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Abstract

We present a new way of computing equilibrium measures numerically, based on the Riemann–Hilbert
formulation. For equilibrium measures whose support is a single interval, the simple algorithm consists of
a Newton–Raphson iteration where each step only involves fast cosine transforms. The approach is then
generalized for multiple intervals.
c⃝ 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Equilibrium measures are essentially the distribution of charges on a conductor under the
influence of an external field [15]. They have a wide field of applications, from the distribution
of eigenvalues of large random matrices to the zeros of orthogonal polynomials with respect to
general weights of the form [2]

e−nV (x) dx .

Moreover, such orthogonal polynomials themselves can be represented as a matrix-valued
Riemann–Hilbert problem, which requires the equilibrium measure to be rephrased in a canonical
form [2]. The resulting Riemann–Hilbert problem can be solved numerically [12,10], using
a recent MATHEMATICA package, RHPackage [13]. By combining a numerical approach
for computing the equilibrium measure with the matrix-valued Riemann–Hilbert solver, we
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could efficiently calculate orthogonal polynomials of arbitrarily large degree: the degree of
the polynomial is simply a parameter in the Riemann–Hilbert problem, and the construction
is independent of the lower order orthogonal polynomials. This could in turn be used to calculate
random matrix distributions, which, in general, are expressible as Fredholm determinants with a
kernel defined in terms of orthogonal polynomials [2].

Definition 1.1. Suppose we are given an external field V : R → R which has sufficient growth
at infinity: V (x)

log|x |
→ +∞ as |x | → ∞. The equilibrium measure is the unique probability Borel

measure dµ = ψ(x) dx such that∫∫
log

1
|t − s|

dµ(t) dµ(s)+

∫
V (s) dµ(s) (1.1)

is minimal; cf. [15].

There is an existing numerical method for computing equilibrium measures based on Leja
points [8,5,15]. Leja points are a sequence of points which cover the support of the equilibrium
measure. However, convergence is necessarily slow, as it is approximating a continuous domain
by isolated points. One could imagine a finite element-like numerical approach based on
(1.1), though, since the equilibrium measure generically has square root singularities at its
endpoints [7], any naı̈ve scheme would also exhibit extremely slow convergence rates.

Instead of constructing a numerical method based on (1.1), we will use the following RH
formulation:

Theorem 1.2 ([2]). Suppose suppµ consists of a finite number of intervals. Let φ be a function
bounded and analytic in C \ suppµ which satisfies

φ+(x)+ φ−(x) = V ′(x) for x ∈ suppµ

and

φ(z) =
1
z

+ O


1

z2


as z → ∞,

where φ+ is the limit from above and φ− is the limit from below:

φ±(x) = lim
ϵ→0+

φ(x ± iϵ).

Then

φ(z) =

∫
dµ(s)
z − s

,

and hence

dµ =
i

2π


φ+(x)− φ−(x)


dx .

This formulation has been used to determine µ analytically when V (x) is a polynomial, by
writing the solution of φ+

+ φ−
= V ′ as a Cauchy transform [2]. This analytic derivation is not

trivial and will not necessarily work for non-polynomial V .
In this paper, we utilize Theorem 1.2 in a numerical manner, beginning with the case that

suppµ is a single interval. Given a fixed interval Σ = (a, b), we can efficiently solve (using
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φ(∞) as shorthand for limz→∞ φ(z))

φ+(x)+ φ−(x) = f (x) for x ∈ Σ and φ(∞) = 0, (1.2)

using the fast cosine transform [11], as reviewed in Section 2. There are, in fact, a family of
solutions, depending on a parameter ξ . We refer to this family as the inverse Cauchy transform.

Generically, the solution of (1.2) is unbounded: by choosing ξ appropriately, it can be imposed
that the solution is bounded at either the left or right endpoint of Σ , but not both. However,
if the zeroth Chebyshev coefficient of V ′ vanishes, then the solution can be bounded at both
endpoints, each (generically) having a square root singularity. Moreover, we can compute the
asymptotic behaviour of φ from the first Chebyshev coefficient of V ′. Thus we can establish a
function F(Σ ) = F(a, b) for which F(suppµ) = 0. Moreover, the Jacobian of F is also easily
computed, hence solving F(Σ ) = 0 is a trivial application of the Newton–Raphson method. If V
is strictly convex, this approximation is guaranteed to converge to the true equilibrium measure,
as proved in Theorem 4.1.

This approach is then generalized for suppµ consisting of multiple intervals. In Section 6,
a new solution for (1.2) when Σ consists of multiple intervals is derived. In Section 8, a
Newton–Raphson iteration is set up, much like in the one-interval case, but now with additional
conditions which depend on the indefinite integral of the inverse Cauchy transform. Fortunately,
this is also computable. Using this method, we compute the equilibrium measure of a potential
depending on a parameter in Section 9, confirming the theory of [7]. Finally, in Section 10, we
describe how the method can be further optimized.

2. Computation of the inverse Cauchy transform

While solving (1.2) appears to be nontrivial, it can be readily solved by mapping the problem
to an equivalent problem on the unit circle. Finding a function ϕ which is analytic off the unit
circle and satisfies

ϕ+(ζ )+ ϕ−(ζ ) = g(ζ ) for |ζ | = 1 and ϕ(∞) = 0

is a trivial application of Laurent series/FFT; we find that ϕ = P g, as defined below:

Definition 2.1. Suppose g(ζ ) =
∑

∞

k=−∞
ĝkζ

k . For |ζ | ≠ 1, define

P g(ζ ) =


∞−

k=0

ĝkζ
k for |ζ | < 1

−∞−
k=−1

ĝkζ
k for |ζ | > 1.

Then, for |ζ | = 1,

P +g(ζ ) =

∞−
k=0

ĝkζ
k and P −g(ζ ) =

−∞−
k=−1

ĝkζ
k .

Now define the Joukowsky map as

J (ζ ) =
1
2


ζ +

1
ζ


,
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which maps the lower and the upper half of the unit circle to the unit interval, and the interior and
exterior of the unit circle to the slit complex plane C \ [−1, 1]. We will use this map to translate
the jump condition on the unit interval to one on the unit circle. To do this, we need the following
four inverses:

Definition 2.2.

