ
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Step 2: Let yAdom f : Then, by the definition of the Bregman projection with
respect to f ; Lemma 11 and (40), we have

Df ðy; xkÞ ¼ f ðyÞ 	 f ðxkÞ 	/rf ðxkÞ; y 	 xkS

¼ f ðyÞ 	 f ðxkÞ þ
Xm

i¼1

ak
i ; y 	 xk

* +

¼ f ðyÞ 	 f ðxkÞ 	
Xm

i¼1

ð/ak
i ; xkS	 ak

i Þ þ
Xm

i¼1

ð/ak
i ; yS	 ak

i Þ

¼ f ðyÞ 	 jk þ
Xm

i¼1

ð/ak
i ; yS	 ak

i Þ: ð50Þ

Since yAQ; we have that, for all i; /ak
i ; yS	 ak

i p0; by the definition of Lk
i and

(16). Hence, from (50), the last inequality and Step 1,

Df ðy; xkÞpf ðyÞ 	 jkpf ðyÞ 	 j0 ¼ f ðyÞ 	 f ðx0Þ ð51Þ

and the sequence fxkgkX0 is bounded by the definition of a Bregman func-

tion, (see [14, Definition 2.1.1(iv)]). By the left-hand side inequality of (51),
we have

jkpf ðyÞ for all yAQ-dom f : ð52Þ

Thus the sequence fjkgkX0 is bounded and limk-Njk exists. This fact and (48)

imply that (41) holds. Another inequality that follows from (50) is

Xm

i¼1

ðak
i 	/ak

i ; ySÞpf ðyÞ 	 j0 for all yAQ-dom f : ð53Þ

Since ak
i 	/ak

i ; ySX0 for all i and for all yAQ-dom f ; we see that

ak
i 	/ak

i ; ySpf ðyÞ 	 j0 for all i and for all yAQ-dom f : ð54Þ

Observe that the derivation of (51) does not depend on d and could have been
reached at even if instead of SQiðkÞ in 3.3.2 of Algorithm 8 we would have taken any

hyperplane that separates xk from QiðkÞ: Therefore, (51) shows that xkAG; defined by

(18), for all kX0: Thus, d is well defined.
Step 3: This step is divided into three cases.

Step 3(i): Assume that iAI1 and /bi; yS	 bi ¼ 0 for all yAQ: In this case we claim
that

/ak
i ; yS	 ak

i ¼ 0 for all kX0 and for all yAQ: ð55Þ
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To show that (55) holds, recall that for iAI1; the functions qi are affine functions,
i.e.,

qiðxÞ ¼ /bi; xS	 bi; @f ðxÞ ¼ fbig: ð56Þ

By Lemma 12, there exist nonnegative numbers gk such that

ak
i ¼ gkbi; ak

i ¼ gkbi: ð57Þ

If gk40; then

bi ¼ ak
i

gk

; bi ¼
ak

i

gk

: ð58Þ

Substituting bi and bi of (58) in /bi; xS	 bi ¼ 0; we get that (55) holds, as

claimed. If gk ¼ 0 then ak
i ¼ 0 and ak

i ¼ 0 and (55) holds too.

Step 3(ii): Assume that iAI1 and /bi; yS	 bia0 for some yAQ: In this case the

sequences fak
i gkX0 are bounded for all i: To show this, let ỹAQ-dom f satisfy

bi 	/bi; ỹS ¼ e40: Using (54) with y ¼ ỹ we have

ak
i 	/ak

i ; ỹSpf ðỹÞ 	 j0; ð59Þ

and by (57) we obtain

ak
i 	/ak

i ; ỹS ¼ gkðbi 	/bi; ỹSÞ ¼ gke: ð60Þ

Hence, by (59) and (60), gkepf ðỹÞ 	 j0; which means that the numbers gk are

bounded by ð f ðỹÞ 	 j0Þ=e; so, by (57), the sequences fak
i gkX0 are indeed bounded.

