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Abstract

We consider the problems of L p-approximation of d-variate analytic functions defined on the cube with
directional derivatives of all orders bounded by 1. For 1 ≤ p < ∞, it is shown that the Smolyak algorithm
based on polynomial interpolation at the extrema of the Chebyshev polynomials leads to weak tractability
of these problems. This gives an affirmative answer to one of the open problems raised recently by Hinrichs
et al. (2014). Our proof uses the polynomial exactness of the algorithm and an explicit bound on the operator
norm of the algorithm.
c⃝ 2014 Elsevier Inc. All rights reserved.

MSC: 41A63; 65Y20; 68Q25

Keywords: Weak tractability; Smolyak algorithm; Infinitely differentiable function class; Standard information

1. Introduction

Multivariate computational problems are defined on classes of functions depending on d vari-
ables with large or even huge d. Multivariate problems occur in many applications such as in
computational finance, statistics and physics. Such problems are usually solved by algorithms
that use finitely many information operations. One information operation is defined as one
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function value or the evaluation of one linear functional. The minimal number of information
operations needed to find the solution to within ε is the intrinsic difficulty of the problem. It is
called the information complexity and is denoted by n(ε, d) to stress its dependence on the two
important parameters.

Research on tractability of multivariate continuous problems started in 1994 (see [19]). The
purpose of tractability is to study the complexity with respect to ε−1 and d. Tractability of mul-
tivariate problems has been studied for different error criteria and in different settings including
the worst, randomized and average case settings. Different kinds of tractability have been consid-
ered in the literature. In fact, tractability of multivariate problems has been recently a very active
research area: see [10,12,13] and the references therein. Traditionally, a problem is intractable
if the information complexity is an exponential function of ε−1 or d. Otherwise, the problem is
tractable.

In this paper, we study the approximation problem of the following class of infinitely differen-
tiable functions that was introduced recently in [5] (we replace [0, 1] by [−1, 1] for simplicity):

Fd =


f : [−1, 1]

d
→ R| sup

k∈N0

sup
θ∈Sd−1

∥Dk
θ f ∥∞ ≤ 1


, (1.1)

where Sd−1 denotes the unit sphere of Rd , and Dθ f denotes the directional derivative of f in
the direction of θ ∈ Sd−1. The background of the problem for the class Fd is as follows. The
approximation problems for the larger classes

Fd,p =


f : [0, 1]

d
→ R| ∥Dα f ∥p ≤ 1 for all α ∈ Nd

0


, 1 ≤ p ≤ ∞

were previously studied by several authors (see, for instance, [6,10–13,18]). It was shown in [11,
18] that approximating the class Fd,p in the L p-norm suffers from the curse of dimensionality.
However, it remains open whether the integration problems for Fd,p suffer from the curse of
dimensionality. A recent progress on this last problem was made by Hinrichs, Novak, Ullrich
and Woźniakowski [5], who introduced a smaller class Fd and proved the weak tractability of
the integration problem for Fd . However, the algorithm of [5] uses finite differences to approx-
imate high order derivatives that are numerically unstable. As a matter of fact, Hinrichs, Novak
and Ullrich [4] considered a more practical algorithm, the Clenshaw–Curtis Smolyak algorithm,
and proved that the weak tractability of the integration problem for the class Fd can be achieved
by this algorithm. Meanwhile, it was also asked in the paper [4] whether the L p-approximation
problems for the class Fd are weakly tractable and whether the weak tractability follows from
properties of the Smolyak algorithm. In this paper, we give an affirmative answer to this ques-
tion, proving that the Smolyak algorithm based on polynomial interpolation at the extrema of the
Chebyshev polynomials leads to the weak tractability of L p-approximation of the class Fd for
all 1 ≤ p < ∞.

The paper is organized as follows. Section 2 contains some basic concepts and lemmas that
will be needed in the proof of our main result, which is given in Section 3. Two extra remarks
are also given in Section 3.

