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Abstract
For o > 0 we consider the system wlga—l)/ 2(x) of the Laguerre functions which are eigenfunctions of
2
the differential operator Lf = — ﬁ f— %% f +x2 f. We define an atomic Hardy space Halt (X), which is

a subspace of L! ((0, 00), x% dx). Then we prove that the space Halt (X) is also characterized by the Riesz
transform Rf = ﬁ%L‘l/zf in the sense that f € Hal, (X) ifand only if f, Rf € Ll((O, 00), x% dx).
© 2011 Elsevier Inc. All rights reserved.
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1. Background and main result

For fixed @ > 0 let X denote the space (0, o) with the measure duu(x) = x*dx. The space
X equipped with the Euclidean distance d(x, y) = |x — y| is a space of homogeneous type in
the sense of Coifman—Weiss [4]. On L?(X) we consider the orthogonal system of the Laguerre

functions {w,ﬁ‘)‘“)/z(x)},?io,

(@—1)/2 2k! V2 a2, a0 i
v (x) = L, (xH)e /2,
I'k+a/2+1/2)
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where Ly is the k-th Laguerre polynomial. Each 1//,505_1)/ % is an eigenfunction of the Laguerre

operator

d? ad 5
Lf(x) = ——5 f @) = ———f(@0) +x7f (x),

where the corresponding eigenvalue is 8 = 4k + o + 1. Let
- @1/, @12
Tof =Y exp(—tB(f, v v
k=0

be the semigroup of the self-adjoint linear operator on L?(X) generated by —L, where D(L) =
{f € LX) : Y4 B2 v V)2 < oo} is the domain of L.
It is well known (see e.g. [8,11]) that T; has the integral representation, i.e.,

T f(x) = /0 T, ) f )R (), (L1)

where

Ti(x,y) =

26—2t(xy)—(ot—l)/2 1 1+e—4l
1 —e ¥ P <_§ 1 —e ¥ S y2)>

e~ 2
X I(a—l)/Z <m)€y> . (12)

Here I, denotes the Bessel function of the second kind. The operators (1.1) define strongly
continuous semigroups of contractions on every L?(X), 1 < p < oo.

Through this paper we shall use the following notation: for an interval I < (0, co) we will
denote by |/| its Euclidean diameter, B(x,r) = {y € X : |x — y| < r}, and x4 will be the
characteristic function of the set A. We define the auxiliary function

1
P = xo1n» + ;X[l,oo)()’)' (1.3)

Definition. A function a is called an H'!(X)-atom if there exists an interval I = B(yg,r) C
(0, o0) such that:

(i) supp(a) € I and r < p(yo),
(i) llalloo < u(H71,
(iii) if < p(y0)/4, then fooo a(x)du(x) =0.
We say that an L'(X)-function f belongs to H! (X) if and only if there exist sequences
{aj, 2}, suchthat f = Z;x;l Ajaj,eacha;isan H'(X)-atom, &; € C,and Z;’OZI IAj| < oo.

The space H (X) is a Banach space with the norm
o0
1/ g1 (x) = inf D 121,
j=1

where the infimum is taken over all representations f = Z;’OZI Ajaj.
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Letd = L 4x,8* = —L 4 x < Then L = (a+ DI +8%8, 8% = —2/kay TV,
The Riesz transform Ry, originally defined on L2(X ) (see, e.g., [10,11]) by the formula

172
= 4k (@=1)/2) .y D)2

RLf=ﬁaL—”2f=—Z<—> T 7a il st
= 4k + o + 1

turns out to be the principal value singular integral operator

e¢]

Ry f(x) = lim Rp(x, y) f(ndu(y),

0,|x—y|>e

with the kernel

RL( )—/ooiJr Ti( )ﬂ
Lx,y_o ox X lx,y\/;.

Since the kernel

I'(x )—/OoxT(x )ﬂ
7y - o t 1y\/;

satisfies sup,_ f |I"(x, y)|du(x) < oo, it defines a bounded linear operator on L!(X). Hence,

for our purposes, we restrict our consideration to the Riesz transform Rf = /7 %L*I/ 2f.
Clearly, R is a principal value singular integral operator with the kernel

© 9 dr
R(x,y) =f 8—Tt(x,y)— (L.4)
0 X

NG
The action of R on L!(X)-functions is well-defined in the sense of distributions (see Section 3
for details).

The main goal of this paper is to prove the following theorem.

