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Abstract

We consider the problems of L?-approximation of d-variate analytic functions defined on the cube with
directional derivatives of all orders bounded by 1. For 1 < p < oo, it is shown that the Smolyak algorithm
based on polynomial interpolation at the extrema of the Chebyshev polynomials leads to weak tractability
of these problems. This gives an affirmative answer to one of the open problems raised recently by Hinrichs
et al. (2014). Our proof uses the polynomial exactness of the algorithm and an explicit bound on the operator
norm of the algorithm.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Multivariate computational problems are defined on classes of functions depending on d vari-
ables with large or even huge d. Multivariate problems occur in many applications such as in
computational finance, statistics and physics. Such problems are usually solved by algorithms
that use finitely many information operations. One information operation is defined as one
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function value or the evaluation of one linear functional. The minimal number of information
operations needed to find the solution to within ¢ is the intrinsic difficulty of the problem. It is
called the information complexity and is denoted by n(e, d) to stress its dependence on the two
important parameters.

Research on tractability of multivariate continuous problems started in 1994 (see [19]). The
purpose of tractability is to study the complexity with respect to e~ and d. Tractability of mul-
tivariate problems has been studied for different error criteria and in different settings including
the worst, randomized and average case settings. Different kinds of tractability have been consid-
ered in the literature. In fact, tractability of multivariate problems has been recently a very active
research area: see [10,12,13] and the references therein. Traditionally, a problem is intractable
if the information complexity is an exponential function of ! or d. Otherwise, the problem is
tractable.

In this paper, we study the approximation problem of the following class of infinitely differen-
tiable functions that was introduced recently in [5] (we replace [0, 1] by [—1, 1] for simplicity):

Fa={r:1=1.11" > Rl sup sup 1Dffllow <1}, (1.1
keNp gesd-1

where S?~! denotes the unit sphere of R?, and Dy f denotes the directional derivative of f in
the direction of # € S¢~!. The background of the problem for the class F is as follows. The
approximation problems for the larger classes

Fa,p= {f:[O, l]d—>R| DY fll, < lforallaeNg}, l<p<oo

were previously studied by several authors (see, for instance, [6,10—13,18]). It was shown in [11,
18] that approximating the class Fy , in the L -norm suffers from the curse of dimensionality.
However, it remains open whether the integration problems for Fy , suffer from the curse of
dimensionality. A recent progress on this last problem was made by Hinrichs, Novak, Ullrich
and WozZniakowski [5], who introduced a smaller class F; and proved the weak tractability of
the integration problem for F;. However, the algorithm of [S5] uses finite differences to approx-
imate high order derivatives that are numerically unstable. As a matter of fact, Hinrichs, Novak
and Ullrich [4] considered a more practical algorithm, the Clenshaw—Curtis Smolyak algorithm,
and proved that the weak tractability of the integration problem for the class F; can be achieved
by this algorithm. Meanwhile, it was also asked in the paper [4] whether the L”-approximation
problems for the class F; are weakly tractable and whether the weak tractability follows from
properties of the Smolyak algorithm. In this paper, we give an affirmative answer to this ques-
tion, proving that the Smolyak algorithm based on polynomial interpolation at the extrema of the
Chebyshev polynomials leads to the weak tractability of L”-approximation of the class F, for
alll < p < o0.

The paper is organized as follows. Section 2 contains some basic concepts and lemmas that
will be needed in the proof of our main result, which is given in Section 3. Two extra remarks
are also given in Section 3.

