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Abstract

We study the uniformly bounded orthonormal systémof functions

ul? (x) = ¢\ (cosx)(sinx)’, x € [0, ,

where{go,({“)};'lozo (4> 0) is the normalized system of ultraspherical polynomials. We investigate some
approximation properties of the syste#) and we show that these properties are similar to one’s of
the trigonometric system. First, we obtain estimates &fnorms of the kernels of the syste#,.
These estimates enable us to prove Nikols$ipe inequalities for/ ;-polynomials. Next, we prove
directly thatZ; is a basis in each’,, 1 < p < oo, wherewis an arbitraryA ,,-weight function. Finally,

we apply these results to get sharp inequalities for the#gsipproximations ir.4 in terms of the
bestZ ,-approximationsir.” (1< p < g < 00). For the trigonometric system such inequalities have
been already known.
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1. Introduction

Let 0</ < oo andm,(x) = (1 — x9)*Y2 x e (=1, 1). Denote by{<p§f~>};;°=o the
orthonormal basis df?([—1, 1], m ) obtained from{x"}>° , by the Gram—Schmidt process.
Set

uP(x) = pP (cosx)(sinx)*, x € [0, 7.

Then the systeiy) = {u,ﬁz)}g‘;o is an orthonormal basis ib?[0, 71]. Moreover, this system
is uniformly bounded if0, =] (see[13, (7.33.6)],

WP )I<M;, xel0n], n=01,.... (1.1)

For A = 0 this is the cosine system

1 2
UE)O)(X) = ﬁ u'(10)(x) = \/;COSnx, neN

and forA = 1 we get the sine system

12 .
u,(ll)(x) =,/ —-sinn+1x, n=01....
T
Askey and Wainge}2] proved the following transplantation theorem:

Theorem A. Let0 < 1 < 00, 1 < p < o0, and let{a,} be a sequence of real numbers.
Then the seried ", anu,(f‘)(x) is the Fourier series of some functigh € L?[0, n] if
and only if the serie§ " ; a, cosnx is the Fourier series of some functigne L?[0, =].
Moreover ¢, ll¢ll, < Il fllp <cpll@llp, ¢, > 0.

Itfollows immediately that the systebr), is a basisin each?[0, 7], 1 < p < oo (adirect
proof of this result will be given below). Therefore the analysis of general approximation
properties of this system is a natural and relevant problem. Of course, a lot of results
in this direction can be derived by transplantation from the theory of trigonometric series.
Nevertheless, a more extended study of the sy&teraquires an independent development
of basic tools of approximation theory for this special case.

Let 0< /A < oo. For any integern >0 denote byj)f”) the linear span ofu,({’b}zzo, ie.,
the set of all functions
n "
Un() =Y au’(x),  ax e R. (1.2)
k=0

These functions are said to big-polynomials. For everik we have

k
K (4
coskx = Z y§ )905 ) (cos).
Jj=0
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Thus,u(”) coincides with the set of all functioris, (x) = 7, (x)(sinx)*, where
vl

n
T,(x) = Z ap coskx (o € R)
k=0

are even trigonometric polynomials of a degree at most
Let f € LP[0, ] (1< p<o00). Denote byE,E’D(f)[7 the best approximation df by
polynomialsU, uj"’,

E’(I/l)(f)p = inf(n) ||f - Un”p'

Unel,

One of the important questions in the Embedding and Approximation theories is to
determine how certain smoothness or constructive properties of a funttien.” are
reflected on its corresponding properties in a more stighhgorm(qg > p). Notice that the
first results in this direction concerning the embedding of Lipschitz classes were obtained
by Hardy and Littlewood6]. Afterwards, sharp different norm inequalities for moduli of
continuity were found by Ul'yanoy15]. In the case of constructive characteristics (best
approximations) the question can be formulated as follows: giv€mp 1< ¢ < oo, find
sharp relations between best approximations/frand L9.

For the trigonometric system this problem was posed by Ul'ydiéy and Stechkin.

Its complete solution for 1< p < g < oo was obtained irf8]. Let E,,(f), be a best
trigonometric approximation of a functidnn L". It was proved iff8,9] thatfor 1< p <
q < oo

o0 1/q
En(f)q <c (Z (k—n+ 1)q/p_2(Ek(f)p)q> (13)

k=n

and this inequality is sharp fany rateof decay of the best approximatio$ (f),. The
same results are also true in the case 1; in particular, inequality (1.3) fop = 1 can be
deduced from the cage> 1.

Initially, this work started from the similar question for the best approximatiornig by
polynomials. Of course, it was clear in view of Theorem A that in the gasel the same
results hold for all. > 0. Nevertheless, we were interested in the gasel as well as in the
direct proof forp > 1. This led us to the study of such problems as estimates of the kernels
of the U,-system, relations between different normsl.gfpolynomials (Nikol'ski-type
inequalities), specidk;-polynomials with some extremal properties.

