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Abstract

In this paper, we extend the sharp upper bound of Christiansen et al. (2017) and the sharp lower
ound of Schiefermayr (2008) to the case of weighted Chebyshev polynomials on subsets of [−1, 1]

for the weight w(x) =

√
1 − x2. We then analyse the norm of Chebyshev polynomials on a circular

rc, prove monotonicity of the corresponding Widom factors, find exact values of their supremum and
nfimum, and obtain a new proof for their limit.
c 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

SC: 41A50; 30C10; 30E10

eywords: Weighted Chebyshev polynomials; Chebyshev polynomials on a circular arc; Lower and upper bounds on
Widom factors

1. Introduction

Let K ⊂ C be a compact set consisting of infinitely many points. We denote by T (K )
n (z) the

hebyshev polynomial of degree n ∈ N on K , that is, the minimizer for the supremum norm
Pn∥K := supz∈K |Pn(z)| among all monic polynomials Pn of degree n. For K ⊆ [−1, 1], we
ill also consider weighted Chebyshev polynomials on K with respect to the weight function

w(x) :=

√
1 − x2. (1)
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The corresponding w-Chebyshev polynomial of degree n ∈ N, denoted by T (K )
n,w (z), is the

minimizer of ∥wPn∥K over all monic polynomials Pn of degree n. We denote the norms of
T (K )

n and wT (K )
n,w by

tn(K ) := ∥T (K )
n ∥K and tn(K , w) := ∥wT (K )

n,w ∥K . (2)

or basic properties of these polynomials we refer to [8, Chapter 3], [16, Chapter 4], and
heorems 11 and 12.

As usual, let Tn and Un denote the classical Chebyshev polynomial (of degree n) of the first
nd second kind, respectively, that is,

Tn(x) =
1
2 (zn

+ z−n) and Un(x) =
zn+1

− z−(n+1)

z − z−1 , x =
1
2 (z + z−1), (3)

r equivalently,

Tn(x) = cos(nθ ) and Un(x) =
sin((n + 1)θ )

sin(θ )
, x = cos(θ ). (4)

In the following, we will assume that K is a proper subset of R or ∂D and that it has positive
ogarithmic capacity, cap(K ) > 0. This guarantees that there exists the Green function gK (z),
hat is, a unique subharmonic function on C which is positive and harmonic on C\K ,

gK (z) = log |z| − log cap(K ) + O(1/z) as z → ∞, (5)

nd gK (z) → 0 as z → z0 for quasi-every z0 ∈ K . For some of our results we will make
an additional assumption that K is regular (for potential theory) which means that the Green
function gK is continuous on C with gK (z) = 0 for all z ∈ K . For basic notions of potential
heory, we refer to [15,17,20,21,32] and appendices of [26,28].

Following [11] (see also [4]), we will use the notion of so-called Widom factors, defined by

Wn(K ) :=
tn(K )

cap(K )n
and Wn(K , w) :=

tn(K , w)
cap(K )n

, n ∈ N. (6)

n this paper, we consider the Widom factors of the circular arc

Γα :=
{
eiθ

: θ ∈ [−α, α]
}
, 0 < α < π, (7)

nd of the “corresponding” set on the real line, given by

Ea := [−1, −a] ∪ [a, 1], a := cos( α
2 ). (8)

hiran and Detaille [29] were probably the first who discovered a connection between the
hebyshev polynomials on Γα and the Chebyshev polynomials with respect to 1 and w

n Ea . In particular, they proved identities for the corresponding norms of these Chebyshev
polynomials, see (34) and (35). In light of these identities, finding upper and lower bounds
for Wn(Γα) is equivalent to finding the corresponding bounds for W2n+1(Ea) and W2n−1(Ea, w).
f a set K is real then sharp upper and lower bounds for Wn(K ) are known, see Theorem 1.
s a first main result, we derive upper and lower bounds in the weighted case for Wn(K , w),

ee Theorem 3. Applying these bounds to the case K = Ea then gives sharp upper and
ower bounds for Wn(Γα), see Theorem 9. Moreover, as a second main result, a monotonicity
roperty for the Widom factors on Γα is given, more precisely, we prove that (for Γα fixed)
he sequence

{
Wn(Γα)

}∞

n=1 is strictly monotone increasing, see Theorem 8. This monotonicity
roperty generates a second proof for the upper bound in (40) and, in addition, it is essential
2
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for proving the lower bound in (40) for odd degrees. The proofs of Theorems 3 and 8, given
in Section 4, are based on potential theory and on properties of the Chebyshev polynomials
(with respect to 1 and w) on real sets.

This paper is the first part of a series of two papers. In the second part [25], we give
estimations for the Widom factors of more general sets on the unit circle (symmetric with
respect to the real line).

