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Abstract

We study the problem of improving the greedy constant or the democracy constant of a basis of a Banach
space by renorming. We prove that every Banach space with a greedy basis can be renormed, for a given
ε > 0, so that the basis becomes (1+ε)-democratic, and hence (2+ε)-greedy, with respect to the new norm.
If in addition the basis is bidemocratic, then there is a renorming so that in the new norm the basis is (1+ε)-
greedy. We also prove that in the latter result the additional assumption of the basis being bidemocratic can
be removed for a large class of bases. Applications include the Haar systems in L p[0, 1], 1 < p < ∞, and
in dyadic Hardy space H1, as well as the unit vector basis of Tsirelson space.
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0. Introduction

In approximation theory one is often faced with the following problem. We start with a signal,
i.e., a vector x in some Banach space X . We then consider the (unique) expansion


∞

i=1 xi ei of
x with respect to some (Schauder) basis (ei ) of X . For example, this may be a Fourier expansion
of x , or it may be a wavelet expansion in L p. We then wish to approximate x by considering
m-term approximations with respect to the basis. The smallest error is given by

σm(x) = inf
x −


i∈A

ai ei

 : A ⊂ N, |A| ≤ m, (ai )i∈A ⊂ R

.

We are interested in algorithms that are easy to implement and that produce the best m-term
approximation, or at least get close to it. A very natural process is the greedy algorithm which
we now describe. For each x =


xi ei ∈ X we fix a permutation ρ = ρx of N (not necessarily

unique) such that |xρ(1)| ≥ |xρ(2)| ≥ · · ·. We then define the mth greedy approximant to xby

Gm(x) =

m
i=1

xρ(i)eρ(i).

For this to make sense we need inf ∥ei∥ > 0, otherwise (xi ) may be unbounded. In fact, since
we will be dealing with democratic bases, all our bases will be seminormalized, which means
that 0 < inf ∥ei∥ ≤ sup ∥ei∥ < ∞. It follows that the biorthogonal functionals (e∗

i ) are also
seminormalized. Note that a space with a seminormalized basis (ei ) can be easily renormed to
make (ei ) normalized, i.e., ∥ei∥ = 1 for all i ∈ N.

We measure the efficiency of the greedy algorithm by comparing it to the best m-term
approximation. We say that (ei ) is a greedy basis for X if there exists C > 0 (C-greedy) such that

∥x − Gm(x)∥ ≤ Cσm(x) for all x ∈ X and for all m ∈ N.

The smallest C is the greedy constant of the basis. Note that being a greedy basis is a strong
property. It implies in particular the strictly weaker property that Gm(x) converges to x for all
x ∈ X . If this weaker property holds, then we say that the basis (ei ) is quasi-greedy. This is still
a non-trivial property: a Schauder basis need not be quasi-greedy in general.

The simplest examples of greedy bases include the unit vector basis of ℓp (1 ≤ p < ∞) or
c0, or orthonormal bases of a separable Hilbert space. An important and non-trivial example is
the Haar basis of L p[0, 1] (1 < p < ∞) which was shown to be greedy by V.N. Temlyakov [8].
This result was later established by P. Wojtaszczyk [9] using a different method which extended
to the Haar system in one-dimensional dyadic Hardy space Hp(R), 0 < p ≤ 1. We also men-
tion two recent results. S.J. Dilworth, D. Freeman, E. Odell and Th. Schlumprecht [3] proved that
⊕

∞

n=1 ℓ
n
p


ℓq

has a greedy basis whenever 1 ≤ p ≤ ∞ and 1 < q < ∞. Answering a question

raised in [3], G. Schechtman showed that none of the space


∞

n=1 ℓp

ℓq
, 1 ≤ p ≠ q < ∞,

∞

n=1 ℓp


c0
, 1 ≤ p < ∞, and


∞

n=1 c0

ℓq
, 1 ≤ q < ∞, have greedy bases [7].

Greedy bases are closely related to unconditional bases. We recall that a basis (ei ) of a Banach
space X is said to be unconditional if there is a constant K (K -unconditional) such that 

ai ei

 ≤ K ·

 
bi ei

 whenever |ai | ≤ |bi | for all i ∈ N.

The best constant K is the unconditional constant of the basis which we denote by KU . The
property of being unconditional is easily seen to be equivalent to that of being suppression
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unconditional which means that for some constant K (suppression K -unconditional) the natural
projection onto any subsequence of the basis has norm at most K : 

i∈A

ai ei

 ≤ K ·

 ∞
i=1

ai ei

 for all (ai ) ⊂ R, A ⊂ N.

The smallest K is the suppression unconditional constant of the basis and is denoted by KS . It
is easy to verify that KS ≤ KU ≤ 2KS . Note that it is trivial to renorm the space X so that in
the new norm the basis is suppression 1-unconditional. Indeed, for A ⊂ N the map PA: X → X ,

defined by PA


i∈N xi ei


=


i∈A xi ei , is bounded in norm by KS . Hence

|||x ||| = sup{∥PA(x)∥ : A ⊂ N}

is a KS-equivalent norm on X in which (ei ) is suppression 1-unconditional. Similarly, using
maps Mλ: X → X given by


xi ei →


λi xi ei , where λ = (λi ) ∈ Bℓ∞ , we can define a

KU -equivalent norm on X in which (ei ) is 1-unconditional.
In [6], S.V. Konyagin and V.N. Temlyakov introduced the notion of greedy and democratic

bases and proved the following characterization.

Theorem 1 ([6, Theorem 1]). A basis of a Banach space is greedy if and only if it is uncondi-
tional and democratic.

A basis (ei ) is said to be democratic if there is a constant ∆ ≥ 1 (∆-democratic) such that 
i∈A

ei

 ≤ ∆
 

i∈B

ei

 whenever |A| ≤ |B|.

By carefully following the proof of [10, Theorem 1], one obtains the following estimates:

KS ≤ C, ∆ ≤ C and C ≤ KS + KS K 2
U · ∆.

One can in fact get slightly better estimates by amalgamating some of the steps in that proof:

KS ≤ C, ∆ ≤ C and C ≤ KS + K 2
U · ∆. (1)

That is, a C-greedy basis is suppression C-unconditional and C-democratic, and conversely,
an unconditional and ∆-democratic basis is C-greedy with C ≤ KS + K 2

U · ∆. In particular
a 1-unconditional, 1-democratic basis is 2-greedy. By [5, Theorem 3.1] the constant 2 is best
possible. Thus, improving the democracy constant by renorming will not in general improve the
greedy constant beyond 2.

In this paper we are concerned with the problem whether a Banach space X with a greedy ba-
sis (ei ) can be renormed so that in the new norm the greedy constant of the basis (ei ) is improved
ideally to 1 or at least to 1 + ε where ε > 0 can be chosen arbitrarily small. As a byproduct,
we also obtain results on renormings that improve the democracy constant. The maps PA and
Mλ that were used above in renormings that improve the unconditional constants are linear. By
contrast, the functions Gm that map vectors to their greedy approximants are not linear, and that
is what makes the problem of improving the greedy constant far from trivial.

