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Abstract

In this note we study a quantitative version of Bernstein’s approximation problem when the
olynomials are dense in weighted spaces on the real line completing a result of Mergelyan (1960).
e estimate in the logarithmic scale the error of the weighted polynomial approximation of the Cauchy

ernel.
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1. Introduction

The polynomial approximation problem in weighted spaces of functions on the real line is
classical subject in analysis since the beginning of the 20th century.
Let W : R → [1, ∞] be an upper semicontinuous function on the real line. We denote by

CW the linear space of continuous functions f : R → C such that lim
|t |→∞

f (t)
W (t)

= 0 endowed

ith finite semi-norm

∥ f ∥∞,W := sup
t∈R

⏐⏐⏐⏐ f (t)
W (t)

⏐⏐⏐⏐ < +∞.
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We can think of CW as a normed space (passing, as usual, to the quotient space under the
tandard equivalence relation f ∼

W
g ⇔ ∥ f − g∥∞,W = 0). Throughout the paper we always

ssume that W grows to infinity faster than any polynomial:

lim
|t |→∞

tn

W (t)
= 0 ∀n ∈ N. (1)

his condition ensures that the space CW contains all polynomials.
In 1924, S. N. Bernstein [3] posed the following question: for which functions W satisfying

1) are the polynomials dense in CW ? The Bernstein weighted approximation problem has been
ersistently attracting attention of analysts for almost a century.

T. Hall [7] proved in 1938 that if the polynomials are dense in CW , then necessarily∫
∞

−∞

log W (t)
1 + t2 dt = ∞. (2)

his condition fails to be sufficient for the density of polynomials [8, Section VI.H.3].
There are different approaches to Bernstein’s problem. We mention here two classical

apers by N. I. Akhiezer [2] and S. N. Mergelyan [12], both published in 1956. Let us recall
ergelyan’s solution to Bernstein’s problem. He introduced the function

ΩW (z) := sup
{
|P(z)| : P ∈ P, |P(t)| ≤

√
1 + t2W (t), t ∈ R

}
, z ∈ C \ R,

here P is the space of the polynomials. Mergelyan proved that the density of the polynomials
n CW is equivalent to each of the following conditions:

• ΩW (i) = ∞,

•

∫
∞

−∞

logΩW (t)
1 + t2 dt = ∞.

If the function W is such that the polynomials are dense in the space CW , it is natural to
sk about the approximation rate by polynomials. More precisely, let Pn denote the space of
he polynomials of degree less than or equal to n. For a function f ∈ CW and for positive n,
e can define the error of approximation by polynomials of degree n by

En( f ) = inf
P∈Pn

∥ f − P∥∞,W .

he asymptotics of the sequence {En( f )} for various functions f were studied by numerous
uthors, and we refer the reader to the survey papers of D. S. Lubinsky [10] and of
. N. Mhaskar [14] on this subject.
For a particular class of functions f , the values En( f ) were estimated by N. I. Akhiezer [2];

. Wahde [16] found estimates of such kind in the L2 norm and used them to deal with
the uniform weighted approximation problem. M. M. Dzhrbashyan [6] studied the best
approximation error of the Cauchy kernel by rational functions.

In this paper, we concentrate on the case when the function f to be approximated is fixed
and equals the Cauchy kernel K(x) := (x − i)−1. In 1960, Mergelyan [13] found an upper
bound for En(K) for quite a wide class of functions W . The main goal of the present paper is
to obtain matching upper and lower bounds for En(K) in the logarithmic scale. An analogous
problem in L p norm is also considered. The proofs use the ideas from the paper [4] by A.

Borichev, M. Sodin, and the author.
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2. Main result

Definition 1. Let the function W be of the form

W (x) = exp(ϕ(|x |)), x ∈ R,

here ϕ is a positive continuous function strictly increasing on R+. We will say that a function
W is a weight if it satisfies conditions (1) and (2).

Given n ≥ ϕ(0), define

An := ϕ−1(n).

