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Abstract

This paper considers the problem of approximating the spectral factor of continuous spectral densities
with finite Dirichlet energy based on finitely many samples of these spectral densities. Although there
exists a closed form expression for the spectral factor, this formula shows a very complicated behavior
because of the non-linear dependency of the spectral factor from spectral density and because of a
singular integral in this expression. Therefore approximation methods are usually applied to calculate
the spectral factor.

It is shown that there exists no sampling-based method which depends continuously on the samples
and which is able to approximate the spectral factor for all densities in this set. Instead, to any sampling-
based approximation method there exists a large set of spectral densities so that the approximation
method does not converge to the spectral factor for every spectral density in this set as the number
of available sampling points is increased. The paper will also show that the same results hold for
sampling-based algorithms for the calculation of the outer function in the theory of Hardy spaces.
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1. Introduction

Spectral factorization is an important operation in many areas of signal processing and
engineering and it is closely related to the inner–outer factorization in Hardy space theory.
Best known is certainly its application in the Wiener–Kolmogorov theory of smoothing and
prediction for stationary time series, which was initialized by the seminal works of Kolmogorov
and Wiener [28,44,45] and which found multiple generalizations and extensions in different
areas of science and engineering such as in estimation and filtering [13,20,46], in robust and
optimal control [39,48], or in the theory of stochastic realizations [30], to mention only a few.
Moreover, spectral factorization plays a key role in the definition and determination of several
metrics (e.g. Riemannian and Finsler) between spectral densities [4,26] which are applied in
numerous signal processing and control applications.

Let φ be a spectral density, i.e. a non-negative real function on the unit circle T = {z ∈ C :

|z| = 1} satisfying the Szegő condition logφ ∈ L1(T) (also known as Paley–Wiener condition).
Then spectral factorization is the process of writing φ uniquely as a product of a function
φ+(z) and the functions φ−(z) = φ+(1/z), i.e.

φ(ζ ) = φ+(ζ )φ−(ζ ) =
⏐⏐φ+(ζ )

⏐⏐2 for all ζ ∈ T . (1)

Therein, the spectral factor1 is an analytic function for all z in the unit disk D = {z ∈ C : |z|
< 1} and satisfies φ+(z) ̸= 0 for all z ∈ D.

1 Sometimes, one considers factorizations where the spectral factor φ+ is not required to be analytic and non-zero
in D. Then the factorization is no longer unique and a complete characterization of all such spectral factors for
rational spectral densities can be found in [3].
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The problem of determining the spectral factor φ+ of a given spectral density φ arises
in many different applications such as estimation and prediction, communications, signal
processing, and control theory [27,39,43,46]. In particular, it is a fundamental operation in
the design and determination of the so called Wiener filter, frequently used in almost every
area of signal processing [14,19,21,22]. For all these applications, it is important to have
effective design methods for the Wiener filter with a corresponding analysis of the stability
and robustness with respect to uncertainty in the spectral factors [6]. Technically, there exists
a closed form expression for the spectral factorization mapping S : φ ↦→ φ+, given by

φ+(z) = (Sφ) (z) = exp
(

1
4π

∫ π

−π

logφ(eiτ )
eiτ

+ z
eiτ − z

dτ
)
, z ∈ D . (2)

Nevertheless, because of the apparent non-linear relation between φ and its spectral factor
φ+ and because of the singular integral in (2), this mapping shows a very complicated
behavior [1,5,7,8,23,24]. Therefore (2) is rarely used for calculating φ+ but different classes
of approximation algorithms were developed for calculating the spectral factor [2,18,37,47].

Nowadays all such algorithms are assumed to run on a digital computer. Therefore only
finitely many input numbers can be processed and so any algorithm for calculating the spectral
factor φ+ on a digital computer has to be sampling-based, i.e. it can use only finitely many
samples {φ(ζn)}N

n=1 of φ, taken on a certain sampling set TN = {ζn}
N
n=1 ⊂ T. Then, we do not

expect that the algorithm determines the exact spectral factor φ+ but only an approximation
SN (φ). However, we do expect that the approximation error can be made arbitrarily small by
increasing the size N of the sampling set TN . Thus we expect that

lim
N→∞

∥φ+ − SN (φ)∥D = 0 for all φ ∈ D , (3)

wherein D stands for the set of spectral densities under consideration and the approximation is
considered with respect to an appropriate norm ∥·∥D . This paper asks the following question:
Is it possible to find an appropriate sequence {TN }N∈N ⊂ T of sampling sets together with a
corresponding sequence {SN }N∈N of sampling-based approximation operators such that (3) is
satisfied? This problem is investigated for spectral densities in the set D+ of strictly positive and
continuous spectral densities of finite Dirichlet energy with the property that φ+ is continuous
on the closed unit disk D = D∪T. In other words, we consider this problem on a set of spectral
densities with very good analytic properties (continuous densities of finite energy where even
the spectral factor is continuous). Despite these simple assumptions, we are going to show that
there exists no sequence S = {SN }N∈N of sampling-based approximation operators such that
(3) is satisfied for all φ ∈ D+ and with respect to the uniform norm. Actually, it is shown that
to every sequence S there exists a large set of spectral densities φ such that ∥φ+ − SN (φ)∥D

does not converges to zero as N → ∞

Spectral factorization is closely related to the so-called inner–outer factorization which plays
a central role in the theory of Hardy spaces [17,29]. It states that any function in a Hardy space
Hp(D), 1 ≤ p ≤ ∞, of the unit disk can be factorized as f = fo fi with a so-called inner
function fi and an outer function fo. For the outer function fo, there exists a closed form
expression, almost identical to Eq. (2) for the spectral factor. This similarity will allow us
to derive in the second part of the paper a result showing that there exists no sampling-based
approximation procedure which is able determine the outer function for all continuous, positive
functions of finite Dirichlet energy.