In the rest of this section we recall what is already known about this problem and state our
new results. Definitions will be given in later sections when needed.

In [1] F. Albiac and P. Wojtaszczyk gave a characterization of 1-greedy bases in terms of a
weak symmetry property of the basis. They raised several open problems about symmetry prop-
erties of 1-greedy bases and about the possibility of improving greedy and democratic constants
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by renorming. Most of the problems were answered by four of the authors of this paper in [5].
In Section 1 we recall the Albiac–Wojtaszczyk characterization, and a theorem from [5] which
shows that a space with an unconditional, bidemocratic basis can be renormed to make the basis
1-unconditional and 1-bidemocratic. By (1), such a basis is 2-greedy. Here we will obtain the
following stronger result.

Theorem A. Let X be a Banach space with an unconditional, bidemocratic basis (ei ). Then
for all ε > 0 there is an equivalent norm on X with respect to which (ei ) is 1-unconditional,
1-bidemocratic and (1 + ε)-greedy.

In particular, the above result applies to the Haar basis of L p[0, 1] for 1 < p < ∞. In [1]
Albiac and Wojtaszczyk raise the problem whether L p[0, 1] can be renormed so that the Haar
basis becomes 1-greedy in the new norm. This problem is still open. The result above gets close
to giving a positive answer.

Section 3 is concerned with the general case, i.e., when we do not assume bidemocracy. In [1]
Albiac and Wojtaszczyk asked whether the democracy constant can be improved to 1. It was
already shown in [5] that the answer in general is ‘no’: the Haar system of dyadic H1, or an
arbitrary unconditional basis of Tsirelson’s space T cannot be made 1-democratic by renorming.
Here we are able to prove the following positive result.

Theorem B. Let (ei ) be an unconditional and democratic basis of a Banach space X. For any
ε > 0 there is an equivalent norm on X with respect to which (ei ) is normalized, 1-unconditional
and (1 + ε)-democratic.

This answers a question raised by W.B. Johnson. By Eq. (1), it follows from this theorem that
if (ei ) is a greedy basis of a Banach space X , then for all ε > 0 there is an equivalent norm on X
with respect to which (ei ) is 1-unconditional and (2+ε)-greedy. The following problem remains
open in its full generality.

Problem C. Let X be a Banach space with a greedy basis (ei ). Given ε > 0, does there exist an
equivalent norm on X with respect to which (ei ) is 1-unconditional and (1 + ε)-greedy?

In the last section we will give a positive answer for a large class of bases. As an application
we obtain, for any ε > 0, a renorming of Hardy space H1 and of Tsirelson’s space T such that
the Haar system, respectively, unit vector basis is (1 + ε)-greedy.

1. Bidemocratic bases

The aim of this section is to prove Theorem A. We first recall the Albiac–Wojtaszczyk char-
acterization of 1-greedy bases [1]. In fact a trivial modification of their proof gives a characteri-
zation of C-greedy bases for an arbitrary C ≥ 1. For the sake of completeness we shall state and
prove their result here in that more general form.

Let (ei ) be a basis of a Banach space X with biorthogonal sequence (e∗

i ). For a finite set
A ⊂ N we denote by 1A the vector


i∈A ei of X or sometimes the vector


i∈A e∗

i in X∗. It will
be clear from the context which one is meant. For example the notation ∥1A∥ means the norm
of


i∈A ei in X , whereas ∥1A∥

∗ indicates the norm in the dual space of


i∈A e∗

i . The support
with respect to the basis (ei ) of a vector x =


xi ei in X is the set supp(x) = {i ∈ N : xi ≠ 0}.

The subspace of vectors with finite support, i.e., the linear span of (ei ), can be identified in the
obvious way with the space c00 of real sequences that are eventually zero. The basis (ei ) then
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corresponds to the unit vector basis of c00. Given vectors x =


xi ei and y =


yi ei in c00, we
say y is a greedy rearrangement of x if there existw, u = (ui ), t = (t j ) ∈ c00 of pairwise disjoint
support such that x = w + u, y = w + t, |supp(u)| = |supp(t)|, and ∥w∥ℓ∞ ≤ |ui | = |t j | for
all i ∈ supp(u), j ∈ supp(t). To put it informally, y is obtained from x by moving (and possibly
changing the sign of) some of the coefficients of x of maximum modulus to co-ordinates where
x is zero. Given C ≥ 1, we say that (ei ) has Property (A) with constant C if for all x, y ∈ c00 we
have ∥y∥ ≤ C∥x∥ whenever y is a greedy rearrangement of x .

Theorem 2 (cf. [1, Theorem 3.4]). Let (ei ) be a basis of a Banach space X. If (ei ) is C-greedy,
then it is suppression C-unconditional and has Property (A) with constant C. Conversely, if
(ei ) is suppression K -unconditional and has Property (A) with constant C, then it is greedy
with constant at most K 2C.

In particular, a suppression 1-unconditional basis of a Banach space is C-greedy if and only
if it satisfies Property (A) with constant C.

Proof. First assume that (ei ) is C-greedy. We show that if x =


xi ei ∈ X has finite support
and A ⊂ N, then

 
i∈A xi ei

 ≤ C∥x∥. Let B = supp(x) \ A and m = |B|. Choose a real
number λ > ∥x∥ℓ∞ , and set z =


i∈A xi ei +λ1B . Then Gm(z) = λ1B and w =


i∈B(λ− xi )ei

is an m-term approximation to z. It follows that 
i∈A

xi ei

 = ∥z − Gm(z)∥ ≤ C∥z − w∥ = C∥x∥,

as required. We next show that (ei ) has Property (A) with constant C . Let y = w+ t be a greedy
rearrangement of x = w + u, where w, u, t ∈ c00 are as in the definition above. Fix δ > 0 and
set z = w + (1 + δ)u + t . Let m = |supp(u)| = |supp(t)|. Then Gm(z) = (1 + δ)u, whereas t is
another m-term approximation to z. It follows that

∥y∥ = ∥z − Gm(z)∥ ≤ C∥z − t∥ = C∥x + δu∥.

Letting δ → 0 yields ∥y∥ ≤ C∥x∥, as required.
To prove the converse, fix x =


xi ei ∈ c00 and m ∈ N. Let


i∈A xi ei be the mth greedy ap-

proximant to x , and let b =


i∈B bi ei be an arbitrary m-term approximation. Let s = min{|xi | :

i ∈ A}, and for each i ∈ N let εi be the sign of xi . Note that |xi | ≥ s ≥ |x j | for all i ∈ A
and j ∉ A. The following is a well known consequence of suppression K -unconditionality. If
0 ≤ yi ≤ zi or zi ≤ yi ≤ 0 for all i ∈ N, then

 
yi ei

 ≤ K
 

zi ei
. We use this in the first

and third inequalities below, whereas the second inequality uses Property (A).

∥x − b∥ =

 
i∈A\B

xi ei +


i∈B

(xi − bi )ei +


i ∉A∪B

xi ei


≥

1
K

 
i∈A\B

sεi ei +


i ∉A∪B

xi ei

 ≥
1

K C

 
i∈B\A

sεi ei +


i ∉A∪B

xi ei


≥

1

K 2C

 
i∈B\A

xi ei +


i ∉A∪B

xi ei

 =
1

K 2C

x − Gm(x)
.