Theorem 1.5. A function f € L'(X) belongs to the Hardy space Halt(X) if and only if Rf
belongs to L'(X). Moreover, the corresponding norms are equivalent, i.e.,

T g oy < WAl + IRF iy < CHE g cx- (1.6)

The main idea of the proof is to compare the kernel R(x, y) with kernels of appropriately
scaled local Riesz transforms related to the Bessel operator L f (x) = — " (x) — £ f'(x), where
the scale of localization is adapted to the auxiliary function p(y). To do this we consider the
Bessel semigroup:

Tofo) = /0 T ) f )R (Y),

2, .2
_l’_
4ty )[(a 1)/2( )(xy) (=02 1.7

and observe that for small 7 the kernel (1.7) is close to the kernel (1.2). Thanks to this, R(x, y) is
comparable to R(x y) after some suitable localization defined by the function p, where R(x y)
denotes the Riesz transform kernel in the Bessel setting. This requires a precise computation of
constants appearing in singular parts of the kernels (see Propositions 2.3 and 3.1). The next step
is to use results of Betancor et al. [3], who give characterizations of a “global” Hardy space for

Ti(x,y) = 20 exp (—
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the Bessel operator, to define and describe local Hardy spaces for L. Having all these prepared
we prove the theorem.

We would like to remark that the Hardy space H,(X) we consider here is also characterized
by means of the maximal function:

Mf(x) = sup|T; f(x)],
t>0

that is, the norm || f || H (X) is comparable with || M f| .1 x,. For details we refer the reader to [S].

There are other expansions based on the Laguerre functions for which Hardy spaces were

investigated. For example, when o > —1, systems {¢? Zozo and {LY Zio’ where

GL(X) = Cue VP HIPLEGD) L) = e 22 LE (x),
are orthogonal on Lz((O, 00), dx). These systems are related to operators

L d2+2+1 , 1 7 d? d+x+a2
=——4x+—=[(a*—-), =—X— — — + =~ —,
* dx? x2 * dx? dx 4  4x

respectively. In [2,6] the authors proved that the Hardy spaces associated with {¢)}°° , and

{Eﬁ};’fzo are characterized by: the maximal functions, the Riesz transforms, and certain atomic
decompositions. Moreover, in [7] the author obtained an atomic description of the Hardy space
originally defined by the maximal function related to the system

4(x) = cuoL2(x)e™2, n=0,1,..., on L*((0, 00), x*dx).

The functions £ are eigenfunctions of the operator

d? d  x
Ly =—x— — )—+ —.
« = ga T @ty
Finally, we would like to note that the system { ,Ea_l)/ 2 a2 we consider in the present paper

is well-defined and orthogonal on L2(X ) for @ > —1. However, the case —1 < o < 0 is not
included in our investigations.

The paper is organized as follows. In Section 2 we present a singular integral characterization
of local Hardy spaces associated with the Bessel operator L. Section 3 is devoted to stating
detailed estimates for R(x, y) and proving some auxiliary results. The proof of the main theorem
is given in Section 4. In Section 5 we present proofs of estimates of the kernels R(x, y) and
R(x, y) stated in Propositions 2.3 and 3.1.

2. Hardy spaces for the Bessel operator
2.1. Global Hardy space
Hardy spaces H! (X) related to Bessel operators were studied in [3].

Definition. We call a function @ an H' (X)-atom if there is an interval I C (0, oo) such that:

(i) supp(a) S 1,
(i) llafloo < w(DH~",
(i) [y a(x)du(x) =0.

We define the space ﬁalt (X) in the same way as H/,(X) in Section 1.
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The singular integral kernel of the Riesz transform R is defined by

dt
—, Wwhere x # y.
t

N

Before giving a distributional sense of R f for f € L1(X) we recall results from [3].

~ *® 9 ~
R(xa}’):/ a_’Tl(xvy)
0 X

Theorem 2.1. For f € L'(X) the following conditions are equivalent:
(i) £ € Hy(X),

(i) Rf € LL(X),

(ii) sup,_o |7, f| € L' (X).

Moreover,

sup |7y f|

t>0

11800 ~ (1 1zico + 1R Flicn) ~
L1(X)

For a function f defined on (0, c0) and y > 0 we denote fy(x) = y~ "1 f(x/y). Let

2ra 2 2 1
A A@ = AdFeD - 2n g gy 2t (2.2)
ra+aw/2) Z) JT
The following proposition will play a crucial role in our investigations.
Proposition 2.3. Let A, B be as in (2.2). Then for x # y we have
~ A—B B
R(x,y) = oyt e e + hy(x),
where
heLl(X) and |h(x)+A—-2B| <Cx forx <1/2. 2.4)

The proof of Proposition 2.3 is postponed until Section 5.1. To give a precise definition of R
on L'(X) we need a suitable space of test functions. One of possible choices is

w(x)