2. Basic concepts and lemmas

We introduce the concept of weak tractability first. We will use terminology from [10,12,13].
Assume we are given a sequence of solution operators

Sqs:Fg— Gg foralld € N.
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Here, Fj is a subset of some normed space Hy, and G4 is a normed space. We approximate Sy f
for f € F; by algorithms

An,d(f) = ¢n,d(L1(f)v ceey Ln(f))v

where L; € Hj (here Hj denotes the dual space of normed space Hy) and ¢, 4 : R" — Gy is
an arbitrary mapping. The error of the algorithm A, ;4 is defined as

e(An.a) = sup [|Sa(f) — Ana(HliG,-

feFq

Fore € (0,1) and d € N, let n(¢e, Fy) be the information complexity which is defined as the
minimal number of function values which are necessary to obtain an e-approximation of Sy in
the worst case setting for the absolute or normalized error criterion (see [10, p. 106]), i.e.,

n(e, Fg) = min{n € N|3JA, 4 such that e(A, 4) < eCRI1;}, 2.1)
where
CRI; =1 for the absolute error criterion,
CRI1; = sup [IS4(f)llg, forthe normalized error criterion.
feFq

By the curse of dimensionality we mean that n(e, Fy) is exponentially large in d. That is, there
are positive numbers c, € and y such that

n(e, Fy) > c(1+ y)d for all & < g and infinitely many d € N.

For many natural classes Fy the bound above will hold for all d € N. There are many classes Fy
for which the curse of dimensionality has been proved, see [10,12,13] for such examples.

On the contrary, we say that § = {S;} is weakly tractable if

Inn(e, Fy) _

lim 0. (2.2)

e—l4dooo 14+ d
There are also many classes Fy for which the weak tractability has been proved, see [10,12,13]
for such examples.

Now we give the definition of the Smolyak interpolation algorithm that was introduced in [1].
Assume that we want to approximate smooth functions f : [—1, 119 — R, using finitely many
function values. For d = 1, let U’ denote the Lagrange interpolation based on the extrema of the
(m; — 1)th Chebyshev polynomial. In this case, these knots are given by

i nj ;
xj:_COS N ]:0,...,171,'—1. (23)
m,-—l

In addition, we define xi =0ifm; = 1.
Denote by V,,(x) the nth Chebyshev polynomial of the second kind; that is,
sin(n + 1)6

Va(x) = g X =cosf.
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Clearly, for m; > 1, {xj}J 20 lis a sequence of the zeros of the polynomial (1 —Xx ) Vi —2(x).
Hence, it follows from [14] that

m;—l .
U'(fx) =Y fOapa(x), (2.4)
k=0
where
D1 = x2) V.
apy = CT A= V2 -y 2.5)
(m; — 1) (x —x;)
(I + %) Vin;—2(x) (I = %) Vin;—2(x)
S ST AL .l ul () = i 2.6
ap(x) W) am;—1(x) W a(=1) (2.6)
Specially, we will choose
my=1 and m; =2""+1 fori>1. 2.7)

For d > 1 we first define tensor product formulas

I’I’lll m,d

U ®---®U)(f) = Z Zf(x X @) ® @ a).

J1=0 Ja=0
With U° = 0, we define
Al —yi —pyi-!
for i € N. Moreover, we put |i| = ij + - - - + iy for i € N¢. Then the Smolyak algorithm is given
by
Algd) =) (A" @A) (2.8)
lil<q

for integers g > d. Equivalently,

Agq.d)y= ) (—1>q—'i'~<d ||>(U” U, 29

g—d+1=lil<q

(see [17, Lemma 1], [2, Theorem 1]). To compute A(q, d)(f), from [1] we know that one only
needs to know function values at the point set

H(g,d) = U (Xilx---xXid)zU(Xi‘x~-~xXid),

q—d+1<|i|<q lil=¢

where X! = {xé, A xfnl__l} C [—1, 1] denotes the set of points used by U'. The points
x € H(q, d) are called hyperbolic cross and H (g, d) is also called a sparse grid.

In what follows we will bound the number of function values that are sufficient for the
Smolyak algorithm to achieve a certain error. For this we define

Na(k) == |H(d + &, d)|
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as the number of points used by A(d + k,d). We use = to denote the strong equivalence of

sequences, i.e., U, = vy iff lim,— o0 u, /v, = 1. Then, for k — oo and fixed d,
Zkkd_l

(d—1)!.2d-1"

see Miiller—Gronbach [7, Lemma 1]. At the same time, for d — oo and fixed k, from [9] we
know

Ny(k) = (2.10)

2k gk
Ny(k) =~ = 2.11)

Besides, by Lemma 9 in [4], we have

d k
Ny(k) < 2(2e)* (1 + E) . (2.12)

We will use the polynomial exactness of the above Smolyak interpolation algorithm. The
following lemma can be found in [1, Theorem 4].

