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Abstract

In Oswald and Shingel (2009) [6], we proved an asymptotic O(n−α/(α+1)) bound for the approximation
of SU(N ) loops (N ≥ 2) with Lipschitz smoothness α > 1/2 by polynomial loops of degree ≤n. The proof
combined factorizations of SU(N ) loops into products of constant SU(N ) matrices and loops of the form
eA(t) where A(t) are essentially su(2) loops preserving the Lipschitz smoothness, and the careful estimation
of errors induced by approximating matrix exponentials by first-order splitting methods. In the present note
we show that using higher order splitting methods allows us to improve the above suboptimal result to
close-to-optimal O(n−(α−ε)) bounds for α > 1, where ε > 0 can be chosen arbitrarily small.
c© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The study of approximation rates for Lie-group-valued loops by polynomial loops is a
relatively unexplored topic within the larger area of nonlinearly constrained approximation.
Motivation is provided by previous density results [2,3,7] for semi-simple Lie groups, and by
more practical needs, e.g., for the design of para-unitary FIR filters [2,5,10].

∗ Corresponding author.
E-mail addresses: p.oswald@jacobs-university.de (P. Oswald), tshingel@math.ucsd.edu (T. Shingel).

1 The work was done while at the University of Cambridge.

0021-9045/$ - see front matter c© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2010.04.006

http://www.elsevier.com/locate/jat
mailto:p.oswald@jacobs-university.de
mailto:tshingel@math.ucsd.edu
http://dx.doi.org/10.1016/j.jat.2010.04.006


1512 P. Oswald, T. Shingel / Journal of Approximation Theory 162 (2010) 1511–1517

In this note, we continue the study of the SU(N ) case, N ≥ 2, and improve upon the following
Jackson-type estimate proved in [6]: For any Lipα-continuous loop U : T → SU(N ) and α >
1/2 there exists a sequence of polynomial loops Un : T → SU(N ) of degree ≤n such that the
following asymptotic inequality holds

‖U −Un‖C := max
t∈T
‖U (t)−Un(t)‖ ≤ Cα,N ,U (n + 1)−α/(1+α), n ≥ 0. (1)

Even though the bound (1) is admittedly far from final, to our knowledge it represented the first
nontrivial upper estimate for the achievable rate of approximation for Lipα loops with values in
matrix Lie groups. Note that there is a large gap between the exponent α/(α + 1) established in
(1), and the trivial upper bound α for the maximal order of approximation of Lipα loops following
from the classical Jackson–Bernstein theorems for the univariate trigonometric approximation
[1, Theorem 7.3.3].

In the meantime, we realized that some simple modifications in the proof strategy of [6]
yield close-to-optimal rates, at least for α > 1. The major change is to use higher-order splitting

methods instead of the standard first-order approximation e
∑J

j=1 X j ≈ eX1 . . . eX J .

Theorem 1. Let N ≥ 2, α > 1, and ε > 0. For any U (t) ∈ Lipα(T → SU(N )), there exists a
sequence of SU(N )-valued polynomial loops Un(t) of degree ≤n such that

‖U −Un‖C ≤ Cα,ε,N ,U (n + 1)−(α−ε), n ≥ 0. (2)

The proof of this result is given below. The restriction α > 1 comes from the fact that we
currently miss error formulas for splitting methods of order k > 2 in terms of higher order
commutators. Another obstacle is the lack of formal proof for factorizations of SU(N )-valued
Lipα loops into exponentials of su(N )-valued Lipα loops if α ≤ 1/2. The latter problem can
be removed by using homotopy arguments as in [3] (the first author acknowledges inspiring
discussions with W. M. Lawton on this and related subjects of the present note). See also the
remarks at the end of the next section.

The major open question is whether (2) remains true also with ε = 0, or if the nonlinear
constraints lead to a slight deterioration of the approximation results compared to the
unconstrained case. Settling this question will probably require a different approach.

2. Proof of Theorem 1

We first recall the facts already proved in [6]. The notation we use is either self-explanatory
or can be found in [6] (we have opted to keep the notation very close to that of [6], to make the
comparison easy). The matrix norm of choice is the spectral norm. The Hölder–Zygmund classes
Lipα(T→ SU(N )) ⊂ C(T→ SU(N )) of loops are defined by the finiteness of the semi-norm

|U |Lipα :=


sup
h>0

h−α‖U (· + h)−U (·)‖C , 0 < α < 1,

sup
h>0

h−1
‖U (· + h)− 2U (·)+U (· − h)‖C , α = 1,

and, by recursion, for α > 1 we require that U (t) ∈ Ck(T→ SU(N )) and set

|U |Lipα := |U
(k)
|Lipα−k

,
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where k is the largest integer k < α. We further let

‖U‖Lipα := ‖U‖C + |U |Lipα .