Since Shannon’s seminal paper [38] on sampling of bandlimited functions, sampling theory
plays a fundamental role in applied mathematics and signal processing [16,25,32,35,41] with
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applications in image processing [40], graph theory [15], estimation and prediction of stochastic
processes [31], to mention only a few fields. Despite its far-reaching importance, this paper
is going to show that there exist fundamental limits for the applicability of sampling-based
methods. Specifically, we will show that the calculation of the spectral factor and the outer
function from samples of the spectral density is impossible, in general.

The paper is structured as follows. Section 2 gives a very short overview of the used
notation and signal spaces. In Section 3, sampling-based methods for the spectral factorization
are investigated. To this end, basic properties of the spectral factorization mapping are
recaptured and an appropriate set of spectral densities, D+, is defined. Afterward, an axiomatic
characterization of sampling-based approximation methods is introduced and it is shown that
in this class of approximation methods there exists no approximation method which is able to
calculate the spectral factor for all densities in the class D+. Section 4 translates the results
of Section 3 to similar statements for the calculation of the outer function. The paper closes
with a short summary and a discussion of further mathematical and practical properties of the
spectral factorization in Section 5.

2. Notation and function spaces

The Banach space of all functions continuous on T with norm ∥ f ∥∞ = maxζ∈T | f (ζ )| is
denoted by C(T), and L p(T) with 1 ≤ p ≤ ∞ stands for the usual Banach space of p-integrable
functions on T. The Fourier coefficients of any f ∈ L1(T) are given by

cn( f ) =
1

2π

∫ π
−π

f (eiθ ) einθ dθ , n ∈ Z ,

and it is well known that for 1 < p < ∞ every f ∈ L p(T) can be recovered from its Fourier
coefficients by means of the Fourier series

f (eiθ ) =
∑

n∈Z cn( f ) einθ , θ ∈ [−π, π) ,

which converges in the norm of L p(T) and uniformly on T. With every f ∈ L p(T), one
associates its conjugate function f̃ ∈ L p(T) given by

f̃ (eiθ ) = (H f ) (eiθ ) = −i
∑

n∈Z sgn(n) cn( f ) einθ , θ ∈ [−π, π) , (4)

with the usual signum function given by sgn(n) = n/|n| for n ̸= 0 and sgn(0) = 0. The
mapping H : f ↦→ f̃ is said to be the Hilbert transform and we note that it is also common
to call f̃ the Hilbert transform of f .

We will also need the Hardy spaces Hp(D) on the unit disk [17,29]. For every 1 ≤ p < ∞,
the Banach space Hp(D) is the set of all functions f analytic in D and which satisfy

∥ f ∥p :=

(
sup

0<r<1

1
2π

∫ π

−π

⏐⏐ f (reiθ )
⏐⏐p

dθ
)1/p

< ∞ ,

and H∞(D) denotes the set of all bounded analytic functions on D with norm ∥ f ∥∞ =

supz∈D | f (z)|. The disk algebra A(D) = H∞(D) ∩ C(T) contains all functions analytic in D
and continuous in the closed unit disk D, equipped with the norm ∥ f ∥A(D) = maxz∈D | f (z)|.
For every f ∈ Hp(D) the radial limit limr→∞ f (reiθ ) exists almost everywhere on T and
defines so a function in L p(T). Therefore Hp(D) can be identified with the closed subspace
{ f ∈ L p(T) : cn( f ) = 0 for all n < 0} of L p(T). We also note that a function f in D is said
to be an outer function if there exists a ϕ ∈ L1(T) such that

f (z) = exp
(

1
2π

∫ π

−π

logφ(eiτ )
eiτ

+ z
eiτ − z

dτ
)

for all z ∈ D .
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Note that this definition implies immediately that any outer function f is analytic in D with
f (z) ̸= 0 for all z ∈ D and it shows that every spectral factor (2) is an outer function.

In signal processing, the L2-norm is usually interpreted as the energy of a function.
Nevertheless, in physics a stronger notion of energy is often applied which will also be adapted
in this paper. Namely, we require that all of our spectral densities have finite Dirichlet energy
which is equal to the square of the seminorm

∥ f ∥E =
(∑

n∈Z |n| |cn( f )|2
)1/2

. (5)

Based on this seminorm, the Dirichlet space DC is defined to be the set of all continuous
functions on T with finite Dirichlet energy, i.e.

DC =
{

f ∈ C(T) : ∥ f ∥E < +∞
}

with norm ∥ f ∥DC = max
(
∥ f ∥∞ , ∥ f ∥E

)
.

The so defined DC is a Banach space and we refer to papers like [10,36] for a detailed
discussion on the relation between ∥ f ∥E and the energy of certain physical quantities. We
would also like to point out that the norm in DC is equal to the norm in the Sobolev space
H 1/2(T) = W 1/2,2(T).

3. Spectral factorization — Divergence of sampling-based approximation methods

This section considers the problem of approximating the spectral factor φ+ of a spectral
density φ based on the given samples of φ. The first subsection provides a very short review
of basic properties of the spectral factorization and the second subsection defines precisely the
set D+ of spectral densities on which this operation is considered. Afterwards, Section 3.3
gives an axiomatic description of the approximation algorithms which are considered. The last
subsection will show that for every arbitrary sampling-based approximation algorithm which
falls in our axiomatic framework, there always exist spectral densities for which the algorithm
does not converge to the desired spectral factor.