, llxe' () les < 00
LX)

2(X) = {w € C'(0,00) | llwlloo, H

with the topology defined by the semi-norms y;, i = 1, 2, 3, where,

w(x)

, y3(@) = [|x0' (X) [l oo-

X LI(X)

1) = |0, n(w) = H

Denote by £2(X) the dual space.
The space f € L1(X) is contained in £2’(X) in the natural sense, i.e., if fe L1(X), then

oo
(f, o) =/ fodu, e 2(X).
0
Next, for f € L1(X), w € 2(X), we define

(Rf,w) = (f,R*'®),  R‘w(y) = lim R(x, y)o(x)du(x). 2.5)

=0 Jx—y|>e
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Alternatively, we define the Riesz transform as follows:

ﬁ. (2.6)
t

- - - e 9 ~
Rf.o)= £ Row)  Rowl)=lim / /X o T o) T

Proposition 2.7. For w € 2(X) and y > 0 we have ﬁ*a)(y) = ﬁ*a)(y). Moreover,

LI(X)> .

The proof can be deduced from (1.7) and Proposition 2.3. We will not go into details here.
However, we would like to notice that from Proposition 2.7 it is easily seen, that the Riesz
transform R is the same as the one defined by the spectral theorem (see, e.g., [10,11]).

w(x)

IR0l < C (IIw(X)Iloo + lx0' ()0 + H T

2.2. Local Hardy spaces

Fix a non-negative function ¢ € C2°(—2, 2) such that ¢ (x) = 1 for |x| < 3/2. Similarly to the
classical case, for m > 0 we define scaled local Riesz transforms 7" for f € L' (X), w € 2(X)
as follows:

F" fow) = (f, (F") ),

. o ~ x—y
") w(y) = lim R(x, y)¢ <—) w(x)dp(x).
e=0Jo,|x—y|>¢ m
As in the global case these operators are well-defined and
1F™)* wlloo < 0. (2.8)

For an interval I = B(y,r) € X and k > Oletkl = B(y, kr) C X.

Lemma 2.9. The operators 7" are bounded on L?>(X) with norm-operator bounds independent
of m.

Proof. Because of the dilatation structure (see (5.21)) it is enough to prove the lemma in the case
m = 1. Assume additionally that supp f € I = B(yp, 1). Then 7' f(x) = 0 for x & 31. Also

7 fll2xmsny < NG = B Fll2xnsny + IR Fll2x)-
It is well known that ||§f||L2(X) < Cll fllr2x) (see [9]). Moreover,

IR, DI X(xmyl=3/2) < COY) ™2 4 [hy(x)] < Clxy) ™2

+ B Cx, Y|+ ha(x, Y1, (2.10)

where

hi(x,y) =y~ Lh — Do) (x/),

ha(x, y) = D(x0.1))y(X) = Dy x(x.00) D).
Here D = A — 2B. We claim that

IGF" = R) fll2xeany < ClILfllz2cx-
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To prove this we consider the three summands from (2.10) separately. By the Cauchy—Schwarz
inequality we get

2
” / )™ F(du(y) <C / £ 1720008% < CllLF 1205y
I L2(XN3I) 31

From (2.4) we deduce

o0 o0
Sup/ [y (x, )du(x) + sup/ [h1(x, y)ldu(y) < oo.
y>0J0 x>0

Thus the operator with the kernel /1 (x, y) is bounded on every L”(X),1 < p < oo. The part
which contains /5 is bounded on L2(X) due to the Hardy inequality (see, e.g. [1, p. 124]).
To omit the assumption supp f  B(yp, 1) let us notice

o
17 fll200 < D IF - xg-1) 2o
j=1
o
<CY N xG-1pllzen =Cllifliag. O
j=1

The local Hardy space plm (X) is a subspace of L!(X) consisting of functions f for which
Z’" f € L'(X). In order to state atomic characterization of A" (X) we call a function a an
Rl (X)-atom, when there exists an interval [ = B(yo,r) C (0, 00) such that

(i) supp(a) € I andr < m,

(i) llalloo < p(D)~1,
(iii) if r < m/4, then [;° a(x)du(x) = 0.

Theorem 2.11. Assume that f € LY(X). Then7™ f € L'(X) if and only if there exist sequences
Aj € C and h'™(X)-atoms aj, such that f = Y021 hjaj, where 3732 |xj] < oo. Moreover,
we can choose {A;};,{a;};, such that

o o
CTY I = ey + IF™ fllxy < €D 1AL
j=1 Jj=1

where C is independent of m > 0.