2. Basic concepts and lemmas

We introduce the concept of weak tractability first. We will use terminology from [10,12,13].
Assume we are given a sequence of solution operators

Sd : Fd → Gd for all d ∈ N.
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Here, Fd is a subset of some normed space Hd , and Gd is a normed space. We approximate Sd f
for f ∈ Fd by algorithms

An,d( f ) = φn,d(L1( f ), . . . , Ln( f )),

where L j ∈ H∗

d (here H∗

d denotes the dual space of normed space Hd ) and φn,d : Rn
→ Gd is

an arbitrary mapping. The error of the algorithm An,d is defined as

e(An,d) = sup
f ∈Fd

∥Sd( f ) − An,d( f )∥Gd .

For ε ∈ (0, 1) and d ∈ N, let n(ε, Fd) be the information complexity which is defined as the
minimal number of function values which are necessary to obtain an ε-approximation of Sd in
the worst case setting for the absolute or normalized error criterion (see [10, p. 106]), i.e.,

n(ε, Fd) = min{n ∈ N|∃An,d such that e(An,d) ≤ εC RId}, (2.1)

where

C RId = 1 for the absolute error criterion,

C RId = sup
f ∈Fd

∥Sd( f )∥Gd for the normalized error criterion.

By the curse of dimensionality we mean that n(ε, Fd) is exponentially large in d. That is, there
are positive numbers c, ε and γ such that

n(ε, Fd) ≥ c(1 + γ )d for all ε ≤ ε0 and infinitely many d ∈ N.

For many natural classes Fd the bound above will hold for all d ∈ N. There are many classes Fd
for which the curse of dimensionality has been proved, see [10,12,13] for such examples.

On the contrary, we say that S = {Sd} is weakly tractable if

lim
ε−1+d→∞

ln n(ε, Fd)

ε−1 + d
= 0. (2.2)

There are also many classes Fd for which the weak tractability has been proved, see [10,12,13]
for such examples.

Now we give the definition of the Smolyak interpolation algorithm that was introduced in [1].
Assume that we want to approximate smooth functions f : [−1, 1]

d
→ R, using finitely many

function values. For d = 1, let U i denote the Lagrange interpolation based on the extrema of the
(mi − 1)th Chebyshev polynomial. In this case, these knots are given by

x i
j = − cos

π j

mi − 1
, j = 0, . . . , mi − 1. (2.3)

In addition, we define x i
1 = 0 if mi = 1.

Denote by Vn(x) the nth Chebyshev polynomial of the second kind; that is,

Vn(x) =
sin(n + 1)θ

sin θ
, x = cos θ.
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Clearly, for mi > 1, {x i
j }

mi −1
j=0 is a sequence of the zeros of the polynomial


1 − x2


Vmi −2(x).

Hence, it follows from [14] that

U i ( f, x) =

mi −1
k=0

f (x i
k)ak(x), (2.4)

where

ak(x) =
(−1)k+1


1 − x2


Vmi −2(x)

(mi − 1)(x − x i
k)

, k = 1, . . . , mi − 2, (2.5)

a0(x) =
(1 + x)Vmi −2(x)

2Vmi −2(1)
, ami −1(x) =

(1 − x)Vmi −2(x)

2Vmi −2(−1)
. (2.6)

Specially, we will choose

m1 = 1 and mi = 2i−1
+ 1 for i > 1. (2.7)

For d > 1 we first define tensor product formulas

(U i1 ⊗ · · · ⊗ U id )( f ) =

mi1−1
j1=0

· · ·

mid −1
jd=0

f (x i1
j1
, . . . , x id

jd
) · (ai1

j1
⊗ · · · ⊗ aid

jd
).

With U 0
= 0, we define

∆i
= U i

− U i−1

for i ∈ N. Moreover, we put |i| = i1 + · · · + id for i ∈ Nd . Then the Smolyak algorithm is given
by

A(q, d) =


|i|≤q

(∆i1 ⊗ · · · ⊗ ∆id ) (2.8)

for integers q ≥ d . Equivalently,

A(q, d) =


q−d+1≤|i|≤q

(−1)q−|i|
·


d − 1
q − |i|


(U i1 ⊗ · · · ⊗ U id ), (2.9)

(see [17, Lemma 1], [2, Theorem 1]). To compute A(q, d)( f ), from [1] we know that one only
needs to know function values at the point set