Given α ∈ R we introduce the perturbed weight

Wα(x) := W (x)(x2
+ 1)α/2,

nd the corresponding function ϕα := log Wα .
We deal with the space CW equipped with the norm ∥ f ∥∞,W defined in the introduction,

nd with the weighted L p spaces defined as follows:

L p
W :=

{
f : R → C : ∥ f ∥p,W :=

(∫
R

⏐⏐⏐⏐ f (x)
W (x)

⏐⏐⏐⏐p

dx
)1/p

< ∞

}
,

here p ∈ [1, ∞). For 1 ≤ p ≤ ∞ and n ∈ N, define

En(p, W ) := inf
Q∈Pn−1

{ 1
x − i

− Q(x)


p,W

}
.

he sequence (En(p, W ))n is nonincreasing; if the polynomials are dense in L p
W (CW ), then

this sequence tends to 0. We are interested in estimating the growth rate of the sequence
| log En(p, W )| as n → ∞ in terms of the function ϕ.

An easy calculation shows that

En(p, W ) = inf
Pn (i)=1,Pn∈Pn

 Pn(x)
√

x2 + 1


p,W

= inf
Pn (i)=1,Pn∈Pn

∥Pn(x)∥p,W1
.

n particular, for the case p = 2 our results relate to the asymptotical properties of the
hristoffel function outside the real line (we refer to [9] for more information about the
hristoffel function). On the other hand, in terms of Mergelyan’s function ΩW we have

lim
n→∞

En(∞, W ) =
1

ΩW (i)
.

In our note we deal with the following classes of functions.

Definition 2. Given a continuous increasing function ϕ : R+ → R+ satisfying condition (2),
we say that ϕ is

• normally growing if ϕ(x)/x2 is decreasing and ϕ(x) is a convex function of log x on
[A, +∞) for some A > 0;

• rapidly growing if ϕ(x)/x1+ε is increasing on [A, +∞) for some ε > 0 and A > 0;
• regularly growing if it is either normally growing or rapidly growing.
3
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Remark 1. In the definition of normally growing functions by the convexity of ϕ(x) as of
unction of log x we mean that the function t ↦→ ϕ(et ) is convex (for example, it holds in the
ase when xϕ′(x) is an increasing function).

emark 2. There is a nonempty intersection between the classes of rapidly growing and
ormally growing functions, e.g., the function ϕ(x) = x3/2 satisfies both conditions.

emark 3. Note that the polynomials are dense in CW and in L2
W provided that log W is a

egularly growing function [8, Sections VI.D, VI.G]. For normally growing weights, this can
e proved using the convexity of ϕ(et ), and for rapidly growing weights this follows from the
act that W (x) ≳ e|x | for |x | large enough. Therefore, for a regular weight W the sequence
En(p, W )) tends to 0. In particular, for all but finitely many n ∈ N we have log En < 0.

We use the following notation: given two positive (or two negative) sequences (αn) and (βn)
e will write

• αn ≲ βn if for some constant C > 0 one has αn ≤ C · βn for n ∈ N and
• αn ≃ βn if both αn ≲ βn and βn ≲ αn are true.

Analogous notation is used for functions.
The main result of our paper is

heorem 1. Suppose that ϕ is a regularly growing function. Given p ∈ [1, ∞], we have

log En(p, W ) ≃ −

∫ 1

0
min

(
ϕ

(
1
x

)
, n
)

dx .

The implicit constants may depend on ϕ but are independent of n.

Fig. 1. min
{
ϕ

(
1
x

)
, n
}

.

emark 4. The geometrical meaning of our growth classes can be illustrated by Fig. 1.
f the function ϕ grows rapidly, then the area of the part of the subgraph of the function

in
{
ϕ

(
1
x

)
, n
}

under the cut-off grows not slower than the area of the remaining part of

the subgraph as n tends to infinity, while in the case of the normal growth the part under the
cut-off grows not faster than the area of the remaining part of the subgraph.
4
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We also provide a reformulation of Theorem 1 which clarifies a bit our estimates.

heorem 2. Under the hypothesis of Theorem 1, for 1 ≤ p ≤ ∞, we have

(a) log En(p, W ) ≃ −
n

ϕ−1(n)
if ϕ grows rapidly;

(b) log En(p, W ) ≃ −

∫ ϕ−1(n)

0

ϕ(x)dx
x2 + 1

if ϕ grows normally.