2. Sharp bounds for real sets

First, let us recall the sharp lower and upper bounds for the Widom factor of real sets,
recently given in the literature.

Theorem 1. Let K ⊂ R be an infinite compact set with cap(K ) > 0.

(i) For all n ∈ N,

Wn(K ) ≥ 2. (9)

Equality is attained in (9) if and only if there exists a polynomial Pn of degree n such
that K = P−1

n ([−1, 1]) =
{
z ∈ C : Pn(z) ∈ [−1, 1]

}
.

(ii) If, in addition, K is regular for potential theory, then, for all n ∈ N,

Wn(K ) ≤ 2 exp
(
PW(K )

)
, (10)

where

PW(K ) :=

∑
z∈C

gK (z) (11)

and C = {x ∈ R\K :
d
dx gK (x) = 0} denotes the set of all critical points of the Green

function gK (z). Equality is attained in (10) if and only if K is an interval.

Proof. (i) Inequality (9) was first proved in [22], whereas the if and only if statement was
proved in [30, Theorem 1] and also in [7, Theorem 1.1].

(ii) Inequality (10) was proved in [6, Theorem 1.4], whereas the if and only if statement was
proved in [7, Theorem 4.3]. □

Remark 2. The term PW stands for Parreau–Widom who made important contributions to
he function theory on infinitely connected Riemann Surfaces with boundaries K satisfying
W(K ) < ∞, [18,33], see also [12] for a book presentation.

As our first main result, we give sharp lower and upper bounds for the weighted Chebyshev
olynomials.

heorem 3. Let K ⊆ [−1, 1] be an infinite compact set with cap(K ) > 0 and w(x) be the
weight function (1).

(i) For all n ∈ N,

Wn(K , w) ≥ 2 cap(K ). (12)

Equality is attained in (12) if and only if there exists a polynomial Pn of degree n such
that

K =
{
z ∈ C : (1 − z2)P2

n (z) ∈ [0, 1]
}
. (13)
3



K. Schiefermayr and M. Zinchenko Journal of Approximation Theory 265 (2021) 105561

P

R

a
T

L
d
{

I
i

H

(ii) If, in addition, K is regular for potential theory, then, for all n ∈ N,

Wn(K , w) ≤ 2 cap(K ) exp
(
PW(K , w)

)
, (14)

where

PW(K , w) :=
1
2

(
gK (−1) + gK (1)

)
+ PW(K ). (15)

Equality is attained in (14) if and only if K = [−1, 1].

roof. The proof of Theorem 3 is given in Section 4. □

emark 4.

(i) Theorem 3 is new even for sets K consisting of finitely many intervals. The upper
bound (14) is non trivial for regular Parreau–Widom sets. By a result of Jones and
Marshall [13], such sets are known to include homogeneous sets in the sense of
Carleson [5] and, in particular, positive measure Cantor sets.

(ii) For K = [−1, 1] the (weighted) extremal polynomials are, n ∈ N,

T ([−1,1])
n (z) = 2−n+1Tn(z) and T ([−1,1])

n,w (x) = 2−nUn(x) (16)

as can be easily verified via the alternation theorem (Theorems 11(i) and 12(i)) hence,
using cap([−1, 1]) =

1
2 , we have

tn([−1, 1]) = 2 cap([−1, 1])n and tn([−1, 1], w) = 2 cap([−1, 1])n+1. (17)

Unlike the unweighted Chebyshev polynomials T ([a,b])
n , which can be obtained from

T ([−1,1])
n by shifting and rescaling, the weighted Chebyshev polynomials T ([a,b])

n,w are not
known for a subinterval [a, b] ⊂ [−1, 1]. We pose it as an open problem to find these
polynomials.

(iii) If ±1 ∈ K and K ⊆ [−1, 1] is regular, then gK (±1) = 0 and hence

PW(K , w) = PW(K ). (18)

Next, we discuss the set K = Ea given in (8) which is of independent interest due to its
pplication to Chebyshev norms on a circular arc. For this set the lower and upper bounds of
heorems 1 and 3 are the best possible. We start with a technical lemma.

emma 5 ([20, Theorem 5.2.5]). Let Pn(z) = cnzn
+ · · · with cn ∈ C\{0} be a polynomial of

egree n and L ⊂ C be a compact set. Then, for the polynomial pre-image set K := P−1
n (L) =

z ∈ C : Pn(z) ∈ L}, we have

cap(K ) =
(
cap(L)/|cn|

)1/n
. (19)

n addition, if cap(L) > 0 then gK (z) =
1
n gL (Pn(z)) and hence K is regular if and only if L

s. In particular, if L = [−1, 1] then cap(K ) =
(
2|cn|

)−1/n and

gK (z) =
1
n g[−1,1](Pn(z)) =

1
n log

⏐⏐Pn(z) +

√
Pn(z)2 − 1

⏐⏐. (20)

ere and in the following, we define the complex square root
√

z2 − 1 such that it lies in the
same quadrant as z (except for z ∈ [−1, 1], along which the plane must be cut) and