Map from C \ [−1, 1] to the interior of the
unit circle:

J−1
+ (z) =

z −
√

z − 1
√

z + 1
Map from C \ [−1, 1] to the exterior of
the unit circle:

J−1
− (z) =

z +
√

z − 1
√

z + 1
Map from [−1, 1] to the upper half circle: J−1

↑
(x) =

x + i
√

1 − x
√

1 + x
Map from [−1, 1] to the lower half circle: J−1

↓
(x) =

x − i
√

1 − x
√

1 + x

The inverses J−1
± have branch cuts along [−1, 1], whilst J−1

↕
are analytic along (−1, 1) and have

branch cuts along (−∞,−1] and [1,∞). Using the definition of the (principal branch) square
root function, we can relate these four inverses:

lim
ϵ→0+

J−1
+ (x + ϵi) = J−1

↓
(x), lim

ϵ→0−
J−1
+ (x + ϵi) = J−1

↑
(x),

lim
ϵ→0+

J−1
− (x + ϵi) = J−1

↑
(x), lim

ϵ→0−
J−1
− (x + ϵi) = J−1

↓
(x).

Let ϕ = P g for g(ζ ) = f (J (ζ )). Then φ(z) =
1
2


ϕ(J−1

+ (z))+ ϕ(J−1
− (z))


satisfies the

jump condition

φ+(x)+ φ−(x) =
1
2


ϕ+(J−1

↓
(x))+ ϕ−(J−1

↑
(x))+ ϕ−(J−1

↑
(x))+ ϕ+(J−1

↓
(x))


=

1
2


f (J (J−1

↓
(x)))+ f (J (J−1

↑
(x)))


= f (x).

Unfortunately,

φ(∞) =
1
2

[ϕ(0)+ ϕ(∞)] =
ĝ0

2
.

However, consider the following function, known as the fundamental solution [9]:

Definition 2.3. For z ∉ [−1, 1], define

κ(z) =
1

√
z + 1

√
z − 1

.

Then, for x ∈ (−1, 1),

κ±(x) = ∓
i

√
x + 1

√
1 − x

.

Note that κ(z) is analytic off of [−1, 1], is asymptotic to z−1 as z → ∞ and satisfies

κ+(x)+ κ−(x) = 0 for x ∈ (−1, 1).



S. Olver / Journal of Approximation Theory 163 (2011) 1185–1207 1189

Thus we obtain the following theorem.

Theorem 2.4 ([11]). Suppose f is C 1
[−1, 1] and its first derivative has bounded variation. Let

g(ζ ) = f (J (ζ )) and ϕ = P g. For any constant ξ ∈ C,

P(−1,1),ξ f (z) =
ϕ(J−1

+ (z))+ ϕ(J−1
− (z))

2
−

ĝ0

2
zκ(z)+ ξκ(z)

satisfies

P +

(−1,1),ξ f + P −

(−1,1),ξ f = f and P(−1,1),ξ f (∞) = 0,

where, for x ∈ (−1, 1),

P +

(−1,1),ξ f (x) =
1
2


ϕ+(J−1

↓
(x))+ ϕ−(J−1

↑
(x))+ i

ĝ0x + ξ

2
√

1 − x2


,

P −

(−1,1),ξ f (x) =
1
2


ϕ+(J−1

↑
(x))+ ϕ−(J−1

↓
(x))− i

ĝ0x + ξ

2
√

1 − x2


.

We can express this in terms of Chebyshev coefficients, using the fact that Tk(J (z)) =
1
2


zk

+ z−k

, where Tk is the kth Chebyshev polynomial.

Corollary 2.5 ([11]). Suppose f is C 1
[−1, 1] and its first derivative has bounded variation. If

f (x) =

∞−
k=0

f̌k Tk(x),

then, for z ∉ [−1, 1],

P(−1,1),ξ f (z) =
1
2

∞−
k=0

f̌k J−1
+ (z)k −

f̌0

2
zκ(z)+ ξκ(z).

For x ∈ (−1, 1),

P +

(−1,1),ξ f (x) =
1
2

∞−
k=0

f̌k J−1
↓
(x)k −

f̌0

2
zκ+(x)+ ξκ+(x) and

P −

(−1,1),ξ f (x) =
1
2

∞−
k=0

f̌k J−1
↑
(x)k −

f̌0

2
zκ−(x)+ ξκ−(x).

Remark. When f̌0 vanishes (which will be the case below), we could have alternatively
expressed this in terms of the following integral operator [2]:

P(−1,1),0 f (z) =

√
z2 − 1
2π i

∫ 1

−1

f (x)
√

1 − x2

dx

x − z
. (2.1)

In fact, this integral operator is precisely the summation term in Corollary 2.5. However, the
expression in terms of Chebyshev coefficients is preferable from a numerical standpoint: it
converges uniformly for all z ∈ C \ [−1, 1], even as z approaches [−1, 1], whereas attempting to
compute (2.1) with quadrature requires dealing with the singularities in the kernel. There are
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known methods to handle such singularities [6], however, they are not as efficient as the
Chebyshev coefficient approach, break down as z approaches the endpoints of the interval, are
prone to issues with round-off error and do not converge uniformly for all z in C \ [−1, 1].

Of course, we are not solving the equation over the interval (−1, 1), but rather over Σ =

(a, b). This is handled by a conformal map.

Definition 2.6. Let

MΣ (z) =
2z − a − b

b − a

be the map from Σ to the unit interval, with inverse

M−1
Σ (z) =

a + b

2
+

b − a

2
z.

Note that, for f̃ (x) = f (M−1
Σ (x)),

φ(z) =


P(−1,1),ξ f̃


(MΣ (z))

satisfies, for x ∈ (a, b),

φ+(x)+ φ−(x) =


P +

(−1,1),ξ f̃

(MΣ (x))+


P −

(−1,1),ξ f̃

(MΣ (x)) = f̃ (MΣ (x)) = f (x)

with φ(∞) = 0.
Thus, we have the following definition.

Definition 2.7. Suppose f (x) =
∑

∞

k=0 f̌Σ ,k Tk(MΣ (x)); i.e., f̌Σ ,k are the Chebyshev coeffi-
cients of f (M−1

Σ (x)). For z ∉ (a, b), define

PΣ ,ξ f (z) =
1
2

∞−
k=0

f̌Σ ,k J−1
+ (MΣ (z))

k
−

f̌Σ ,0
2

MΣ (z)κΣ (z)+ ξκΣ (z)

where

κΣ (z) = κ(MΣ (z)) =
b − a

2
√

z − b
√

z − a
.