Remark 2.12. Assume in addition supp(f) € I = B(yg, m). Then, in the above decomposition,
one can take atoms with supports contained in 3/.

Proof. The proof is similar to the classical case. For the reader’s convenience we provide some
details. Without loss of generality we may assume that m = 1. The operator 7' is continuous
from L1(X) to 2(X) (see (2.8)), so the first implication will be proved when we have obtained

IFalpix <€ (2.13)

for every nl! (X)-atom a. Notice, that the weak-type (1, 1) bounds of 71 also redu~ces the proof
to (2.13), as it was pointed out to us by the referee. Assume then, that a is an h!(X)-atom
supported by an interval I = B(yo, r). Note that 7la(x) = 0 on (91)¢. Consider first the case
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where r > 1/4. Recall that  has the doubling property. By the Cauchy—Schwarz inequality and
Lemma 2.9 we get

IFallzixron = OD I all 2 < Cp)Plali g, < C

If r < 1/4 then a is an ﬁl(X)-atom, so by Theorem 2.1 it follows that I|§aI|L1(X) < C.
Therefore ||71a||L1(X) <C+H+|(R - ?1)a||L1(X). Because of the cancelation condition we have

(R =a() = / (Rer (1 — $(x — ) — R, yo)(1 — $(x — 30))) a0 (y).

Thus it is enough to verify the estimate

Sul?./o R, »)(1 = ¢(x — »)) — R(x, y0)(1 — ¢ (x — y0))| dp(x)
ye

= sup/oo Ex,y)dux) <C. (2.14)
yel JO
Fix y € I. From Proposition 2.3 one obtains
Ex,y)=0 for|x —y| €(0,1)
E(x,y) = Cx™ 4 |hy()| + [hy, ()| for |x — yol € (1,3) (2.15)
E(x,y) < Clx = yol 2x ™ 4 [hy(0)] + [hy, (¥)|  for [x — yo| € (3, 00).

where in the last inequality we have used that ¢(x — y) = ¢(x — yo) = 0 and the mean-value
theorem. From (2.15) we get (2.14) and ||(R — ?l)allLl(X) < C. This ends the proof of (2.13).

For the converse, assume that f, 71 f € L'(X) and, in addition, suppf < I = B(yo, 1). Fix
E=u) [, fdu, g = f —&xs. We have
IRg N L1xy < 17 Fllpicxy + IEF Gl ixy + IR —=FHgllix)- (2.16)

By using the first part of the proof we deduce that ||§71)(1||L1(X) < Cllfllz1(x)- Note that

suppg C 1, [ gdpu = 0, s0 (2.14) implies | (R — Fgllix, = Cliglzice, < ClIf Lo
Therefore, by Theorem 2.1, there exist H L(X)-atoms a j (j =1,...) such that

[e¢)
f—éx1=¢= Z)‘jaj'
j=1

Moreover Zj’il A< I f e + ||71f||L1(X). Denote Ao = [; fdw, ap = n(I)~'x; and fix
Yy e CX (‘3—‘1) satisfying ¥y = 1 on I and ||{/]lcc < C. We have obtained

f=rvi =Z)»j(1ﬂlaj). (2.17)
=0

It remains to show that each v/;a; can be written in the following form: ¥;a; = Zf\g L ki jbi
where b; ; are EI’I(X )-atoms supported in 37 and Z,N:fl ki, j| < C, where C > 0 is independent
of j. For j = O the claim is clear. Fix j > 1 and suppose that suppa; € J = B(zo, 7).
Obviously, if (%I) N J = { then Yra; = 0. Moreover, if r > 1/4 then Y¥ja; = kb, where b
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is an %“(X)-atom and |¢| < C. So, suppose that (%I) NJ # ¥ and r < 1/4. Under these
assumptions we write

Y100a; ) = (Y1008, @) = o)™ 2 ()
N—1
+ 2o (@) s @) = @) e, ()
i=1
+o(nN ) xon (x),
where 0 = [ a;j(2)(¥1(z) — ¥1(z0))dp(z) and N is such that 27V=1 < » < 27N One can

check that this is the required decomposition, since || < Cr. Let us note that we have just
proved Remark 2.12.

To deal with the general case we take a smooth partition of unity {y f}?il C C*®(0, x0), i.e.

o0
lel,/(x) = X0,00)(x), 0=9; =1, suppy; € I; = B (y;, 1),
j=1

sup [} 100 < C.
jeN
Consider

g =7 W) —v7 ).