√
P2

n (z) − 1
is defined analogously.
4
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Now we note that Ea = [−1, −a]∪ [a, 1], 0 ≤ a < 1, is a polynomial pre-image of [−1, 1]
nd hence, by Lemma 5,

gEa (z) =
1
2 log

⏐⏐P(z) +

√
P(z)2 − 1

⏐⏐, where P(z) =
2z2

− 1 − a2

1 − a2 , (21)

nd

cap(Ea) =
1
2

√
1 − a2. (22)

t is easy to see that gEa has one critical point at x = 0 and gEa (0) =
1
2 log 1+a

1−a (one has to be
areful with the sign of the square root!). Since ±1 ∈ Ea we get, by (18),

exp
(
PW(Ea, w)

)
= exp

(
PW(Ea)

)
= exp

(
gEa (0)

)
=

√
1 + a
1 − a

. (23)

Let us take the opportunity to point out an error in the paper [23, Eq. (67)], where the + and
− signs should be changed.

With the help of the above observations, we obtain some of the following results.

Theorem 6. Let Ea = [−1, −a] ∪ [a, 1] with 0 ≤ a < 1.

(i) For even degree, we have, n ∈ N,

T (Ea )
2n (z) =

(1 − a2)n

22n−1 Tn

(2z2
− 1 − a2

1 − a2

)
, (24)

T (Ea )
2n,w (z) =

(1 − a2)n

22n
U2n

(√
z2 − a2

1 − a2

)
, (25)

therefore,

t2n(Ea) =
(1 − a2)n

22n−1 , (26)

t2n(Ea, w) =
(1 − a2)n

22n
·

√
1 − a2, (27)

and hence

W2n(Ea) = 2, (28)

W2n(Ea, w) =

√
1 − a2. (29)

(ii) For odd degree, we have, n ∈ N0,

2

√
1 + a
1 − a

−
2

√
1 − a2

(1 − a
1 + a

)n
≤ W2n+1(Ea) ≤ 2

√
1 + a
1 − a

(30)

and

W2n+1(Ea, w) ≤ 1 + a, (31)

and therefore,

lim
n→∞

W2n+1(Ea) = 2

√
1 + a
1 − a

. (32)
5
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Proof. Since Tn(x) = 2n−1xn
+ · · · has n + 1 alternation points on [−1, 1], the function

P2n(z) :=
(1−a2)n

22n−1 Tn
( 2z2

−1−a2

1−a2

)
is a monic polynomial of degree 2n and has n + 1 alternation

points on [−1, −a] and on [a, 1], respectively. Since P2n(−a) = P2n(a), P2n(z) has 2n + 1
alternation points on Ea . Similarly, since U2n(x)

√
1 − x2 =

√
1 − x2 ·(22n x2n

+· · · ) is even and
as 2n + 1 alternation points on [−1, 1], the function Q(z)/

√
1 − z2 :=

(1−a2)n

22n U2n

(√
z2−a2

1−a2

)
s a monic polynomial of degree 2n and Q(z) has n +1 alternations points on [−1, −a] and on
a, 1], respectively. Since Q(−a) = Q(a), Q(z) has 2n +1 alternation points on Ea . Now, (24)
nd (25) follow from Theorems 11 and 12, respectively. The remaining formulas of (i) follow
rom (24) and (25). The right inequality of (30) follows immediately from (10) and (23). The
eft inequality of (30) goes back to the work of Akhiezer [1, p. 320, Eq. (k)], see [23, Section
]. Inequality (31) follows immediately from (14), (22), and (23). □

emark 7. A complementary lower bound and the limit for W2n+1(Ea, w) will be derived in
41) and (42), respectively.