H(q, d) =


q−d+1≤|i|≤q


X i1 × · · · × X id


=


|i|=q


X i1 × · · · × X id


,

where X i
= {x i

0, . . . , x i
mi −1} ⊂ [−1, 1] denotes the set of points used by U i . The points

x ∈ H(q, d) are called hyperbolic cross and H(q, d) is also called a sparse grid.
In what follows we will bound the number of function values that are sufficient for the

Smolyak algorithm to achieve a certain error. For this we define

Nd(k) := |H(d + k, d)|
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as the number of points used by A(d + k, d). We use ≈ to denote the strong equivalence of
sequences, i.e., un ≈ vn iff limn→∞ un/vn = 1. Then, for k → ∞ and fixed d,

Nd(k) ≈
2kkd−1

(d − 1)! · 2d−1 , (2.10)

see Müller–Gronbach [7, Lemma 1]. At the same time, for d → ∞ and fixed k, from [9] we
know

Nd(k) ≈
2kdk

k!
. (2.11)

Besides, by Lemma 9 in [4], we have

Nd(k) ≤ 2(2e)k


1 +
d

k

k

. (2.12)

We will use the polynomial exactness of the above Smolyak interpolation algorithm. The
following lemma can be found in [1, Theorem 4].

Lemma 2.1. The formula A(d + k, d) is exact for all polynomials of degree k.

Let L p denote the usual Lebesgue L p-space defined with respect to the Lebesgue measure on
the cube [−1, 1]

d , with norm denoted by ∥ · ∥p. Let C denote the space of continuous functions
on the cube [−1, 1]

d with norm denoted by ∥ · ∥∞. The proof of our result requires some norm
estimates of the algorithm A(q, d) : C → L p; that is, we need to estimate the norm

∥A(q, d)∥p := sup
f ∈C,∥ f ∥∞≤1

∥A(q, d)( f )∥p, 1 ≤ p < ∞.

Let us first consider the case of d = 1. For mi = n + 1 with n ∈ N, we shall prove the following
result.

Lemma 2.2. Let U i be defined by (2.4). Then for any fixed 1 ≤ p < ∞, there exists a positive
C p such that

∥U i
∥p ≤ C p. (2.13)

Specially, setting f = 1, we have ∥ f ∥∞ = 1 and ∥U i f ∥p = ∥ f ∥p = 21/p > 1. This implies
that C p > 1.

Note. We would like to add that the expression (2.13) is inspired by Theorem 1 in P. Nevai [8],
which is for the Lagrange interpolation based on the zeros of orthogonal polynomials. But our
proof is completely different.

The proof of (2.13) relies on several lemmas. Firstly, we need the following lemma from [14].

Lemma 2.3 ([14]). Let v1, v2, . . . , v2N be distinct integers between 1 and n − 1. Then we have
 1

−1
av1(x)av2(x) · · · av2N (x)

dx
√

1 − x2

 =
Γ (N + 1/2)Γ (1/2)

n2N Γ (N + 1)
, (2.14)

and

n−1
k=1

a2
k (x) ≤ 2. (2.15)
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Next, we give two formulas about homogeneous symmetrical expression. Let x1, . . . , xn be
independent variables, and let P1, . . . , Pr , s be natural numbers. Denote

P =

r
k=1

Pk, Vs =

 n
k=1

x s
k

1/s

.

In the following we denote ki ≠ k j for all 1 ≤ i ≠ j ≤ r by k1 ≠ · · · ≠ kr .

Lemma 2.4. If n > r , then the homogeneous symmetrical expression of degree P,

IP1,...,Pr =


k1≠···≠kr

x P1
k1

· · · x Pr
kr

,

can be expressed as a homogeneous expression of degree P about V1, . . . , VP ,

IP1,...,Pr =


P

i=1
ti =P,ti ≥0

Ct1···tP V t1
1 · · · V tP

P , (2.16)

and
(1) t1 ≤ r, Ct1···tP is independent of n.
(2) If Pr ≥ 2, then t1 ≤ r − 1.