Lemma 2.1. The formula A(d + k, d) is exact for all polynomials of degree k.

Let L? denote the usual Lebesgue L?-space defined with respect to the Lebesgue measure on
the cube [—1, 1]¢, with norm denoted by || - || p- Let C denote the space of continuous functions
on the cube [—1, 1]¢ with norm denoted by || - |ls. The proof of our result requires some norm
estimates of the algorithm A(q, d) : C — L7; that is, we need to estimate the norm

1AGg. Dllp = sup  [[Alg,d)(Oll,, 1=p<oo.
JeC | flleo=1
Let us first consider the case of d = 1. For m; = n 4 1 with n € N, we shall prove the following
result.

Lemma 2.2. Let U’ be defined by (2.4). Then for any fixed 1 < p < 0o, there exists a positive
Cp such that

U, < Cp. (2.13)

Specially, setting f = 1, we have || fllcc = 1 and |U? |, = | £l , = 2!/7 > 1. This implies
that Cp, > 1.

Note. We would like to add that the expression (2.13) is inspired by Theorem 1 in P. Nevai [8],
which is for the Lagrange interpolation based on the zeros of orthogonal polynomials. But our
proof is completely different.

The proof of (2.13) relies on several lemmas. Firstly, we need the following lemma from [14].

Lemma 2.3 ([14]). Let vy, va, ..., van be distinct integers between 1 and n — 1. Then we have

1
dx I'(N+1/2)T(1/2)
e = , 2.14
‘/1 Ay (X) Ay, (X) =+ - Ayyy (X) N 2NN 1) (2.14)
and

n—1

ag(x) < 2. (2.15)
k=1
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Next, we give two formulas about homogeneous symmetrical expression. Let x, ..., x, be
independent variables, and let Py, ..., P, s be natural numbers. Denote

r n 1/s
P=>"P. VYZ(in) .
k=1

k=1
In the following we denote k; # k; forall 1 <i # j <rbyk; #--- # k..

Lemma 2.4. If n > r, then the homogeneous symmetrical expression of degree P,

ky7--Fky
can be expressed as a homogeneous expression of degree P about Vi, ..., Vp,
Ipy...p, = Y CopVi' -V, (2.16)
P
Z ti=P.,t; >0

i=l1
and

(1) 11 < r, Cyy...tp is independent of n.
Q) If Po>2,thent; <r — 1.

Proof. We will prove (2.16) by induction on r. For r = 1, P = Py, we have
n
I =Y x'=vi =Vf,
k1=1

and (1), (2) are 0bv10usly true. Assume that for r = M, (2.16), (1) and (2) are true. Then for
r=M+1,setting P = Zl_l P;, we have

_ §: 2: Ppr41 2: PM+1
IP] ,,,,, Py, Pyy1 = xkl ’ ka( Xi Xk

k1#£--Fky i=1
P P P L

_ . M M+l M+1
= Z Y " Yk (VPM+1 Zxkj >

ky---FEkm Jj=1
= Vel D > ¥ x
- VPM—H xkl ka xkl j Kew

ky--Eky j=lki#Fky

= v, -3 2.17)
— TPyt seees Py Pi,...;Pi+Ppi,e Pyt .