Step 3(iii): Assume that iAI2: For all vectors ti; generated in Step 3.3.2 of
Algorithm 8, we have

yiX/ti; yS for all yAQi: ð61Þ

Since %y; the existence of which is assumed in Assumption A5, is an interior point of

Qi; there exists a ball Bð %y; EiÞ contained in Qi: Therefore, y ¼ %y þ
Eit

i=jjtijjABð %y; EiÞCQi: Note that tia0 by (24) and Definition 1.
Hence

yi 	/ti; %ySX/ti; yS	/ti; %yS ¼ /ti; y 	 %yS ¼ Eijjtijj: ð62Þ

Using Lemma 12, we have

ak
i 	/ak

i ; %yS ¼
Xr

j¼1

gjðyiðyjÞ 	/tiðyjÞ; %ySÞXEi

Xr

j¼1

gjjjtiðyiÞjj: ð63Þ

From (54) and the last inequality we obtain

f ð %yÞ 	 j0XEi

Xr

j¼1

gjjjtiðyiÞjj; ð64Þ

which means that
Pr

j¼1 gjjjtiðyiÞjj is bounded by ð f ð %yÞ 	 j0Þ=Ei:
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From this fact and (34) we have

jjak
i jj ¼

Xr

j¼1

gj t
iðyiÞ

�����
�����

�����
�����p
Xr

j¼1

gjjjtiðyiÞjjpð f ð %yÞ 	 j0Þ=Ei; ð65Þ

which proves that the sequences fak
i gkX0 are bounded when iAI2:

Step 4: From Step 2 we know that the sequence fxkgkX0 is bounded, so it must

have cluster points. Choose a convergent subsequence fxktgtX0 of fxkgkX0 such that

iðktÞ ¼ 1: Let fxktg converge to some point x�: Since Df ðxkþ1; xkÞ-0 as k-N; the

definition of Bregman functions (see [40]) implies that fxktþ1gtX0 converges to the

point x�: Repeating this, we get that all the subsequences fxktþ1gtX0;

fxktþ2gtX0;y; fxktþTgtX0 converge to x�; where T is the almost cyclic control

constant. Let

W ¼
[N
t¼1

[T
j¼0

fkt þ jg; ð66Þ

i.e., W is the union of the indices belonging to all of the above sequences. It is clear

that the sequence fxkgkAW also converges to x�: Let us show next that x�AQ: If Step

3.3.1 appears infinitely many times for fxktgtX0; that is, q1ðxltÞp0 for some

subsequence of fxktgtX0; then q1ðx�Þ ¼ limt-N q1ðxltÞp0: Hence we have x�AQ1 by

the definition of Q1: If Step 3.3.1 appears a finite number of times, then Step 3.3.2
appears infinitely many times. For Step 3.3.2 we know that

xktþ1eintðBðxkt ; dq1ðxktÞÞ because xktþ1 is the Bregman projection of zkt onto the

intersection of the two half-spaces Lkt
iðktÞ and SQiðktÞ

: Therefore,

jjxktþ1 	 xkt jjXdq1ðxktÞ; ð67Þ

and since limt-N jjxktþ1 	 xkt jj ¼ 0 (because limt-N xktþ1 ¼ limt-N xkt ) and d40;

we have limt-N q1ðxktÞp0: Hence q1ðx�Þ ¼ limt-N q1ðxktÞp0; so x�AQ1: Choosing

a subsequence fxktþjtg ð0ojtoTÞ with iðkt þ jtÞ ¼ 2 which converges to the same
point x�; we see that x�AQ2: Repeating this argument for 1pipm we obtain x�AQ:

Step 5: We now show that (43) holds. Take some i; 1pipm: If ak
i 	/ak

i ; yS ¼ 0

for all yAQ and for all k; then (43) is true for this i: Otherwise, we know that fak
i gkX0

is bounded (by Step 3).
If kAW ; then W contains a set Wk ¼ fp; p þ 1;y; p þ Tg containing k: We know

that the set fiðpÞ; iðp þ 1Þ;y; iðp þ T 	 1Þg contains i (by the choice of the almost
cyclic control index). Let rAWk; rpp þ T 	 1; be the nearest integer to k such that
iðrÞ ¼ i: We distinguish between two cases according to the values of r and k:

Step 5(i): Assume that rok: In this case ðr þ 1ÞAWk (from the definition of Wk)

and ak
i ¼ arþ1

i ; ak
i ¼ arþ1

i since there is no change in ac
i and aci for r þ 1pcpk (by
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(38)). Using the last two equations and (45), we obtain

ak
i 	/ak

i ; x�S ¼ arþ1
i 	/arþ1

i ; x�S

¼ arþ1
iðrÞ 	/arþ1

i ; xrþ1Sþ/arþ1
i ; xrþ1 	 x�S

¼/arþ1
iðrÞ ; xrþ1 	 x�S: ð68Þ

By definition of Lk
i and the last equation, we get

0pak
i 	/ak

i ; x�Spjjarþ1
i jjjjxrþ1 	 x�jj: ð69Þ

Step 5(ii): Assume that rXk: In this case ak
i ¼ ar

i and ak
i ¼ ar

i because ac
i and aci do

not change for kpcpr (by 3.4, in the iterative step of Algorithm 8). Hence by the
last two equalities and (49),

ak
i 	/ak

i ; x�S ¼ ar
i 	/ar

i ; x�S

¼ ar
iðrÞ 	/ar

iðrÞ; xrþ1Sþ/ar
i ; xrþ1 	 x�S

pjrþ1 	 jr þ/ar
i ; xrþ1 	 x�S: ð70Þ

Therefore

0pak
i 	/ak

i ; x�Spjjak
i jjjjxrþ1 	 x�jj þ jrþ1 	 jr: ð71Þ

Since r tends to infinity together with k; r þ 1AW ; the sequences fak
i gkX0 are

bounded and fjkgkX0 converges, we see that (69) and (71) imply (43). Since (43)

holds for all i; we have

lim
k-N; kAW

Xm

i¼1

ðak
i 	/ak

i ; x�SÞ ¼ 0: ð72Þ

Applying (50) with y ¼ x�; we get

Df ðx�; xkÞ ¼ f ðx�Þ 	 jk þ
Xm

i¼1

ð/ak
i ; x�S	 ak

i Þ: ð73Þ

By the definition of a Bregman function (see [14, Definition 2.1.1]), one has

lim
k-N; kAW

Df ðx�; xkÞ ¼ 0: ð74Þ

Hence (72)–(74) imply that the subsequence fjkgkX0; kAW ; tends to f ðx�Þ; and

since limk-N jk exists,

lim
k-N

jk ¼ f ðx�Þ: ð75Þ

Since, by (52), limk-N jkpminf f ðxÞ j xAQg; we obtain

f ðx�Þ ¼ minf f ðxÞ j xAQg: ð76Þ

From the fact that f is strictly convex (because it is a Bregman function) and has a

unique minimum in Q; it follows that the whole sequence fxkgkX0 converges to x�;

and the proof is complete. &
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5. Particular cases

It is natural to ask, but quite complicated to answer, in what situations all
assumptions made in the previous sections hold. We have no simple answer to this
question at this time except for the particular cases discussed next. In these cases the
choice of the half-spaces is constructively given. First, we show that the d-SHS

SQiðkÞ ðx
kÞ can be defined via some subgradients at the current point xk: The second

special case deals with the construction of these d-SHS’s, via interior points in the
convex sets (using the assumption that in each set we know an interior point). The
idea of generating such a case is based on the ðd; ZÞ-algorithm for convex inequalities
with interior points (see, e.g., [14, Algorithm 5.5.3]).