. Sharp bounds for one circular arc

Let Γα and Ea be defined as in (7) and (8), respectively. It is well known [20, Table 5.1]
hat

cap(Γα) = sin( α
2 ) =

√
1 − a2 = 2 cap(Ea). (33)

Thiran & Detaille [29], see also Theorem 1 and Theorem 2 of [24], proved that

t2n(Γα) = 22nt2n+1(Ea), (34)

t2n−1(Γα) = 22n−1t2n−1(Ea, w). (35)

Therefore, using (33),

W2n(Γα) = cap(Ea)W2n+1(Ea), (36)

W2n−1(Γα) = W2n−1(Ea, w). (37)

Theorem 8. The sequence of Widom factors
{
Wn(Γα)

}∞

n=1 is strictly monotone increasing,
that is,

Wn(Γα) < Wn+1(Γα), n ∈ N, (38)

and its limit is given by

lim
n→∞

Wn(Γα) = 1 + cos( α
2 ). (39)

roof. The proof of Theorem 8 is given in Section 4. □

heorem 9. For n ∈ N, we have

1 + cos( α
2 ) −

(1 − cos( α
2 )

1 + cos( α
2 )

)⌊
n
2 ⌋

≤ Wn(Γα) ≤ 1 + cos( α
2 ). (40)

roof. The left inequality of (40) follows from

W (Γ ) ≥ W (Γ ) by (38)
2n+1 α 2n α

6
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= cap(Ea)W2n+1(Ea) by (36)

≥ 2 cap(Ea)

√
1 + a
1 − a

− cap(Ea)
2

√
1 − a2

(1 − a
1 + a

)n
by (30)

= 1 + a −

(1 − a
1 + a

)n
by (22)

For proving the right inequality of (40), we will distinguish between even and odd degree,
respectively. By (36), (33), and the right inequality of (30),

W2n(Γα) = cap(Ea)W2n+1(Ea) ≤ 1 + a.

By (37) and (31),

W2n−1(Γα) = W2n−1(Ea, w) ≤ 1 + a. □

Remark 10.

(i) By (37) and (38),

W2n+1(Ea, w) = W2n+1(Γα) > W2n(Γα) =
1
2

√
1 − a2 W2n+1(Ea),

hence, by (30),

W2n+1(Ea, w) > 1 + a −

(1 − a
1 + a

)n
. (41)

Therefore, together with (31),

lim
n→∞

W2n+1(Ea, w) = 1 + a. (42)

(ii) The limit (39) has a long history. It was first conjectured by Thiran & Detaille [29,
Section 5], probably based on (32), which is a result of Akhiezer [2, E. 27]. In [9],
Eichinger gave a proof of (39) by considering the asymptotics of the corresponding
Chebyshev polynomial on Γα by means of geometric function theory and, in particular,
the machinery developed in [34]. Finally, in [24, Section 3.3], the first author gave
another proof using the degenerating behaviour of Jacobi’s elliptic and theta functions.

(iii) It is clear that the right inequality of (40) follows from Theorem 8. Nevertheless,
above we gave an alternative proof of the right inequality of (40) based on the upper
bounds (10) and (14), thus allowing for an alternative derivation of the limit (39)
from (40).

(iv) In [24], based on results in [1,14,29], and [19], the first author gave a parametric
representation of the Chebyshev polynomials T (Γα )

n (z) in terms of elliptic and theta
functions.

(v) For n = 1 and n = 2, the Widom factor Wn(Γα) can be determined explicitly. The
Chebyshev polynomial of degree 1 on Ea with respect to the weight function w(x) is
(by symmetry) given by T (Ea )

1,w (x) = x , hence, by (35),

t1(Γα) = 2 t1(Ea, w) = 2 max
x∈Ea

|x
√

1 − x2| =

{
2a

√
1 − a2 for 1

√
2

≤ a < 1

1 for 0 < a ≤
1

√
2

(43)

and therefore

W1(Γα) =
t1(Γα)

cap(Γ )
=

{
2 cos(α

2 ) for 0 < α ≤
π
2

1
α for π

≤ α ≤ π.
(44)
α sin( 2 ) 2

7
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Due to monotonicity (38), the above value is the sharp lower bound for the Widom
factors {Wn(Γα)}∞n=1.

(vi) The Chebyshev polynomial of degree 3 on Ea can be determined with the help of
Theorem 11. Since Ea is symmetric, T (Ea )

3 must be odd, hence T (Ea )
3 (x) = x3

+ cx .
Then for 0 < a ≤

1
2 , T (Ea )

3 (x) =
1
4 T3(x) = x3

−
3
4 x and for 1

2 < a < 1, the coefficient c

can be determined from T (Ea )
3 (a) = −T (Ea )

3 (1), hence T (Ea )
3 (x) = x3

− (1 − a + a2)x .
Thus, by (34),

t2(Γα) = 4 t3(Ea, w) =

{
4a(1 − a) for 1

2 ≤ a < 1
1 for 0 < a ≤

1
2

(45)

and therefore

W2(Γα) =
t2(Γα)

cap(Γα)2 =

⎧⎨⎩
4 cos( α

2 )
1+cos( α

2 ) for 0 < α ≤
2π
3

1
sin2( α

2 )
for 2π

3 ≤ α ≤ π.
(46)

(vii) Sharp lower bounds for Widom factors associated with orthogonal polynomials (and
more generally with L p-extremal polynomials for p < ∞) have been recently in-
vestigated in [3,4]. Sharp upper bounds for Widom factors associated with orthogonal
polynomials are not yet well understood.