This completes the proof. �

Remark. Let (ei ) be a 1-unconditional basis of a Banach space X . For x ∈ c00 define ∥ · ∥x to
be the function

∥z∥x =
z + ∥z∥ℓ∞ · x

,
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which defines a norm on span{ei : i ∈ N \ supp(x)}. Theorem 2 implies that (ei ) is C-greedy if
and only if for every x ∈ c00 with ∥x∥ℓ∞ ≤ 1 the norm ∥ · ∥x is C-democratic. This character-
ization of greedy bases is slightly different from the one given by Konyagin and Temlyakov [6]
where they only assume the democracy of ∥ · ∥x for x = 0. However, for our purposes, the above
result has the advantage that the greedy constant is the same as the Property (A) constant.

We next recall the notion of bidemocracy, which was introduced by S.J. Dilworth, N.J. Kalton,
D. Kutzarova and V.N. Temlyakov in [4], and the corresponding renorming result [5, Theo-
rem 2.1]. Suppose that (ei ) is a seminormalized basis of a Banach space X with biorthogonal
sequence (e∗

i ). The fundamental function ϕ of (ei ) is defined by

ϕ(n) = sup
|A|≤n

 
i∈A

ei

.
The dual fundamental function ϕ∗ is given by

ϕ∗(n) = sup
|A|≤n

 
i∈A

e∗

i

.
We recall that (ϕ(n)/n) is a decreasing function of n, since for any A ⊂ N with |A| = n ≥ 2 we
have  

i∈A

ei

 =
1

n − 1

 
i∈A


j∈A\{i}

e j

 ≤
n

n − 1
ϕ(n − 1).

Clearly, ϕ(n)ϕ∗(n) ≥ n. We say that (ei ) is bidemocratic if there is a constant ∆ ≥ 1 (∆-
bidemocratic) such that

ϕ(n)ϕ∗(n) ≤ ∆n for all n ∈ N.

It is known [4, Proposition 4.2] that if (ei ) is bidemocratic with constant ∆, then both (ei ) and
(e∗

i ) are democratic with constant ∆. In [5] the following result was proved.

Theorem 3. Suppose that (ei ) is a 1-unconditional and ∆-bidemocratic basis for a Banach
space X. Then

|||x ||| = max

∥x∥, sup

|A|<∞

ϕ(|A|)

|A|


i∈A

|e∗

i (x)|


(2)

is an equivalent norm on X. Moreover, (ei ) is 1-unconditional and 1-bidemocratic with respect
to ||| · |||. In particular, (ei ) and (e∗

i ) are 1-democratic and 2-greedy.

By [5, Theorem 3.1], the conclusion that (ei ) is 2-greedy whenever it is 1-unconditional and
1-democratic cannot be strengthened in general. We now prove a stronger theorem which is the
main result of this section. First we introduce two pieces of notation. For a vector x =


xi ei

we write |x | for


|xi |ei , and x ≥ 0 if xi ≥ 0 for all i ∈ N.

Theorem 4. Let X be a Banach space with an unconditional, bidemocratic basis (ei ). Then
for all ε > 0 there is an equivalent norm on X with respect to which (ei ) is 1-unconditional,
1-bidemocratic and (1 + ε)-greedy.
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Proof. After renorming, we may assume that the basis (ei ) is normalized, 1-unconditional and
1-bidemocratic. Let ϕ and ϕ∗ denote the fundamental and, respectively, dual fundamental
function of (ei ). Fix ε ∈ (0, 1). Define a new norm ||| · ||| on X as follows.

|||x ||| = sup


|x |, x∗
+

1
ϕ∗(n)

1A


: x∗

∈ εBX∗ , n ∈ N, A ⊂ N, |A| = n

.

It is clear that (ei ) is a 1-unconditional basis in ||| · |||. We next prove that it also satisfies Property
(A) with constant 1 + ε. Fix x ∈ c00 and B, B̃ ⊂ N \ supp(x) such that ∥x∥ℓ∞ ≤ 1 and
|B| = |B̃| < ∞. It will be sufficient to prove that |||x + 1B ||| ≤ (1 + ε)|||x + 1B̃ |||. We may of
course assume that x ≥ 0.

Let n ∈ N, A ⊂ N and x∗
∈ εBX∗ be such that |A| = n and

|||x + 1B ||| =


x + 1B, x∗

+
1

ϕ∗(n)
1A


= ⟨x, x∗

⟩ + ⟨1B, x∗
⟩ +

1
ϕ∗(n)

⟨x, 1A⟩ +
1

ϕ∗(n)
|B ∩ A|. (3)

Without loss of generality we may assume that supp(x∗)∪ A ⊂ supp(x)∪ B, and hence x∗
≥ 0.

Note that

⟨1B, x∗
⟩ ≤ ε∥1B∥ ≤ εϕ(|B|) = εϕ(|B̃|)

= ε

x + 1B̃,

1

ϕ∗

|B̃|

1B̃


≤ ε|||x + 1B̃ |||. (4)

Now choose Ã ⊂ N such that Ã ∩ supp(x) = A ∩ supp(x) and |B̃ ∩ Ã| = |B ∩ A|. Then | Ã| = n
and

⟨x, 1A⟩ + |B ∩ A| = ⟨x, 1 Ã⟩ + |B̃ ∩ Ã|. (5)

We now obtain

|||x + 1B ||| = ⟨x, x∗
⟩ + ⟨1B, x∗

⟩ +
1

ϕ∗(n)
⟨x, 1A⟩ +

1
ϕ∗(n)

|B ∩ A| by (3)

≤ ⟨x, x∗
⟩ + ε|||x + 1B̃ ||| +

1
ϕ∗(n)

⟨x, 1 Ã⟩ +
1

ϕ∗(n)
|B̃ ∩ Ã| by (4) and (5)

≤


x + 1B̃, x∗

+
1

ϕ∗(n)
1 Ã


+ ε|||x + 1B̃ ||| as x∗

≥ 0

≤ (1 + ε)|||x + 1B̃ |||,

as required. Thus, so far, we have that (ei ) is 1-unconditional and (1+ε)-greedy in ||| · |||. It is also
clear that |||ei ||| = 1 + ε for all i ∈ N. Let ψ and ψ∗ denote the fundamental and, respectively,
dual fundamental function of (ei )with respect to ||| · |||. Let m, n ∈ N and A, B ⊂ N with |A| = m
and |B| = n. By definition of ||| · |||, in the dual space we have |||

1
ϕ∗(m)1A|||

∗
≤ 1, from which it

follows that ψ∗(m) ≤ ϕ∗(m). Also, for any x∗
∈ εBX∗ we have

1B, x∗
+

1
ϕ∗(m)

1A


≤ ε∥1B∥ +

ϕ(m)

m
|B ∩ A|

≤ εϕ(n)+
ϕ(|B ∩ A|)

|B ∩ A|
|B ∩ A| ≤ (1 + ε)ϕ(n).
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Hence ψ(n) ≤ (1 + ε)ϕ(n), and (ei ) is (1 + ε)-bidemocratic in ||| · |||. So if we replace ||| · ||| with
1

1+ε
||| · ||| and apply Theorem 3, then we obtain a new norm (1 + ε)-equivalent to ||| · |||, and with

respect to which (ei ) is normalized, 1-unconditional, 1-bidemocratic and (1 + ε)2-greedy. �

Let us now observe that our theorem applies to a large class of Banach spaces and bases.
We say that a democratic basis (ei ) (or its fundamental function ϕ) has the upper regularity
property (or URP for short) if there exists an integer r > 2 such that

ϕ(rn) ≤
1
2

rϕ(n) for all n ∈ N.