Due to Remark 4, Theorem 1 implies Theorem 2. The converse implication will be proven
n Section 4.1.

The following corollary can be verified by a simple calculation, which we skip.

orollary 1. Let p ∈ [1, ∞]. Denote En := En(p, W ). Then we have the following estimates.

• If ϕ(x) =
x

log(2 + x)
, then

|log En| ≃ log log(n + e).

• If ϕ(x) = x logν(2 + x), ν > −1, then

| log En| ≃ logν+1 n.

• If ϕ(x) = xν, ν > 1, then

| log En| ≃ n1−1/ν .

• If ϕ(x) = exp(xν), ν > 0, then

| log En| ≃
n

(log n)1/ν
.

In Section 3 we establish some properties of the Tchebyshev polynomials and bring some
esults by Videnskii and Mergelyan. In Section 4 we prove Theorem 1, first in the uniform
ase and then in the L p case.

. Preliminaries

.1. Some properties of the Tchebyshev polynomials

In this subsection we have collected some properties of Tchebyshev polynomials that are
sed in our paper. We start with the classical Tchebyshev inequality.

Let Tn denote the Tchebyshev polynomial of the first kind of degree n:

Tn(x) :=
1
2

((
x +

√
x2 − 1

)n
+
(
x −

√
x2 − 1

)n
)

.

Tchebyshev inequality. For any polynomial Pn of degree n such that |Pn| ≤ 1 on [−1, 1],
e have

|Pn| ≤ |Tn| on R \ (−1, 1).

We also need two technical results.

emma 1. Let n = 2k, k ∈ N, and a ∈ R. Then

|Tn(i/a)| ≥
1
(

1
+ 1

)n

.

2 a

5
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Proof.

|Tn(i/a)| =
1
2

⏐⏐⏐⏐⏐
(

i
a

+

√
−

1
a2 − 1

)n

+

(
i
a

−

√
−

1
a2 − 1

)n⏐⏐⏐⏐⏐
=

1
2

(
1
a

+

√
1
a2 + 1

)n

+
1
2

(
1
a

−

√
1
a2 + 1

)n

=
1
2

(
1
a

+

√
1
a2 + 1

)n

+
1
2

(
1
a

+

√
1
a2 + 1

)−n

≥
1
2

(
1
a

+ 1
)n

. □

emma 2. Let ϕ be a rapidly growing function. Then

sup
x≥An

{
|Tn(x/An)|

W (x)

}
≲

2n

en
.

roof. We have

|Tn(x/An)| =
1
2

⏐⏐⏐⏐⏐⏐
(

x
An

+

√
x2

A2
n

− 1

)n

+

(
x
An

−

√
x2

A2
n

− 1

)n
⏐⏐⏐⏐⏐⏐

≤

(
x
An

+

√
x2

A2
n

− 1

)n

≤

(
2

x
An

)n

, x ≥ An.

Therefore,

sup
x≥An

{
|Tn(x/An)|

W (x)

}
≤

2n

An
n

sup
x≥An

{
xn

W (x)

}
. (3)

ince the function ϕ is rapidly growing, for some ε > 0 and for large n we have

log
xn

W (x)
= n log x − ϕ(x) ≤ n log x −

ϕ(An)

A1+ε
n

x1+ε
=: gn(x).

urthermore,

g′

n(x) =
n
x

− (1 + ε)xε n

A1+ε
n

,

and we conclude that the only critical point x∗ of the function gn satisfies the relation(
x∗

An

)1+ε

=
1

1 + ε

nd, hence, the function gn decreases on [An, ∞). Therefore,

log
xn

W (x)
≤ gn(x) ≤ gn(An) = n log An − n

or x ≥ An . Combining this with (3), we get

sup
x≥An

{
|Tn(x/An)|

W (x)

}
≤

2n

en
,

or n large enough. □
6
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3.2. Results of Mergelyan and Videnskii

The result of Mergelyan already mentioned in the introduction is based on a lemma by
idenskii ([15], Lemma 3). For the reader’s convenience, we provide here the proofs of the
ersions of both results, which suffice for our purposes.

heorem 3 (Mergelyan, [13]). Let ϕ be a function satisfying (2) and such that ϕ(t) is a convex
unction of log t . Then we have

log En(∞, W ) ≲ −

∫ ln

0

ϕ(x)dx
x2 + 1

,

ith ln =
A2n

2e
.