(viii) In the case of orthogonal polynomials with respect to the equilibrium measure on a
circular arc, monotone increasing behaviour of the associated Widom factors has been
recently shown in [3, Theorem 5.1].

. Proofs

We start this section by briefly reviewing properties of the unweighted and weighted
hebyshev polynomials on a real set and basic elements of potential theory needed for the
roofs.

heorem 11. Let K ⊂ R be an infinite compact set and define xmin := inf K and
xmax := sup K .

(i) A monic polynomial Pn of degree n is the Chebyshev polynomial on K , that is, Pn =

T (K )
n , if and only if there exist points xmin = x0 < x1 < · · · < xn = xmax on K such that

Pn(x j ) = (−1)n− j
∥Pn∥K , j = 0, 1, . . . , n. (47)

The extremal points x1, . . . , xn−1 are not necessarily unique.
(ii) T (K )

n exists, is unique and real.
(iii) Define

Kmax :=
(
T (K )

n

)−1([−tn(K ), tn(K )]) =
{
z ∈ C : T (K )

n (z) ∈ [−tn(K ), tn(K )]
}

(48)

then

K ⊆ Kmax ⊆ [xmin, xmax] ⊂ R, (49)

Kmax is the union of m disjoint intervals, m ≤ n, and T (Kmax)
n = T (K )

n .
(iv) If, in addition, K is symmetric (that is, z ∈ K ⇔ −z ∈ K ) then T (K )

2n and T (K )
2n−1 are

even and odd polynomials, respectively.
8
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Proof. (i) and (ii) are well-known, see for example [6, Theorem 1.1] or in a more general
setting [8, Chapter 3], (iii) is a consequence of (i). (iv) For any K , it is clear that T (−K )

2n (z) =

T (K )
2n (−z) and T (−K )

2n−1 (z) = −T (K )
2n−1(−z). Since by assumption K = −K , the assertion follows

rom uniqueness of the Chebyshev polynomials. □

heorem 12. Let K ⊆ [−1, 1] be an infinite compact set.

(i) A monic polynomial Pn of degree n is the Chebyshev polynomial on K with respect to
the weight w, that is, Pn = T (K )

n,w , if and only if there exist points −1 < x0 < x1 < · · · <

xn−1 < xn < 1 on K such that

w(x j ) Pn(x j ) = (−1)n− j
∥wPn∥K , j = 0, 1, . . . , n. (50)

The extremal points x0, . . . , xn are not necessarily unique.
(ii) T (K )

n,w exists, is unique and real.
(iii) Define

Kmax :=
{
z ∈ C :

(
w(z) T (K )

n,w (z)
)2

∈ [0, tn(K , w)2]
}

(51)

then

K ⊆ Kmax ⊆ [−1, 1], (52)

Kmax is the union of m disjoint intervals, 1 ≤ m ≤ n + 2, and ±1 ∈ Kmax. Moreover,
T (Kmax)

n,w = T (K )
n,w , and

1
2 tn(K , w)2

−
(
wT (K )

n,w

)2
= T (Kmax)

2n+2 . (53)

(iv) If, in addition, K is symmetric (that is, z ∈ K ⇔ −z ∈ K ) then T (K )
2n,w and T (K )

2n−1,w are
even and odd polynomials, respectively.

Proof. (i) and (ii) are well known, see for example [16, Section 4.2] (the argument given
in [6] also readily extends to this weighted setting). (iii) By (i), (ii), and the intermediate value
theorem the zeros y0, y1, . . . , yn+1 of wT (K )

n,w are interlaced with the extremal points,

− 1 =: y0 < x0 < y1 < x1 < y2 < · · · < xn−1 < yn < xn < yn+1 := 1. (54)

ow consider the real polynomial P2n+2 :=
(
wT (K )

n,w

)2 of degree 2n + 2 which attains the
alues 0 and tn(K , w)2 at the above interlaced points. Then again by the intermediate value
heorem, each point in the interval

(
0, tn(K , w)2

)
has 2n+2 distinct pre-images in the intervals

yk, xk), (xk, yk+1), k = 0, . . . , n, which accounts for all the pre-images since P2n+2 has
egree 2n + 2 and hence (52) holds. Moreover, Q2n+2 :=

1
2 tn(K , w)2

− P2n+2 is a monic
olynomial of degree 2n +2 and has 2n +3 alternation points on Kmax, hence Q2n+2 = T (Kmax)