Obviously, supp g; € 31; and for x € 31; we have
1800 = ‘ /0 R ) — 0 F O O) — ¥ () die(y)
<c /O R ) xsmsi<al F Ol — yldu(). 2.18)

Moreover, from Proposition 2.3 we have

Sup/ IR(x, y)| |x — yldu(x) < C. (2.19)
y>0Jx—y|<2

From (2.18) and (2.19) we deduce

gl x) < ||f||L1()m51j)~

Therefore
o0 o)
SIF W Dl = 2 (W7 Dl + gl )
j=1 j=1

= € (If g + IF D) - (2.20)
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By using (2.17) and the subsequent remark for each v/; f we get the decomposition ¥; f =
> i Ajai, where aj are ”'1(X)-atoms and

Sl = C (05l + IR W Dl ) - (2.21)
k
The proof is completed by noticing that
f= Zkia,{,
ok
where

Sl = ¢ (I e + 17 flo)

ok
is guaranteed by (2.20) and (2.21). O

3. The Riesz kernel for the Laguerre expansion

Let ¢ be the function defined in Section 2.2 and p be as in (1.3). The following proposition
gives an essential information about the kernel of the Riesz transform associated with the
Laguerre expansion.

Proposition 3.1. Let A and B be as in (2.2). The kernel R(x, y) can be written in the form
xX—y B A—B
Rx,y)=¢ + +8(x, ),

,o(y) xotl yoz—H yotl + ya+1

where

SUP/ lg(x, Yldu(x) < oo. (3.2)
y>0J0

The proof of Proposition 3.1 is a quite lengthy analysis. We provide details in Section 5.2.
For f € L'(X), w € 2(X), we define the Riesz transform Rf as follows

(Rf, w) = (f, R*w), R*w(y) = lim R(x, y)o (x)du(x).

eV x—y|>e

One can easily check using Proposition 3.1 that this limit exists and

) . (3.3)
L1(X)

Denote by G the operator with the kernel g(x, y). Obviously, by (3.2), G is bounded on
L'(X). In the proof of Theorem 1.5 we will need the following lemma.

w(x)

IR0l < C <|Iw(X)||oo + llxe ()0 + H T

Lemma 3.4. Let z € (0,00), f € L'(X),I = B(z,p(z)), and n € C*®(0,00) satisfies
0<n<LsuppnClInlle < Cip)~". Then

IR(Mmf) —n((R—=G)Nlipixy < ClfllLixnan

with a constant C which depends on Cy, but it is independent of z € (0, 00) and f € L'(X).
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Proof. Note that
R(Mf)(x) —n(x)(R—G) f(x) = /(R(x, y) =g, y)((y) — n(x) f()du(y)
+ /g(x,y)n(y)f(y)du(y)

:/Wmemw+/%wwwwy

Applying (3.2) we easily estimate the summand that contains W,. The function Wj(x, y)
vanishes if [x — y| > 2p(y) or x, y € I€. Therefore it can be verified that W (x, y) = 0, if
x €41 or y ¢ 41. Thus Lemma 3.4 follows by

f /’WmnyMu@ﬂmum
471 471

SC[”If(yN([”

sc/|ﬂwwmw.m
41

1
yat+l yoz+1

lx — yl
p(2)

dM(X)) du(y)

4. Proof of Theorem 1.5

Before proving the main theorem we state a crucial consequence of Propositions 2.3 and 3.1.

Lemma 4.1. For yo > 0 we have

]
sup / |RGe 3 = 7700 (3, )| dpa(o) = € 4.2)
y€B(yo.p(30) /0

Proof. By (2.4) and (3.2) we only need to establish that

[ G2 (552 e
sup — w(x
y€B(30.p(30)) YO o) p(yo) )| |xetl —yatl T yotl 4 yatl

<C.
In fact we will prove a stronger estimate, namely,

o xX—=y xX—=y 1
LG () e o
YeB(0,p(30)) JO p(y) p(yo) /| |xett — yati]

Consider the case y > yo (if y < yo we use the same type of arguments). The integrant in
(4.3) is non-zero only when 3/2 p(y) < |x — y| < 2p(yp). But always p(y9) < 2p(y) if
y € B(y0, p(30)). Now, one can check that

00 1
SUP/ X{3/2 <oy T dunx) < C,
220 Jo {3/2p(y)<lx—yl<dp(»)} e+l — y"‘“l

which implies (4.3). O
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Proof of Theorem 1.5. Assume [ € Halt(X ). The operator R : L'(X) — 2/(X) is continuous
(see (3.3)), so the first implication will be proved if we have established that there exists C > 0
such that

||Ra||L1(X) <C

for any H'(X)-atom a. Suppose a is associated with I = B(yp, r) (recall that r < p(yp)). We
have

Ra = (Ra — 700 q) 4+ 7700 q,

The L' (X)-norm of the function 7”0 ¢ is bounded by a constant independent of a, because a is
also an 21:*00) (X)-atom (see Theorem 2.11). Therefore, the first part of the proof is finished by
4.2).