Then, for x ∈ (a, b),

P +

Σ ,ξ f (x) =
1
2

∞−
k=0

f̌Σ ,k J−1
↓
(MΣ (x))

k
−

f̌Σ ,0
2

MΣ (x)κ
+

Σ (x)+ ξκ+

Σ (x) and

P −

Σ ,ξ f (x) =
1
2

∞−
k=0

f̌Σ ,k J−1
↑
(MΣ (x))

k
−

f̌Σ ,0
2

MΣ (x)κ
−

Σ (x)+ ξκ−

Σ (x).

We remark that in the numerical method that we will construct, the constant ξ will always be
zero. Thus we will also use the following notation:

Definition 2.8.

PΣ = PΣ ,0.
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3. Constructing the Newton–Raphson iteration

Over an arbitrary interval Σ = (a, b), Theorem 2.4 implies that the computed PΣ ,ξ f function
satisfies the following properties, where f̌k are the Chebyshev coefficients of f̃ :

• PΣ ,ξ f is bounded at a and b if and only if f̌Σ ,0 and ξ are zero;

• PΣ ,ξ f (z) =
(b−a)(4ξ+ f̌Σ ,1)

8z + O(z−2) as z → ∞.

For Σ = suppµ, φ is bounded and is asymptotic to 1
z . The only way in which this is possible

is if we fix ξ = 0, and choose Σ so that f̌Σ ,0 = 0 and (b − a) f̌Σ ,1 = 8, where f = V ′. In other
words, we want to find a root of the function

F(Σ ) =


f̌Σ ,0

(b − a) f̌Σ ,1 − 8


=


1
π

∫ 1

−1

V ′(M−1
Σ (x))

√
1 − x2

dx

2
b − a

π

∫ 1

−1

V ′(M−1
Σ (x))x

√
1 − x2

dx − 8

 .
This function is easily differentiated, hence we can express its Jacobian as (Fa(Σ ), Fb(Σ )) for

Fa(Σ ) =


1

2π

∫ 1

−1

(1 − x)V ′′(M−1
Σ (x))

√
1 − x2

dx

−
2
π

∫ 1

−1

V ′(M−1
Σ (x))x

√
1 − x2

dx +
b − a

π

∫ 1

−1

(1 − x)V ′′(M−1
Σ (x))x

√
1 − x2

dx

 ,

Fb(Σ ) =


1

2π

∫ 1

−1

(1 + x)V ′′(M−1
Σ (x))

√
1 − x2

dx

2
π

∫ 1

−1

V ′(M−1
Σ (x))x

√
1 − x2

dx +
b − a

π

∫ 1

−1

(1 + x)V ′′(M−1
Σ (x))x

√
1 − x2

dx

 . (3.1)

Numerical implementation
Numerical implementation is now straightforward, using the fast discrete cosine transform

(DCT).

Definition 3.1. The n mapped Chebyshev points are

xΣ = M−1
Σ (x),

where x are the n Chebyshev points of the second kind

x =


−1, cosπ


1 −

1
n − 1


, . . . , cos

π

n − 1
, 1

.

We can approximate the Chebyshev coefficients f̌0, . . . , f̌n−1 using the DCT by sampling V ′

at xΣ . We denote this by the operator F .

Definition 3.2. For a vector f = f (x) of samples at the points x,F is the unique transform
matrix such that

(T0(x), . . . , Tn−1(x))F f

is the polynomial which interpolates f at the points x.
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It follows, for fΣ = f (xΣ ), that

(T0(MΣ (x)), . . . , Tn−1(MΣ (x)))F fΣ

interpolates f at the points xΣ . Therefore,

f̌Σ ,k ≈ e⊤

k+1 F fΣ .

The function we wish to find a root of is thus approximately

F(Σ ) ≈


e⊤

1 F fΣ
(b − a)e⊤

2 F fΣ − 8


.

Note that e⊤

j F can be computed in O(n) operations using the trapezium rule (after the
transformation x = cos θ ). The integrals in the Jacobian of F can also be computed using the
trapezium rule. Instead, (and equivalently) we will proceed by differentiating the discretization
of F .

Definition 3.3. Let D denote the Chebyshev differentiation matrix, so that Df are the values of
the derivative of the interpolating polynomial at the points x. Then DΣ =

2
b−a D is the derivative

matrix for other intervals.

D (and hence DΣ ) can be applied to a vector in O(n log n) operations using the DCT.
To compute the Jacobian, we differentiate each term in F by the endpoints of Σ : a and b. This

is straightforward (here, for brevity, we define multiplication on the left by a column vector a as
ab = diag (a)b):

xΣ ,a = ∂a M−1
Σ (x) =

1
2

−
x
2
, xΣ ,b = ∂b M−1

Σ (x) =
1
2

+
x
2
,

∂afΣ = xΣ ,a f ′(xΣ ) ≈ fΣ ,a = xΣ ,a DΣ fΣ ,

∂bfΣ ≈ fΣ ,b = xΣ ,b DΣ fΣ ,

Fa(Σ ) ≈


e⊤

1 F xΣ ,a DΣ fΣ
(b − a)e⊤

2 F xΣ ,a DΣ fΣ − e⊤

2 F fΣ


,

Fb(Σ ) ≈


e⊤

1 F xΣ ,b DΣ fΣ
(b − a)e⊤

2 F xΣ ,b DΣ fΣ + e⊤

2 F fΣ


.

We can now construct the Newton–Raphson iteration.

Definition 3.4. The interval Σm denotes the mth iterate of the Newton–Raphson method applied
to F (whose Jacobian is (Fa, Fb)) with initial guess interval Σ 0.

The sequence Σ 1,Σ 2, . . . should hopefully converge to Σ∞
= suppµ. Indeed, convergence

is guaranteed when V is strictly convex; cf. Theorem 4.1.

Constructing the equilibrium measure
Once the support of the equilibrium measure is calculated, we can compute the equilibrium

measure itself, by calculating the associated φ = PsuppµV ′.

Definition 3.5. For z ∉ Σm , define

φn,m(z) = φΣm (z)F fΣm ,
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where

φΣ (z) =
1
2
(1, J−1

+ (MΣ (z)), . . . , J−1
+ (MΣ (z))

n−1).

Then, for x ∈ Σm ,

φ±
n,m(x) = φ±

Σm (x)F fΣm ,

where

φ+

Σ (z) =
1
2
(1, J−1

↓
(MΣ (x)), . . . , J−1

↓
(MΣ (x))

n−1) and

φ−

Σ (z) =
1
2
(1, J−1

↑
(MΣ (x)), . . . , J−1

↑
(MΣ (x))

n−1).