2n+2
y Theorem 11(i). The proof of (iv) is the same as in the unweighted case. □

Next, we recall some elements of potential theory. Again we refer to [15,17,20,21,32] for
n in depth exposition. First, recall that the equilibrium measure µK of a compact set K with
ap(K ) > 0 is the unique Borel probability measure on K that minimizes the logarithmic
nergy

I (µ) =

∫∫
log

1
dµ(ζ ) dµ(z) (55)
|z − ζ |

9
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among all Borel probability measures µ on K . The logarithmic capacity of K then can be
efined by cap(K ) = exp(−I (µK )) (cap(K ) = 0 if I (µ) = ∞ for all µ) and the Green
unction can be expressed in terms of cap(K ) and µK as

gK (z) = − log cap(K ) +

∫
log |z − ζ | dµK (ζ ), z ∈ C. (56)

he equilibrium measure µK can be written explicitly for K ⊂ R which is a polynomial
re-image of an interval. For example, if Pn(z) is a polynomial of degree n such that

Kn := P−1
n

(
[−1, 1]

)
=

{
z ∈ C : Pn(z) ∈ [−1, 1]

}
⊂ R,

hen (see for example, [10,31], [6, Theorem 2.3], [27, Theorem 5.4.5]),

dµKn (x) =
1

nπ

|P ′
n(x)|√

1 − P2
n (x)

1Kn (x)dx . (57)

oreover, P−1
n has n branches that map [−1, 1] monotonically onto n intervals [ak, bk],

k = 1, . . . , n, and it follows from (57) and
∫ 1
−1

dt

π
√

1−t2
= 1 that

µKn

(
[ak, bk]

)
=

1
n , k = 1, . . . , n. (58)

emma 13. Let K ⊂ L be two compact subsets of R of positive capacity and let µL be the
equilibrium measure of L and gK (z) the Green function of K . Then

log
(

cap(L)
cap(K )

)
=

∫
L\K

gK (z)dµL (z). (59)

n addition, if L is regular for potential theory and cap(K ) = cap(L) then K = L.

Proof. Let gL (z) denote the Green function for L and define h(z) := gK (z) − gL (z). Then
it follows from the properties of the Green function that h(z) is harmonic on C\L with
h(∞) = log

( cap(L)
cap(K )

)
. By [20, Theorem 4.3.14] the equilibrium measure µL is the harmonic

measure at infinity for the domain C\L and hence

h(∞) =

∫
L

h(x)dµL (x). (60)

y (56) and [20, Theorem 3.3.4(b)] the Green functions gK (z) and gL (z) vanish on K resp.
L except possibly on a Borel set E of capacity zero, hence h(z) = gK (z) for z ∈ L\E and
h(z) = 0 for z ∈ K\E . By [20, Theorem 4.3.6] the harmonic measure µL is zero on sets of
apacity zero, in particular, µL (E) = 0. Combining these observations with (60) yields (59).

If cap(L) = cap(K ) then the integral in (59) is zero and since gK (z) > 0 for z ∈ C\K we
have µL (L\K ) = 0 and hence supp(µL ) ⊂ K . Next, we will show that L ⊂ supp(µL ) which
then implies L = K since by assumption K ⊂ L . By [20, Theorem 3.1.2] it follows from
(56) applied to the Green function gL (z) that gL (z) is harmonic on C\ supp(µL ) with gL (z) =

log |z|+ O(1) as z → ∞ and hence, by the minimum principle, gL (z) ̸= 0 for z ∈ C\ supp(µL )
since otherwise gL would be identically zero. Thus, {z ∈ C : gL (z) = 0} ⊂ supp(µL ). Since L
is regular by assumption we have L ⊂ {z ∈ C : gL (z) = 0} ⊂ supp(µL ). □

Proof of Theorem 3. As in the proof of Theorem 12(iii), let P2n+2 :=
(
wT (K )

n,w

)2, denote the
(K ) n n+1
alternation points of Tn,w by {xk}k=0 ⊂ K and the interlaced zeros of P2n+2 by {yk}k=0 (cf.