This is easily seen to be equivalent to the existence of 0 < β < 1 and a constant C such that

ϕ(n) ≤ C
 n

m

β
ϕ(m) for all m ≤ n.

This property was introduced in [4] where it was shown that a greedy basis of a Banach space
with nontrivial type has the URP and that a greedy basis with the URP is bidemocratic. More
precisely, they showed that if (ei ) is a greedy basis with fundamental function ϕ, and there exists
a constant C such that

n
k=1

ϕ(n)

ϕ(k)
≤ Cn for all n ∈ N, (6)

then (ei ) is bidemocratic. It is of course clear that the URP implies (6).
It is well known that L p[0, 1] for 1 < p < ∞ has nontrivial type. Thus we obtain the follow-

ing corollary.

Corollary 5. Let 1 < p < ∞. For all ε > 0 there is an equivalent norm on L p[0, 1] in which
the Haar basis is normalized, 1-unconditional, 1-bidemocratic and (1 + ε)-greedy.

Remark. It follows from the Albiac–Wojtaszczyk characterization that a 1-greedy basis is sup-
pression 1-unconditional, and hence 2-unconditional. As shown in [5, Theorem 4.1], the uncon-
ditional constant 2 is in general the best one can say about a 1-greedy basis. This is why the
1-unconditionality was included in the above results.

2. The class of quasi-concave functions

We denote by R+ the set of (strictly) positive real numbers. Recall that the fundamental func-
tion ϕ: N → R+ of a basis of a Banach space is increasing and n →

ϕ(n)
n is decreasing. Let

us now call a function ϕ: [1,∞) → R+ defined on the real interval [1,∞) a fundamental func-
tion if it is increasing and x →

ϕ(x)
x is decreasing. Observe that every fundamental function ϕ is

subadditive. Indeed, for x, y ∈ [1,∞) we have

ϕ(x + y) =
ϕ(x + y)

x + y
· x +

ϕ(x + y)

x + y
· y ≤

ϕ(x)

x
· x +

ϕ(y)

y
· y = ϕ(x)+ ϕ(y).

The fundamental function of a basis of a Banach space is the restriction to N of a fundamental
function in the above sense. Indeed, if ϕ: N → R+ is the fundamental function of a basis, then
we can extend it to a function on [1,∞) by linear interpolation. A straightforward calculation
shows that this extended function is a fundamental function in the above sense. The converse
is also true, i.e., if ϕ: [1,∞) → R+ is a fundamental function, then its restriction to N is the
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fundamental function of a basis. This will be shown in Proposition 8 at the end of this section.
Given a fundamental function ϕ: [1,∞) → R+ and a basis (ei ) of a Banach space, we say
that ϕ is a fundamental function for (ei ) if the restriction of ϕ to N is the fundamental function
of (ei ).

Remark. In the literature fundamental functions in the above sense are also known as quasi-
concave functions. See for example [2, Definition 5.6 on page 69], where quasi-concave func-
tions are defined on the interval [0,∞) and are naturally associated with rearrangement-invariant
spaces. Since we work with discrete lattices corresponding to unconditional bases which in gen-
eral are not symmetric, for us it will be more convenient to work with the definition above
instead.

We will now introduce a parameter δ which provides information on the growth of fundamen-
tal functions. After that we will show that the concave envelope of a fundamental function is also
a fundamental function.

Let ϕ: [1,∞) → R+ be a fundamental function. It will sometimes be more convenient to
work with the function λ: [1,∞) → R+ defined by λ(x) =

ϕ(x)
x . Note that λ is decreasing and

xλ(x) is increasing. For y ∈ [1,∞) define

δϕ(y) = lim inf
x→∞

ϕ(yx)

yϕ(x)
= lim inf

x→∞

λ(yx)

λ(x)
.

It follows from properties of λ that δϕ is decreasing and bounded above by 1. Hence

δ(ϕ) = inf
y≥1

δϕ(y) = lim
y→∞

δϕ(y) ∈ [0, 1].

Let us now observe that the function δϕ and the parameter δ(ϕ) depend only on the values of ϕ
on N. Fix m ∈ N. For any real x ∈ [1,∞), putting n = ⌊x⌋ + 1, we have

λ(mx)

λ(x)
= x ·

λ(mx)

xλ(x)
≥ x ·

λ(mn)

nλ(n)
=

x

⌊x⌋ + 1
·
λ(mn)

λ(n)
.

It follows that for each y ∈ [1,∞) we have

inf
n∈N, n≥⌊y⌋+1

λ(mn)

λ(n)
≥ inf

x∈R, x≥y

λ(mx)

λ(x)
≥

⌊y⌋

⌊y⌋ + 1
· inf

n∈N, n≥⌊y⌋+1

λ(mn)

λ(n)
,

and hence we obtain

δϕ(m) = lim inf
n→∞

λ(mn)

λ(n)
.

Thus we have

δ(ϕ) = lim
m→∞

lim inf
n→∞

λ(mn)

λ(n)
.

One consequence of all this is that if (ei ) is a basis of a Banach space, then the parameter δ(ϕ)
is the same for any fundamental function ϕ for (ei ).

Two fundamental functions ϕ and ψ are said to be equivalent if there exist positive real num-
bers a and b such that aϕ(x) ≤ ψ(x) ≤ bϕ(x) for all x ∈ [1,∞). In this case we write ϕ ∼ ψ .
Note that equivalence also only depends on the restrictions to N of ϕ and ψ . Indeed, if for some
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b > 0 we have ψ(n) ≤ bϕ(n) for all n ∈ N, then

ψ(x) = x ·
ψ(x)

x
≤ x ·

ψ(⌊x⌋)

⌊x⌋
≤ 2bϕ(⌊x⌋) ≤ 2bϕ(x)

for all x ∈ [1,∞). So for a basis (ei ) of a Banach space with a fundamental function ϕ, the prop-
erty of having δ(ϕ) > 0 is invariant under renormings. We now prove a result about fundamental
functions with positive δ-parameter. This will be used in Theorem 11 in the next section.

Lemma 6. Let ϕ be a fundamental function with δ(ϕ) > 0. Then for all ε > 0 and for all m ∈ N
there exists a fundamental function ψ ∼ ϕ such that δψ (m) > 1

1+ε
.