Proof. We will prove (2.16) by induction on r . For r = 1, P = P1, we have

IP1 =

n
k1=1

x P1
k1

= V P1
P1

= V P
P ,

and (1), (2) are obviously true. Assume that for r = M , (2.16), (1) and (2) are true. Then for
r = M + 1, setting P =

M
i=1 Pi , we have

IP1,...,PM ,PM+1 =


k1≠···≠kM

x P1
k1

· · · x PM
kM

 n
i=1

x PM+1
i −

M
j=1

x PM+1
k j



=


k1≠···≠kM

x P1
k1

· · · x PM
kM


V PM+1

PM+1
−

M
j=1

x PM+1
k j



= V PM+1
PM+1


k1≠···≠kM

x P1
k1

· · · x PM
kM

−

M
j=1


k1≠···≠kM

x P1
k1

· · · x
Pj +PM+1
k j

· · · x PM
kM

= V PM+1
PM+1

IP1,...,PM −

M
j=1

IP1,...,Pj +PM+1,...,PM . (2.17)

From the inductive hypothesis we know that IP1,...,PM can be represented as a homogeneous

expression of degree P about V1, . . . , VP and hence V PM+1
PM+1

IP1,...,PM can be represented as a
homogeneous expression of degree P about V1, . . . , VP . At the same time, IP1,...,Pj +PM+1,...,PM

can be represented as a homogeneous expression of degree P about V1, . . . , VP for 1 ≤ j ≤

M . Furthermore, by the inductive hypothesis, we see that the coefficients in the expressions
V PM+1

PM+1
IP1,...,PM and IP1,...,Pj +PM+1,...,PM are independent of n. Hence (1) follows from (2.17).

Finally, by the inductive hypothesis and (2.17), we know that if PM+1 = 1, then t1 ≤ M +1 = r ,
whereas if PM+1 > 1, then t1 ≤ M = r − 1. This completes the proof. �
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Lemma 2.5. If N is a natural number, and n > 2N, then the homogeneous symmetrical expres-
sion of degree 2N,

B2N =


n

i=1

xi

2N

− (2N )!


k1<k2<···<k2N

xk1 · · · xk2N ,

can be represented as a homogeneous expression of degree 2N about V1, . . . , V2N ,

B2N =


t1≤2N−2,ti ≥0

Bt1···t2N V t1
1 · · · V t2N

2N . (2.18)

Proof. A straightforward computation on the number of combinations shows that n
i=1

xi

2N

=


xk1 · · · xk2N =


P1+···+Pr =2N

(2N )!

P1! · · · Pr !


k1<k2···<kr

x P1
k1

· · · x Pr
kr

. (2.19)

Let ∆(r) denote the set of all arrangements of {1, 2, . . . , r}. Assume that P1, . . . , Pr are some
given integers that are not necessarily distinct. Define the following equivalent relation on ∆(r):

(i1, . . . , ir ) ∼ ( j1, . . . , jr ) ⇐⇒ (Pi1 , . . . , Pir ) = (Pj1 , . . . , Pjr ).

A simple calculation of the number of combinations shows that each equivalent class in ∆(r)/ ∼

contains the same number of elements, which we denote by CP1,...,Pr . Then we have
P1+···+Pr =2N

(2N )!

P1! · · · Pr !


k1<k2···<kr

x P1
k1

· · · x Pr
kr

=


P1≤···≤Pr

(2N )!

P1! · · · Pr !


i∈∆(r)/∼


k1<k2···<kr

x
Pi1
k1

· · · x
Pir
kr

=


P1≤···≤Pr

(2N )!

P1! · · · Pr !CP1,...,Pr


i∈∆(r)


k1<k2···<kr

x
Pi1
k1

· · · x
Pir
kr

=


P1≤···≤Pr

(2N )!

P1! · · · Pr !CP1,...,Pr


k1<k2···<kr


i∈∆(r)

x
Pi1
k1

· · · x
Pir
kr

. (2.20)

For an arbitrary {P1, P2, . . . , Pr } and fixed {k1 < k2 < · · · < kr }, it is easy to verify that
i∈∆

x
Pi1
k1

· · · x
Pir
kr

=


i∈∆

x P1
ki1

· · · x Pr
kir

.