This is clearly an approximation to φ:

φ(z) =
1
2

∞−
k=1

f̌k J−1
+ (Msuppµ(z))

k
≈ φn,m(z).

Note that the term MΣ (z)κΣ (z) can be dropped as we assume that the zeroth Chebyshev
coefficient vanishes.

From φ, we can find the equilibrium measure dµ = ψ(x) dx :

−iπψ(x) = φ+(x)− φ−(x) =
1
2

∞−
k=1

f̌k


J−1
↓
(Msuppµ(x))

k
− J−1

↑
(Msuppµ(x))

k

.

We know that 1
2 (J

−1
↓
(x)k + J−1

↑
(x)k) is precisely the Chebyshev polynomial of the first kind

Tk(x). But we also know that i
2 (J

−1
↓
(x)k − J−1

↑
(x)k) = Uk−1(x)

√
1 − x2 (via the substitution

x = cos θ [14]), where Uk is the Chebyshev polynomial of the second kind. In other words, we
have, for x ∈ Σ ,

φ+

Σ (x)+ φ−

Σ (x) = (1, . . . , Tn−1(MΣ (x))) and

φ+

Σ (x)− φ−

Σ (x) = −2i


1 − MΣ (x)2(0, 1, . . . ,Un−2(MΣ (x))).

Thus we obtain the rather nice approximation ψ(x) ≈ ψn,m(x), for the following definition.

Definition 3.6. For x ∈ Σm , define

ψn,m(x) =
i

2π


φ+

Σm (x)− φ−

Σm (x)


F fΣm

=


1 − MΣm (x)2

π
(0, 1, . . . ,Un−2(MΣm (x)))F fΣm .

4. Proof of uniqueness

The goal of this section is to demonstrate that, for strictly convex V, F has a unique root.
Combined with Theorem 1.2, finding the zero of F thus does indeed enable the computation of
µ. In particular, it follows that

ψ(x) = lim
n→∞

lim
m→∞

ψn,m(x).
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Theorem 4.1. If V ∈ C 2(−∞,∞) is strictly convex and V (x)
log|x |

→ +∞ as |x | → ∞, then F has
a unique root.

Proof. Existence follows from Theorem 1.2, and the fact that the support of the equilibrium
measure is a single interval when V is strictly convex [2].

Note that, since V (x) goes to +∞ at both ±∞, we have V ′(−x) < 0 < V ′(x) for x
sufficiently large. Combining this with the fact that V ′′ is strictly positive, we know V ′(χ) = 0
for a unique point χ . Suppose a < χ is given. If b < χ , then V ′ is negative in (a, b), hence we
would have F1(a, b) < 0 (where F1 denotes the first term of F and F2 the second term). Since
0 < ϵ < V ′(x) for x sufficiently large, we can take b > χ large enough so that F1(a, b) > 0.
From (3.1) we have

∂F1

∂b
=

1
2π

∫ 1

−1

(1 + x)V ′′(M−1
Σ (x))

√
1 − x2

dx > 0,

hence F1(a, b) as a function of b is monotonically increasing. Therefore, given a, there is a
unique, smooth b(a) > χ such that F1(a, b(a)) = 0.

We can differentiate this formula with respect to a, giving us

b′(a) = −
∂a F1(a, b(a))

∂b F1(a, b(a))
.

We have shown that the denominator is positive. Similar logic proves that the numerator is also
positive, and we have b′(a) < 0.

We now show that F2(a, b(a)) is monotonic with respect to a (I am grateful to Tom Claeys for
suggesting this argument). Let η(a) = −

b′(a)+1
b′(a)−1 . Note that d

da M−1
(a,b(a))(x) =

1+b′(a)
2 +

b′(a)−1
2 x .

Then, using the fact that F1(a, b(a)) vanishes,

d
da

∫ 1

−1

V ′(M−1
a,b(a)(x))x

√
1 − x2

dx =
d

da

∫ 1

−1

V ′(MΣ (x))(x − η(a))
√

1 − x2
dx

=

∫ 1

−1

V ′′(MΣ (x))


1+b′(a)
2 +

b′(a)−1
2 x


(x − η(a))

√
1 − x2

dx,

where we use the fact that

1
π

∫ 1

−1

V ′(MΣ (x))η′(a)
√

1 − x2
dx = η′(a)F1(a, b(a)) = 0.

Thus we have

π

2
d

da
F2(a, b(a)) = (b′

− 1)
∫ 1

−1

V ′(M−1
Σ (x))x

√
1 − x2

dx

+ (b − a)
∫ 1

−1

V ′′(MΣ (x))


1+b′

2 +
b′

−1
2 x


(x − η(a))

√
1 − x2

dx

= (b′
− 1)

∫ 1

−1

V ′(M−1
Σ (x))(x − χ)
√

1 − x2
dx

+ 2
b − a

b′ − 1

∫ 1

−1

V ′′(MΣ (x))


1+b′

2 +
b′

−1
2 x

2

√
1 − x2

dx .
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Fig. 1. The equilibrium measure for V (x) = x4 (left) and V (x) = x2
+ sin x (right).

We have b − a > 0 and b′ < 0, therefore each term above is strictly negative, and hence
F2(a, b(a)) is strictly monotone in a. Thus a and b which satisfy F(a, b) = 0 are unique. �

5. Examples

The canonical example of an equilibrium measure from random matrix theory and orthogonal
polynomials is the Gaussian distribution/Hermite weight, which corresponds to V (x) = x2. The
equilibrium measure is the well-known Wigner semicircle distribution, with support [−

√
2,

√
2]

and

ψ(x) =
1
π


2 − x2.

With the initial guess of Σ 0
= [−1, 1], we converge to


−

√
2,

√
2


within machine precision

in 6 iterations. For a polynomial, Definition 2.7 is a finite sum, thus we obtain the semicircle
distribution to machine precision (in a fraction of a second).

Another example is V (x) = x4. The exact value of Σ is

−

√
2

31/4 ,
√

2
31/4


[2]. Our approach

computes this to machine precision again in 6 iterations. We then obtain the equilibrium measure
depicted in Fig. 1.

The approach works for non-polynomial distributions as well. In Fig. 1, we plot the computed
equilibrium measure for V (x) = x2

+ sin x .