3.1. Definition and basic properties

Let φ ∈ C(T) be a real function so that φ(ζ ) ≥ c0 > 0 for all ζ ∈ T. Then its spectral
factor φ+ is given by (2). Let us define the function u by u(ζ ) = logφ(ζ ) for all ζ ∈ T and
write z = reiθ

∈ D with r ∈ [0, 1) and θ ∈ [−π, π). Then, by separating the kernel in (2) into
is real and imaginary part, (2) can be rewritten as

φ+(reiθ ) = exp
( 1

2 (Pr u) (eiθ )
)
· exp

(
i 1

2 (Qr u) (eiθ )
)
, (6)

with the usual Poisson- and conjugate Poisson integral given by

(Pr u) (eiθ ) =
1

2π

∫ π

−π

u(eiτ )
1 − r2

1 − 2r cos(θ − τ ) + r2 dτ

and (Qr u) (eiθ ) =
1

2π

∫ π

−π

u(eiτ )
2 r sin(θ − τ )

1 − 2r cos(θ − τ ) + r2 dτ ,

respectively. Moreover, we notice that
(
Qr u

)
(eiθ ) =

(
Pr ũ

)
(eiθ ) for θ ∈ [−π, π), wherein ũ

is the conjugate function (4) of u. Moreover, for continuous functions u ∈ C(T), it is well
known [17] that

lim
r→1

(Pr u) (eiθ ) = u(eiθ ) for all θ ∈ [−π, π) . (7)
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So if u ∈ C(T) has the property that ũ ∈ C(T) then (6) and (7) show that

φ+(ζ ) = exp
( 1

2 [u(ζ ) + i ũ(ζ )]
)
, ζ ∈ T (8)

is a continuous function on T and in particular that φ+ ∈ A(D).
We emphasize again that the spectral factorization mapping (2) is a highly non-linear

operator showing a very complicated behavior on several Banach spaces. Since this paper
studies the possibility of calculating the spectral factor on a digital computer, we consider only
signal spaces for which the spectral factorization mapping itself shows a very good behavior.
Then it is shown that even though we consider only nice spectral densities, there still exists
no sampling-based algorithm which is able to determine the spectral factor for all these nice
spectral densities.

3.2. Sets of spectral densities

We consider the spectral factorization for densities φ in the Dirichlet space DC of continuous
functions with finite Dirichlet energy. Additionally, in order that the spectral factorization is
well defined, one has to require that logφ ∈ L1(T). Here we make the even stronger assumption
that φ is strictly positive on T, i.e. we consider the set

D :=
{
φ ∈ DC : minζ∈T φ(ζ ) ≥ c0 > 0

}
with a certain positive constant c0. However, there is a disadvantage in working with D , namely
D is not a linear space. For this reason, we consider the set

log(D) := {u = log(φ) : φ ∈ D} , (9)

i.e. the set of all functions u defined by u(ζ ) = logφ(ζ ), ζ ∈ T, for some φ ∈ D . The following
lemma (whose proof can be found in Appendix A.2) shows that (9) is a Banach space, namely
the space DC .

Lemma 3.1. Let φ ∈ D be arbitrary and let u ∈ log(D) be defined by u(ζ ) = logφ(ζ ) for
all ζ ∈ T. Then u ∈ DC .

Conversely, let u ∈ DC be arbitrary and let φ ∈ exp(DC) be defined by φ(ζ ) = exp u(ζ ) for
all ζ ∈ T. Then φ ∈ D .

So there is a one-to-one correspondence between the set D of positive, continuous spectral
densities of finite Dirichlet energy and the Banach space DC of continuous functions of finite
Dirichlet energy, i.e.

D = exp(DC) and DC = log(D) . (10)

Nevertheless, we will restrict the set of spectral densities even further by considering only
densities φ which have the additional property that their spectral factor φ+ is again a continuous
function, i.e. we consider spectral densities in the set

D+ := {φ ∈ D : φ+ ∈ A(D)} . (11)

As discussed in Section 3.1, the additional requirement φ+ ∈ A(D) is satisfied if and only if
the corresponding function u = logφ has the property that ũ ∈ C(T). So it follows from (10)
that

D+ = exp(B0) and B0 = log(D+)
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wherein B0 is the separable Banach space

B0 =
{
u ∈ DC : ũ ∈ C(T)

}
with norm ∥u∥B0

= max (∥u∥∞ , ∥ũ∥∞ , ∥u∥E) .

3.3. Approximation sequences

Next, we give a precise definition of the sampling-based algorithms for the calculation of
the spectral factor investigated in this paper. These algorithms are characterized by four simple
axioms given in the following Definition.

Definition 3.2. Let {SN }N∈N be a sequence of operators SN : D+ → A(D). We say that
{SN }N∈N is a sampling-based approximation procedure for the spectral factorization if it has
the following properties:

(A) To every N ∈ N there exists a finite subset TN ⊂ T such that for arbitrary φ1, φ2 ∈ D+

φ1(ζn) = φ2(ζn) for all ζn ∈ TN

implies
(
SNφ1

)
(z) =

(
SNφ2

)
(z) for all z ∈ D .

(B) There exists a dense subset M ⊂ B0 such that

lim
N→∞

∥φ+ − SN (φ)∥A(D) = 0 for all φ ∈ exp(M) ,

i.e. for all φ = exp(u) with u ∈ M.
(C) SN (φ) is an outer function for every N ∈ N and for each φ ∈ D+.
(D) Let S̃N : B0 → A(D) be defined by S̃N (u) = SN (exp u) for every u ∈ B0. Then S̃N is a

continuous mapping for every N ∈ N, i.e. if {un}n∈N ⊂ B0 is a convergent sequence with
limit u ∈ B0 then

lim
n→∞

 SN
[
exp(u)

]
− SN

[
exp(un)

] 
A(D) = 0 for all N ∈ N .

Remark 3.1. We emphasize that Definition 3.2 makes no assumption on the linearity of the
operators SN . Some or even all of them might be non-linear.

Property (A) is the key assumption. It requires that each approximation SN (φ) of φ+ is
calculated based on finitely many samples of φ. Property (B) requires that the approximation
procedure converges at least for a certain subset of D+. Since we look for approximation
procedures which converge for all φ ∈ D+, this property is effectively no restriction but a
necessary requirement. Property (C) demands that SN (φ) is an outer function. Since φ+ is an
outer function, this property is a very natural assumption requiring that the outer function φ+

is approximated by outer functions SN (φ). Finally, Property (D) makes an assumption on the
continuity of the used operators. Also this is a natural requirement for any robust approximation
procedure.