To prove the converse assume that f, Rf € L'(X). Introduce a family of intervals Z = {I,, =
B(zn, p(20))}22  such that X = (J;2 | I, and Z* = {41 : I € T} has bounded overlap. Denote
by n, a smooth partition of unity associated with the family Z, i.e.

o0
M € C®(0,00), suppiy C Ly, 0<ny <1 ) 1a(x) = x(0.00 (¥),

n=1
I, ()] < Cp(za) ™"

We are going to prove an atomic decomposition of f = Y > | 1, f. Note that
P (fna) = (P = R(F0)) + RO 1) = 1a(R = G)(f)

_nn‘G(f)+77n'R(f)~
By using (4.2), Lemma 3.4, and (3.2) we get

o o
STIFE i < €Y (Imnflleo + Ixan g
n=1 n=1

+ 1. Gfllprx) + ||Uan||L1(X))
< C(If iy +IRflpixy) - (4.4)
Applying Theorem 2.11, we obtain

o o
M- f = dnjanj, where D [kl < [FC(f )l L1 (x). and ay j are
Jj=1 Jj=1

h'P@E) (X)-atoms. 4.5)
From (4.4) and (4.5) we have obtained

o0 o
£=3" dujan; with Y Al < C (Il + IRF i) - (4.6)
n,j=1 n,j=l1

Remark 2.12 states that supp a, ; € 31, for j > 0. Notice that for y € 3 I, there exists C > 0
such that

0(za)/C < p(y) < Cp(zy) foralln>1landy € I,. .7
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Because of this, each g, ; can be decomposed into a sum of at most k atoms of the space

H 1(X’) (where the number k depends only on « and the constant C from (4.7)). Finally,
Theorem 1.5 follows by applying (4.6). U

5. Auxiliary estimates

This section is devoted to proving Propositions 2.3 and 3.1. The letters ¢, C, N, M will denote
positive constants (N, M are arbitrarily large). We also use the convention that f ?... =0, when

p > q. For further references we figure out some properties of the Bessel function 7, (v > 0)
(see, e.g., [12]):

9 (e Y
3 (x Iv(x))_x I+1(x) forx >0,
X

(5.1
0<L,x)=2""Tw+ D x"+0x"*?) for0<x <C, (5.2)
Uyx)=Q2m) 2+ 0ux™" forx > C, (5.3)

where
U,(x) = I,(x)e " /x.
5.1. The proof of Proposition 2.3
Proof. Assume y = 1. By using (1.7) and (5.1) we get
o) 2
~ _ (AL e xy 4t
Rix,1) = fo 1) exp< o >x Ia-1)2 (2;) NG
o] 2
2 (XL e xy 4t
+ [0 (21) eXP( a7 >x liw+1))2 (2t> 7
oo ~ 0 ~
= / Q1 (x, 1)dt +/ 0> (x, 1)dt. (5.4)
0 0

In calculations below we will often use the following formula:

oo ()0 (5) o (452 u 5.

Define

A—B B
xetl 41 xetl

h(x) = R(x, 1) —

To prove (2.4) we consider three cases.
Case 1: x > 3/2.

Under this assumption x — 1 ~ x. Then we get estimates:

X 2
_ x=1 X\ _up
C 12 —— U (—) /24y
/OA exp< 4¢ (a+1)/2 2t X

x ¢ N
C/ 12 (—2> x4 < cx M,
0 X

IA

f |02(x, 1)\d1
0

IA
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)C2 x2 N o+l
~ t x\ 5 dt
Dldr < € | 7 =) 12 (—) =
| 1@t < ¢ <x2> . SN
x2 N-3—a/2
<cC P g <cox?
=5), v d=EEre
© ~ > (a+1)/2 dt
xoldt < C | 12 1>/2( )
fx2 [Q2(x, Dldt < B ; ﬁ
o
< c/ xt737 24 < Cx Y73,
which imply
w ~
/ |02 (x, )|dt < Cx™*73, (5.5)
0
Our next task is to obtain
0 A—B B Cwn
/(; Ql(x’t)dt_x“+1+l b <Cx . (5.6)

By using the same methods as we have utilized to estimate the integral f(f |éz(x, t)|dt we
deduce

X
/IQl(x,t)ldt§Cx‘M. (5.7)
0
Moreover,
00 A
/x 01ttt —

= ‘— @n?e

x2+1 ez X\ dt

w (=5 ) T renn (5)