The main results of this paper are the following. In Section 2 we obtain estimates of
L?-norms of the kernels of the systdify. These estimates enable us to prove Nikol’ski”
type inequalities fot/,-polynomials (Section 3). Next, in the Section 3 we consttyect
polynomials of the form

y
Uy u(x) = Z au”(x), 0<pu < vare integers
k=p
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which have optimal order of growth of the”-norm for aIIp>p0 > 0. In Section 4 we

give a direct proof of the basis property of the systénin L1 [0, 7], 1 < p < oo, where

w is an arbitraryA ,-weight function. In particular, this gives a short proof of the Pollard’s
mean convergence theorem for ultraspherical polynomials. Finally, in Section 5 we apply
these results to get an analogue of inequality (1.3) for thelldesipproximations and to
prove its sharpness. In this section we follow the scheme of the i@y¥s

2. Kernels of the systenid,

In this section we will prove estimates of the kernels of the systgmAssume that > 0.
Let P,Sﬂ') be the sequence of ultraspherical polynomials defingtl3n4.7] Then we have

gpg') x) = O(,(fl) P”U') (x), (2.1)
where

“)—2;1”'4”r0>(@%%2£%fég>yz
n

In what follows we use; andC ) to denote constants (in every appearance, in principle
different) depending only on the parameter

Lemma 1. Let0 < 4 < oo. Then for every € [0, n] andn € N

B, (x)

P (x) — 1), () = byl () sinx + (1 coso)ulP (x) + (2.2)

whereb; is a positive constant and
1, (0)I<C;, xe€[0,xn], n=0,1,....
Proof. We shall use the following identitjd 3, (4.7.27)]

(n+ 200 PP (1) — (0 + DA (1) = 201 = PP ).

Taking into account (2.1), we get

A ) hntl o) po
P (0 — @)1 = (0‘,(1 )m — 0,51 ) Pa

22
) D1 _ (A+1)
+ A -1, )+ —|—2/1“” 11—t )P (1).

Observe that

wntl _ o 1
n) +2/1 ”+1<1+0<n
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and

n+2."
Thus, we have

o)) — 020 = b1 — el P 1) + L - e (1)

1 A
+0 (;) (=00 + 00|

2, 1
—L D = oD (bﬂ+0< )) b) > 0.

and, as a consequence,

(A)(X) ()) (JC) =b; M(H_l)(x) sinx + (1 — COSx)u(;)(x)
1
+0 <—> [ Y+ u(“l)(x)smx]
n
By virtue of (1.1), this yields (2.2). The lemma is proved.]

Denote

n

KP @ =3 ud ud o).

k=0
From the Christoffel-Darboux formu[43, 3.2]

) _ Tn A ) (,1) )
Ky = L [uf) o () = uf ou )y 0
_ Tn ) ) (/1)
" cosx — cost ["" @ ( 1) = (x))
+uP (x) (ufﬁ (t) — ufﬁl(t))] , 2.3)
where

i<y, < meN; ¢, e >0).
Notice also that (sef.3, (4.1.3)]

uP(r—x) = (=D"uP(x), xel0 ] (2.4)
Lemma 2. Let0 < 4 < oo. Then for any: € N andx, 7 € [0, n]

|K P (x, 1) <c;mingn, [x — 7). (2.5)
Proof. By (1.1),

IKP (x, )| <MP(n + D). (2.6)
We shall prove that

IKP (x, 1) <cjlx — 1|72 2.7)
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First suppose that € [0, /2]. For anyr € [0, 7] we have

. —t| . t 1
| cosx — cost| =2$|n|x lSIn)i>—|x—t|(x+t). (2.8)
2 2m2
Denote
A1) = 0 0ulP (1) — ulP 0ul ). (2.9)
By (1.1),

An(x, ) <M (P () — w3 01+ 1P (0 — ull) ().
It follows from (2.2) that for any € [0, «]

P () — ul ISy + /).
If max(x, t) >1/n,thenA, (x, t) <c,(x+1); applying (2.8), we get (2.7). i, € [0, 1/n],
then (2.7) follows immediately from (2.6). Thus, we have proved inequality (2.7) for
[0, /2], ¢t € [0, =]. If x € [n/2, =] and¢ € [0, ], then by (2.4) we have

KA, ) =KP(m—x,n—1)

and this case immediately reduces to the preceding one. The lemma is pr@ved.