Note that Property (D) of Definition 3.2 is necessary because we allow for non-linear
approximation operators SN . Indeed, assume SN would be linear. Since SN is also sampling-
based, as required by Property (A), the operators SN would have necessarily the form
(SNφ) (z) =

∑
n φ(ζn) pn(z) with certain functions pn ∈ A(D). Then for every fixed N ∈ N, SN

would be bounded and so also continuous. However, since the spectral factorization mapping
S itself is non-linear, it seems not reasonable to allow only for linear approximation operators
SN . Consequently, Property (D) is an important assumption to assure that every SN is stable
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with respect to errors in the given spectral density. Moreover, we refer to [9] where a similar
axiomatic approach was applied to characterize sampling-based approximations for the Hilbert
transform. Since the Hilbert transform is linear, it was assumed there that each approximation
operator SN is linear and consequently no Axiom (D) was required in this work.

From a practical point of view, the four properties of Definition 3.2 are effectively no restric-
tions. Basically every algorithm for the spectral factorization which should be implemented on
a digital computer has to satisfy these properties. For illustration, the following example gives
a simple practical (linear) procedure for calculating the spectral factor and which satisfies the
four properties of Definition 3.2.

Example 1. Let φ ∈ D+ be an arbitrary spectral density and assume the samples
{φ(ζn) : ζn ∈ TN } of φ are given. Then consider the following two step procedure for a linear
sampling-based spectral factorization algorithm.

1. First, one determines an approximation φN of φ by interpolating the given samples by a
spline of certain degree. For this spline approximation holds limN→∞ ∥φ − φN ∥∞ = 0,
and since φ is strictly positive also φN is strictly positive [42].

2. Because of the positivity of φN , one can determine the spectral factor (φN )+ of the spline
φN using standard algorithms for polynomial spectral factorization [37].

This way, one obtains a (linear) algorithm which determines an approximation (φN )+ of the
spectral factor φ+, and it is easily seen that this approximation procedure satisfies the four
properties of Definition 3.2. Moreover, applying other interpolation methods in the first step
of the described procedure (e.g. trigonometric interpolation) yields many other sampling-based
approximation methods for the spectral factorization.

3.4. Divergence of sampling-based spectral factorization algorithms

Is it possible to find a sampling-based method {SN }N∈N for calculating the spectral factor
which satisfies the properties of Definition 3.2 and which converges to the spectral factor φ+

for all φ ∈ D+? The following main theorem shows that the answer to this question is negative.

Theorem 3.3. Let {SN }N∈N be an arbitrary sampling-based approximation method for the
spectral factorization as defined in Definition 3.2. Then the set R0 ⊂ B0 of all u ∈ B0 such
that for φ = exp(u)

lim sup
N→∞

∥φ+ − SN (φ)∥A(D) > 0 (12)

holds, is a residual set in B0.

Remark 3.2. Note that (12) does not imply that the approximation error ∥φ+ − SN (φ)∥A(D)
diverges as N → ∞. In fact, the proof of Theorem 3.3 will show that actually only the
imaginary part of φ+ − SN (φ) diverges as N → ∞ implying that the error ∥φ+ − SN (φ)∥A(D)
oscillates but remains bounded as N → ∞.

Theorem 3.3 shows that for any sampling-based approximation method {SN }N∈N of the
spectral factorization there always exists a density φ ∈ D+ such that SN (φ) does not converge
to the desired spectral factor φ+. Moreover, it shows that the set of spectral densities for which
SN (φ) does not converge is large in the following sense: Let D0 be the set of all φ ∈ D+

satisfying (12), then log(D0) is a residual set in B0.
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It is also worth to notice that the theorem considers the convergence only with respect to
the uniform norm. Since φ ∈ D+ is a continuous density of finite Dirichlet energy, it would be
natural to require convergence with respect to the norm ∥·∥ = max

(
∥·∥A(D) , ∥·∥E

)
. However,

Theorem 3.3 shows that all sampling-based algorithms diverge already in the much weaker
norm ∥·∥A(D). Similarly, if one considers {SN } as operators C(T) → A(D) then Theorem 3.3
shows that any sampling-based approximation method diverges (in the norm of A(D)) even on
the subset of all positive densities φ ∈ C(T) with finite Dirichlet energy. So there exists a fortiori
no sampling-based method which converges for all positive continuous spectral densities.

The proof of Theorem 3.3 is based on a similar result for sampling-based approximation
methods for the Hilbert transform H. For ease of reference, we restate this result from [11]
here in the form as needed for the subsequent proof of Theorem 3.3.

Theorem 3.4. Let {HN }N∈N be a sequence of continuous operators HN : B0 → C(T) which
satisfies the following two properties

(I) For every N ∈ N there exists finite subset TN ⊂ T such that for all u1, u2 ∈ B0

u1(ζn) = u2(ζn) for all ζn ∈ TN

implies (HN u1) (ζ ) = (Hu2) (ζ ) for all ζ ∈ T .

(II) There exists a subset M ∈ B0 such that limN→∞ ∥Hu − HN (u)∥∞ = 0 for all u ∈ M.

Then the set
{
u ∈ B0 : lim supN→∞

∥Hu − HN (u)∥∞ > 0
}

is a residual set in B0.

Proof (Theorem 3.3). Let u ∈ B0 be arbitrary with the corresponding density φ = exp(u) ∈ D+,
and assume that

lim
N→∞

∥φ+ − SN (φ)∥A(D) = 0 . (13)

Since u ∈ B0, we know that u, ũ ∈ C(T) and so (8) shows that U := logφ+ ∈ A(D). By the
definition of the operators SN , it is clear that SN (φ) ∈ A(D), and φ ∈ D+ implies that there
exists and c0 > 0 such that minζ∈T φ(ζ ) = c0 and so minζ∈T u(ζ ) = log c0. Then the minimum
principle for analytic functions in D and (8) show that

|φ+(z)| ≥ min
ζ∈T

exp
( 1

2 u(ζ )
)

= exp
(

1
2 min
ζ∈T

u(ζ )
)

=
√

c0 for all z ∈ D .