Note that the Hölder–Zygmund classes of SU(N ) loops form groups, i.e., the Lipα property is
preserved under multiplication.

Factorization into essentially exponentials of su(2) loops. Lemma 4 of [6] states that for any
α > 1/2 and any U (t) ∈ Lipα(T → SU(N )), there exist constant matrices U0,l ∈ SU(N ) and
loops Al(t) ∈ Lipα(T→ su(2)) such that

U (t) =
L∏

l=1

U0,le Âl (t), t ∈ T, L := N (N − 1)/2, (3)

where Âl(t) = Ti j Al(t) denotes the canonical extension of Al(t) to an su(N ) loop by the map

A =

(
a11 a12
a21 a22

)
7−→ Ti j A =


Ii−1 0 0 0 0

0 a11 0 a21 0
0 0 I j−i+1 0 0
0 a21 0 a22 0
0 0 0 0 IN− j


for some index pair (i, j) with 1 ≤ i < j ≤ N (Ik denotes the k × k identity matrix). Moreover,
smoothness of the factors is controlled by smoothness of U (t):

‖Al‖Lipα ≤ Cα,N ,U‖U‖Lipα , l = 1, . . . , L . (4)

Approximation can be done factor-by-factor. If Pl(t) are polynomial loops in SU(2) of degree
≤n such that

‖eAl (t) − Pl(t)‖C ≤ ε, l = 1, . . . , L , (5)

for the Al(t) occurring in the factorization (3) then

P(t) =
L∏

l=1

U0,l P̂l(t), (P̂l(t) = Ti j Pl(t))

is a polynomial loop in SU(N ) of degree ≤Ln and it satisfies the estimate

‖U (t)− P(t)‖C ≤ Lε. (6)

Use Lemma 5 from [6].
Construction of Pl(t). For any m > 1, we can approximate Al(t) ∈ Lipα(T→ su(2)) by an

su(2)-valued polynomial loop

Rl,m(t) =
6∑

r=1

m∑
k=0

cr,k Br,k(t)

of degree ≤m at optimal rate (say, by applying the de la Vallée Poussin means componentwise).
Hence,

‖eAl (t) − eRl,m (t)‖C ≤ Cm−α, m > 0, (7)
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see Lemma 6 (a) in [6]. Here {Br,k(t)} is the designated basis (over R) for the linear space of
dimension 6m + 3 of all su(2)-valued polynomial loops of degree ≤m. To keep notation simple,
the dependence of the coefficients ck,r on l and m is not made explicit; moreover, for even r
summation should only start from k = 1, see [6].

Lemmas 1 and 4 in [6] establish the following facts which are relevant below:

‖cr,k Br,k(t)‖C = |cr,k | ≤ C(k + 1)−α, k = 0, . . . ,m, r = 1, . . . , 6, (8)

and if ordered properly (e.g., lexicographically), products of the form

6∏
r=1

m∏
k=0

eλ cr,k Br,k (t)

represent SU(2)-valued polynomial loops of degree ≤6m, independently of the choice of λ > 0
and the set of real coefficients {cr,k}. For our applications we take λ = 1/M , for some integer
M > 1.

With these preparations, we can write down the final formula for the approximation of eAl (t):

Pl(t) := (φ({cr,k Br,k(t)/M}r=1,...,6; k=0,...,m))
M , (9)

where φ({X j } j=1,...,J ) is a suitable splitting method for approximating eX1+···+X J , see the next
paragraph for details. The integers m and M will be fixed later. Note that the pointwise estimate

‖eAl (t) − Pl(t)‖ ≤ Cm−α + M‖eRl,m (t)/M
− φ({cr,k Br,k(t)/M}r=1,...,6; k=0,...,m)‖ (10)

follows from applying the triangle inequality to

eAl (t) − Pl(t) = (eAl (t) − eRl,m (t))+ ((eRl,m (t)/M )M
− Pl(t)),

then using (7) for the first term, and Lemma 5 in [6] for the second. Thus, the quality of
approximation crucially depends on the properties of the chosen splitting method φ.

Estimate for the second term in (10). Now we depart from [6], where the method φ of choice
was the first-order splitting method

φ1({X j } j=1,...,J ) := eX1eX2 . . . eX J .