X a3 2T (@=1)/2 e dr

+ (2” < 4_> a—H) (Zt) NG
-2 24+ x? _ed x\ dt
o o)l )

o0 ) x? =3 x p-(@=Db/2 <Y dt
e (557 (s () - 0 (3 ) &
+/x (2r) CXP( 4t>x @-n72\7; F("‘T“) > NG

x x? _a=327 (@=1)/2 <L odt
2 2exp (-3 )T () T 5.8
+ /0 (21) eXp( 4t) F(“gl) 5 i (5.8)
and
A A—B B —Du—2
preme e i A <Cx for x > 3/2. (5.9)
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Applying (5.2) and the mean-value theorem to (5.8), we get

< Cx™%73, (5.10)

/Oo O1(x, dt — ——

Now (5.6) is a consequence of (5.7), (5.9) and (5.10). From (5.5)—(5.6) we conclude that

o0 | < A-B B
/3/2 Ih(X)IdM(X)=/3/2 RO 1) = =y = o | dn0) < C. (5.11)

Case?2: x < 1/2.
From (5.2)—(5.3) it follows:

X xxl—a/Z (x — 1)2 X
,Dldt < C — Uos1 | =— ) dt
[ 181 ptar < e ["4 exp< o ) e (3)

X
S C 1—a/2 N—Zdt SC.X,

/1 < x +1> a3 sx\(@=1/2 df
C t " exp X2 (—) —
4t t NG

1
Cx/ tMdt < Cx,
0

of o) 0 G
1 P 4¢ t NG

/ t72 24t < Cx.
1

l ~
/ 101 (x, 1)ld

IA

IA

IA

/1 101 (x, 1)|dt

IA

Thus [900 |§1(x, t)|dt < Cx. By the same arguments we also obtain f0°° |§2(x, t)|dt < Cx.
Hence, |R(x, 1)] < Cx. As a consequence, for x < 1/2, we have

- A—B B
() +A = 2B] = \R(xr, 1) = o = o + A =28

12 12/
/0 Ih(X)IdM(X)S/O <|R<x,1>|+

Case3:1/2 <x <3/2.
In this case a slightly different form of (5.4) is needed, i.e.,

© g dt _ o0 2 x2+1
/(; ET[(X, l)ﬁ = —(x - 1)/(; (2t) eXp <_ At )
dt

e ()

+ /Oo(zt)*2 exp (—xz + 1) x~@=D/2
0 4t
(1w (3) = teovn () %

= foo 03(x, Hdt +/oo Ou4(x, t)dt. (5.14)
0 0

< Cx, (5.12)

yot+l +1

B
+ ‘) du(x) < C.  (5.13)
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We claim that

o0
/|@wmmsaw4ﬂﬂ
0
Indeed, by using (5.2) and (5.3) we get

1 —
/ |Qax, 0)|dt < c/z p< G DT e
0 4

X
)U(a+1)/2( ) Ua-1)2 <2_t)’dt

! r N\t
< C/ 72— ) —dr<cClx—17"2
0 (x—1)2 X

% L, e ((x\F x\@=D/2\ di
/1 |Da(x. 1)| dr < cfl 2 ((;) +(=) )ﬁ

o0
C f 72 2q < C.
1

IA

Next, observe that

L (@=1)/2 dt
x,0)|dt <Clx —1 2o ‘)/2( ) <C.
A |03(x, 1) | |/ ; N

Moreover,

B(a + 1)1
x2(x — 1)

1
(x, t)dt —

X 1 dt
x (Ve (3) - )Tl
Applying (5.3) to (5.17) we deduce

B(a+ 1)1

1 ~
[) O3(x, )dt — m =<

One can easily check that

B+ 1! B A—B
x¥/2(x —=1) xoetl—1 xetl 4]

=c

From (5.15), (5.16), (5.18) and (5.19) we conclude

A—B
xetl 1 xetl 4]

R(x,1) —

32 32
/ muwmm:/
12 12

/ f(x - 1) (_ (x — 1)2) —a)2
P a )"

'V2(x = 1) =D\ _.p
* /0 TCXP<_T>X

2 t

du(x) < C.