So if we set g = φ+ and gN = SN (φ), these functions satisfy the conditions of Lemma A.3 in
the Appendix and we get from (13)

lim
N→∞

min
|z|≤1

|U (z) − log SNφ(z)| = 0 .

Similarly, applying the maximum principle for analytic functions yields

lim
N→∞

max
|z|=1

|U (z) − log SNφ(z)| = 0 . (14)

According to (8), U can be written on T as U (ζ ) = logφ+(ζ ) =
1
2

[
u(ζ )+ i ũ(ζ )

]
for all ζ ∈ T.

In a similar way, we separate log SN (φ) into its real- and imaginary part and write

log
(
SNφ

)
(ζ ) = log

(
SN

[
exp(u)

])
(ζ ) = (AN u) (ζ ) + i (BN u) (ζ ) , ζ ∈ T .

Because SN is a mapping B0 → A(D), the so defined operators AN and BN are mappings
B0 → C(T). We verify next that the sequence {BN }N∈N satisfies the conditions of Theorem 3.4.
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According to Property (A), the operator SN uses only the values {φ(ζn) : ζn ∈ TN } of the
spectral density φ to calculate the approximation SN (φ). Consequently, the operators AN and
BN are concentrated on the values {u(ζn) = logφ(ζn) : ζn ∈ TN } showing that {BN }N∈N satisfies
Condition (I) of Theorem 3.4.

Since {SN }N∈N satisfies Property (B), (13) is satisfied for all φ ∈ exp(M) where M is a
dense subset of B0. Consequently, (14) implies for the corresponding imaginary part

limN→∞

 1
2 ũ − BN (u)


∞

= 0 for all u ∈ M (15)

showing that {BN }N∈N satisfies Condition (II) of Theorem 3.4.
Assume {un}n∈N ⊂ B0 is a convergent sequence such that limn→∞ ∥u − un∥B0

= 0 for some
u ∈ B0. Then the continuity property (D) of the sequence {SN }N∈N implies

lim
n→∞

∥BN (u) − BN (un)∥∞ = 0 for every N ∈ N .

Showing that BN : B0 → C(T) is continuous for every N ∈ N.
Thus {BN }N∈N satisfies the conditions of Theorem 3.4 and so this theorem implies that the

set of all u ∈ B0 satisfying (15) can only be a set of first category. Consequently, also the set
of all u ∈ B0 for which φ = exp(u) satisfies (13) can only be of first category. So the statement
of the theorem is proved. ■

4. Sampling-based approximation methods for calculating the outer function

In the theory of Hardy spaces, the so called inner–outer factorization plays a prominent role.
Since this factorization is very closely related to the spectral factorization, we can translate
Theorem 3.3 into a similar divergence result for the calculation of the outer function.

4.1. Outer functions and minimal phase systems

For 1 < p ≤ ∞, let f ∈ Hp(D) be arbitrary. Then there exists a so-called inner function
fi ∈ H∞(D) with | f (ζ )| = 1 for almost every ζ ∈ T and an outer function fo ∈ Hp(D) such
that f (z) = fi (z) fo(z) for z ∈ D. Therein, the outer function is given explicitly by

fo(z) = exp
(

1
2π

∫ π

−π

log
⏐⏐ f (eiτ )

⏐⏐ eiτ
+ z

eiτ − z
dτ

)
, z ∈ D , (16)

and it satisfies fo(ζ ) = | f (ζ )| for almost all ζ ∈ T. The inner–outer factorization of f is
unique up to a unitary factor and (16) is well defined as long as f satisfies the Szegő condition
log | f | ∈ L1(T) [17,29].

This factorization plays also a considerable important role in signal- and system theory [20,
33]. There it is applied for decomposing a causal linear system into a minimum phase part
(the outer function) and an allpass part (the inner function). As an application, we mention
the following standard filter design problem. Assume we want to design the transfer function
f (eiθ ) of a linear digital filter with a predefined amplitude response F(eiθ ) =

⏐⏐ f (eiθ )
⏐⏐. If

the filter should additionally be causal, then the solution to this problem can be written as
f (z) = fi (z) fo(z) with the outer function fo, given in (16), completely determined by the
predefined amplitude response F . The allpass part (the inner function) can then be chosen
arbitrary to influence other properties of the filter but without changing the prescribed amplitude
response of the filter. The outer-function of f is completely determined by the amplitude
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F(ζ ) = | f (ζ )|, ζ ∈ T and we will write

Fo(z) = exp
(

1
2π

∫ π

−π

log F(eiτ )
eiτ

+ z
eiτ − z

dτ
)
, z ∈ D , (17)

for the outer function associated with a given amplitude response F .

4.2. Divergence of sampling-based algorithms

Working on digital computers, the calculation of the outer function Fo has to be based on
finitely many samples {F(ζn)}N

n=1 of the given amplitude response F , taken on a sampling
set TN = {ζn}

N
n=1 ⊂ T. Then we look for algorithms TN which determine an approximation

FN = TN (F) of Fo, based on the samples on TN and such that FN converges to Fo as the
number N of available sampling points tends to infinity. As for the spectral factorization, we
ask whether there exist such sampling-based approximation methods {TN }N∈N which converge
for all positive continuous amplitude responses F of finite energy.

The outer function (16), respective (17), is well defined if log | f | = log F ∈ L1(T), and this
condition is satisfied for all f ∈ Hp(D) with 1 ≤ p ≤ ∞ and in particular for all f ∈ A(D)
(see, e.g., [17]). Nevertheless, as in the case of the spectral factorization, we make an even
stronger assumption on the predefined amplitude response F , namely that F is a spectral
density in the set D+, defined in (11). With the given amplitude response F ∈ D+, we associate
the corresponding density φ(ζ ) = F(ζ )2

= | f (ζ )|2 and it is not hard to see that φ ∈ D+ if
and only if F ∈ D+. Then it follows from (2) and (16) that the outer function Fo, which
corresponds to the given amplitude response F , is equal to the spectral factor of the associated
density φ, i.e.