5.1. Construction of SQiðkÞ ðx
kÞ via subgradient vectors

We show here a specific choice of the d-SHSs SQiðkÞ ðx
kÞ; made by constructing each

of the d-SHSs via subgradients. In this case we use underrelaxation parameters to

define SQiðkÞ ðx
kÞ:

Let fbkgkX0 be an infinite sequence of underrelaxation parameters such that

0oepbkp1 for all kX0; with some arbitrarily small given e: Let viðkÞ ¼ viðkÞðxkÞ be a

subgradient of qiðkÞ at xk:

Theorem 14. Assume that @qiðGÞ is bounded for any bounded subset GDdom qi; for all

i ¼ 1; 2;y;m: If in Algorithm 8 one uses, for all kX0;

0atiðkÞðxkÞ ¼ viðkÞA@qiðkÞðxkÞ ð77Þ

and

yiðkÞ ¼ /viðkÞ;xkS	 bkqiðkÞðxkÞ ð78Þ

to construct SQiðkÞ ðx
kÞ by (24) whenever qiðkÞðxkÞ40; then SQiðkÞ ðx

kÞ is a d-SHS.

Proof. Let SQiðkÞ ðx
kÞ be the half-space defined by (77) and (78), i.e.,

SQiðkÞ ðx
kÞ ¼ fxARn j/viðkÞ; x 	 xkSp	 bkqiðkÞðxkÞg: ð79Þ

In order to conclude that the half-space SQiðkÞ ðx
kÞ is a d-SHS, we must show that

SQiðkÞ ðx
kÞ-int Bðxk; dqiðkÞðxkÞÞ ¼ | ð80Þ

and, by Definition 1, that

SQiðkÞ ðx
kÞ+QiðkÞ: ð81Þ
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First we show that (80) holds. In Step 3.3.2 of Algorithm 8, xkþ1 is the Bregman

projection of zk onto the intersection Lk
iðkÞ-SQiðkÞ ðx

kÞ: This implies that

xkþ1ASQiðkÞ ðx
kÞ; that is,

/viðkÞ; xkþ1 	 xkSp	 bkqiðkÞðxkÞ: ð82Þ

It follows that

bkqiðkÞðxkÞpj/viðkÞ; xk 	 xkþ1SjpjjviðkÞjjjjxk 	 xkþ1jj: ð83Þ

According to the comment in the last sentence of Step 2 of the proof, xk belongs to
the set G; defined by (18). Using the assumption on the boundedness of the

subgradients, we have jjviðkÞjjpM: Hence

bkqiðkÞðxkÞpMjjxk 	 xkþ1jj; ð84Þ

which implies that

1

M
bkqiðkÞðxkÞpjjxk 	 xkþ1jj: ð85Þ

Taking any

dpinf
1

M
bk

���� kX0

� �
¼ e

M
; ð86Þ

we get

xkþ1eint Bðxk; dqiðkÞðxkÞÞ for all kX0; ð87Þ

which implies that (80) is true. We now show that (81) also holds. Let xAQiðkÞ; i.e.,

qiðkÞðxÞp0: By the subgradient inequality we have

qiðkÞðxÞ 	 qiðkÞðxkÞX/viðkÞ; x 	 xkS: ð88Þ

Thus

	qiðkÞðxkÞX/viðkÞ; x 	 xkS: ð89Þ

Since qiðkÞðxkÞ40; both sides of (89) are negative. Hence

	bkqiðkÞðxkÞX/viðkÞ; x 	 xkS; ð90Þ

i.e., xASQiðkÞ ðx
kÞ by (79), which implies that (81) does indeed hold. This completes

the proof. &
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5.2. Construction of SQiðkÞ ðx
kÞ via interior points in the sets

In Case 3.3.2 of Algorithm 8 we can construct the half-spaces SQiðkÞ ðx
kÞ for (24) by

still another method.