Proof. It is enough to show that if δϕ(m2) > δ, then there exists a fundamental function ψ ∼ ϕ

such that δψ (m) >
√
δ. Indeed, assuming this result, we fix 0 < δ < δ(ϕ), choose k ∈ N with

δ
1

2k > 1
1+ε

, and obtain fundamental functions ϕ = ϕ0 ∼ ϕ1 ∼ · · · ∼ ϕk such that δϕ j


m2k− j 

>

δ
1

2 j for j = 0, 1, 2, . . . , k. Putting ψ = ϕk completes the proof.
Set λ(x) =

ϕ(x)
x , x ∈ [1,∞). To prove our initial claim, choose n0 ∈ N such that λ(m2x) >

δλ(x) for all real x ≥ n0. We now define a new function µ: [1,∞) → R+ as follows. We set
µ(x) = λ(x) for all real x ∈ [1, n0] and for all integers x of the form x = m2kn0, k = 0, 1, 2, . . ..
We then extend the definition of µ by interpolation as follows. Given a real number x ∈ [n0,∞),
we fix an integer k ≥ 0 such that x ∈ [n,m2n], where n = m2kn0. (Note that k is unique unless
x ∈ {m2 j n0 : j ∈ N}.) Then there is a unique θ ∈ [0, 1] such that x = n1−θ (m2n)θ . We define

µ(x) = λ(n)1−θλ(m2n)θ .

Note that for x = n and x = m2n this agrees with the previous definition of µ(x) = λ(x). It
follows that µ(x) is well-defined, and in particular it does not depend on the choice of k when
x ∈ {m2 j n0 : j ∈ N}. We now prove the following properties for each integer k ≥ 0 with
n = m2kn0.

(i) µ(x) is decreasing and xµ(x) is increasing on [n,m2n].
(ii) δλ(x) ≤ µ(x) ≤ m2λ(x) for all x ∈ [n,m2n],

(iii) µ(mx) ≥
√
δµ(x) for all x ∈ [n,m2n].

We will then set ψ(x) = xµ(x) for each x ∈ [1,∞). Since µ = λ, and hence ψ = ϕ, on the
set [1, n0] ∪ {m2kn0 : k ≥ 0}, property (i) implies that ψ is a fundamental function, which is
equivalent to ϕ by (ii), and satisfies δψ (m) ≥

√
δ by (iii). This proves the initial claim, and hence

the lemma.
To see (i) simply differentiate the functions

λ(n)1−θλ(m2n)θ and n1−θ (m2n)θλ(n)1−θλ(m2n)θ

with respect to θ .
Next, fix θ ∈ [0, 1] and set x = n1−θ (m2n)θ . By the properties of λ, we have

µ(x) = λ(n)1−θλ(m2n)θ ≤ λ(n) = nλ(n) ·
1
n

≤ xλ(x) ·
1
n

= n1−θ (m2n)θ · λ(x) ·
1
n

= m2θλ(x) ≤ m2λ(x),

and, since λ(m2n) ≥ δλ(n), we have

µ(x) = λ(n)1−θλ(m2n)θ ≥ δθλ(n) ≥ δλ(x).
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Hence (ii) follows. Finally, fix 0 ≤ θ ≤ 1. In order to verify (iii) we need to show that

µ

m · n1−θ (m2n)θ


µ


n1−θ (m2n)θ

 ≥
√
δ. (7)

We consider two cases. When 0 ≤ θ ≤
1
2 , we can write m · n1−θ (m2n)θ = n1−θ ′

(m2n)θ
′

, where
θ +

1
2 = θ ′. Then, since λ(m2n) ≥ δλ(n) and θ ′

− θ > 0, the left-hand side of (7) becomes

λ(n)1−θ ′

λ(m2n)θ
′

λ(n)1−θλ(m2n)θ
≥ λ(n)θ−θ

′

·

δλ(n)

θ ′
−θ

=
√
δ.

In the second case, we have 1
2 ≤ θ ≤ 1 and m · n1−θ (m2n)θ = (m2n)1−θ ′

(m4n)θ
′

, where
θ +

1
2 = 1 + θ ′. Then the left-hand side of (7) becomes

λ(m2n)1−θ ′

λ(m4n)θ
′

λ(n)1−θλ(m2n)θ
≥
λ(m2n)1−θ ′

δλ(m2n)
θ ′

λ(n)1−θλ(m2n)θ

= δθ
′

·
λ(m2n)1−θ

λ(n)1−θ
≥ δθ

′
+1−θ

=
√
δ,

as required. �

We next prove that every fundamental function is equivalent to a concave one. This is standard
(see for example [2, Proposition 5.10]), but we repeat the simple proof here as we need a further
property concerning the δ parameter.

Lemma 7. Let ϕ be a fundamental function. Then there exists a concave fundamental function
ψ such that ϕ(x) ≤ ψ(x) ≤ 2ϕ(x) for all x ∈ [1,∞). Moreover, we have δψ (y) ≥ δϕ(y) for all
y ∈ [1,∞).

Proof. We let ψ : [1,∞) → R+ be the concave envelope of ϕ. Recall that this is the (pointwise)
smallest concave function dominating ϕ, and is given by

ψ(x) = sup
n

i=1

tiϕ(xi ),

where the supremum is taken over all convex combinations x =
n

i=1 ti xi of numbers x1, . . . ,

xn ∈ [1,∞). Of course this concave envelope exists if and only if the above supremum is finite
for every x . To verify that this is true in our case, note that either xi < x and ϕ(xi ) ≤ ϕ(x), or
xi ≥ x and we have ϕ(xi ) =

ϕ(xi )
xi

xi ≤
ϕ(x)

x xi . It follows that

n
i=1

tiϕ(xi ) ≤ ϕ(x)

xi<x

ti +
ϕ(x)

x


xi ≥x

ti xi ≤ 2ϕ(x).

It follows that ψ exists, and ϕ(x) ≤ ψ(x) ≤ 2ϕ(x) for all x . We next show that ψ is a funda-
mental function. Let 1 ≤ x ≤ y, and let x =

n
i=1 ti xi be a convex combination of elements of

[1,∞). Then
n

i=1 ti (xi + y − x) = y, and hence

ψ(y) ≥

n
i=1

tiϕ(xi + y − x) ≥

n
i=1

tiϕ(xi ).
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Taking supremum yields ψ(y) ≥ ψ(x), and so ψ is increasing. Next, consider a convex combi-
nation y =

n
i=1 ti yi . Let z =

x
y . Then x =

n
i=1 ti zyi , and so

ψ(x)

x
≥

1
x

n
i=1

tiϕ(zyi ) =

n
i=1

ti
ϕ(zyi )

zyi
·

yi

y

≥

n
i=1

ti
ϕ(yi )

yi
·

yi

y
=

1
y

n
i=1

tiϕ(yi ).