Lemma 3 (Videnskii, [15]). Let ϕ(t) be a convex function of log t . Set

Mk = sup
x>0

x2k

W (x)

and

F(x) :=

∞∑
k=0

x2k

2k Mk
.

Then F(x) ≲ W (x) ≲ x2 F(2x), x ≥ 1.

emark 5. Note that this lemma can also be derived from the results of [1].

.2.1. Proof of the Videnskii lemma
The sequence (Mk)k increases for k sufficiently large. Set

T (x) := sup
k≥0

x2k

Mk
, x > 0.

ince the function t ↦→ ϕ(exp t) is convex, the graph of the function

log T (exp t) = sup
k≥0

(2kt − log Mk)

s an infinite polygon consisting of the supporting lines of ϕ(exp t) with even slopes. Therefore,
e have T (x) ≤ W (x) for large |x |. Then

F(x) :=

∑
k≥0

x2k

2k Mk
≤

∑
k≥0

T (x)
2k

≲ W (x), x ∈ R.

Next, let K t − B be (some) supporting line of the graph of the convex function ϕ(exp t) at
sufficiently large point t∗:

ϕ(exp(t)) ≥ K t − B, ϕ(exp(t∗)) = K t∗
− B, K , B ∈ R+.

f the slope K is even, then B = log MK/2 and T (exp(t∗)) = W (exp(t∗)). Otherwise, let m be
he integer part of K/2. Then log Mm ≤ B and we have

ϕ(exp(t∗)) = K t∗
− B ≤ K t∗

− log M ≤ (2m +2)t∗
− log M ≤ log

(
T (exp(t∗))

)
+2t∗,
m m

7
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that is

W (x) ≤ x2T (x)

or sufficiently large x = exp(t∗). Thus we obtain

F(x) =

∑
k≥0

x2k

2k Mk
≥

∑
k≥0

x2k

22k Mk
≥ T

( x
2

)
≳ x−2W (

x
2

),

which proves the lemma. □

3.2.2. Proof of the Mergelyan theorem

We set Mk = sup
x>0

x2k

W (x)
, and bk :=

1
2k Mk

, so that

F(x) =

∑
k≥0

bk x2k .

ix n ≥ ϕ(0). By the definition of Mk it is clear that bk ≤
W (x)
2k x2k

for every x > 0. Taking
x = A2n we see that

bk ≤
e2n

2k A2k
2n

.

Consider the polynomial P2n :=

n∑
k=0

bk x2k . For |x | ≤
A2n

e
, we have

0 ≤ F(x) − P2n(x) ≤

∞∑
k=n+1

bk x2k
≤

∞∑
k=n+1

e2n

2k A2k
2n

x2k
≤

∞∑
k=n+1

e2n

2ke2k
≤ 1/2.

ince M0 ≤ 1, we have b0 ≥ 1, F(x) ≥ 1, x ∈ R, and, hence,

P2n(x) ≥ F(x)/2, |x | ≤
A2n

e
. (4)

Let Qn be a polynomial of degree n, with no zeros in the upper half plane and such that
|Q2

n(x)| = P2n(x), x ∈ R. Then

F(x) ≥ |Q2
n(x)| = P2n(x) ≥ 1.

y (4) we have

|Q2
n(x)| = P2n(x) ≥ F(x)/2, |x | ≤

A2n

e
.

y the Poisson formula and the Videnskii lemma we obtain that (ln :=
A2n

2e
):

log |Q2
n(i)| =

1
π

∫
+∞

−∞

log |Q2
n(x)|

x2 + 1
dx ≳

∫ 2ln

0

log |Q2
n(x)|

x2 + 1
dx

≳
∫ 2ln

0

log F(x)
x2 + 1

dx + O(1) ≳
∫ 2ln

0

log W ( x
2 ) − 2 log x

x2 + 1
dx + O(1)