10
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(54)), and define

Kn := P−1
2n+2

(
[0, tn(K , w)2]

)
=

{
z ∈ C : 0 ≤ P2n+2(z) ≤ tn(K , w)2}. (61)

ince P2n+2 has degree 2n + 2 and its leading coefficient has absolute value 1 it follows from
emma 5 that

cap(Kn)2n+2
= cap

(
[0, tn(K , w)2]

)
=

1
4 tn(K , w)2. (62)

y Theorem 12(iii), K ⊆ Kn and hence, by (62),

tn(K , w) = 2 cap(Kn)n+1
≥ 2 cap(K )n+1 (63)

hich yields the lower bound (12).
If Wn(K , w) = 2 cap(K ) then, by (62), cap(Kn) = cap(K ) and since Kn is regular by

emma 5 we have K = Kn by Lemma 13. Then (13) with Pn = tn(K , w)−1T (K )
n,w follows

rom (61). Conversely, suppose (13) holds and let cn denote the leading coefficient of Pn .
hen cap(K )2n+2

= (4|cn|
2)−1 by Lemma 5 and the monic polynomial Qn = c−1

n Pn satisfies
wQn∥K = |cn|

−1. Thus, tn(K , w) ≤ ∥wQn∥K = 2 cap(K )n+1 and hence equality holds in
12).

Next, we prove the upper bound (14). By (62) it suffices to prove an appropriate upper
ound on cap(Kn)/ cap(K ). By Lemma 13 we have

log
(

cap(Kn)
cap(K )

)
=

∫
Kn\K

gK (x)dµKn (x) ≤

∫
[−1,1]\K

gK (x)dµKn (x). (64)

Let the open intervals {I j } j≥1 denote the gaps of K , that is, the bounded components of R\K .
Then

[−1, 1]\K = [−1, inf K ) ∪ (sup K , 1] ∪

⋃
j≥1

I j .

Since K ⊆ [−1, 1] is regular for potential theory, the Green function gK is continuous on C
with gK = 0 on K , hence in each gap I j the maximum value of gK is attained at a critical point
c j ∈ I j . In addition, it follows from (56) that gK is decreasing on [−1, inf K ) and increasing
on (sup K , 1] hence the maximum values of gK on these intervals are attained at −1 and 1,
respectively. Observe also that since {xk}

n
k=0 ⊂ K and xk−1 < yk < xk by (54), at most 2 of

the intervals [yk, xk], [xk, yk+1], k = 0, . . . , n, may overlap with each I j and at most 1 with
each [−1, inf K ) and (sup K , 1]. By (58) the equilibrium measure µKn satisfies

µKn

(
[yk, xk]

)
= µKn

(
[xk, yk+1]

)
=

1
2n + 2

, k = 0, . . . , n, (65)

nd hence µKn (I j ) ≤
1

n+1 and µKn

(
[−1, inf K )

)
≤

1
2n+2 , µKn

(
[−1, inf K )

)
≤

1
2n+2 .

Substituting these estimates into (64) then gives

log
(

cap(Kn)
cap(K )

)
≤

1
2n + 2

(
gK (−1) + gK (1)

)
+

1
n + 1

∑
j≥1

gK (c j ) (66)

hich, by (15), is equivalent to

cap(Kn)n+1
≤ cap(K )n+1 exp

(
PW(K , w)

)
.

ombining this inequality with (62) then yields the upper bound (14). Since gK is not
dentically zero, harmonic on C\K , and symmetric with respect to the real line all the local

axima of g on [−1, 1]\K are strict and hence the inequality in (66) is strict unless
K

11
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K = [−1, 1]. Thus, the equality in (14) holds only for K = [−1, 1]. The converse follows
from (17). □

Proof of Theorem 8. Let Ea be as in (8) and define the sets

K2n :=

{
z ∈ C : T (Ea )

2n+1(z) ∈
[
−t2n+1(Ea), t2n+1(Ea)

]}
, (67)

K2n−1 :=

{
z ∈ C :

(
w(z)T (Ea )

2n−1,w(z)
)2

∈
[
0, t2n−1(Ea, w)2]}, n ∈ N. (68)

ince K2n and K2n−1 are polynomial pre-images of intervals we have by Lemma 5,

t2n+1(Ea) = 2 cap
(
[−t2n+1(Ea), t2n+1(Ea)]

)
= 2 cap(K2n)2n+1,

t2n−1(Ea, w) = 2
√

cap
([

0, t2n−1(Ea, w)2
])

= 2 cap(K2n−1)2n.

hen, by (34) and (35), we get for all n ∈ N,

tn(Γα) = 2n+1 cap(Kn)n+1, (69)

hich combined with (33) yields

Wn(Γα) =
tn(Γα)

cap(Γα)n
= cap(Γα)

(
cap(Kn)
cap(Ea)

)n+1

. (70)

Using Theorems 11 and 12 we see that both sets K2n and K2n−1 are subsets of R. Moreover,
ince Ea is symmetric, the Chebyshev polynomial T (Ea )

2n+1 resp. T (Ea )
2n−1,w is odd so the function

T (Ea )
2n+1 resp. wT (Ea )

2n−1,w maps some interval [−a2n, a2n], resp., [−a2n−1, a2n−1] monotonically onto
−t2n+1(Ea), t2n+1(Ea)] resp. [−t2n−1(Ea, w), t2n−1(Ea, w)] and thus we have