Hence, by the symmetry it follows that
k1<k2···<kr


i∈∆

x
Pi1
k1

· · · x
Pir
kr

=


k1≠k2···≠kr

x P1
k1

· · · x Pr
kr

= IP1···Pr . (2.21)

Then combining (2.19), (2.20) with (2.21) gives

B2N =


P1≤···≤Pr

(2N )!

P1! · · · Pr !

IP1···Pr

CP1,...,Pr

− I1,...,1

=


P1≤···≤Pr ,Pr ≥2

(2N )!

P1! · · · Pr !

IP1···Pr

CP1,...,Pr

. (2.22)
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For each term IP1···Pr in the summation in (2.22), (2.16) and Statement (1) of Lemma 2.4 hold.
From

r
i=1 Pi = 2N and Pr ≥ 2 we know that r ≤ 2N − 1. Furthermore, by (2) in Lemma 2.4

and the fact that Pr ≥ 2, we know that t1 ≤ r −1 ≤ 2N −2. This together with (2.22) completes
the proof of (2.18). �

Lemma 2.6. Let ak(x) be defined by (2.5). Then for any fixed natural number N, there exists
C2N such that 1

−1

n−1
k=1

Akak(x)


2N

dx
√

1 − x2
≤ C2N


max

1≤k≤n−1
|Ak |

2N
. (2.23)

Proof. We will prove (2.23) by induction on N . For N = 1, by (2.14) and (2.15), we obtain 1

−1

n−1
k=1

Akak(x)


2

dx
√

1 − x2

=

n−1
k=1

A2
k

 1

−1
a2

k (x)
dx

√
1 − x2

+ 2
n−1
k=1

k−1
j=1

Ak A j

 1

−1
ak(x)a j (x)

dx
√

1 − x2

≤ max
1≤k≤n−1

|Ak |
2

 1

−1

n−1
k=1

a2
k (x)

dx
√

1 − x2
+ 2

n−1
k=1

k−1
j=1


 1

−1
ak(x)a j (x)

dx
√

1 − x2




≤


2π + (n − 1)(n − 2)

Γ (3/2)Γ (1/2)

n2Γ (2)


max

1≤k≤n−1
|Ak |

2
≤

5π

2
max

1≤k≤n−1
|Ak |

2. (2.24)

From (2.24) and Hölder’s inequality, we obtain

 1

−1

n−1
k=1

Akak(x)

 dx
√

1 − x2
≤

 1

−1

n−1
k=1

Akak(x)


2

dx
√

1 − x2

1/2

·

 1

−1

dx
√

1 − x2

1/2

≤

√
10π

2
max

1≤k≤n−1
|Ak |.

Suppose that for 0 < j ≤ 2(N − 1), we have

 1

−1

n−1
k=1

Akak(x)


j

dx
√

1 − x2
≤ C j max

1≤k≤n−1
|Ak |

j . (2.25)

We will consider the case for 2N . If n − 1 ≤ 2N , then (2.15) gives that |ak(x)| ≤ 2 and hence

 1

−1

n−1
k=1

Akak(x)


2N

dx
√

1 − x2
≤ π(4N )2N max

1≤k≤n−1
|Ak |

2N . (2.26)

If n − 1 > 2N , then by Lemma 2.5 we known−1
k=1

Akak(x)


2N

= (2N )!


k1<k2<···<k2N

Ak1 · · · Ak2N ak1(x) · · · ak2N (x)



G. Xu / Journal of Approximation Theory ( ) – 9

+


t1≤2N−2,ti ≥0

Bt1···t2N V t1
1 (x) · · · V t2N

2N (x)

= I1(x) + I2(x), (2.27)

where

Vs(x) =


n−1
k=1

As
kas

k(x)

1/s

.

From (2.14) it follows that
 1

−1
I1(x)

dx
√

1 − x2

 ≤ (2N )!


k1<···<k2N

Ak1 · · · Ak2N

 
 1

−1
ak1(x) · · · ak2N (x)

dx
√

1 − x2


≤

(n − 1)!

(n − 1 − 2N )!