From the inductive hypothesis we know that /p, . p, can be represented as a homogeneous

expression of degree P about Vi,..., V5 and hence V, Pi-1

o Ip,... py, can be represented as a
homogeneous expression of degree P about Vi,..., Vp. At the same time, Ip,, . P;+Pyy....Py
can be represented as a homogeneous expression of degree P about Vi, ..., Vp forl < j <
M. Furthermore, by the inductive hypothesis, we see that the coefficients in the expressions
V}I,D"”I1 Ip,,..py and Ip . pi+py.,,.. Py are independent of n. Hence (1) follows from (2.17).
Finally, by the inductive hypothesis and (2.17), we know that if Py;+1 = 1,thenty < M+1=r,

whereas if Py > 1, thent;{ < M = r — 1. This completes the proof. [
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Lemma 2.5. If N is a natural number, and n > 2N, then the homogeneous symmetrical expres-
sion of degree 2N,

" 2N
Doxi)] —@NL YT xky Xy
i=1 ki <ky<--<kpyn
can be represented as a homogeneous expression of degree 2N about V1, ..., Vay,
1,
Boy = Z Biyyy Vi - Voa, (2.18)
11 <2N-2,t;>0

Proof. A straightforward computation on the number of combinations shows that

n 2N (ZN)' b »
<2xi> =D xhy o Xkgy = Y Piop )T TARERE T A 1)

i=1 Pi+--+P,=2N Tk <ko--<ky
Let A(r) denote the set of all arrangements of {1, 2, ..., r}. Assume that Py, ..., P, are some
given integers that are not necessarily distinct. Define the following equivalent relation on A(r):
G1seeesir) ~(tyeens Jr) &= (Piy, ..o, Pip) = (Pjy, ..o, Pj).

A simple calculation of the number of combinations shows that each equivalent class in A(r)/ ~
contains the same number of elements, which we denote by Cp, . p,. Then we have

CLII
| 1 ki kr
Py+-+P.=2N pyl--- Byl ky<kp--<ky

(2N)! Py P
= 2 miom a2 W
Pi<w<p 1 Tie AW/~ ki <ky<ke

2N)! T
= 2 Pyl PICp, XX men

Pi<--<p. "7 T AL by icAr) ki <k <k,

2N)! _
= > Pl (P|épl > Zxk LA (2.20)

P <---<P, P ki <ky---<ky, lGA(r)
For an arbitrary {P1, P>, ..., P} and fixed {k] < ko < --- < k;}, it is easy to verify that
P
k1 .. Zx ...
icA icA

Hence, by the symmetry it follows that
S = Y ] =1, (2.21)
ki <ky---<k, iecA k1#ky--Fky
Then combining (2.19), (2.20) with (2.21) gives

@2N)!  Ip,..p,
Brov = |
2N E P1 PiChn 1.1

= > e (2.22)
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For each term Ip,...p, in the summation in (2.22), (2.16) and Statement (1) of Lemma 2.4 hold.
From Zle P; = 2N and P, > 2 we know that r < 2N — 1. Furthermore, by (2) in Lemma 2.4
and the fact that P, > 2, we know that #{ <r —1 < 2N — 2. This together with (2.22) completes
the proof of (2.18). [

Lemma 2.6. Let ar(x) be defined by (2.5). Then for any fixed natural number N, there exists
Con such that

1
[ ZAkak(x)

Proof. We will prove (2.23) by induction on N. For N = 1, by (2.14) and (2.15), we obtain

dx

2N
4 ( A ) . 223
N N ISI]?S&;&_II kl (2.23)

1 |n—1
A
/lgk“k(x)m

n—1k—1 dx

- . 1
— 2 2 |
_;Akf_lak(X)\/—xz—i-ZkZ lAkAJ/Iak(x)a](X)—m

lj=

1 n—1 n—1k—1
2
< o ([ S s 5 S

k=1 j=1

dx
/ ak(x)aj(x)ﬁ

)

I3/ 1)2 5
M) max A < 22X max  |Ag. (2.24)
l<k<n—1 2 1<k<n—1

< (271 +(mn—-1Dn-2) T2

From (2.24) and Holder’s inequality, we obtain

| =1 | =1 172 Lo\
Arag(x)| — f Akak(x) P . / _
/ Z V1 Z V1—x2 —1 /1 —=x2
/107
< —— max |Ag|.
2 1<k<n-—1