Fo(z) = φ+(z) = (Sφ) (z) = (SF) (z) =
(
S
[
| f |

2]) (z) , z ∈ D .

Thus the outer function can be calculated using any spectral factorization algorithm with
input φ = F2

= | f |
2. So we can take over the axiomatic framework for sampling-based

approximation methods from Definition 3.2 for approximation methods for the outer function.

Definition 4.1. A sequence {TN }N∈N of operators TN : D+ → A(D) is said to be a
sampling-based approximation procedure for the outer function if every TN can be written
as

TN (F) = SN (F2) , N ∈ N

with a sampling-based approximation procedure {SN }N∈N as given in Definition 3.2.

Then, it comes as little surprise that Theorem 3.3 holds almost literally for approximation
methods for the outer function.

Theorem 4.2. Let {TN }N∈N be a sampling-based approximation method for the outer function
according Definition 4.1. Then there exists a residual set R0 ⊂ B0 such that for every
F = exp(u) with u ∈ R0, one has

lim sup
N→∞

∥Fo − TN (F)∥A(D) > 0 . (18)

Thus for every sampling-based method {TN }N∈N for calculating the outer function there
always exist amplitude responses F ∈ D+ such that TN (F) does not converge to the desired
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Fo. Moreover, the corresponding divergence set D0 = {F ∈ D+ : F satisfies (18)} is large in
the sense that log(D0) is a residual set in B0. So there exists no sampling-based algorithm which
is able to calculate the outer function for all functions in the disk algebra A(D). This statement
is even true for the subset of all those f ∈ A(D) for which the amplitude of its boundary
function F(ζ ) = | f (ζ )|, ζ ∈ T, belongs to D+, i.e. for which F is continuous, strictly positive,
has finite energy, and for which fo is known to be continuous in D. Even for these very nice
Hardy space functions, no sampling-based algorithm for calculating fo does exist.

It might be worth to notice that our assumptions on the boundary function F(ζ ) = | f (ζ )|,
ζ ∈ T, imply also certain restrictions on the inner function fi of f . Recall that any inner
function can be written as the product of a Blaschke product and of a singular function [17,
Chap. II.6]. Since we assume that | f (ζ )| ≥ c0 > 0 for all ζ ∈ T, and since f is analytic in D,
it follows that f can only have finitely many zeros in D. So the Blaschke product associated
with fi is finite. Moreover, since F is assumed to be continuous, also f and fi are continuous
on T. However, since a singular function is not continuous, we see that the singular factor of
fi has to be equal to zero. So overall, the inner function is just a finite Blaschke product under
our assumptions on the boundary function of f .

5. Summary and discussion

Theorem 3.3 shows that there is no sampling-based approximation method {SN }N∈N which
is able to calculate the spectral factor φ+ for all spectral densities φ in the set D+ of positive,
continuous densities of finite Dirichlet energy with a continuous spectral factor. Using the one-
to-one correspondence (10) between the set D+ and the Banach space B0, it even follows that
the divergence set D0 =

{
φ ∈ D+ : limN→∞ ∥φ+ − SN (φ)∥A(D) > 0

}
is large in the sense that

log(D0) is a residual set in B0.
In the theory of Hardy spaces of the unit disk as well as in filter design problems in

engineering applications, the outer function plays a central role. It is given by a function on
the unit circle in a very similar way as the spectral factor is given be the spectral density.
Consequently, our main Theorem 3.3 could readily translated into a corresponding result for
calculating the outer function using sampling-based approximation algorithms. It turns out that
also for this problem there exists no sampling-based method which converges for all continuous
positive functions of finite Dirichlet energy.

Finally, we would like to note that the spectral factorization mapping poses quite a
number of further very interesting properties with consequences for practical applications. For
example, [12] investigated the Turing computability of the spectral factor φ+ for computable
continuous spectral densities φ. Turing computability is of utmost importance for practical
applications, because only if the spectral factor φ+ is Turing computable, it can be calculated
numerically on digital hardware like computers, digital signal processors (DSP), or field-
programmable gate arrays (FPGAs). In [12] a particular strong result of the non Turing
computability of the spectral factorization was proved. In fact, [12] constructed a computable,
continuous, and strictly positive spectral density φ such that φ+(1) is not a computable complex
number. In other words, there exists no Turing machine (i.e. an numerical algorithm on a
digital computer) which is able to compute the complex number φ+(1). Nevertheless, (1)
implies that the spectral factor of any strictly positive, computable spectral density φ always
satisfies

⏐⏐φ+(eiθ )
⏐⏐ =

⏐⏐φ(eiθ )
⏐⏐1/2 for all θ ∈ [−π, π). Therefore ∥φ+∥A(D) = ∥φ∥

1/2
C(T) is always a

computable number. However, φ+ cannot be effectively approximated in the A(D)-norm by
elementary computable functions (e.g. by computable sequences polynomials with rational
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coefficients). This implies that the spectral factorization is (to the best of our knowledge)
the first example of practical relevance showing that the First-Main Theorem of Pour-El and
Richards [34] for the computability of linear operators can generally not be extended to non-
linear operators. We refer also to the proof and discussion of [12, Theorem III.1] for more
details on the First-Main Theorem of Pour-El and Richards. It is also interesting to note that the
question of the (non-) Turing computability of spectral factors for spectral densities in the scale
of Sobolev spaces could be completely characterized (cf. [12, Theorem III.4]). Unfortunately,
it turned out that the Sobolev space H 1/2(T), which is of particular importance in practical
application, contains a large set of computable densities φ for which the spectral factor φ+ is
not computable.
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Appendix. Proofs of auxiliary lemmas

This appendix presents the proof of the important Lemma 3.1. Before that, we state two
auxiliary lemmas needed for proving Lemma 3.1 and we give a technical result (Lemma A.3)
needed in the proof of Theorem 3.3.