6. Computing the inverse Cauchy transform over multiple intervals

Definition 2.7 is only applicable if Σ is a single interval. However, suppose Σ = Σ1 ∪ · · · ∪

ΣN = (a1, b1) ∪ · · · ∪ (aN , bN ), and we wish to find a φ such that

φ+
+ φ−

= f on Σ with φ(∞) = 0.

Let us express a solution as φ = PΣ1 g1 + · · · + PΣN gN , for functions g1, . . . , gN to be
determined, where the constant ξ in each operator is taken to be zero. Clearly, for any sufficiently
smooth choice of gi , φ decays at ∞. We define a map from the space of functions which are
C 1

[Σi ] with bounded variation to the space of analytic functions on Σ j by

PΣi |Σ j g(x) = PΣ j g(x) for x ∈ Σi .
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We thus want to find g1, . . . , gN which satisfy

RΣ

 g1
...

gN

 =

 f1
...

fN

 , (6.1)

where fi is the restriction of f to Σi and

RΣ =



I 2PΣ2 |Σ1 · · · 2PΣN |Σ1

2PΣ1 |Σ2 I
. . .

...
...

. . .
. . .

...
...

. . . I 2PΣN |ΣN−1

2PΣ1 |ΣN

. . . 2PΣN−1 |ΣN I


.

Theorem 6.1. Eq. (6.1) has a unique solution for gi and fi in C 1
[Σi ] with bounded variation.

Proof. From (2.1), it is clear that PΣi |Σ j is a compact operator, therefore RΣ is the identity
operator plus a compact operator. The theorem will follow from the Fredholm alternative by
showing that RΣ has trivial kernel.

If (k1, . . . , kN )
⊤ is in the kernel of RΣ , then

κ̃ = PΣ1k1 + · · · + PΣN kN

satisfies κ̃+
+ κ̃−

= 0 on Σ . Therefore, κ̃ can be expressed in terms of the fundamental
solution [9], i.e.,

κ̃(z) = p(z)κΣ (z),

for

κΣ (z) = κΣ1(z) · · · κΣN (z)

and p an (N − 1)th degree polynomial.
On Σi , we can write

κ̃(z) =
ǩi,0

2
MΣi (z)κΣi (z)+ bounded terms,

hence

κ̃(z) = −
ǩi,0

2
κΣi (z)+ O(1) as z → ai ,

κ̃(z) =
ǩi,0

2
κΣi (z)+ O(1) as z → bi .

Thus we get 2N conditions on p, so that p(z)κΣ (z) −
ǩi,0
2 MΣi (z)κΣi (z) is bounded at each

endpoint:

p(a1) = ǩ1,0κΣ2(a1) · · · κΣN (a1)

p(b1) = −ǩ1,0κΣ2(b1) · · · κΣN (b1)
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...

p(aN ) = ǩN ,0κΣ1(aN ) · · · κΣN−1(aN )

p(bN ) = −ǩN ,0κΣ1(bN ) · · · κΣN−1(bN )

Note that sign κΣi (a j ) = sign κΣi (b j ) for j ≠ i . It follows that p switches signs over each Σi ,
thence has N roots. Therefore, p is identically zero, and hence so are k1, . . . , kN . �

We thus know that φ has the form of PΣ ,ξ1,...,ξN f , defined by

Definition 6.2.

PΣ ,ξ1,...,ξN f = PΣ1 g1 + · · · + PΣN gN +


ξ1 + ξ2z + · · · + ξN zN−1


κΣ (z),

where g1, . . . , gN satisfy (6.1) and κΣ (z) = κΣ1(z) · · · κΣN (z).

The parameters can again be used to impose boundedness of the solution at N of the 2N
endpoints. For our purposes, however, we take ξ1 = · · · = ξN = 0.
Numerical discretization

Our numerical approach is to discretize (6.1). We first define

fΣ =

 f1
...

fN

 ,
where the length of the vectors are n1, . . . , nN . Now let

RΣ =



I 2PΣ2 |Σ1 . . . 2PΣN |Σ1

2PΣ1 |Σ2 I
. . .

...
...

. . .
. . .

...
...

. . . I 2PΣN |ΣN−1

2PΣ1 |ΣN

. . . 2PΣN−1 |ΣN I


,

where we define the n j × ni matrix

PΣi |Σ j =

[
φΣi

(xΣ j )−
1
2
(MΣi (xΣ j )κΣi (xΣ j ), 0, . . . , 0)

]
F .

(We leave the dimensions of the operator F implicit; in this case, it is ni × ni .) Then, for

I1 = (I, 0, . . . , 0), . . . , IN = (0, . . . , 0, I ), (so that IkfΣ = fk)

we have

PΣ ,ξ1,...,ξN f (z) ≈

N−
j=1

[
φΣ j

(z)−
1
2
(MΣ j (z)κΣ j (z), 0, . . . , 0)

]
F I j R−1

Σ fΣ

+


ξ1 + ξ2z + · · · + ξN zN−1


κΣ (z).

Since RΣ is the identity operator plus a compact operator, convergence of this approximation
as n1, . . . , nN → ∞ is guaranteed, and at the exact same rate as approximating g1, . . . , gN by
Chebyshev polynomials, by standard collocation method theorems (cf., for example [1]).
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7. Indefinite integral of the inverse Cauchy transform

In the Newton–Raphson iteration to be set up, we have 2N unknowns: the left and right
endpoints of Σi . Thus we expect to construct a function F(Σ )with 2N components. The function
φ must still be bounded at all endpoints of Σ ; hence, we require that the zeroth Chebyshev
coefficients of the functions g1, . . . , gN vanish:

0 = ǧ1,0 = · · · = ǧN ,0.

Now the asymptotic behaviour at infinity is the sum of each contribution, which depends on the
first Chebyshev coefficients:

PΣ f (z) =

[
b1 − a1

8
ǧ1,1 + · · · +

bN − aN

8
ǧN ,1

]
1
z

+ O


1

z2


as z → ∞.

Thus we impose a condition that the sum in brackets is precisely one.
However, we still need N − 1 more conditions. Let Φ =


φ dz be an indefinite integral of

φ = PΣ f . Now, since φ+
+ φ−

= V ′ on Σi , it follows that Φ+
+ Φ−

= V + ℓi on Σi . The
missing conditions are that all of these constants of integration must be equal: ℓ1 = · · · = ℓN [7].

To compute an indefinite integral of φ, we need to find an indefinite integral of each PΣi gi .
Thus we return to the case where Σ = (a, b). Note that∫ z

J−1
+ (MΣ (z))

k dz =
b − a

4

∫ J−1
+ (MΣ (z)) 

zk
− zk−2


dz.