Let O< p < v be integer numbers. Denote

vV
: 0
KA 0 =Y ul mud o).
k=u

If u>1,then
KA@.n =KD - KD (o).
As usual, we sep’ = p/(p — 1) for 1< p<oo.
Corollary 1. Let0O < A < oo. Then for every € [0, 7]
1K e, ) < (pHYYPepv = Y7 (1 < p < 00) (2.10)
and
1K e, ) e < e log(y — o), (2.12)
wherec; is some positive constant
Proof. It follows from (1.1) and (2.5) that for eveuy, ¢ € [0, n]

|K e, D <cminGy — p, [x — 1] 7h).
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For a fixedx € [0, n] denote
E,={tel0n]:|x—t|<Ov—w™}, E{=I[07]\E,.

Then for 1< p < oo we have

/ KA. dt = (/ />|K())(x NP dt

< 2c/1 [(v WPty / P dz} .
(v—mw~1
This implies (2.10) and (2.11).0J

In what follows we will use the Mehler’s formuld, p. 177}

P (x) = 1, (A (sinx)r f " __codn+ Ay
o (cosy — cosx)l—4

dy (2.12)

for everyx € [0, ] and4 > O, where

227121 (j 4 1/2 O +22)\"?
") G2 (AT 20\ iy
' (24) I'n+1)
Denote
L = sup KM (x,)ll, A<p<oo); LA =L

x€[0,n]

Theorem 1. Let0 < 4 < oo and1< p <co. Then there exist positive constants ¢ and
depending only on p andsuch that for every € N

'p1=1/p éL,’,”)‘écnlfl/p, when 1 < p< oo, (2.13)

clog(n + )<L <clog(n + 1), when p = 1. (2.14)

Proof. The second inequalities in (2.13) and (2.14) follow by Corollary 1.
Letn, = n/(8(n+1)). From (2.12) it easily follows that for any<lk <n and 0< x <7,

w0k [ =yt y = Gk, (2.15)

wherec; > 0. Thus, for 0<¢ <1, we have

n

k:[n/Z]

Hence,
Y . 1’[n )
fo |1<,<,“<nn,r)|l’dr>f0 |KP (. 017 dt
r’ll
> cin”(“l)/ P dt}c;n”_l, ¢, >0.
0 )

This yields the left-hand side inequality in (2.13).



180 V.1. Kolyada, F. Marcellan / Journal of Approximation Theory 133 (2005) 173—-194

To prove the first inequality in (2.14) we will proceed from formula (2.3). Using notation
(2.9) and applying (1.1), (2.2), and (2.15), we get for amy[1/n, /2]
Ay 1) = 1)) = ulP Ol ()]
— Myl n,) — uP () = catlul7P @0 = (1% + /).

Further, forr € [1/n, n/2] we have

0 < cosy, — cost = 2sin <2

sin

=, t+nn
2 2

Using these estimates and (2.3), we get

T ) n/2
/ K, 1) dt 2/ KX, 1) dt
0

1/n
n/2 T
o [ o - ¢ (5+1).
1/n (2 )

Finally, in the last integral we will use the asymptotic formula (B (8.21.18)]

uP(x) = (2/m)Y2 cos(n + Ax — Im/2) + 1,(x), (2.16)
where

[(I< 2, x e (0.7/2]. (2.17)

nx

We obtain

/2
/ Ju D (r>| L @/mt? f |cos(n + At — (A + Dn/2)] ? —c
1/n 1/n

/
2 C)

5 logn,

wherec’, > 0. This implies the first inequality in (2.14). The proof is completed!

3. U,-Polynomials

Using estimate (2.10), we get the following Nikol'skype inequality (sed11],
[3, p. 102).

Theorem 2. LetO< u < v be integer number® < 1 < oo, and
v 5
Upp) = U@) = Y awu’ (), ax € R

Thenforany < p < g<oo

1Ty ullg <cp (v — wYP7 YUy ll (3.1)
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Proof. First suppose thatd p < co. We have

Ux) = /on UMK (x, 1) dr.
From here,
@IS NI IKA @ )y
and by (2.10)
U lleo <c2p™?' (v = Y7 IU . (3-2)
Let now O< r < 1. Using (3.2) withp = 1, we have

[Ulloo < C;.(V—ﬂ)/o |U(x)|dx

T
<c(v— u)uUnigf/O |U )" dx.
It follows that
1Ulloo <[e; (v — I U, (3.3)

Thus, we have (3.1) for < p < 00,g = oo. Letnow 0 < p < g < oo. Then by
inequalities (3.2) and (3.3),

T T
/|U(x>|‘1dx<||U||Z.?”/ U(0)|” dx
0 0
<TI0 —parir,

whereé, ; = p'/7'c;, if p>1, andé, ; = ¢;/?,if0 < p < 1. This implies (3.1). The
theorem is proved. [

The following lemma presents a constructiortgfpolynomials with optimal order of
growth of theL”-norm for all p > pg > 0.