The error estimate is stated in Lemma 6 (b) of [6], and leads to an overall estimate ≤C M−1

for the second term in the right-hand side of (10) if α > 1/2 (and to the suboptimal asymptotic
approximation rate of that paper). We now show that using higher order symmetric methods leads
to significant improvements. The standard second order symmetric method is given by

φ2({X j }k=1,...,J ) := eX1/2 . . . eX J−1/2eX J eX J−1/2 . . . eX1/2.

Following Yoshida (see [4]), splitting methods of order 2(s+ 1) can be constructed from a given
method of order 2s via the formula

φ2(s+1)({X j } j=1,...,J ) := φ2s({as X j } j=1,...,J )φ2s({bs X j } j=1,...,J )φ2s({as X j } j=1,...,J ),

if one chooses the constants as follows:

as = (2− 21/(2s+1))−1, bs = −21/(2s+1)(2− 21/(2s+1))−1.

The order condition for these φ2s can be stated as follows: For λ→ 0, we have

‖eλ(X1+···+X J ) − φ2s({λX j } j=1,...,J )‖ = O(λ2s+1).
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Using Taylor expansion and rough estimates, the order requirement translates into the error bound

‖eλ(X1+···+X J ) − φ2s({λX j } j=1,...,J )‖ ≤ Cλ2s+1

(
J∑

j=1

‖X j‖

)2s+1

, (11)

valid with a constant C depending on s but not on λ and {X j }. More precise error bounds are
available for φ2, see Remark 2 at the end.

We are now ready to apply this to the family {cr,k Br,k(t)}r=1,...,6; k=0,...,m (pointwise with
respect to t) with λ = M−1. By (8), if α > 1 we have

6∑
r=1

m∑
k=0

‖cr,k Br,k(t)‖ ≤ C, (12)

where C depends on the Lipα-norms of the su(2)-loops Al(t), but importantly it does not depend
on m. Substituting into (11), we obtain for each l = 1, . . . , L

‖eRl,m (t)/M
− φ2s({cr,k Br,k(t)/M}r=1,...,6; k=0,...,n)‖C ≤ C M−(2s+1). (13)

From now on, set φ = φ2s in the formula for Pl(t) (and consequently P(t)). Substituting into
(10) and taking into account (5), (6) we finally arrive at

‖U (t)− P(t)‖C ≤ L max
l
‖eAl (t) − Pl(t)‖ ≤ C(m−α + M−2s), (14)

where C depends on s, α, N , and on U (t).
Estimating the degree of P(t). Consider a large enough integer n ≥ n0 (for n < n0, just

use constant P(t) = I to get the complementing trivial bound ‖U (t) − I‖ ≤ 2). We will
now fix m and M such that the degree of the above constructed P(t) is ≤n and the right-hand
side in (14) is asymptotically as small as possible. Due to the recursive definition of φ2s , the
degree of the polynomial loops φ2s({cr,k Br,k(t)/M}) is bounded by 3s−1 times the degree of the
polynomial loops φ2({cr,k Br,k(t)/M}) generated by the second order method (for simplicity, we
do not indicate the index set r = 1, . . . , 6; k = 0, . . . ,m in the notation). The latter, however,
have degree ≤12m. This can be proved as in Lemma 1 of [6]. Indeed, we write

φ2({cr,k Br,k(t)/M}) = φ1({cr,k Br,k(t)/2M})φ1({cr,k Br,k(t)
∗/2M})∗.

We already know that the first factor φ1({cr,k Br,k(t)/2M}) has degree ≤6m. The second factor
is the Hermitian transpose of φ1({cr,k B∗r,k(t)/2M}), and it remains to check that {B∗r,k(t)} is such
a permutation of the original basis {Br,k(t)} to which Lemma 1 of [6] can be applied, leading to
the same degree bound.

Putting things together, we see that the degree of P(t) is bounded by 12L3s−1 Mm. Thus,
choosing the integers M , m according to

M = [(12L3s−1)−1nα/(α+2s)
], m = [n2s/(α+2s)

],

we guarantee that the degree of P(t) does not exceed n. On the other hand, substitution into (14)
yields

‖U (t)− P(t)‖C ≤ Cn−2sα/(α+2s)
= Cn−α+α

2/(α+2s).