Γ (N + 1/2)Γ (1/2)

n2N Γ (N + 1)
max

1≤k≤n−1
|Ak |

2N

≤
Γ (N + 1/2)Γ (1/2)

Γ (N + 1)
max

1≤k≤n−1
|Ak |

2N . (2.28)

Using the inequality (|a| + |b|)c
≤ |a|

c
+ |b|

c for 0 ≤ c ≤ 1, and (2.15), we obtain that for
s ≥ 2,

|Vs(x)| ≤ max
1≤k≤n−1

|Ak |


n−1
k=1

|ak(x)|s

1/s

= max
1≤k≤n−1

|Ak |

n−1
k=1

a2
k (x)

s/2
2/s

1/2

≤
√

2 max
1≤k≤n−1

|Ak |. (2.29)

Denote C0 = π and let C j be as in (2.25) for 1 ≤ j ≤ 2(N − 1). By virtue of (2.27) and (2.29),
we have

 1

−1
I2(x)

dx
√

1 − x2

 ≤


t1≤2N−2,ti ≥0

Bt1···t2N

  1

−1

V t1
1 (x) · · · V t2N

2N (x)

 dx
√

1 − x2

≤


t1≤2N−2,ti ≥0

2N
Bt1···t2N

 max
1≤k≤n−1

|Ak |
2N−t1

×

 1

−1

V t1
1 (x)

 dx
√

1 − x2

≤


t1≤2N−2,ti ≥0

2N
Bt1···t2N

Ct1 max
1≤k≤n−1

|Ak |
2N

≤

2N−2
j=0

C j


t1≤2N−2,ti ≥0

2N
Bt1···t2N

 max
1≤k≤n−1

|Ak |
2N . (2.30)
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From (2.26), (2.27), (2.28) and (2.30), it follows that 1

−1

n−1
k=1

Akak(x)


2N

dx
√

1 − x2
≤ C2N max

1≤k≤n−1
|Ak |

2N , (2.31)

which competes the proof of Lemma 2.6. �

Remark. In the case of N = 1 or 2, (2.23) can be proved by the method of A.K. Varma, P.
Vértesi [14]. Here we give an inductive proof of (2.23) for all N for the sake of completeness.

For an arbitrary p ≥ 1, let N be the smallest positive integer satisfying p ≤ 2N . Then by the
Hölder inequality and (2.23) we obtain 1

−1

n−1
k=1

Akak(x)


p

dx ≤

 1

−1

n−1
k=1

Akϕk(x)


2N

dx

p/(2N )  1

−1
1dx

1−p/(2N )

≤

 1

−1

n−1
k=1

Akϕk(x)


2N

dx
√

1 − x2

p/(2N )

21−p/(2N )

≤ C p
p ( max

1≤k≤n−1
|Ak |)

p. (2.32)

Now we turn to the proof of Lemma 2.2.

Proof. From (2.4) it follows that for f ∈ C[−1, 1], we have

∥U i f ∥p ≤ | f (x i
0)| ∥a0∥p +

mi −2
k=1

f (x i
k)ak


p

+ | f (x i
mi −1)|

ami −1


p . (2.33)

From (2.6) and ∥Vmi −2∥∞ = |Vmi −2(±1)| = mi − 1 we conclude that

| f (x i
0)| ∥a0∥p ≤ 2∥ f ∥∞, and | f (x i

mi −1)|
ami −1


p ≤ 2∥ f ∥∞. (2.34)

From (2.32) it follows thatmi −2
k=1

f (x i
k)ak


p

≤ C p max
1≤k≤mi −2

| f (x i
k)| ≤ C p∥ f ∥∞. (2.35)

From (2.33)–(2.35) we obtain (2.13). This completes the proof of Lemma 2.2. �

The following lemma gives an estimate of the operator norm of A(q, d) from C to L p for
1 ≤ p < ∞.