Therefore, we find that (verifiable by differentiation)∫
κΣ (z) dz =

a − b

2
log J−1

+ (MΣ (z)),∫
MΣ (z)κΣ (z) dz =

b − a

2


MΣ (z)− J−1

+ (MΣ (z))

,∫

J−1
+ (MΣ (z)) dz =

b − a

4

[
1
2

J−1
+ (MΣ (z))

2
− log J−1

+ (MΣ (z))

]
,∫

J−1
+ (MΣ (z))

k dz =
b − a

4

[
1

k + 1
J−1
+ (MΣ (z))

k+1
−

1
k − 1

J−1
+ (MΣ (z))

k−1
]
.

Define the n × n banded matrix

A =



0
2 −1

1
2

−
1
2

1
3

−
1
3

. . .
. . .

1
n − 2

−
1

n − 2
1

n − 1


.
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Over a single interval Σ = (a, b) we have

Φ(z) ≈
b − a

8


2φΣ (z)A − log J−1

+ (MΣ (z))e
⊤

2


F fΣ + ξ

b − a

2
log J−1

+ (MΣ (z)).

Behaviour on the real line
In what follows, we assume ξ = 0. Note that Φ has a branch cut along (−∞, b), and below

we will need to evaluate Φ+
+ Φ− along the branch cut. For z ∈ (a, b) we have (relating − with

↑ and + with ↓)

Φ±(x) ≈
b − a

8


2φ±

Σ (x)A − log J−1
↕
(MΣ (x))e

⊤

2


F fΣ ,

and for z < a we have

Φ±(z) ≈
b − a

8


2φΣ (z)A −


log

J−1
+ (MΣ (z))

∓ iπ


e⊤

2


F fΣ .

If Σ consists of multiple intervals, we sum the contributions

Φ(z) ≈

N−
j=1

b j − a j

8


2φΣ j

(z)A − log J−1
+ (MΣ j (z))e

⊤

2


F I j R−1

Σ fΣ .

This has a branch cut along (−∞, bN ). Using the above expressions, it is straightforward to
determine Φ+

+ Φ−. Our remaining N − 1 conditions are then

Φ+(b1)+ Φ−(b1)− V (b1) = Φ+(a2)+ Φ−(a2)− V (a2),
...

Φ+(bN−1)+ Φ−(bN−1)− V (bN−1) = Φ+(aN )+ Φ−(aN )− V (aN ).

8. Multiple interval Newton–Raphson iteration

We thus want to find the root of the following function:

F(Σ ) =



F1(Σ )
...

FN (Σ )
G(Σ )
H1(Σ )
...

HN−1


.

The first N conditions are that the zeroth Chebyshev coefficients of each gi must vanish,

Fi (Σ ) = e⊤

1 F Ii R−1
Σ fΣ .

The next condition is that PΣ f (z) must be asymptotic to 1
z ,

G(Σ ) = e⊤

2 [(b1 − a1)F I1 + · · · + (bN − aN )F IN ] R−1
Σ fΣ − 8.
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The last N − 1 conditions ensure that the constants of integration must be the same,

Hi (Σ ) =

i−1−
j=1

b j − a j

4


2φΣ j

(bi )A − log J−1
+ (MΣ j (bi ))e⊤

2


F I j R−1

Σ fΣ

+
bi − ai

4
e⊤

−1 F −1 AF Ii R−1
Σ fΣ

+

N−
j=i+1

b j − a j

4


2φΣ j

(bi )A − log
J−1

+ (MΣ j (bi ))

 e⊤

2


F I j R−1

Σ fΣ

−

i−
j=1

b j − a j

4


2φΣ j

(ai+1)A − log J−1
+ (MΣ j (ai+1))e⊤

2


F I j R−1

Σ fΣ

−
bi+1 − ai+1

4
e⊤

1 F −1 AF Ii+1 R−1
Σ fΣ

−

N−
j=i+2

b j − a j

4


2φΣ j

(ai+1)A − log
J−1

+ (MΣ j (ai+1))

 e⊤

2


F I j R−1

Σ fΣ

− V (bi )+ V (ai+1).

We have chosen to compare the constants at the endpoints bi and ai+1. Any two points in Σi
and Σi+1 would have worked equally well, however, choosing endpoints simplifies the Jacobian
slightly.

Remark. A similar system of equations was set up in [7] to determine the continuity properties
of the Σ1, . . . ,ΣN for potentials which depend on a parameter. Their system was in terms of
standard moments and the expression (10.1). Though these two systems are mathematically
equivalent, we touch on why our approach is more appropriate in a numerical context in
Section 10.

Computing the Jacobian is now more complicated than in the single interval case. However,
each component can be differentiated with respect to the endpoints of Σ . Let ηi denote either ai
or bi . We first note that the only term of fΣ depending on ηi is precisely fi , therefore we have

fΣ ,η1 =


f1,η1

0
...

0

 , fΣ ,η2 =


0

f2,η2

0
...

0

 , . . . , fΣ ,ηN =


0
...

0
fN ,ηN

 .
Now we have

φΣi ,ηi
(x) = ∂ηi φΣi

(x)

=
MΣi ,ηi (x)[J−1

+ ]
′(MΣi (x))

2
(0, 1, . . . , (ni − 1)J−1

+ (MΣi (x))
ni −2)

and

φ′

Σi
(x) =

M ′

Σi
(x)[J−1

+ ]
′(MΣi (x))

2
(0, 1, . . . , (ni − 1)J−1

+ (MΣi (x))
ni −2).
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Therefore,

∂ηi PΣi |Σ j =


MΣi ,ηi (xΣ j )

2(MΣi (xΣ j )+ 1)3/2(MΣi (xΣ j )− 1)3/2
e⊤

1 + φΣi ,ηi
(xΣ j )


F .

On the other hand, we have

∂η j PΣi |Σ j = xΣ j ,η j


M ′

Σi
(xΣ j )

2(MΣi (xΣ j )+ 1)3/2(MΣi (xΣ j )− 1)3/2
e⊤

1 + φ′

Σi
(xΣ j )


F .

Thus we can evaluate the derivatives of RΣ with respect to every ai and bi . Finally,

R−1
Σ ,η = ∂ηR−1

Σ = −R−1
Σ RΣ ,ηR−1

Σ .