≳
∫ 2ln

0

ϕ(x/2)
x2 + 1

dx + O(1) ≳
∫ ln

0

ϕ(x)
x2 + 1

dx, n → ∞.
8
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By the definition of En(∞, W ) we see that

log En(∞, W ) ≤ log
 Qn

Qn(i)


∞,W1

≤ log ∥Qn∥∞,W − log |Qn(i)|

≲ log ∥F∥∞,W −

∫ ln

0

ϕ(x)
x2 + 1

dx ≤ −

∫ ln

0

ϕ(x)
x2 + 1

dx .

hich proves the Mergelyan theorem. □

. Proof of the main theorem

.1. Equivalence of reformulations of the main theorem

Recall that the main result is presented in the introduction in two equivalent reformulations.
To show how Theorem 2 implies Theorem 1 we use the following lemma (as was noted in

he introduction the converse statement holds due to Remark 4).

emma 4. If a function ϕ is normally growing, then∫ a

0

ϕ(x)dx
x2 + 1

≳
ϕ(a)

a
, a ≥ 1,

while for a rapidly growing function ϕ we have∫ a

0

ϕ(x)dx
x2 + 1

≲
ϕ(a)

a
, a ≥ 1.

Proof. If the function ϕ(x)/x2 decreases for x ≥ A, then we have∫ a

0

ϕ(x)dx
x2 + 1

≥

∫ a

A

ϕ(x)dx
x2 + 1

≥
ϕ(a)
a2

∫ a

A

x2dx
x2 + 1

≳
ϕ(a)

a
, a ≥ 2A.

f ϕ(x)/x1+ε increases for x ≥ A and for some ε > 0, then∫ a

0

ϕ(x)dx
x2 + 1

≲
∫ a

A

ϕ(x)dx
x2 + 1

≲
ϕ(a)
a1+ε

∫ a

A

x1+εdx
x2 + 1

≲
ϕ(a)

a
, a ≥ A. □

Combining Theorem 3 with Lemma 4 in both cases we get

− log En ≃

∫ An

0

ϕ(x)dx
x2 + 1

+
ϕ(An)

An
.

hanging the variables we obtain

− log En ≃

∫ An

0

ϕ(x)dx
x2 + 1

+
ϕ(An)

An
≃

∫ An

1

ϕ(x)dx
x2 +

n
An

=

∫ 1

0
min

(
ϕ

(
1
x

)
, n
)

dx,

which yields the statement of Theorem 1. □

4.2. Estimating log En for the uniform norm

4.2.1. The lower bound
Here we prove the following result.
9
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Lemma 5. Given a weight W we have

log En ≳ −

∫ An

0

ϕ(x)dx
x2 + 1

−
n
An

,

here En = En(∞, W ).

roof. Let Pn be an extremal polynomial of degree n such that Pn(i) = 1 and En = ∥Pn∥∞,W1 .
hen, using the Poisson integral formula for the half-plane and the subharmonicity of log |Pn|,
e get

0 = log |Pn(i)| ≤

∫
R

log |Pn(x)|dx
x2 + 1

=

(∫
|x |<a

+

∫
|x |≥a

)
log |Pn(x)|dx

x2 + 1
=: I1 + I2, (5)

here a > 1 is some parameter to be chosen later.
We start by estimating the first integral:

I1 =

∫ a

−a

log |Pn(x)|
x2 + 1

dx

≤

∫ a

−a
log

⏐⏐⏐⏐ Pn(x)
√

x2 + 1W (x)

⏐⏐⏐⏐ dx
x2 + 1

+

∫ a

0

log (x2
+ 1)

x2 + 1
dx + 2

∫ a

0

ϕ(x)
x2 + 1

dx (6)

≲
∫ a

−a
log ∥Pn(x)∥∞,W1

dx
x2 + 1

+

∫ a

0

ϕ(x)
x2 + 1

dx ≲ log En +

∫ a

0

ϕ(x)
x2 + 1

dx,

or a large enough.
The next step is to estimate the second integral in (5) with the help of the Tchebyshev

nequality (Section 3.1):

I2 ≤

∫
∞

a

log |Tn(x/a)|
x2 + 1

dx +

∫
∞

a

log
(
max[−a,a] |Pn|

)
x2 + 1

dx

≲
∫

∞

a

n · log(x/a)
x2 + 1

dx +

∫
∞

a

log
(
max[−a,a] |Pn|

)
x2 + 1

dx

≲
n
a

+

∫
∞

a
log ∥Pn∥∞,W1

dx
x2 + 1

+

∫
∞

a

log
(
sup[−a,a] W1

)
x2 + 1

dx

≲
n
a

+ log En +
1
a

log (W1(a)) ≲
n
a

+ log En +
ϕ(a)

a
.