Lemma 3. Let0 < 1 < oo and pg > 0. Then for every integer numbeds< < v there
exists a polynomial

v
Uy ) =Y au’ (), ax € R, (3.4)
k=p

such that for anypo < p <o
=+ DY LNU lp <" =+ DY, (3.5)

wherec’ and¢” are positive constants depending only/band po.
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Proof. First notice that for any > 0

s "
/ P )P dx>c,; >0 (k=0,1,..). (3.6)
0

Indeed, SInCGHM())HZ = 1, for p>2 (3.6) follows by Holder’s inequality. If < p < 2,
then by (1.1)

T . s N
1:/ (u,ﬁ“(x))zdngf*P/ u® (x)]P dx,
0 ’ 0

which implies (3.6).

Denotem = [(Apo) 1] + 1. If v — u < 2m, then we seUy, ,(x) = uy, )(x) In this case
inequalities (3.5) follow from (3.6) and (1.1). Suppose that i >2m. Clearly, we can
assume that the numbee (v — w)/(2m) is a positive integer. Let

v+ u
2

Next, denote

=pu+ms=v—ms. 3.7)

n —=

Ux) = Uy u(x) = s¥7uP (x) (9P (cosx))™.

By the Dougall’s formula (sefL, p. 319),

n+s

PP P = > aplw.

k=n—s
Applying this equalitymtimes, we get that

n+ms

oL DI = Y ael o).

k=n—ms

By (3.7), it follows thatU is a polynomial of form (3.4).
Further, we have far € (0, n/2] (se€[13, (7.33.6))

| (cosx)| < min(s”, x~4).

Using this inequality, we obtain for any> po

T n/2
/ |U(x)|"’dx=2/ |U(x)|P dx
0

1/s n/2 X
< esAmAp ( / / ) ) (cosx)|"P dx
1/s

< C/S(l ml)p |: mpli— l+/ Ampdxi| gc//spfl
1/s

(note thatimp > 1). This implies the second inequality in (3.5).
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Next, we will prove the first of inequalities (3.5). Let = n/(8(k + 4)). By (2.15) we
have
lpP (cosx)| >es” (0<x<n,) and ulP(n,)>c (c>0).
Thus,||U|leo = c(v — u). By Theorem 2, it follows that for any > 0
1Ullp=ctv = P |Ullee = (v = 1P, ¢ >0,

The proof is completed. OJ

Remark 1. In the trigonometric case the Jackson’s kernels can be used to prove Lemma 3
(se€[8]). Namely, in this case the function

v
Uy pu(x) = Zak Ccoskx
k=p

satisfying condition (3.5) can be given by

R 2r
sin((s + 1)x/2)> cosnx,

_ 12
Uv”u(-x) =S < S'n(-x/z)

wherer = [(2po) 11+ 1,5 = (v — w/(2r), andn = (v + p)/2 (we assume thatis an
integer).

Remark 2. In the caseu = 0 we have a more simple proof of Lemma 3. Moreover,
in this case non-negative polynomials can be constructedZ Let0 and pp > 0. Set
r=[(4+1/po)/21+1,m =[v/r]. Then
sin((m + 1)x/2)\ %
sin(x/2)

is an even trigonometric polynomial of degrae < v. Thus, the function

Iy(x) = (

Uy (x) = VT2 7, (x) (sinx)” (3.8)
belongs tcui“). Furthermore, for some constant- 0 we have

% YLyt <Uy(x) gcvi"'lx)', x €[0,1/v]
and

Uy(x) <cvV 2342y e [1)v, 7).
Using these inequalities, we easily get that

VYR Uy, <VEYP (> 0)

for any p > po.

Remark 3. It follows from Lemma 3 that inequality (3.1) is sharp for ah 0.
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4. Basis property

For every polynomial (1.2) we hav&,(0) = U,(nr) = 0. Therefore, if a function
f € CI0, n] does not vanish at the endpoints of the intef@alz], then the sequence of

the best approximationg” (f)¢} does not tend to 0 (we s&” (f)c = EY (f)oo for
f € C[0, w]). Denote byCy[0, x] the closed subspace 6f{0, =] which consists of all
functions f € C[0, =] such thatf (0) = f(x) = 0.