Assumption C. There are m given interior points yiAint Qi; 1pipm:

Method for the construction of the half-spaces SQiðkÞ ðx
kÞ by (24):

If qiðkÞðxkÞ40 (i.e., we are in Case 3.3.2 of Algorithm 8), choose some 0php1;

define

%xðhÞ ¼ hyiðkÞ þ ð1 	 hÞxk; ð91Þ

and solve the nonlinear equation

qiðkÞð %xðhÞÞ ¼ 0: ð92Þ

Denote by hk the smallest value of h for which %xðhÞ solves (92) and set

%x
k ¼ %xðhkÞ: ð93Þ

Then calculate a subgradient

tiðkÞA@qiðkÞð %xkÞ ð94Þ

(if qiðkÞ is differentiable at ð %xkÞ then tiðkÞ ¼ rqiðkÞð %xkÞ) and

yiðkÞ ¼ /tiðkÞ; %xkS; ð95Þ
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and define SQiðkÞ ðx
kÞ by

SQiðkÞ ðx
kÞ ¼ fxARn j/tiðkÞ; xSp/tiðkÞ; %xkSg: ð96Þ

See Fig. 3 for a geometric description of the construction of SQiðkÞ ðx
kÞ via interior

points in the sets.

Theorem 15. Under Assumption C, whenever qiðkÞðxkÞ40 in Algorithm 8 and we use

the method described above to construct SQiðkÞ ðx
kÞ; then there exists a d40 such that

SQiðkÞ ðx
kÞ is a d-SHS.

Proof. We first show that (81) holds. If xAQiðkÞ; then qiðkÞðxÞp0: Using the

subgradient inequality

/tiðkÞ; x 	 %x
kSpqiðkÞðxÞ 	 qiðkÞð %xkÞ; ð97Þ

and the fact that qiðkÞðxÞp0 and qiðkÞð %xkÞ ¼ 0; we obtain

/tiðkÞ; x 	 %xkSp0: ð98Þ

In other words,

/tiðkÞ; xSp/tiðkÞ; %xkS: ð99Þ

Thus xASQiðkÞ ðx
kÞ; by (96). We show now that (80) holds. Let

HiðkÞ ¼ fxARn j/tiðkÞ; xS ¼ /tiðkÞ; %xkSg: ð100Þ

Since xkeQiðkÞ (otherwise we do not use (96)), we have, by a simple geometric

consideration,

jjPHiðkÞ ðx
kÞ 	 xkjj ¼

jjxk 	 %xkjj jjyiðkÞ 	 PHiðkÞ ðy
iðkÞÞjj

jjyiðkÞ 	 %xkjj ; ð101Þ

where PHiðkÞ ðx
kÞ is the orthogonal projection of xk onto HiðkÞ (see also [14, Fig. 5.8]).

Since fxkgkX0 is bounded (see the comment in the last sentence of Step 2), (101)

implies that there is a positive M such that for all kX0;

jjyiðkÞ 	 %x
kjjpM: ð102Þ

By Bauschke and Borwein [4, Proposition 7.8 and Corollary 7.9], qiðkÞ is Lipschitz

continuous. Hence there is a positive L such that

jqiðkÞðxkÞ 	 qiðkÞð %xkÞjpLjjxk 	 %x
kjj: ð103Þ
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Since qiðkÞð %xkÞ ¼ 0 by (92) and (93), we obtain

qiðkÞðxkÞpLjjxk 	 %x
kjj: ð104Þ

We also have

jjyiðkÞ 	 PHiðkÞ ðy
iðkÞÞjjXdðyiðkÞ; bdQiðkÞÞXd40; ð105Þ

where

d :¼ minfdðyi; bdQiÞ j 1pipmg: ð106Þ

It follows from (101), (102), (104) and (105) that

jjPHiðkÞ ðx
kÞ 	 xkjjX

qiðkÞðxkÞd
ML

: ð107Þ

Let xkþ1ASQiðkÞ ðx
kÞ: Then we also obtain

jjxkþ1 	 xkjjXjjPHiðkÞ ðx
kÞ 	 xkjjX

qiðkÞðxkÞd
ML

: ð108Þ

Taking dp
d

ML
; we have that

xkþ1eint Bðxk; dqiðkÞðxkÞÞ for all kX0: ð109Þ

This completes the proof of Theorem 15. &
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