By (5) and (6) we conclude that

− log En ≲
∫ a

0

ϕ(x)
x2 + 1

dx +
n + ϕ(a)

a
.

Finally, let a = An = ϕ−1(n). Then

− log En ≲
∫ An

0

ϕ(x)
x2 + 1

dx +
n
An

,

hich proves the lemma. □

.2.2. The upper bound
For normally growing ϕ we just use the Mergelyan Theorem. Indeed, since the function

(x)/x2 decreases for x large enough, we have ϕ(2ex) ≲ ϕ(x). Therefore,∫ An ϕ(x)dx
≤

∫ A2n ϕ(x)dx
=

∫ A2n/(2e) ϕ(2ex)
2edx ≲

∫ A2n/(2e) ϕ(x)dx
. (7)
0 x2 + 1 0 x2 + 1 0 4e2x2 + 1 0 x2 + 1
10
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p

w

4

c

4

4

a

a

To obtain an upper bound in the case of rapidly growing functions ϕ we use the Tchebyshev
olynomials. Taking into account Lemma 1, Lemma 2, and the fact that

sup
0<x≤An

{
|Tn(x/An)|

W (x)

}
≤ 1,

e get by the definition of En:

En ≤
∥Tn(x/An)∥∞,W1

|Tn(i/An)|
≤

∥Tn(x/An)∥∞,W

|Tn(i/An)|

≤
1

|Tn(i/An)|
max

(
1, sup

x>An

{
|Tn(x/An)|

W (x)

})

≲ max
(

1,
2n

en

)(
1
An

+ 1
)−n

≤

(
1
An

+ 1
)−n

,

and finally

log En ≲ −
n
An

. (8)

.2.3. Conclusion
Estimates (7), (8) together with Lemma 4 and Lemma 5 give Theorem 2 in the uniform

ase.

.3. Estimating log En for the weighted L p space, 1 ≤ p < ∞

.3.1. The upper bound
Recall that for α ∈ R we use the notation

Wα(x) := W (x)(x2
+ 1)α/2.

Given 1 ≤ p < ∞, n ≥ 0, we choose a polynomial Pn of degree n such that

En(∞, W−2) =

 Pn
√

x2 + 1


∞,W−2

= ∥Pn∥∞,W−1

nd |Pn(i)| = 1. Then

E p
n (p, W ) ≤

 Pn
√

x2 + 1

p

p,W
=

∫
R

⏐⏐⏐⏐ Pn(x)

W (x)
√

x2 + 1

⏐⏐⏐⏐p

dx

=

∫
R

⏐⏐⏐⏐ Pn(x)
W−1(x)

⏐⏐⏐⏐p dx
(x2 + 1)p

≲ sup
x∈R

⏐⏐⏐⏐ Pn(x)
W−1(x)

⏐⏐⏐⏐p

= E p
n (∞, W−2).

Note, that for a rapidly growing function ϕ we have W (x) ≳ e|x |, while for a normally
growing function W (x) ≳ (x2

+ 1)2 (see Lemma 3). In both cases it follows that

W−2(x) =
W (x)
x2 + 1

≳
√

W (x),

nd we get

log E (p, W ) ≲ log E (∞, W 1/2).
n n

11
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a

w

L

P

T
t

T
[

a

Since the function ϕ/2 grows regularly, we can use Theorem 1 for the case p = ∞ (which is
lready proved) to obtain that

log En(p, W ) ≲ −

∫ 1

0
min

(
1
2
ϕ

(
1
x

)
, n
)

dx ≲ −

∫ 1

0

1
2

min
(

ϕ

(
1
x

)
, n
)

dx,

which gives the upper estimate in Theorem 1 for 1 ≤ p < ∞.