Suppose that for 0 < j < 2(N — 1), we have

bl T dx :
A —= < (j Arl. 2.25
/ D M| S =) 1A 225)

We will consider the case for 2N. If n — 1 < 2N, then (2.15) gives that |ax(x)| < 2 and hence

2N

1 —
dx
A — <a@N)¥ AN, 2.26
L ; )| == <T@ max (4 (2:26)

Ifn —1 > 2N, then by Lemma 2.5 we know

n—1 2N
> Avarx)| =
k=1

QN Y Ak Ak iy (%) - gy (X)

ki <ky<--<kyn
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+ Z Byy.toy Vlt1 (x)--- Vzl%v (x)

H<2N-2,1;>0
= 1 (x) + L (x), (2.27)
where
n—1 1/s
Vi(x) = (Z Aia,im) :
k=1

From (2.14) it follows that

1 d ! —d
‘/;1 Il(x)\/l sz = (ZN)!ngkM }Akl ...Ak2N| /_1 gy (X) -+ oy (X) — sz
LoDt TNELDIA/) o N
(n—1-2N)!  n?NI'(N+1) isk=n-1
_ITWW+1/21d/2) 1A (2.28)

m
- I'(N+1) I<k<n—1

Using the inequality (la| + |b])¢ < |a|® 4+ |b|¢ for 0 < ¢ < 1, and (2.15), we obtain that for
s> 2,

A

n—1 1/s
Vs max |A §
Vi@l = | max |4 (; lak (x)] )

172

n—1 5/2 2s
A 2
| hax | Akl (Z aj (x) )

k=1

< ~2 max |Agl. (2.29)

Denote Cp = 7 and let C; be as in (2.25) for 1 < j < 2(N — 1). By virtue of (2.27) and (2.29),
we have

! dx 1 "
12()6) = Z |Bt1"'t2N| / ‘Vltl (x) L. Vzl?\llv (x) _ax
‘/_l V1-—x? H<2N—2,t;>0 -1 N
= Z ZN ’Btl"'lzN| <[]§1<ax |Ak|2N—t1
11 <2N-2,5;>0 I<k<n-—1
! dx
X ‘V“ (x)‘ S —
< Z 2N ’Bll"'t2N| Ctl <r]?ax |Ak|2N
11 <2N-2,5;>0 I<k<n—1
IN-2
N 2N
< ( 26 2 2 \Btl...,zND (max (AP @230)
j=0 1<2N-2,1;>0
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From (2.26), (2.27), (2.28) and (2.30), it follows that
n—1

/l ZAa(x) d—x
kAk \/]—_

which competes the proof of Lemma 2.6. [

<Cov | max_ |Ag 2N, (2.31)

Remark. In the case of N = 1 or 2, (2.23) can be proved by the method of A.K. Varma, P.
Vértesi [14]. Here we give an inductive proof of (2.23) for all N for the sake of completeness.

For an arbitrary p > 1, let N be the smallest positive integer satisfying p < 2N. Then by the
Holder inequality and (2.23) we obtain

| [n=l P | [n=1 v\ PeN 1-p/@2N)
/ > Arar(x)| dx < f D Arpe(x)|  dx (/ 1dx>
=1 k=1 =1 k=1 -1
| Ine1 p/(2N)
< / ZAk(ﬂk(x) d_" 21=p/2N)
N V1 —x2
< Cp( max |AgDP. (2.32)
1<k<n—1
Now we turn to the proof of Lemma 2.2.
Proof. From (2.4) it follows that for f € C[—1, 1], we have
WU Fllp < 1F GO aoll, + | Y- fOpar| +1f oDl Jlam—1]] - (2.33)
k=1 p

From (2.6) and || Vj; —2lloc = |Vin;—2(£1)| = m; — 1 we conclude that

|f Gl llaoll, <201 fllos, and If(Xf,,[_l)l ||am,-—1||p = 2| flloc- (2.34)
From (2.32) it follows that

m,-—2 .