Lemma 2.7. Let A(q, d) be defined by (2.8). Then for any fixed 1 ≤ p < ∞, there exists a
positive C p = 2C p such that

∥A(d + k, d)∥p ≤ (2C p)
d


d + k
d


≤ (2C p)

dek


1 +
d

k

k
. (2.36)

Proof. The second inequality can be found in [4, Proposition 7]. We will prove the first inequality
only. From (2.13) we obtain that for i ∈ N,

∥∆i
∥p ≤ ∥U i

∥p + ∥U i−1
∥p ≤ 2C p. (2.37)
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By (2.37) and a simple inductive reasoning on d we obtain that for an arbitrary i = (i1, . . . , id) ∈

Nd ,

∥∆i1 ⊗ · · · ⊗ ∆id ∥p ≤ (2C p)
d . (2.38)

It is well known that for j ≥ d , we have

|{i : |i| = j}| =


j − 1
d − 1


. (2.39)

By (2.8), (2.38) and (2.39) we obtain

∥A(d + k, d)∥p ≤ (2C p)
d


d≤|i|≤k+d

1

= (2C p)
d


d≤ j≤k+d


j − 1
d − 1



= (2C p)
d

k
l=0


d − 1 + l

d − 1


= (2C p)

d


d + k
d


, (2.40)

and (2.31) implies the first inequality in (2.36). �

3. The main result and its proof

In this section we assume that Fd is defined by (1.1) and consider the L p-approximation
problem

Sd : Sd f = f for all f ∈ Fd .

Denote ln+ d = 1 for d = 1 and ln+ d = ln d for d > 1. For k ∈ N0, we denote

ep(k, d) := e(A(k + d, d)) = sup
f ∈Fd

∥A(k + d, d)( f ) − f ∥p. (3.1)

Given x ∈ R, we denote by ⌈x⌉ the smallest integer not less than x .

Theorem 3.1. Let Fd be defined by (1.1) and 1 ≤ p < ∞. Then there exists a αp > 0 such that
for each d ∈ N, ε ∈ (0, 1], and for

kε,d,p =


max


αpd

ln+ d
, ln ε−1


, (3.2)

we have that

ep(kε,d,p, d) ≤ ε. (3.3)

Furthermore, the number of function values Nd(kε,d,p) required in the algorithm A(kε,d,p+d, d)

satisfies

Nd(kε,d,p) ≤ 2 max

(2e)
2αpd
ln+ d


1 +

ln+ d

2αp

 2αpd
ln+ d

, (2e)2 ln ε−1


1 +

ln ε−1

α2
p

2 ln ε−1 .

(3.4)
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This, in particular, implies that under the absolute and normalized error criteria, the weak
tractability of the L p-approximation problems for the class Fd holds for all 1 ≤ p < ∞.

Proof. Let Pk be the space of polynomials of degree k. Following the proof of [4, Proposition 8],
we obtain that for f ∈ Fd and k ∈ N,

inf
p∈Pk

∥ f − p∥∞ ≤ inf
p∈Pk−1

∥ f − p∥∞ ≤
dk/2

k!
≤


1

2πk


e
√

d

k

k

. (3.5)

Using Lemma 2.1, (2.36) and C p > 1, we have

ep(k, d) ≤ sup
f ∈Fd

inf
p∈Pk

∥ f − p∥∞(1 + ∥A(k + d, d)∥p)

≤


1

2πk


e
√

d

k

k 
1 + (2C p)

dek


1 +
d

k

k


≤ (2C p)
d


e2

√
d

k


1 +

d

k

k

=


(2C p)

d/k e2
√

d

k


1 +

d

k

k

. (3.6)

Let k = ⌈
αd

ln+ d ⌉, α ≥ 4 ln(2C p). Then it is easy to verify that for d ≥ 2,

(2C p)
d/k

≤ (2C p)
ln d/α

= d ln(2C p)/α.