Proposition 1. If f € Co[O0, =], then for everd < 1 < oo
lim EX(f)c =0.
n—oo
Proof. Lete > 0. Sincef € Co[O0, «], then there exist a closed intenvalc (0, 7) and a
functiong € C[0, =] such thatg(x) = O forallx € [0, #] \ I and
&
If—gllc < 5

The functionp(x) = g(x)(sinx)"1 is uniformly continuous 0, 7). Thus, there exists a
trigonometric polynomial

n
T,(x) = Z oy COSkx
k=0

such that
lp(x) — T, (x)| < % for everyx € (0, n).
SetU, (x) = T, (x)(sinx)*. ThenU, ¢ uj”). Furthermore, for every € (0, ©) we get
. ] £
lg(x) — Up(x)| = |@(x) — T, (x)|(Sinx)” < >

It follows that|| f — U, |lc < €. This completes the proof.(]

Letw be a non-negative measurable functiofdnz]. Denote byL! [0, 7] (1< p < o0)
the space of all measurable functidrsich that

n 1/p
||f||,,,wz</0 |f(x)|pw(x)dx> < .

Corollary 2. Letw e L[0, 7] be a non-negative weight function aficc A < co. Then
U;-polynomials form a dense subset in evef)(0, 7], 1< p < oco.

Recall that a non-negative locally integrable functioron R is said to satisfyA ,-
condition(1< p < o0o) if

1 1 p-1
sup— [ w(x)dx <— /w(x)_l/(p_l) dx) < 00,
1 i [ Ji

where the supremum is taken over all intendals
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We have a similar definition for functiongin [0, ] (in this case we take only intervals
I C [0, x]). It is easy to see that if a functiom satisfiesA ,-condition in[0, n] and we
extendw to the whole line as an evemzeriodic function, then the extended function also
satisfiesA ,-condition onR.

Next, for any functionp € L[—nx, 7] denote byC*¢p the maximal conjugate function
operator,

(C*p)(x) = sup

O<e<nm

1/ (p(t)cott_xdt
21 Je < |x—11<n 2

If 1 < p < oo and a Z-periodic weight functiorw satisfiesA ,-condition, then (sefl4,
p. 120, Theorem 2.12]5, p. 255)

7 1/p 7 1/p
</ I(C*q))(X)I”w(X)dx) <6</ I<P(X)|”w(x)dX> . 4.1)

—T —T
For f € L1[0, n] and 0< 4 < oo denote byS,E)‘)(f; x) the partial sum of the Fourier
series off,

SO0 =Y a(Hu ), aw(f) = fo F@u () dx.
k=0

We have

590 = [ O ar (4.2)
0

Theorem 3. Let0 < 1 < 00,1 < p < o0, and let w be a weight function satisfying the
A p-condition in[0, ]. Then for any functiory e LP10, 7]

IS (P lpow el Fllpw  (r=0,1,..). (4.3)

Proof. First we suppose thagt(x) = 0 forx € [n/2, n] andfis extended to the whole line
as Zr-periodic function such that(x) = 0, x € [—=, 0). Furthermore, as it has been noted
above, we may assume thats extended t@&R as even 2-periodic function. Fox € [0, «]

we denote

Ap(x) ={t € [0, /2] : |x —t[=1/n},  Bu(x) =[0,7/2]\ Ay(x).

By (4.2),
SO(f;x) = / FOKP (x, 1y di
Ap(x)
+ / FOKD (x, 1) dt = 00 (x) + 1 (0). (4.4)
Bn(x)

First, we have

0 ()| <en / ()] dt <cMF (),

By (x)



186 V.1. Kolyada, F. Marcellan / Journal of Approximation Theory 133 (2005) 173—-194

whereMf is the Hardy—Littlewood maximal function. Then (§&ep. 255)
Ienllpow <cIMfllpw < I Fllpow- (4.5)
Next, in order to estimatgo, || , we will apply formula (2.3). First, (2.3) implies that
KW (x,1)|<C forx e [2n/3, 7, t € [0, m/2]. (4.6)
Further, by (2.2),

uP (x) — ufl)jzl(x) = sinx [b (}Jrl)(x) +uP (x) tanz] + ﬁ"’ix), 4.7)

where
1B,()I<C; (xe€[0.7], n=0,1,...).

We have also

sint 1 t—x t+x
e (cot — + cot — ) . (4.8)
Now for ¢ € [0, n] set
fa®) = fOuP @), gat) = (1) [ w0+ uW(r)tanz}
Sincef(t) = 0forr € [n/2, n], we have

[fn O+ gD <clf@)], O0<r<m.