4.3.2. The lower bound
Now, let Pn be the extremal polynomial of degree n for the L p norm, such that Pn(i) = 1

and

En(p, W ) = ∥Pn∥p,W1 .

Then

0 ≤

∫
R

log |Pn(x)|dx
x2 + 1

=

(∫
|x |<An

+

∫
|x |≥An

)
log |Pn(x)|dx

x2 + 1
=: I1 + I2, (9)

here An = ϕ−1(n) as before.
To estimate the first integral we use the Jensen inequality:

I1 =

∫ An

−An

log
⏐⏐⏐⏐ Pn(x)

W (x)
√

x2 + 1

⏐⏐⏐⏐p dx
x2 + 1

+ 2p
∫ An

0

(
ϕ(x) + log

√
x2 + 1

) dx
x2 + 1

≲ log
(∫ An

−An

⏐⏐⏐⏐ Pn(x)

W (x)
√

x2 + 1

⏐⏐⏐⏐p dx
x2 + 1

)
+

∫ An

0

ϕ(x)dx
x2 + 1

≲ log En(p, W ) +

∫ An

0

ϕ(x)dx
x2 + 1

. (10)

To estimate I2 we use the following lemma.

emma 6. Let Q be a polynomial of degree n, a > 1 and p ≥ 1. Then

max
[−a,a]

|Q|
p ≲

n2

a

∫ a

−a
|Q|

pdx

roof. Let x0 ∈ J := [−a, a] be such that

max
J

|Q| = |Q(x0)|.

hen for every x ∈ J1 :=

[
x0 −

a
2n2 , x0 +

a
2n2

]
∩ J there exists ξ on the interval J ∩ J1 such

hat

|Q(x) − Q(x0)| = |x − x0| · |Q′(ξ )| ≤
a

2n2 |Q′(ξ )|

herefore, applying the classical Markov inequality [11]; [5, Theorem 5.1.8] on the interval
−a, a], we obtain

|Q(x) − Q(x0)| ≤
a

2n2 |Q′(ξ )| ≤
a

2n2

n2

a
|Q(x0)| ≤

1
2
|Q(x0)|,

nd, hence, we have

|Q(x)| ≥
1
|Q(x0)|, |x − x0| ≤

a
.

2 2n2

12
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p

b

w □

A

c
r

R

Thus,∫ a

−a
|Q|

pdx ≥

∫
J∩J1

|Q|
pdx ≥

a
4n2

1
2p

|Q(x0)|p,

roving the lemma. □

Finally, we turn to estimating I2. By the Tchebyshev inequality,

I2 ≲
∫

∞

An

log |Tn(x/An)|dx
x2 + 1

+

∫
∞

An

log
(

max
[−An ,An ]

|Pn|

)
dx

x2 + 1

≲
∫

∞

An

n · log(x/An)dx
x2 + 1

+ log
(

max
[−An ,An ]

|Pn|

)∫
∞

An

dx
x2 + 1

.

By Lemma 6, we obtain that

I2 ≲
n
An

+
1
An

· log
(

n2

An

∫ An

−An

|Pn|
pdx

)
≲

n
An

+
log n2

An
+

1
An

log
(

W p(An)(A2
n + 1)p/2

An

∫ An

−An

⏐⏐⏐⏐ Pn(x)

W (x)
√

x2 + 1

⏐⏐⏐⏐p

dx
)

≲
n
An

+
p log(A2

n + 1) − 2 log An

An
+

1
An

log
(

W p(An)
∫ An

−An

⏐⏐⏐⏐ Pn(x)

W (x)
√

x2 + 1

⏐⏐⏐⏐p

dx
)

≲
n
An

+
ϕ(An)

An
+

1
An

log En(p, W )

≲
n
An

+ log En(p, W ),

ecause n = ϕ(An).
Combining this estimate with (9) and (10) we get

− log En(p, W ) ≲
∫ An

0

ϕ(x)dx
x2 + 1

+
ϕ(An)

An

hich completes the proof of Theorem 2 and, hence, of Theorem 1, in the case 1 ≤ p < ∞.
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