A.1. Auxiliary lemmas

The proof of Lemma 3.1 is based on a seminorm, defined for every f ∈ DC by

∥ f ∥∆ =

√
1

4π2

∫ π

−π

∫ π

−π

1
τ 2

⏐⏐ f (ei(θ+τ )) − f (eiθ )
⏐⏐2 dθ dτ . (A.1)

The following lemma shows that (A.1) is equivalent to the seminorm ∥·∥E defined in (5).

Lemma A.1. There exists a constant 0 < C∆ < 1 such that

C∆ ∥ f ∥E ≤ ∥ f ∥∆ ≤ ∥ f ∥E for all f ∈ DC . (A.2)

Proof. Let f ∈ DC ⊂ C(T) be arbitrary with Fourier coefficients {cn( f )}n∈Z. Then for arbitrary
θ, τ ∈ T, we have f (ei(θ+τ ))− f (eiθ ) =

∑
n∈Z cn( f )einθ

[
einτ

− 1
]

and Parseval’s theorem yields

1
2π

∫ π
−π

⏐⏐ f (ei(θ+τ )) − f (eiθ )
⏐⏐2 dθ =

∑
n∈Z |cn( f )|2

⏐⏐einτ
− 1

⏐⏐2
.

Dividing this equation by 2πτ 2 and integrating over τ yields

∥ f ∥
2
∆ =

∑
n∈Z |cn( f )|2 1

2π

∫ π
−π

⏐⏐⏐ einτ
−1
τ

⏐⏐⏐2
dτ =

∑
n∈Z |cn( f )|2 1

2π

∫ π
−π

⏐⏐⏐ sin(n τ/2)
τ/2

⏐⏐⏐2
dτ

=
∑

n∈Z |n| |cn( f )|2
(

1
π

∫ nπ/2
−nπ/2

⏐⏐⏐ sin(ω)
ω

⏐⏐⏐2
dω

)
. (A.3)

Moreover, the factor on the right hand side satisfies the inequalities

C∆ :=
1
π

∫ π/2
−π/2

⏐⏐⏐ sin(ω)
ω

⏐⏐⏐2
dω ≤

1
π

∫ nπ/2
−nπ/2

⏐⏐⏐ sin(ω)
ω

⏐⏐⏐2
dω < 1

π

∫
∞

−∞

⏐⏐⏐ sin(ω)
ω

⏐⏐⏐2
dω = 1 .

Inserting this lower and upper bound into (A.3) yields (A.2). ■
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Also the following technically simple lemma is needed in the proof of Lemma 3.1 .

Lemma A.2. Let x0 ∈ (−1, 0) be arbitrary, then

|log(1 + x)| ≤
|x |

|x0|
log

(
1

1 + x0

)
for all x ≥ x0 . (A.4)

Proof. To simplify notation, we set ψ(x) := log(1 + x) for all x > −1. By the concavity of
ψ , a Taylor series expansion of ψ around x = 0 shows that

ψ(x) = log(1 + x) ≤ x for all x > −1 . (A.5)

Let x0 ∈ (−1, 0) be arbitrary but fixed. Then (A.5) implies − log(1 + x0) = log 1
1+x0

≥ −x0 =

|x0|, showing that 1
|x0|

log 1
1+x0

≥ 1. Combining this relation with (A.5), one obtains

x
|x0|

log 1
1+x0

≥ x ≥ log(1 + x) for all x > −1 . (A.6)

If x ≥ 0 then (A.6) yields immediately (A.4) because then |x | = x and |log(1 + x)| =

log(1 + x).
We still have to consider the case x ∈ [x0, 0). Since ψ is concave, we know that ψ(t x0) ≥

tψ(x0) + (1 − t)ψ(0) = tψ(x0) for all t ∈ [0, 1]. Substitute x = t x0 yields

log(1 + x) ≥
x
x0

log(1 + x0) for all x ∈ [x0, 0] . (A.7)

Since x < 0, we have log(1 + x) = − |log(1 + x)|, and because also x0 < 0, Inequality (A.7)
yields

− |log(1 + x)| ≥ −
|x |

|x0|
log 1

1+x0
for all x ∈ [x0, 0) .

Multiplying both sides with −1, yields (A.4). ■

The following simple fact is needed in the proof of Theorem 3.3.

Lemma A.3. Let g ∈ A(D) be such that there exists a c0 > 0 such that |g(z)| ≥ c0 for all
z ∈ D, and let {gN }N∈N ⊂ A(D) be such that

lim
N→∞

∥g − gN ∥A(D) = 0 . (A.8)

Then limN→∞ ∥log g − log gN ∥A(D) = 0.

Proof. We define for every N ∈ N the function ϕN by ϕN (z) = gN (z)/g(z) for all z ∈ D.
Since g(z) ̸= 0 for all z ∈ D, each ϕN belongs to A(D). Moreover, since |g(z) − gN (z)| =

|g(z)| |1 − ϕN (z)| ≥ c0 |1 − ϕN (z)| for every z ∈ D, assumption (A.8) implies

lim
N→∞

∥1 − ϕN ∥A(D) = 0 . (A.9)

So there exists an N0 ∈ N such that for every N ≥ N0 always |1 − ϕN (z)| < 1/2 is satisfied.
Therefore |ϕN (z)| < 1/2 for all N ≥ N0 and for every z ∈ D. By the continuity of the
logarithm, we thus have logϕN ∈ A(D) for all N ≥ N0 and so (A.9) implies

lim
N→∞

∥logϕN ∥A(D) = lim
N→∞

∥log gN − log g∥A(D) = 0 ,

which finishes the proof. ■
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A.2. Proof of Lemma 3.1

We start by proving the first part of the lemma. To this end, let φ ∈ D be arbitrary and let
c0 > 0 be the constant so that

φ(ζ ) ≥ c0 for all ζ ∈ T . (A.10)