Extend the functiong;,, andg, to be 0 in(—=, 0) and then periodically with the perioct2
to the whole real line. Using (2.3), (4.7), and (4.8), we easily get far[0, 2r/3]

r—x t+x
lo,(x)] < ¢ ( / A0 (cot— — cot ) dt
An(x) 2 2
r— 1
+ / gn(t) (cot ol + cot +x> dt
An(x) 2 2

1 t
+_[ £ @) dt)_
n Ja, ) |COSx — coSt|

If 1 € A,(x), then| cosx — cost| > (x + t)/(nn). Thus, forx € [0, 27/3] we have

/2
If(t)ldt}
X+t

lon(X)[<c [(C*fn)(X) + (C*gn)(x) + /0

If x € [0, 7], then

/2
w(x)z/ 'f()'dt<c<Hso)(x>
X+t
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wherep(x) = Lf (=) 1 —r/2,01(%) and H ¢ is the Hilbert transform of. Hence (se¢5,
p. 255), 1Yl p.w <cll fllp.w- Next, by (4.1)

T

1/p
IC* fullpow + 1IC* gnll pw <c ( (I fun )+ Ign(X)I)”w(X)dX> <A S pow-
—n

Thus, we get

21/3 /p
</O Ian(X)l”w(X)dx> <cll fllpw- (4.9)

Further, applying (4.2), (4.6), Holder inequality, aag-condition, we obtain

b . 1/p
(/ IS (fs x)|!’w(x)dx)
2n/3

T 4 1/p
<c/0 If(t)ldt(/o w(x)dx) <N lpo-

From this inequality, (4.4), (4.5), and (4.9), it follows (4.3).
If suppf C [rn/2, n], then we consider the functiofi(x) = f(n — x). We have (see

(2.4))

SO (frm—x) = / fr =KD (= x, 0 dr
0

TC "
= / FOKP (x,0ydt = SP(f; x).
0
Therefore (4.3) follows from the preceding case. This completes the praof.

Corollary 3. Suppose thad < /1 < 00,1 < p < o0, and a weight function w satisfies the
A p-condition in[0, 7]. Then the systei; is a basis inL2 10, ).

To prove this, observe that the systafnis minimal in L% [0, x], that is, ncu,(f) belongs

to the closure of the linear span pff,}“)}n¢k in L1 [0, ] (see[7, p. 6). Indeed, ifQ is an
element in this linear span, then by orthogonality, (1.1), and Holder inequality, we have

1= /o“(u,(cxb(x)ydx = /c)”[ulix)(x) _ Q(x)]u,(c’l)(x) dx

n 1/p’
< Myewlul® = Qllpw,  Wherec, = (/ w(x)~ Y@= dx) < 00.
0

Now Corollary 3 follows immediately from the criterion of a basis property (gep. 10).

Remark 4. The systeni/; is not a basis neither io[0, 7] nor in L1[0, x]. Indeed, it is
easy to see that forany9 A < oco,n € N, ¢ > 0, andx € [0, n] there exists a function
f € Col0, ] with || f||c = 1 such that

, n .
S,E“(f;x)>/ KD (x,1)|dt —¢.
0
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Thus, we have
suplISP (f)llc : f € ColO, 7l | Il = 1} = LY.

Applying (2.14) and the uniform boundedness principle, we immediately get the following
statement:

Proposition 2. For any0 < 1 < oo there exists a functiorf € Co[0, 7] such that the
sequenc$||S,§}')(f)||C} is unbounded

The similar proposition is true in the caselof-norm.

Remark 5. Let 0 < 4 < oo and£? = LP([-1, 1], (1 — 1?)*~Y/2). Suppose that2/ +
1)/(2+1) < p < (224 1)/2. The Pollard’s mean convergence theofé@ Theorem 8.1]
asserts that for any functigne Ejf the series

00 1 )
D @ (1). cnlg) = / g A —13H2ar,
n=0 -1

converges t@ in ,Cf. Observe that this theorem can be derived from Theorem 3. Indeed,
it is easy to see that the functiam(x) = (sinx) @)~ satisfiesA ,-condition in[0, n]. Set
f(x) = g(cosx)(sinx)*. Then

en(g) = / Fou (x) dx
0

and

1 bd
/ |g(r)|"(1—r2)”‘—1/2dr=/ | f () [Pw(x) dx.
-1 0

Applying Theorem 3, we easily get Pollard’s theorem.

5. Different norm inequalities for best approximations

In this section we will study the following problems. First, giveg < ¢ < oo, find
sharp conditions on the best approximatitﬂf,é)(f)p of a function f € L”[0, ] which
guarantee thdtbelongs ta.?[0, =]. Furthermore, if these conditions hold, then find a sharp
estimate of£.” (f), in terms of E" () ,.

As it was mentioned in the Introduction, for the trigonometric system these problems
have been already solved. In our case we can apply the same scheme with the corresponding
modifications.

The crucial role is played by the following lemrf&10]:

Lemma 4. Let0 < p < oo and let{hi(x)} be a sequence of non-negative functions
hir € L*®[a, b] such that
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where the sequendd;} satisfies the condition
div1<fdr O<f<l k=12..).
Then for anyg € (p, o0)

00 1/q
<c(zymng%) :
P k=1

We will use also the following Hardy-type inequalities.

e¢]

>

k=1

Lemma 5. Leta, >0, ¢, > 0,and for somes € (O, 1)
8n+1<ﬂ8n n=12..)).