By combining these formulæ, it is straightforward to compute the Jacobian of F .
We can thus set up a Newton–Raphson iteration.

Definition 8.1. Σm
= Σm

1 ∪ · · · ∪ Σm
N denotes the mth iterate of the Newton–Raphson method

applied to F with initial guess intervals Σ 0
= Σ 0

1 ∪ · · · ∪ Σ 0
N .

We can now construct the approximations (where n = n1, . . . , nN are the number of
Chebyshev points in each interval) φ(z) ≈ φn,m(z) and dµ = ψ(x) dx ≈ ψn,m(x) dx , which
are defined as in what follows.

Definition 8.2. For z ∉ Σm , define

φn,m(z) =

N−
j=1

φΣm
j
(z)F I j R−1

Σm fΣm .

For x ∈ Σm
k , define

ψn,m(x) =
i

2π


φ+

n,m(x)− φ−
n,m(x)


=


1 − MΣm

k
(x)2

π
(0, 1, . . . ,Un−2(MΣm

k
(x)))F Ik R−1

Σm fΣm .

We hope that when N is chosen correctly that

ψ(x)
?
= lim

n→∞
lim

m→∞
ψn,m(x).

Generic nonsingularity of the Jacobian [7] implies that the method will converge to the true
equilibrium measure whenever the initial guess is sufficiently accurate.

Verification of solution
Though we cannot guarantee a priori that Σm will converge to the true equilibrium measure,

we can still verify convergence numerically. We know (cf. [2]) that Σ = suppµ if the following
conditions hold true:

(1) F(Σ ) = 0;
(2) For φ = PΣ V ′, i

2π


φ+

− φ−


≥ 0 on Σ ;
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(3) Φ =

φ dz satisfies

Φ+(x)+ Φ−(x)− V (x) ≤ ℓ for x ∉ Σ , (8.1)

where ℓ is the constant such that [7]

Φ+(x)+ Φ−(x)− V (x) = ℓ for x ∈ Σ .

If the Newton–Raphson iteration converges, then the first condition is satisfied. The second
condition (that the resulting measure is indeed nonnegative) can be verified by converting the
mapped Chebyshev polynomial of the second kind

(0, 1, . . . ,Un−2(MΣm
k
(x)))F Ik R−1

Σm fΣm (8.2)

to a mapped Chebyshev polynomial of the first kind, using the formula [14]

Tk(x) =
1
2
(Uk(x)− Uk−2(x)).

Differentiating with the Chebyshev derivative matrix D and finding all roots of the resulting
polynomial using a colleague matrix method [4]; which are the minima and maxima of (8.2).

The third condition can be verified by constructing

Φn,m(x) =

N−
j=1

b j − a j

8


2φΣm

j
(z)A − log J−1

+ (MΣm
j
(z))e⊤

2


F I j R−1

Σm fΣm ,

and testing (8.1) (using the formulæ from Section 7 for Φ±
n,m , which has a branch cut along

(−∞, bN )). Since V grows at ∞, we only need to test (8.1) for finite x .

9. Examples

We consider the function

Vα(x) =
(x − 3)(x − 2)(1 + x)(2 + x)(3 + x)(2x − 1)

α
,

where α is a parameter. Fig. 2 plots the computed equilibrium measure support for a range of α.
From [7], we know that the support of the equilibrium measure is a single interval for α large,

and so we use the single interval Newton–Raphson iteration to compute the equilibrium measure
in this regime. As α approaches approximately 191.7, the computed equilibrium measure
becomes negative, as seen in Fig. 3. At this point, the interval must be split and we thus switch
to the multiple interval iteration with two intervals. At α approximately 117.7, the computed
equilibrium measure again becomes negative, and must be split into three intervals. Then, at α
approximately 11.7, the equilibrium measure disappears over one interval of support, and we
return to the case of two intervals. Finally, at α approximately 3.1, another interval vanishes.
The remaining single interval surrounds the global minimum of Vα , precisely as predicted by the
theory in [7].

We remark that, in the multiple interval case, the initial guess for the Newton–Raphson
iteration is crucial to ensure convergence to the true equilibrium measure. Indeed, the single
interval iteration continues to converge even when the computed equilibrium measure becomes
negative, and what is computed continues to satisfy all the required properties, other than
positivity. Thus, without an accurate initial guess, the two-interval iteration can sometimes
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Fig. 2. The support of the equilibrium measure for Vα over a range of α.

Fig. 3. The equilibrium measure for Vα for α = 300, 200, 120 and 12.

attempt to converge to this single interval solution (though it does not actually converge, as
the two-interval iteration cannot handle overlapping intervals reliably). Since the equilibrium
measure is continuous, we managed to ensure accurate initial guesses by using the computed
support from previous values of α. Another approach that might work is to use some sort of
constrained optimization in place of our simple Newton–Raphson iteration to ensure that the
computed equilibrium measure remains positive, and that the intervals never overlap.

10. Speeding up the algorithm over multiple intervals

The algorithm we have constructed for computing P over multiple intervals is significantly
slower than the algorithm for single intervals: O([N

∑
ni ]

3) versus O(n log n). In this section,
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we present two approaches to achieve O(γ (N ))+ O(
∑

ni log ni ) accuracy, where γ (N ) is some
function independent of ni .

The first approach is based on Theorem 1.38 in [3], where an expression for P f over multiple
intervals is given as a sum of Cauchy transforms, subject to conditions on f . We rederive this
result in the context of the operator P , i.e., without reduction to Cauchy transforms.

Define

P̄(a,b) f (z) =
1
2

∞−
k=0

f̌k J+(M(a,b)(z))
k

and

w(a,b)(z) =
√

z − a
√

z − b and Wi (z) =

∏
k≠i

wΣi (z).

Now consider the function

φ̄(z) = W1(z)P̄Σ1 f (z) = wΣ2(z) · · ·wΣN (z)P̄Σ1 f (z).

For x ∈ Σi and i ≠ 1, w+

Σi
= −w−

Σi
whilst all other terms are analytic; therefore,

φ̄+(x)+ φ̄−(x) = 0 for x ∈ Σ2 ∪ · · · ∪ ΣN .

On the other hand, for x ∈ Σ1,

φ̄+(x)+ φ̄−(x) = W1(z)


P̄ +

Σ1
f (x)+ P̄ −

Σ1
f (x)


= W1(x) f (x).