After taking supremum, this implies ψ(x)
x ≥

ψ(y)
y , which completes the proof that ψ is a funda-

mental function.
To show the “moreover” part of the lemma, first observe that if ϕ is bounded, then limx→∞

ϕ(x) exists, and hence δϕ(y) =
1
y for all y ∈ [1,∞). Since in this case ψ is also bounded, we

have δϕ(y) = δψ (y) =
1
y for all y. Assume now that ϕ is unbounded. Fix y ≥ 1. It will be

enough to show that if 0 < δ < δϕ(y) and ε > 0, then δ ≤ (1 + ε)δψ (y). Choose w ∈ [1,∞)

such that ϕ(yx) ≥ δyϕ(x) for all x ≥ w. Since ϕ(x) tends to infinity, we can then choose z > w

such that δy
ε
ϕ(w) < ϕ(z).

We will show that if x ≥ z, then (1 + ε)ψ(yx) ≥ δyψ(x), which will complete the proof. Fix
a convex combination x =

n
i=1 ti xi . By the definition of ψ , we have

ψ(yx) ≥

n
i=1

tiϕ(yxi ).

Let I =

i ∈ {1, . . . , n} : xi ≥ w


. By the choice of z, we have

δy

i ∉I

tiϕ(xi ) ≤ δyϕ(w) < εϕ(z) ≤ εψ(yx).

It follows from this and from the choice of w that

ψ(yx) ≥


i∈I

tiϕ(yxi ) ≥ δy

i∈I

tiϕ(xi ) ≥ δy
n

i=1

tiϕ(xi )− εψ(yx).

Since this holds for all convex combinations
k

i=1 ti xi for x , we obtain that (1 + ε)ψ(yx) ≥

δyψ(x), as required. �

Our next result shows that every fundamental function arises from a basis in a Banach space.

Proposition 8. Let ϕ: [1,∞) → R+ be a fundamental function. Then there is a Banach space
with a 1-unconditional basis (ei ) whose fundamental function is the restriction of ϕ to N.

Proof. Let F be a family of finite subsets of N. The only condition we impose on F that it should
contain for every n ∈ N a set of size n. By scaling we may assume that ϕ(1) = 1. Define a norm
∥ · ∥ on the space c00 of finite sequences as follows:

∥x∥ = ∥x∥ℓ∞ ∨ sup
ϕ(|A|)

|A|


i∈A

|xi | : A ∈ F

, x = (xi ) ∈ c00.

It is clear that (ei ) is a normalized, 1-unconditional basis of the completion X of

c00, ∥ ·∥


. Now

let m, n ∈ N, let A ∈ F with m = |A|, and let B ⊂ N with |B| = n. Then

ϕ(|A|)

|A|
|B ∩ A| ≤

ϕ(|B ∩ A|)

|B ∩ A|
|B ∩ A| = ϕ(|B ∩ A|) ≤ ϕ(n).
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It follows that
 

i∈B ei
 ≤ ϕ(n). On the other hand, since A ∈ F , we have

 
i∈A ei

 ≥

ϕ(m). Thus the fundamental function of (ei ) is indeed ϕ. �

Remark. As we mentioned at the start of this section, fundamental functions with a slightly
different definition were introduced in [2]. There, a continuous version of Proposition 8 shows
that every quasi-concave function is the fundamental function of a rearrangement-invariant space
(see [2, Proposition 5.8]). However, in our result the basis constructed clearly need not be
symmetric, or indeed even democratic. If for some δ > 0 every finite E ⊂ N has a subset
A ∈ F with |A| ≥ δ|E |, then (ei ) is 1

δ
-democratic. If F is the set of all subsets of N, then (ei ) is

bidemocratic.
It is also possible for (ei ) to be democratic but not bidemocratic. For this to happen ϕ cannot

be arbitrary. For example, if ϕ has the URP and (ei ) is democratic, then (ei ) is automatically
bidemocratic [4, Proposition 4.4]. However, if ϕ(n) = n, say, and F is the family S of Schreier
sets, i.e., sets A ⊂ N with |A| ≤ min A, then the dual fundamental function cannot be bounded
otherwise X∗ would be isomorphic to c0, and hence X would be isomorphic to ℓ1.

We will later prove a renorming result for bases with fundamental function ϕ satisfying
δ(ϕ) > 0. Note that a basis with the URP clearly has δ(ϕ) = 0. We conclude this section by ob-
serving that there are bases without the URP and with δ(ϕ) = 0. Fix integers 1 = n1 < n2 < · · ·.
Define ϕ: N → R+ by setting ϕ(1) = 1 and keeping ϕ(n)

n constant on intervals [nk, nk+1] when k
is odd, and keeping ϕ constant on intervals [nk, nk+1] when k is even. Extend ϕ to a fundamental
function defined on [1,∞). If the nk are sufficiently rapidly increasing, then δϕ(m) = 0 for all
m ∈ N. By Proposition 8 this ϕ is the fundamental function for some Schauder basis which fails
the URP provided the nk are sufficiently rapidly increasing.

3. The general case

In this section we will prove Theorem B and give a positive answer to Problem C in the case
the fundamental function ϕ has δ(ϕ) > 0. We will require the following crucial lemma.

Lemma 9. Let (ei ) be a normalized, 1-unconditional, ∆-democratic basis of a Banach space X
with fundamental function ϕ. Given 0 < q < 1, fix C > ∆

q(1−q) and set

A =


A ⊂ N : A finite and

ϕ(|A|)

|A|
1A

∗
≤ C


.

Then for every finite E ⊂ N there exists A ∈ A such that A ⊂ E and |A| ≥ q|E |.

Proof. Choose δ > 0 such that C >
(1+δ)∆
δq(1−q) . Let n ∈ N and E ⊂ N with |E | = n. We induc-

tively construct z(1), z(2), . . . in BX∗ and pairwise disjoint subsets E1, E2, . . . of E as follows.
Assume that for some k ∈ N we have already defined z(1), . . . , z(k−1) and E1, . . . , Ek−1. Set
Fk = E \ ∪

k−1
i=1 Ei (so, in particular, F1 = E). If |Fk | < (1 − q)n, then we stop. Otherwise we

choose z(k) ≥ 0 in BX∗ satisfying

suppz(k) ⊂ Fk and ⟨1Fk , z(k)⟩ = ∥1Fk ∥,

and define

Ek = {i ∈ Fk : z(1)i + · · · + z(k)i ≥ δ}.

This completes the induction step. We will see in a moment that this process terminates after a
finite number of steps. Assume that E1, . . . , Em and F1, . . . , Fm+1 have been defined for some
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m ≥ 1 (note that |F1| = |E | > (1−q)n, so at least one set E1 is defined). For each k = 1, . . . ,m
and for each i ∈ Ek we have

z(1)i + · · · + z(k−1)
i < δ,

and hence

z(1)i + · · · + z(m)i = z(1)i + · · · + z(k)i < 1 + δ.

We also have

z(1)i + · · · + z(m)i < δ for all i ∈ Fm+1.

It follows that
1E , z(1) + · · · + z(m)


=

m
k=1


1Ek , z(1) + · · · + z(m)


+


1Fm+1 , z(1) + · · · + z(m)


< (1 + δ)n.

On the other hand, since |Fk | ≥ (1−q)n for each k = 1, . . . ,m, and since ϕ(x)/x is decreasing,
we have

1E , z(1) + · · · + z(m)

=

m
k=1


1Fk , z(k)


≥ m

ϕ

(1 − q)n


∆

≥ m(1 − q)
ϕ(n)

∆
.