Then for any- > 0

o) n r 00
an (Z ock) chsna;, (5.1)
n=1 k=1

n=1

00 00 r 00
an_l (Z ock) échn_loc;. (5.2)
n=1 k=n

n=1
Inequality (5.1) was proven if9]; the proof of (5.2) is similar.

Theorem 4. Letl<p < ¢ < oo and0 < 1 < oo. Then for any functiory € L”[0, «]

o]

1/q
nm@wmwzwﬂwwﬂ : (5.3)

n=1

where c is a constant which only dependsor, and /.

Inequality (5.3) is a direct analogue of the Ul'vanov’s inequdlity] for the best approx-
imations by trigonometric polynomials. A generalization as well as an alternative proof of
Ul'yanov’s inequality was given iil0]. The proof in our case can be provided exactly as
in [10, Theorem 4hnd we omit it.

Next, it was proven i8] for 4 = 0 that inequality (5.3) is sharp for any rate of decay
of the best trigonometric approximatiods (/). Following the scheme given i8], we
immediately get a similar result for all> 0. The only change we need is to use polynomials
(3.8) instead of Fejér's kernels (sg& Theorem 3},

Now we will consider the main problem in this section, the relations between best approx-
imations in different norms. First, it follows immediately from (5.3) thatfet 2 < g < o0

]

1/q
WWMcWHW%m%ZWWWWN)- (5.4)

k=n
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However, it is easy to see that this inequality is not sharp if the seql{létﬁ@tef)p} tends to
0 sufficiently rapidly (for example, with a geometric rate). In the case of the trigonometric
system the sharp estimate was foun{Bh(see alsg9]). We will obtain similar results for
all 1> 0.
Since the systerty) is a basis inL?[0, 7] (1 < p < o0), then for everyf € L”[0, «]
we have

EP(Fp<Ilf = S Plp<cpEP (). (5.5)
Theorem 5. Let1<p < ¢ < o0 and0< A < oo. Then for any functiorf € L?[0, n]

oo ) 1/q
EX (frg<c <Z(k —n+ 14/ ”Z(E,E”(f)p)‘f) (5.6)

k=n

foreveryn =0, 1, ..., where c is a constant which only depends;oig, and /.

Proof. SetS, (x) = S,(f)(f; x). First we suppose that > 1. Denotes,, = E,(f)(f),,. Fix
n € N and set

. 1
Vi =n, Vi1 = Min {v}vk : svgésyk} , k=1,2,.... (5.7)
Then
1
e S8y and ey < 28y, V<Y < Vg1 (5.8)

2
By (5.5), we have (convergence ir?)

FO) = 80(0) + D[S () = Sy ()],

k=1
Thus,

: (5.9)
q

o0
>

k=1

EP (g <If = Sully <

wherehy (x) = |Sy,,,(x) — Sy, (x)|. Once again applying (5.5), we get

Il p <ILf = Svpallp + 1LF = Sl p Scéyy. (5.10)
Furthermore, by Theorem 2,

Ik lloe SeOres = v Pl p <€/ (ks = i)Y Pey,. (5.11)
Now Lemma 4 and inequalities (5.9)—(5.11) yield

) o] 1/q
EL (f)g<e <Z<vk+1 - vm/’"lsia) :

k=1



V.1. Kolyada, F. Marcellan / Journal of Approximation Theory 133 (2005) 173-194 191

Changing the order of summation, we get

00 00 Vi41—n
—-1 -2
D ke — )P < e Z g, Y, mi”
k=1 m=1
T,
k=kmn

wherek,, = min{k : vgyr1>m + n}. By virtue of (5.8),
o
Z e, <21+q831+n71
k:km

and we get (5.6).
Now assume thgt = 1. Choose some £ r < ¢. By (5.6) and (5.2), we have

1/q
EP (g <C<Zk‘1/’ 2ES) 1<f>r>q)

[os] 1/q
(Z om(q/r— 1)(E( o 1(f) )q)

m=0

<

00 q\ 1/q
(Z m(q/ril) (Z ”Sn+2“+1—l - Sn+2‘—l||r> )

v=m

1/q
" (Z 2m(q/r*1)||sn+2m+l_l — Sn+2m_1||[r]> .

m=0

Mg

Yaq
2nal=) f — Sn+zm_1||?>
0

8

2

Further, letU, (x) be thel{;-polynomial of best approximation of degre¢o f in L1[0, 7).
Using orthogonality, we have
n2ml-1