Hence

(2C p)
d/k e2

√
d

k


1 +

d

k


≤

e2 ln d

αd1/2−ln(2C p)/α


1 +

ln d

α


≤

e2 ln d

αd1/4


1 +

ln d

α


. (3.7)

Since

lim
d→∞

e2 ln d

4 ln(2C p)d1/4


1 +

ln d

4 ln(2C p)


= 0,

we conclude from (3.7) that there exists M ∈ N such that for d > M ,

(2C p)
d/k e2

√
d

k


1 +

d

k


≤

1
e
. (3.8)

From

lim
α→∞

(2C p)

d
αd

ln+ d


e2

√
d

αd
ln+ d


1 +

d
αd

ln+ d


 = 0 for d = 1, . . . , M

we know that there exists an αp ≥ 4 ln(2C p) such that for d = 1, . . . , M , (3.8) holds as well.
This shows that with

kε,d,p :=


max


αpd

ln+ d
, ln ε−1


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we have ep(kε,d,p, d) ≤ ε, which shows the first part of Theorem 3.1. If

αpd

ln+ d
≥ ln ε−1,

then from αp ≥ 4 ln 2 > 1 we obtain

kε,d,p =


αpd

ln+ d


≤

2αpd

ln+ d
. (3.9)

From (2.12) and (3.9) it follows that

Nd(kε,d,p) ≤ 2(2e)
2αpd
ln+ d


1 +

ln+ d

2αp

 2αpd
ln+ d

. (3.10)

If
αpd

ln+ d
≤ ln ε−1,

then

kε,d,p = ⌈ln ε−1
⌉ ≤ 2 ln ε−1. (3.11)

Using

sup
x≥1

ln2 x

x
=

4

e2 < 1,

we deduce

d

kε,d,p
≤

d

ln ε−1 ≤
ln+ d

αp
≤

ln ε−1

α2
p

. (3.12)

From (2.12), (3.11) and (3.12) it follows that

Nd(kε,d,p) ≤ 2(2e)2 ln ε−1


1 +

ln ε−1

α2
p

2 ln ε−1

. (3.13)

From (3.10) and (3.13) we obtain (3.4). By (3.4), it is easily seen that (2.2) holds, and hence, the
L p-approximation problems for Fd are weakly tractable for all 1 ≤ p < ∞ under the absolute
error criterion. Furthermore, for the normalized error criterion, we have

C RId = sup
f ∈Fd

∥ f ∥p = 2d/p > 1.

Thus, (2.1) implies the weak tractability for the normalized error criterion. This completes the
proof of Theorem 3.1. �

Remark 3.2. Theorem 3.1 shows that the L p-approximation problems for the class Fd given
in (1.1) are weakly tractable for all 1 ≤ p < ∞, and the weak tractability follows from the
properties of the Smolyak algorithm. At the moment, however, we do not know whether or
not the approximation problem in L∞-norm is weakly tractable. It is worthwhile to point out
that very recently Vybı́ral [15] found some new analytic function classes which are even quasi-
polynomially tractable, (see [3] for this stronger notion of tractability).
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Remark 3.3. In 2000, the authors of [1] considered the following function classes,

Fk
d = { f : [−1, 1]

d
→ R|Dα f continuous and ∥Dα f ∥∞ ≤ 1 if αi ≤ k for all i},

and proved that (see [1, Theorem 8])

sup
f ∈Fk

d

∥ f − A(q, d)( f )∥∞ ≤ Cd,k(Nd(q − d))−k(ln Nd(q − d))(k+2)(d−1)+1, (3.14)

where Cd,k is a positive constant depending only on d and k. We point out here that in the case
of 1 ≤ p < ∞, we can obtain an estimate better than (3.14):

sup
f ∈Fk

d

∥ f − A(q, d)( f )∥p ≤ Cd,k,p(Nd(q − d))−k(ln Nd(q − d))(k+1)(d−1). (3.15)

In fact, using (2.13) and the fact that

U i ( f, x) = f (x)

for all polynomials f of degree at most mi − 1, we obtain

∥ f − U i ( f )∥p ≤ Emi −1( f ) · (1 + C p). (3.16)

Here En( f ) is the error of the L∞-best approximation by polynomials with degree at most n.
From the well known Jackson estimate we know that for f ∈ Fk

1 , we have

En( f ) ≤ C1,k · n−k . (3.17)

By (3.16) and (3.17) we obtain

sup
f ∈Fk

1

∥ f − U i f ∥p ≤ C1,k,pm−k
i . (3.18)

Using (3.18) and the proof of [16, Lemma 2] as well as (2.10) we obtain (3.15), as claimed.
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