This establishes the claim of our theorem, if, for given α > 1 and ε > 0, we choose the order 2s
of the splitting method large enough.
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Remark 1. There are at least three shortcomings of the asymptotic estimate (2). Firstly, the
constant C(α, ε, N ,U ) depends on U (t) in an unspecified way. Secondly, the restriction α > 1
is mainly due to the use of the crude error estimate (11) for higher order splitting methods (see
the comments in Remark 2). In addition, for α ≤ 1/2 the factorization technique of Lemma 4
from [6] breaks down (an alternative is addressed in Remark 3). Thirdly, it is not clear at the
moment if one can set ε = 0 in (2).

Remark 2. For low-order splitting methods such as φ1 and φ2, the error bound can be made
more precise in terms of commutator expressions which paves the way for proving (13) (and
thus also (14)) for some α ≤ 1. For φ1 this was demonstrated in [6] (see Lemma 6 for the more
precise error bounds). An improved error bound for the symmetric second order method φ2 has
been established in [9]:

‖eλ(X1+...+X J ) − φ2({λX j } j=1,...,J )‖ ≤ λ
3∆m(X1, . . . , X J ), (15)

where ∆m(X1, . . . , X J ) =
∑J−1

k=1 ∆2(Xk, Xk+1 + · · · + X J ), and

∆2(A, B) =
1

12

{
‖[[A, B], B]‖ +

1
2
‖[[A, B], A]‖

}
.

The advantage is that in our application, where we would apply (15) to matrix sets of the form
{ck Br,k}k=0,...,m related to the terms of the Fourier series of an su(2)-valued Lipα-loop, the
sum of the norms of the appearing triple commutators can be estimated by a sum of the form∑m

k=1(log k)2k−3α which remains uniformly bounded for α > 1/3 (the details are worked out
in [6] for the first-order case). In contrast, using (11) with s = 1 leads to a constant factor of
the form (

∑m
k=1 k−α)3. Unfortunately, we were not able to localize generalizations of (15) to

Yoshida-type or other higher-order splitting methods in the literature.

Remark 3. W. M. Lawton drew our attention to a possible alternative to loop factorizations
of the form (3) proposed in [6]. It is well known that SU(N ) is a simply connected compact
C∞-manifold. Thus, any SU(N )-valued continuous loop U (t) can be contracted to a point by
a homotopy map ψ : [0, 1] → C(T → SU(N )) (i.e., ψ is continuous, ψ(1) = U (t), and
(without loss of generality) ψ(0) = I ). Let us assume that for U (t) ∈ Lipα(T → SU(N )) the
homotopy map ψ can be found in such a way that φ(ξ) ∈ Lipα(T→ SU(N )) for all ξ ∈ [0, 1]
(i.e., preserves Lipschitz smoothness along the homotopy path). We do not have a reference for
this assumption but strongly believe that it holds for all α > 0.

Now, take a fine enough partition ξ0 = 0 < ξ1 < · · · < ξK−1 < ξK = 1 of [0, 1] such
that ‖ψ(ξk−1)− ψ(ξk)‖C ≤ rN , where rN is the injectivity radius of the exponential map in the
neighborhood of I ∈ SU(N ). Then we can write

U (t) = U1(t) . . .UK (t), Uk(t) := ψ(ξk−1)
∗ψ(ξk), k = 1, . . . , K ,

where all Uk(t) belong to Lipα(T→ SU(N )), and

‖I −Uk‖C ≤ ‖ψ(ξk−1)
∗
‖C‖ψ(ξk−1)− ψ(ξk)‖C = ‖ψ(ξk−1)− ψ(ξk)‖C ≤ rN ,

i.e., Ak(t) = log(Uk(t)) is well defined and belongs to Lipα(T→ su(N )) for all k = 1, . . . , K .
Thus,

U (t) =
K∏

k=1

eAk (t), ‖Ak‖Lipα ≤ C(α, N ,U ), k = 1, . . . , K . (16)
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In contrast to (3), the number of exponential factors K is not independent of α and U , and the
Ak(t) are general SU(N )-valued Lipα-loops (and not essentially SU(2)-valued as in (3)).

However, as long as we accept the dependence on U (t) in the constant appearing in (2), the
factorization (16) is sufficient to carry out the above proof with minor changes. The reduction to
the SU(2) case can be circumvented by working with a similar basis {Br,k(t)}r=1,...,RN , k=0,...,m
over R for SU(N )-valued polynomial loops of degree ≤m. What changes is the number RN of
subsets {Br,k(t)}k=0,...,m of basis elements to be considered. This number depends only on N ,
and enters the degree estimates as a linear factor.

Remark 4. The loop approximation can be pursued for other Lie groups and manifolds. See [8]
for the work on the closely related case of SO(N )-valued loops (N ≥ 3).
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