> fa
k=1 »
From (2.33)-(2.35) we obtain (2.13). This completes the proof of Lemma 2.2. [

The following lemma gives an estimate of the operator norm of A(g, d) from C to L, for
1 <p<oo.

i
=Cp | ax | f ()1 = Cpll flloo- (2.35)

Lemma 2.7. Let A(q.d) be defined by (2.8). Then for any fixed 1 < p < oo, there exists a
positive C,, = 2C, such that

JAW + K, ), < 2Cp)! (d ; ") < eyt (14 5)" (2.36)

Proof. The second inequality can be found in [4, Proposition 7]. We will prove the first inequality
only. From (2.13) we obtain that fori € N,

1A, < 1U, + 1UY], < 2C,. (2.37)
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Journal of Approximation Theory (2014), http://dx.doi.org/10.1016/j.jat.2014.10.016




G. Xu / Journal of Approximation Theory 1 (1111) II1-111 11

By (2.37) and a simple inductive reasoning on d we obtain that for an arbitrary i = (i1, ..., i) €
N,

1A @ ® A, < 2C,). (2.38)

It is well known that for j > d, we have

s . i —1
G- il = )l = (jl_l). (2.39)
By (2.8), (2.38) and (2.39) we obtain
lAd + &k d)ll, < 2CpHT Y7 1

d<l|i|<k+d
i — 1
R )
g d§j§+d d—1
k
3 ixe(d =141\ g (d+k
= (2C)) l;( g1 )_(2C,,) ( ; ) (2.40)

and (2.31) implies the first inequality in (2.36). [
3. The main result and its proof

In this section we assume that Fy; is defined by (1.1) and consider the L”-approximation
problem
Sq:Sqaf = f forall f e Fy.
Denote Iny d =1 ford =1 andIny d = Ind ford > 1. For k € Ny, we denote

epk,d) :=e(A(k+d,d)) = fsug Ak +d,d)(f)— flp- 3.1
€Fy

Given x € R, we denote by [x] the smallest integer not less than x.

Theorem 3.1. Let Fy be defined by (1.1) and 1 < p < oo. Then there exists a ap > 0 such that
foreachd € N, ¢ € (0, 1], and for

apd -1
ked,p = | max 1n+d,lns , 3.2)

we have that

eplkea p,d) <e. (3.3)

Furthermore, the number of function values Ny (ke 4, p) required in the algorithm A (ke g, p+d, d)
satisfies

rad I d % i 1 2Ine~!
zapd n. _ -
Na(kea,p) < 2max | (2)7+ (1+ ;* ) e <1+ ki )

Ap

3.4)
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This, in particular, implies that under the absolute and normalized error criteria, the weak
tractability of the L? -approximation problems for the class Fy holds for all 1 < p < oo.

Proof. Let P be the space of polynomials of degree k. Following the proof of [4, Proposition 8],
we obtain that for f € Fyand k € N,

k
nf 1f = plloo = inf If = ploo < o < /L (¥4 (3.5)
mn —_ m — _ _— . .
el Pleo = B, Pllee = =7 =V o \ Tk

Using Lemma 2.1, (2.36) and C,, > 1, we have

epk,d) < sup inf || f — plloo(1 + [[ACk +d, d)]p)
feFy PPk

k
1 [eVd gk d\*
—an( p ) <1+(2c,,) e (1+%>
k
2
d e2/d g
< @cy) ( - (1+k)>

2 k
_ ((ch)d/ke ]:/3 <1 L ‘_l)) _ (3.6)

k
Letk = {%] ,a > 4In(2C)). Then it is easy to verify that ford > 2,

(ch)d/k S (ch)lnd/oz — dln(ZCp)/a.