Y
Spyomt1_1(x) — Spyom—1(x) =/ f@ Z u,i)”) (x)u,((’l) (t)dt

0 k=n+2m

r n+2m+1_1 ; )
= / (f(O) = Uppnoa@®) Y u u (1) dr.
0 k=n-+2"
By Minkowski inequality and (2.10),
1S4 2m1_1 — Spy2n—1llr
r 1/r

7 n+2m+l_l

</ [f(t) = Upyom_1(2)] /(; Z )(x)u(“(t) dx dt

k=n-+2"
_ — A
< 2"V f — Upgonalls = 2" YIEY (1
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Thus, we get
) o0 . 1/q
EP(f)g <c <Z 2'"<q—l><E,§22m_1<f>1>q)
m=0

o] 1/q
<< (Z k"—2<E,§2kl<f)r)'f> :
k=1

This is inequality (5.6) fopp = 1. The proof is now complete.[]

It was proven in8,9] for / = 0 that inequality (5.6) is sharp for any rate of the decay of
the best approximationE,(f)(f)p. Following the same scheme we obtain a similar result
for all A>0. The main tools are Lemmas 3 and 4.

Let H be the set of all positive sequences= {¢,} such thats,, | 0. Suppose that
1<p < 00, 0< /) < o0, ande € H. ThenLﬁ,}‘)(e) will denote the class of all functions
f € LP[0, ] such thatE\” (£), <.

Next, forO< 1 < 00, 1< p < g < o0, ande € H denote

Eneip.g)= sup EF(f); (n1=0.1,..).
feLy) e

Theorem 6. Let0< /1 < oo and1<p < g < oo. Then there exist positive constants ¢
and ¢’ (depending only omp, ¢, and /) such that for every sequeneee # and every
n=201,...

I Ru(e; poq) <Enle; p, @) <cRu(e; p.q), (5.12)
where
00 1/q
Ru(e; p,q) = (Z(k —n+ 1)4/1’_282) . (5.13)
k=n

Proof. The second inequality in (5.12) follows immediately from Theorem 5. We will prove
the first inequality. Fix: € N and set

. 1
Vi =n, Vi1 = Min {v}vk 16y < Eevk} , k=1,2,.... (5.14)
It follows that
1
Sy S éevk and &, <2¢y, V<V < Vgl (5.15)

Setpg = min(1, p/(g —1))/2 and apply Lemma 3 with = v;,1 andu = vy + 1. Thus
we obtain/;-polynomials

Vi+1 y
k
Tr(x) = Z a§ )u; )(x)

j=v+1
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which satisfy the inequalitie®’ > 0)
¢ i1 — v < el <7 g — v 7Y (5.16)

for eachr € [po, oo]. Next, we consider the function
1 o0
FG) = for) =3 enm )/l (5.17)
k=1

(it follows from (5.15) that the last series converged.i). Let S,, (x) be the partial sums
of the Fourier series of the functidrwith respect to the systetd,. Note thatS,,(x) = 0
for 0O<m <n. By (5.15), we get for any; <m < vi41

, 1
Ey(Dp<If = Sullp <3 36y <em.
Jj=k

Hence,f € Lgf‘)(s). If f ¢ L1[0, x], then by Theorem 4 series (5.13) diverges and (5.12)
trivially holds. Suppose that € L7[0, n]. Set

N
g =) k(o) wherehi () = (pa — v P ). (5.18)
k=1
Taking into account the orthogonality of the system(x)} as well as (5.16), we have
T
/0 f(x)gn(x)dx
N N
>c Z(Vk+l — v P2l i3> Z(VkJrl — )Pl (5.19)
k=1 k=1

(" > 0) .nOn the other hand, by the Hélder inequality and (5.5),
jg f@enx)dx < | flglignlly
=If- SnIIqIIgNIIq/<cE,§)')(f)q||gNllq/ (5.20)
(we have used also that = 0). Next, by (5.16) we have (see (5.18))
Wnkllpyq-n <cely * and [hilloo <ciss — v @~ D/Pel

Applying Lemma 4, we get

N 1/q
lgnlly <ec (Z(vk+1 - vk)q/"—leffk) : (5.21)

k=1
It follows from (5.19)—(5.21) that

) 00 1/q
EV(f)g=c (Z(vkﬂ - vk)q/"—leﬁk) = cA,,

k=1

wherec is a positive constant that does not dependiande.
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The last step is similar to one carried out in the proof of Theorem 5. Namely, applying
Lemma 5, changing the order of summation, and using (5.15), we get

o 00 Vi41—n
1 ’ -2

Al > CZ(Vk+l —n) Pt > Zef{k Z mi/e

=1 k=1 m=1

00
2
> zqc/ Z m’f/p SZl+n_l = 2‘10/Rn(8; p, q)q
m=1

This yields the first inequality in (5.12). The proof is now completg]
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