Kn = Ea ∪ [−an, an], 0 < an ≤ 1, n ∈ N. (71)

hile wT (Ea )
2n−1,w is not a polynomial, its square is a polynomial hence both [−a2n−1, 0]

nd [0, a2n−1] are monotone polynomial pre-images of [0, t2n−1(Ea, w)2]. Then, by (58), the
quilibrium measure µKn of Kn satisfies

µKn

(
[−an, an]

)
=

1
n + 1

, n ∈ N. (72)

Next, we will show that the sequence an is strictly decreasing to 0 which, in particular,
mplies Kn ⊆ Kn−1 by (71). First, note that by (71) and (72),

µKn (Ea\[−an, an]) = µKn (Kn\[−an, an]) = 1 −
1

n + 1
, n ∈ N. (73)

uppose by contradiction that an−1 ≤ an for some n ≥ 2. Then Kn−1 ⊆ Kn by (71) and hence,
y the subordination principle [20, Corollary 4.3.9] and monotonicity of measure,

µKn−1 (Ea\[−an−1, an−1]) ≥ µKn (Ea\[−an−1, an−1]) ≥ µKn (Ea\[−an, an]), (74)

ontradicting (73). Thus, the sequence an must be strictly decreasing and hence it has a limit
∞ ≥ 0. Suppose a∞ > 0, then the above argument with an−1, Kn−1 replaced by a∞,

K∞ = Ea ∪ [−a∞, a∞] show that for all n,

µK∞
(Ea\[−a∞, a∞]) ≥ µKn (Ea\[−a∞, a∞]) ≥ µKn (Ea\[−an, an]) = 1 −

1
n + 1

. (75)

aking n → ∞ yields µ ([−a , a ]) = 0, a contradiction. Thus, a → 0.
K∞ ∞ ∞ n

12
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For small n, [−an, an] might have a non trivial overlap with Ea . For convenience, in the
ollowing we will write

Kn = Ea ∪ [−bn, bn], bn = min{an, a}, n ∈ N, (76)

here the union is disjoint except possibly at the end points ±bn . We note that bn ≤ bn−1 for
ll n ≥ 2 since the sequence an is monotone decreasing. Next, we show that

(n + 1)µKn

(
[−bn, bn]

)
≥ nµKn−1

(
[−bn−1, bn−1]

)
, n ≥ 2. (77)

ndeed, if bn = a then bn−1 = a so Kn−1 = Kn = [−1, 1] hence (77) trivially holds in this
ase. If bn < a then bn = an while bn−1 ≤ an−1 hence, by (72), (n + 1)µKn

(
[−bn, bn]

)
= 1

hile nµKn−1

(
[−bn−1, bn−1]

)
≤ nµKn−1

(
[−an−1, an−1]

)
= 1. Thus, (77) holds in all cases.

By (70) and (59) we have

logWn(Γα) = log cap(Γα) +

∫
Kn\Ea

gEa (x) (n + 1) dµKn (x). (78)

ince an → 0, for large n we have bn = an by (76) and so (n + 1)µKn (Kn\Ea) = 1 by (72).
hen since gEa is continuous at x = 0, it follows from (78), (33), and (23) that

logWn(Γα) → log cap(Γα) + gEa (0) = log(1 + a) (79)

nd exponentiation yields (39).
It remains to show that the integral in (78) is strictly monotone increasing with respect to

. First, note that, by (21), gEa (x) is even, strictly monotone increasing on [−a, 0], strictly
onotone decreasing on [0, a] and hence, by (76), gEa (x) ≥ gEa (bn) for x ∈ Kn\Ea and,

ince bn ≤ bn−1, gEa (x) ≤ gEa (bn) for x ∈ Kn−1\Kn with both inequalities strict except at the
oints x = ±bn . Next, introduce the measure νn = (n + 1)µKn − nµKn−1 and note that it is
ositive on Kn by the subordination principle [20, Corollary 4.3.9] since Kn ⊆ Kn−1. Then∫

Kn\Ea

gEa (x) (n + 1) dµKn (x) −

∫
Kn−1\Ea

gEa (x) n dµKn−1 (x)

=

∫
Kn\Ea

gEa (x) dνn(x) −

∫
Kn−1\Kn

gEa (x) n dµKn−1 (x)

> gEa (bn) νn(Kn\Ea) − gEa (bn) n µKn−1 (Kn−1\Kn)

= gEa (bn)
[
(n + 1) µKn (Kn\Ea) − n µKn−1 (Kn−1\Ea)

]
≥ 0, n ≥ 2,

here the last inequality follows from (77). □
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