Hence

2J/d d e?Ind Ind 2lInd Ind
d/k€ a
(2C)) — (1 + k) < —mac,)j (1 +— ) < JiF (1 +— ) (3.7)

Since
i e2lnd N Ind 0
m —————~ —— | =0,
d—c0 41n(2C,)d"/* 41n(2C))

we conclude from (3.7) that there exists M € N such that ford > M,

2Jd d 1
e
2021+ =) < - 3.8
(2Cy) . + e (3.8)
From
d
a1 e2/d d
lim (2cp)(1"+l’l Vd 1+—2 | =0 ford=1,....M
oa—>00 ad ad
’71n+d—‘ ’71n+d—‘

we know that there exists an o, > 4In(2C)p) such that ford =1, ..., M, (3.8) holds as well.

This shows that with

. apd -1
ked,p == | max anrd,lng
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we have e, (k¢ q,p, d) < &, which shows the first part of Theorem 3.1. If

then from ), > 4In2 > 1 we obtain
o,d 20 ,d
k =| L= | <=, 3.9
e,d,p ’71n+d—‘ = Inyd (3.9

From (2.12) and (3.9) it follows that

2apd

20pd Ing d\ 4
Na(ke.a.p) < 2(2e) 1 <1+ o+ ) o (3.10)
2ap
If
%pd <lIne 1,
1H+d
then
kedp=[Ine" '] <2Ine™". (3.11)
Using
In’x 4
sup =<1
x>1 X e
we deduce
d d Inyd Ing!
< — = < 7 (3.12)
kea,p ~ Ine ap oy,
From (2.12), (3.11) and (3.12) it follows that
1 1 2Ine~!
- ne
Ny(kea p) < 2(2e)*'¢ : (1 +— ) ) (3.13)
o
p

From (3.10) and (3.13) we obtain (3.4). By (3.4), it is easily seen that (2.2) holds, and hence, the
L?-approximation problems for F; are weakly tractable for all 1 < p < oo under the absolute
error criterion. Furthermore, for the normalized error criterion, we have

CRI; = sup ||fll, =297 > 1.
feFq
Thus, (2.1) implies the weak tractability for the normalized error criterion. This completes the
proof of Theorem 3.1. [

Remark 3.2. Theorem 3.1 shows that the LP-approximation problems for the class Fy; given
in (1.1) are weakly tractable for all 1 < p < o0, and the weak tractability follows from the
properties of the Smolyak algorithm. At the moment, however, we do not know whether or
not the approximation problem in L-norm is weakly tractable. It is worthwhile to point out
that very recently Vybiral [15] found some new analytic function classes which are even quasi-
polynomially tractable, (see [3] for this stronger notion of tractability).

Please cite this article in press as: G. Xu, On weak tractability of the Smolyak algorithm for approximation problems,
Journal of Approximation Theory (2014), http://dx.doi.org/10.1016/j.jat.2014.10.016




14 G. Xu / Journal of Approximation Theory 1 (1111) II1-111

Remark 3.3. In 2000, the authors of [1] considered the following function classes,
FX = {f :[~1,1]Y - R|D® f continuous and || D* f||x < 1 if &; < k for all i},

and proved that (see [1, Theorem 8])

sup [1f = A(q: ) (H)llo = Cax(Nalg - d)7*(In Ny(q — d))*FPE@=D+1 (3.14)
ek,

where Cy 4 is a positive constant depending only on d and k. We point out here that in the case
of 1 < p < oo, we can obtain an estimate better than (3.14):

sup | f =A@, D)(Pllp = Caxp(Nalg = d) ¥ (In Ny(q — d))*+DE=D, (3.15)
feFy,

In fact, using (2.13) and the fact that
U'(f,x) = f(x)

for all polynomials f of degree at most m; — 1, we obtain

If = U (Pllp < Em—1(f) - (14 Cp). (3.16)

Here E,(f) is the error of the L°°-best approximation by polynomials with degree at most n.
From the well known Jackson estimate we know that for f € FX, we have

E.(f) < Cip-n*. (3.17)
By (3.16) and (3.17) we obtain

sup Ilf = U fllp < Crypmi ™. (3.18)
feF{‘

Using (3.18) and the proof of [16, Lemma 2] as well as (2.10) we obtain (3.15), as claimed.
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