Thus, we can deduce that

m ≤
(1 + δ)∆
(1 − q)

·
n

ϕ(n)
, (8)

which in particular shows that the process does indeed terminate. Let m denote the time when this
happens, i.e., when |Fm+1| < (1 − q)n. Let us now set A =

m
k=1 Ek . It is clear that |A| ≥ qn.

It remains to show that A ∈ A. Since

z(1)i + · · · + z(m)i ≥ δ for all i ∈ A,

it follows that ∥δ1A∥
∗

≤ ∥z(1)+· · ·+z(m)∥∗
≤ m. Combining this observation with (8), we obtainϕ(|A|)

|A|
1A

∗
≤

mϕ(|A|)

δ|A|
≤
(1 + δ)∆
(1 − q)δ

·
n

|A|
·
ϕ(|A|)

ϕ(n)
≤
(1 + δ)∆
(1 − q)δ

·
1
q

·
ϕ(|A|)

ϕ(n)
≤ C,

which completes the proof. �

We are now ready to prove Theorem B on improving the democracy constant.

Theorem 10. Let (ei ) be an unconditional and democratic basis of a Banach space X. For
any ε > 0 there is an equivalent norm ||| · ||| on X with respect to which (ei ) is normalized,
1-unconditional and (1 + ε)-democratic.

Proof. We can assume that (ei ) is a normalized, 1-unconditional basis. Let ∆ be the democracy
constant and ϕ be a fundamental function for (ei ). Given ε > 0, set q =

1
1+ε

, fix C > ∆
q(1−q) ,

and let A be the family given by Lemma 9. Then the following defines a C-equivalent norm
on X :

|||x ||| = ∥x∥ ∨ sup


|x |,
ϕ(|A|)

|A|
1A


: A ∈ A


.
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Clearly, (ei ) is still normalized and 1-unconditional in the new norm. We need to verify that it is
(1 + ε)-democratic. Fix E ⊂ N and let n = |E |. Taking A ∈ A with A ⊂ E and |A| ≥ q|E |, we
obtain

|||1E ||| ≥


1E ,

ϕ(|A|)

|A|
1A


=
ϕ(|A|)

|A|
· |A| ≥

ϕ(|E |)

|E |
· |A| ≥ qϕ(n).

It remains to verify that |||1E ||| ≤ ϕ(n). On the one hand, by definition, we have ∥1E∥ ≤ ϕ(n).
On the other hand, for an arbitrary A ∈ A we have

1E ,
ϕ(|A|)

|A|
1A


=
ϕ(|A|)

|A|
· |A ∩ E | ≤

ϕ(|A ∩ E |)

|A ∩ E |
· |A ∩ E | ≤ ϕ(n). �

Remark. The upper bound on the equivalence constant on |||·||| given by the proof of Theorem 10
(which in turn comes from the proof of Lemma 9) is of order 1

ε
. In special cases this can be

improved. For example, it is not hard to see that in Tsirelson’s space we get a constant of order
log 1

ε
. However, in general, the best constant must converge to infinity as ε goes to zero. Indeed,

assume that (ei ) is a greedy basis of X for which there exists a constant C such that for all ε > 0
there is a C-equivalent norm ∥ · ∥ε on X with respect to which (ei ) is normalized and (1 + ε)-
democratic. Fix a non-trivial ultrafilter U and define |||x ||| = limU ∥x∥ 1

n
for x ∈ X . Then ||| · |||

is a C-equivalent norm on X with respect to which (ei ) is 1-democratic. As mentioned in the
Introduction, there are greedy bases for which such renorming is not possible.

Theorem 11. Let (ei ) be a greedy basis of a Banach space X with fundamental function ϕ.
Assume that δ(ϕ) > 0. Then for all ε > 0 there is an equivalent norm on X with respect to which
(ei ) is normalized, 1-unconditional and (1 + ε)-greedy.

Proof. We can assume that (ei ) is normalized and 1-unconditional. Let ∆ be the democracy
constant of (ei ). Given ε > 0, set q =

1
1+ε

, fix C > ∆
q(1−q) , and let A be the family given

by Lemma 9. Next, fix m ≥ 2 in N such that m
m−1 ≤ 1 + ε. With the given ε and m we apply

Lemma 6 and then Lemma 7 to obtain a concave fundamental function ψ and positive constants
a and b such that δψ (m) > q and aϕ(x) ≤ ψ(x) ≤ bϕ(x) for all x ∈ [1,∞). By the definition
of δψ , we can choose an integer n0 > 1

ε
such that ψ(x) > qmψ

 x
m


for all x ≥ n0. Set

s =
εa

1+ε
, L =

mψ(1)
ε

and

Fm =

 m
i=1

ψ(|Ai |)

|Ai |
1Bi : Bi ⊂ Ai ∈ A, A1, . . . , Am pairwise disjoint


.

We are now ready to define a new norm ||| · ||| as follows.

|||x ||| = sup

⟨|x |, x∗

+ f + L1A⟩ : x∗
∈ s BX∗ , f ∈ Fm, |A| ≤ n0


.

It is easy to verify that s∥x∥ ≤ |||x ||| ≤ (s + mbC + Ln0)∥x∥ for all x ∈ X , and it is clear
that (ei ) is a 1-unconditional basis in ||| · |||. We next prove that it also satisfies Property (A) with
constant 1 + 4ε. Fix x ∈ c00 with x ≥ 0 and B, B̃ ⊂ N \ supp(x) such that ∥x∥ℓ∞ ≤ 1 and
|B| = |B̃| < ∞. It is sufficient to prove that |||x + 1B ||| ≤ (1 + 4ε)|||x + 1B̃ |||.

For some x∗
∈ s BX∗ , f =

m
i=1

ψ(|Ai |)
|Ai |

1Bi ∈ Fm and A ⊂ N with |A| ≤ n0 we have

|||x + 1B ||| = ⟨x + 1B, x∗
+ f + L1A⟩

= ⟨x, x∗
⟩ + ⟨1B, x∗

⟩ + ⟨x, f ⟩ + ⟨1B, f ⟩ + L⟨x, 1A⟩ + L|B ∩ A|. (9)
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Without loss of generality we may assume that x∗
≥ 0. We now estimate some of the terms

above. First, we have

⟨1B, x∗
⟩ ≤ s∥1B∥ ≤ sϕ(|B|) ≤

s

a
ψ(|B̃|).

On the other hand, we can choose C ⊂ B̃ such that C ∈ A and |C | ≥ q|B̃|. Then g =
ψ(|C |)

|C |
1C ∈ Fm , and so

|||x + 1B̃ ||| ≥ ⟨x + 1B̃, g⟩ =
ψ(|C |)

|C |
|C | ≥

ψ(|B̃|)

|B̃|
|C | ≥ qψ(|B̃|).