Since log is a continuous function, it follows that u ∈ C(T) as long as φ is continuous and
strictly positive. We still have to prove that ∥φ∥E < ∞ implies ∥u∥E < ∞. This is done by
determine the seminorm ∥u∥∆, introduced in (A.1), and by applying Lemma A.1. To this end,
we consider for arbitrary θ, τ ∈ [−π, π) the expression

⏐⏐u(ei(θ+τ )) − u(eiθ )
⏐⏐ =

⏐⏐⏐log φ(ei(θ+τ ))
φ(eiθ )

⏐⏐⏐.
Since log is monotonically increasing, (A.10) implies

log
c0

∥φ∥∞

≤ log
(
φ(ei(θ+τ ))
φ(eiθ )

)
≤ log

∥φ∥∞

c0
. (A.11)

Combining both inequalities, we have thus⏐⏐u(ei(θ+τ )) − u(eiθ )
⏐⏐ =

⏐⏐⏐⏐log
(
φ(ei(θ+τ ))
φ(eiθ )

)⏐⏐⏐⏐ ≤ log
∥φ∥∞

c0
.

Next, we notice that

log
(
φ(ei(θ+τ ))
φ(eiθ )

)
= log

(
1 +

φ(ei(θ+τ )) − φ(eiθ )
φ(eiθ )

)
≥ log

(
c0

∥φ∥∞

)
= log

(
1 +

c0 − ∥φ∥∞

∥φ∥∞

)
(A.12)

using the first inequality in (A.11) to obtain the right hand side. Now we set

x0 :=
c0 − ∥φ∥∞

∥φ∥∞

= −1 +
c0

∥φ∥∞

and x :=
φ(ei(θ+τ )) − φ(eiθ )

φ(eiθ )
.

By these definitions, it is clear that −1 < x0 < 0 and (A.12) becomes log(1+ x) ≥ log(1+ x0),
showing that x ≥ x0. With the so defined x and x0, Lemma A.2 implies for arbitrary
θ, τ ∈ [−π, π)⏐⏐u(ei(θ+τ )) − u(eiθ )

⏐⏐ = |log(1 + x)| ≤
1

|x0|
log

(
1

1 + x0

)
|x |

=
∥φ∥∞

∥φ∥∞ − c0
log

(
∥φ∥∞

c0

)
|x |

= K1

⏐⏐⏐⏐φ(ei(θ+τ )) − φ(eiθ )
φ(eiθ )

⏐⏐⏐⏐ ≤
K1

c0

⏐⏐φ(ei(θ+τ )) − φ(eiθ )
⏐⏐

with the finite constant K1 =
∥φ∥∞

∥φ∥∞−c0
log

(
∥φ∥∞

c0

)
. In view of (A.1), this last inequality implies

certainly ∥ f ∥∆ ≤
K1
c0

∥φ∥∆ and applying Lemma A.1 yields finally ∥u∥E ≤
K1

c0C∆
∥φ∥E showing

that ∥φ∥E < ∞ implies ∥u∥E < ∞.
To prove the second part of the lemma, we notice at the beginning that because exp is

a continuous function from R onto the set R+ of non-negative real numbers, it is clear that
φ ∈ C(T) and that there exists c0 ≥ exp(− ∥u∥∞) > 0 so that (A.10) is satisfied. We still
have to show that ∥u∥E < ∞ implies ∥φ∥E < ∞. This is done using the seminorm (A.1) and
Lemma A.1. Let θ, τ ∈ [−π, π) be arbitrary. Then

φ(ei(θ+τ )) − φ(eiθ ) = exp
[
u(eiθ )

] (
exp

[
u(ei(θ+τ )) − u(eiθ )

]
− 1

)
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and consequently⏐⏐φ(ei(θ+τ )) − φ(eiθ )
⏐⏐ ≤ exp

(
∥u∥∞

)
·
⏐⏐ exp

[
u(ei(θ+τ )) − u(eiθ )

]
− 1

⏐⏐ . (A.13)

Next, we use the Taylor series expansion of the exp-function to derive an upper bound on the
last factor in (A.13). Together with the triangle inequality, we get⏐⏐ exp

[
u(ei(θ+τ )) − u(eiθ )

]
− 1

⏐⏐ ≤
∑

∞

k=1
1
k!

⏐⏐u(ei(θ+τ )) − u(eiθ )
⏐⏐k

=
⏐⏐u(ei(θ+τ )) − u(eiθ )

⏐⏐ ∑∞

k=1
1
k!

⏐⏐u(ei(θ+τ )) − u(eiθ )
⏐⏐k−1

≤
⏐⏐u(ei(θ+τ )) − u(eiθ )

⏐⏐ ∑∞

k=1
1
k!

(
2 ∥u∥∞

)k−1

=

⏐⏐⏐u(ei(θ+τ ))−u(eiθ )
⏐⏐⏐

2∥u∥∞

∑
∞

k=1
1
k!

(
2 ∥u∥∞

)k

=
⏐⏐u(ei(θ+τ )) − u(eiθ )

⏐⏐ exp(2∥u∥∞)−1
2∥u∥∞

. (A.14)

Inserting the last inequality into (A.13) gives⏐⏐φ(ei(θ+τ )) − φ(eiθ )
⏐⏐ ≤ C(u)

⏐⏐u(ei(θ+τ )) − u(eiθ )
⏐⏐ for all θ, τ ∈ [−π, π)

with the positive constant C(u) := exp(∥u∥∞) exp(2∥u∥∞)−1
2∥u∥∞

. This inequality implies immediately
a corresponding inequality for the seminorms (A.1) of φ and u, and together with (A.2), we
get

C∆ ∥φ∥E ≤ ∥φ∥∆ ≤ C(u) ∥u∥∆ ≤ C(u) ∥u∥E .

So if u ∈ DC , i.e. if ∥u∥E < +∞ the last inequality implies ∥φ∥E < +∞, i.e. φ ∈ DC . ■
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