This motivates the definition

P̄Σ f (z) = W1(z)P̄Σ1

[
f

W1

]
(z)+ · · · + WN (z)P̄ΣN

[
f

WN

]
(z), (10.1)

So that P̄ +

Σ f + P̄ −

Σ f = f in Σ .
In general, P̄Σ f does not vanish at infinity. However, Wi (z) ∼ zN−1 and J+(MΣ j (z))

N
∼ b−a

8

N
z−N , therefore only the terms up to N − 1 in P̄Σi do not decay. Now consider the

functions

κ j (z) = z jκΣ (z) =
z j

w1(z) · · ·wN (z)
,

satisfying κ+

j + κ−

j = 0 and κ j (z) ∼ z j−N . We can add a linear combination of these functions

to P̄Σ f to ensure that it decays at infinity, while maintaining the jump condition along Σ . To do
this, we first note that

1
wi

=
1
z

+
ai + bi

2z2 + · · · +


ai + bi

2

k−1

2 F1


1−k

2 , 1 −
k
2

1
;
(ai − bi )

2

ai + b2
i


+ · · · .

This can be derived from the series of wi around infinity and the series representation of the
hypergeometric function [14]. Using this expression, the full asymptotic series of each κ j are
determinable, by multiplying the series. Furthermore,

J−1
↑
(x) =

∞−
k=0

Ck

22k+1

1

z2k+1
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where Ck =
1

k+1


2k
k


are the Catalan numbers. This expression follows from the generating

function of the Catalan numbers [14]. Thus, we can also determine the full asymptotic series of
P̄ , again by multiplying series.

Though no simple expression is obtained, for small N we can write down the solution
explicitly. In particular, if Σ consists of two intervals we obtain

PΣ ,ξ1,ξ2 f = P̄Σ f − p̌1,0

[
κ3

2
− κ2

a1 + b1 + 2a2 + 2a2

4

]
− p̌1,1κ2

b1 − a1

8

− p̌2,0

[
κ3

2
− κ2

2a1 + 2b1 + a2 + a2

4

]
− p̌2,1κ2

b2 − a2

8
+ ξ1κ0 + ξ2κ1,

where p1 =
f1

W1
and p2 =

f2
W2

(and f1 and f2 are again the restrictions of f to Σ1 and
Σ2, respectively). While this approach works well for computing P , at least for small N , the
construction of the function F used in the Newton–Raphson iteration would be significantly more
complicated. Moreover, it is not clear how to determine the indefinite integral of this expression
for PΣ , and therefore we do not know how to construct all of the terms in F . Thus we will not
pursue this approach further.

Sparsity of RΣ

Instead, we return to the previous approach used. The calculation in the algorithm which takes
O([N

∑
ni ]

3) operations is inverting the matrix RΣ . However, consider the term PΣi |Σ j , which
we transform:

P̌Σi |Σ j = F PΣi |Σ j F −1.

In other words, while PΣi |Σ j maps function values in Σi to function values in Σ j , P̌Σi |Σ j maps
Chebyshev coefficients in Σi to Chebyshev coefficients in Σ j . In particular, except for the first
column, P̌Σi |Σ j consists of the Chebyshev coefficients of φΣi

. We will show that the only entries

of P̌Σi |Σ j which are greater than ϵ lie in an m × l block. The dimensions m and l will be
independent of ni , and hence RΣ j b = c can be solved in O(

∑
ni log ni ) time.

We first find the number of rows needed. We know that φΣi
is analytic in Σ j , therefore the

Chebyshev coefficients decay spectrally fast. Moreover, we can find the closest singularity, and
hence the rate of decay. Mapping Σ j to the unit interval, φΣi

becomes φΣi
(M−1

Σ j
(z)), which has a

branch cut along M−1
Σ j
(Σi ). The closest singularity is the closest endpoint of the mapped domain

α = min
M−1

Σ j
(MΣi (±1))

. The ellipse with foci at ±1 that runs through α has major and

minor semiaxis lengths which sum to ρ = α +
√
α2 − 1. Moreover, φΣi

(M−1
Σ j
(z)) is analytic

everywhere off its branch cut, including at infinity. Therefore, it takes its maximum along the

branch cut. Since J−1
+ maps the unit interval to the unit circle, we have

φΣi
(MΣ j (z))

 ≤ 1 for

all z. Thus the kth Chebyshev coefficient is bounded by 2ρ−k [16]. In other words, only the first

m = −
log ϵ − log 2

log ρ

rows of P̌Σi |Σ j are greater than ϵ.
We can now determine the number of columns needed. Since Σi and Σ j are disjoint,J+(MΣi (z))

 is strictly less than one. Moreover, it is strictly monotonic on the real line.
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Therefore, the kth column of φΣi
, J+(MΣi (z))

k , decays in Σ j exponentially fast as k increases,

and all values in Σ j are less than J+(MΣi (M
−1
Σ j
(±1)))k . Thus only the first

l =
log ϵ

log
J+(M

−1
Σ j
(±1))


columns are greater than ϵ.

There is another important use for this formulation: we can use it to determine how large
each ni needs to be so that gi are computed to sufficient accuracy. In the single interval case,
n large enough to interpolate V ′ was sufficient; so if V was an mth degree polynomial, n = m
is sufficient. This is not true in the multiple interval case. Fortunately, we now know that only
the low order Chebyshev coefficients are affected. Thus we take ni to be the maximum of the
number of terms needed to interpolate V ′ and the number of nonzero columns in each P̌Σi (Σ j )

for j ≠ i (which, clearly, will be maximized for j = i ± 1).

11. Closing remarks

We have demonstrated that equilibrium measures can be computed numerically, whether they
are supported on a single or multiple intervals. This approximation could be used to compute
the asymptotics of general orthogonal polynomials and their roots, as well as global mean
distribution of random matrix eigenvalues and other random matrix distributions.
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[8] F. Leja, Une méthode élémentaire de résolution du problème de Dirichlet dans le plan, Ann. Soc. Math. Polon. 23

(1950) 13–28.
[9] N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953, based on the second Russian edition

published in 1946.
[10] S. Olver, A general framework for solving Riemann–Hilbert problems numerically, NA-10/05, Maths Institute,

Oxford University, 2010.
[11] S. Olver, Computing the Hilbert transform and its inverse, Math. Comp. 80 (2011) 1745–1767.



S. Olver / Journal of Approximation Theory 163 (2011) 1185–1207 1207

[12] S. Olver, Numerical solution of Riemann–Hilbert problems: painlevé II, Found. Comput. Math. 11 (2011) 153–179.
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