Hence, by the choice of s, we have

⟨1B, x∗
⟩ ≤

s

a
ψ(|B̃|) ≤

s(1 + ε)

a
|||x + 1B̃ ||| = ε|||x + 1B̃ |||. (10)

Next, without loss of generality, we may assume that

ψ(|Am |)

|Am |
⟨x, 1Bm ⟩ = min

1≤i≤m

ψ(|Ai |)

|Ai |
⟨x, 1Bi ⟩,

and hence we obtain

⟨x, f ⟩ =

m
i=1

ψ(|Ai |)

|Ai |
⟨x, 1Bi ⟩ ≤

m

m − 1

m−1
i=1

ψ(|Ai |)

|Ai |
⟨x, 1Bi ⟩. (11)

Using the fact that ψ(x)x is decreasing, we then obtain

⟨1B, f ⟩ =

m
i=1

ψ(|Ai |)

|Ai |
|Bi ∩ B| ≤

m
i=1

ψ(|Bi ∩ B|). (12)

We now consider two cases. In the first case we assume that |B| = |B̃| ≤ n0. Then by the choice
of L we have

m
i=1

ψ(|Bi ∩ B|) ≤ mψ(|B|) ≤ εL|B̃| = ε⟨x + 1B̃, L1B̃⟩ ≤ ε|||x + 1B̃ |||. (13)

Choose Ã ⊂ N such that Ã ∩ supp(x) = A ∩ supp(x), | Ã ∩ B̃| = |A ∩ B| and | Ã| = |A|. We
then deduce that

|||x + 1B̃ ||| = ⟨x, x∗
⟩ + ⟨1B, x∗

⟩ + ⟨x, f ⟩ + ⟨1B, f ⟩ + L⟨x, 1A⟩ + L|B ∩ A| by (9)

= ⟨x, x∗
⟩ + ⟨1B, x∗

⟩ + ⟨x, f ⟩ + ⟨1B, f ⟩

+ L⟨x, 1 Ã⟩ + L|B̃ ∩ Ã| by choice of Ã

≤ ⟨x, x∗
⟩ + ⟨x, f ⟩ + L⟨x, 1 Ã⟩ + L|B̃ ∩ Ã| + 2ε|||x + 1B̃ ||| by (10), (12), (13)

≤ ⟨x + 1B̃, x∗
+ f + L1 Ã⟩ + 2ε|||x + 1B̃ ||| as x∗

≥ 0

≤ (1 + 2ε)|||x + 1B̃ |||.

We now turn to the second case when |B| = |B̃| > n0. Then by concavity of ψ and by the choice
of n0 we obtain the estimate

m
i=1

ψ(|Bi ∩ B|) ≤ mψ

|B|

m


≤ (1 + ε)ψ(|B|). (14)
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Now choose Ã as in the previous case, set Ãi = Ai and B̃i = Bi ∩ supp(x) for 1 ≤ i < m, and

choose B̃m = Ãm ∈ A such that Ãm ⊂ B̃ and | Ãm | ≥ q|B̃|. Then g =
m

i=1
ψ(| Ãi |)

| Ãi |
1B̃i

∈ Fm ,

and by (11) and the choice of m, we have

⟨x + 1B̃, g⟩ =

m−1
i=1

ψ(|Ai |)

|Ai |
⟨x, 1Bi ⟩ +

ψ(| Ãm |)

| Ãm |
| Ãm |

≥
m − 1

m
⟨x, f ⟩ +

ψ(|B̃|)

|B̃|
| Ãm | ≥ q⟨x, f ⟩ + qψ(|B̃|). (15)

It follows that

|||x + 1B̃ ||| = ⟨x, x∗
⟩ + ⟨1B, x∗

⟩ + ⟨x, f ⟩ + ⟨1B, f ⟩ + L⟨x, 1A⟩ + L|B ∩ A| by (9)

= ⟨x, x∗
⟩ + ⟨1B, x∗

⟩ + ⟨x, f ⟩ + ⟨1B, f ⟩

+ L⟨x, 1 Ã⟩ + L|B̃ ∩ Ã| by choice of Ã

≤ ⟨x, x∗
⟩ + ⟨x, f ⟩ + ⟨1B, f ⟩ + L⟨x, 1 Ã⟩ + L|B̃ ∩ Ã| + ε|||x + 1B̃ ||| by (10)

≤ ⟨x, x∗
⟩ + (1 + ε)2⟨x + 1B̃, g⟩ + L⟨x, 1 Ã⟩ + L|B̃ ∩ Ã| + ε|||x + 1B̃ |||

by (12), (14), (15)

≤ (1 + ε)2⟨x + 1B̃, x∗
+ g + L1 Ã⟩ + ε|||x + 1B̃ |||

≤ (1 + 4ε)|||x + 1B̃ |||,

as required. Finally, it is easy to see that |||ei ||| = s + ψ(1) + L for all i ∈ N. So by scaling the
new norm, we make (ei ) normalized, 1-unconditional and (1 + 4ε)-greedy. �

The condition δ(ϕ) > 0 says that the growth of ϕ on intervals of any given fixed size is
eventually linear. For example, when ϕ(x) ∼ x or ϕ(x) ∼

x
log x , then δ(ϕ) > 0, so Theorem 11

applies. Note also that when ϕ has the URP, then δ(ϕ) = 0. However, in that case the basis is
bidemocratic and Theorem 4 can be used. We next give an application of Theorem 11 in two
special cases. Note that neither of these bases is bidemocratic, so Theorem 4 cannot be applied.

Corollary 12. For all ε > 0 there is an equivalent norm on dyadic Hardy space H1 and on
Tsirelson’s space T such that the Haar system, respectively, the unit vector basis is normalized,
1-unconditional and (1 + ε)-greedy.

4. Open problems

For bidemocratic bases we were able to achieve the best possible renorming for the democracy
constant (Theorem 3). For the greedy constant Theorem 4 gets arbitrarily close, but the following
remains open.

Problem 13. Let (ei ) be a bidemocratic basis of a Banach space X . Does there exist an equivalent
norm on X with respect to which (ei ) is 1-greedy?

The following special case of interest was raised by Albiac and Wojtaszczyk.

Problem 14 ([1, Problem 6.2]). Let 1 < p < ∞. Does there exist an equivalent norm on
L p[0, 1] with respect to which the Haar basis is 1-greedy?

The other main problem that remains open concerns the greedy constant in the general, not
necessarily bidemocratic, case.
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Problem 15. Let (ei ) be a greedy basis of a Banach space X . Does there exist for any ε > 0 an
equivalent norm on X with respect to which the basis is (1 + ε)-greedy?

This paper gives a positive answer for a large family of bases. In terms of the behaviour of the
fundamental function ϕ, if ϕ has the URP, or if, on the other extreme, δ(ϕ) > 0, then the answer is
‘yes’. If the basis is bidemocratic, or, more generally, if there is a constant C such that the family
A defined in Lemma 9 consists of all finite subsets of N, then the proof of Theorem 4 furnishes a
positive answer. However, as pointed out at the end of Section 2, there are fundamental functions
ϕ with δ(ϕ) = 0 and with

lim
m→∞

lim sup
n→∞

ϕ(mn)

mϕ(n)
= 1.

Note that this latter condition rules out properties like the URP. So there is still a gap.
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