(5.15)

(5.16)

dt

(5.17)

(5.18)

(5.19)

(5.20)
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Finally, as a consequence of (5.11)—(5.13), and (5.20) we obtain that & satisfies desired
properties (2.4). The proposition in the general case of y > 0 follows by applying the
homogeneity

R, y) =y 'R (f, 1) O (5.21)
y

5.2. The proof of Proposition 3.1

Proof. Let us set

_ R x_y)< B 4-8B ) (5.22)
gx,y) = (x’y)_d)(p(y) xa+1_ya+1 xot+1+yoz+l : :

We will prove that (3.2) is satisfied. By using (1.2) and (5.1) we get

o dt o dt * dt
[1] (2] (3]
R(x,y) = T, ,y)— + T, , = T, ,
(x )’) /(; t (x y)ﬁ ‘/O t ('x y)\/; ‘/() t (x Y)ﬁ

+ /oo 14w Y (5.23)
X, Y)—F, .
o Vi
where
2
22 -l 1 +e ¥ x24y? 22
(1] _ -5 -
Tt (Jﬁ)ﬂ—(m) y(.xy) 2 exp(—m ) >Io¢;1<1_e_4txy>’
2e (1 4+ %) ot
2 _a-l
TP, y) = _Wx(xy) 2
1+ ef4t x2 4 y2 ; 2672[
e e ()
Ze—2t(1 +e—4t) Caml
P, y) = —W(XY) 7 (x—y)

w exo [ — 1+e ¥ x24y? I 26_2’xy
PAlrT—e 2 e

Qe 4=l 1+e ¥ x2 + y
4 el
1M, y) = WY(XY) 2 exp( T_o )

De —2t 28_2t 1+e—4t De —2t
(et (5 _e—m”) et () )
Note that

1+e ¥ x? +y? / 202 2e=2xy\ /2
L T A G A G

Lte™ (x—y) (1—e?) 2e'xy
= exp (—1 — e_4t ) eXp —1_—e_4txy UM 1——8_4’/‘ . (524)

The formula (5.24) will be frequently used, without additional comments, when we deal with
1,(0) for 6 > C.
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Fig. 1. The partition of X x X.

We provide the proof in six cases as it is shown in Fig. 1. The grey part denotes the support of
¢ ((x — y)/p(y)). Moreover, the dark grey color means that ¢ ((x — y)/p(y)) = 1.

In Cases 1, 2, 4, 5 we will use the decomposition (5.23) that contains Tt[l] and T,m.
Casel:y >3,x <y/2.
At the beginning we consider T,[I] and ¢ < 1. Under additional assumption xy < 1 we get

! dt ! o 2 ot dt
[mwon <e [t e (<2 (2) T Lo,
Xy «/; x

y ct t t
xy dt xy a—1
ey Y-t
X, ( X 2
2e ZtXV) t dt

2
Y
X exp <_E> exp (—ctxy) UaT-H (1——6_44 Eﬁ

xy W/ 1\ N
Cf 2y(xy)”2 (—2) dt <C (f) x—eh
0 y Y

In the last line we have used (5.3) and (5.24). If xy > 1 we similarly get [} |71 (x, )|
Cy™M,
Next, we deal with T,[l] andr > 1. If xy > ¢ then

log \/xy dt log /Xy
/ |Tt[1](xa)’)|_ < Cf e_4ty(xy)—(a—1)/2
1 ﬁ 1

IA

IA

dt
Vi

=

dt
x exp(—eyH) (e Hxy) T2 — < cy™,

i

°° dt
/ 1M, p) == < C/ e y(xy)~@ D2
log /xy \/; log VX7

dt
% exp(_CyZ)(e—2lxy)(Ot+1)/2ﬁ S Cy_M

Identically, when xy < e? we have [;° 1M (x, y)|% <Cy™M,
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We can write the same estimates for Ttm. Thus we get
= (1 2] dr M M-a-1
(1T 1+ 1P 1) = = 0y~ max(t 1Moo,
0 Vi

Observe that g(x, y) = R(x, y) (see Fig. 1), so the last estimate implies
y/2
Sup/ |g(x, Y)ldu(x) < oo.
y>3J0
Case2: x >3,y < 2x/3.
We proceed very similarly to Case 1 and obtain

foo (17 91 +17 e 1) 2 < ¥ maxt, y4=o).
0 t 4 t ’ \/; = s

We have g(x, y) = R(x, y) (see Fig. 1). Hence
o0 o0
Sup/ lg(x, y)du(x) < oo, sup/ lg(x, ydu(x) < oo.
y<2J3 y=2J3y/2

Case3: (x >3ory > 3)and [x — y| < y/2.
Notice that

26_2t 1/2 B 1+ e—4t (.X _ y)2
Tt[4](x, y) = (—4[) y(xy) a/2 exp (— yr )

1—e" 1—e" 2
(1 _ 8—21)2
X exp —ﬁxy
x (V0 4+ v e + v @ )
where
V[4’]( ) De~ 2 U Qe 1
X, = —Q0 X — s
' V=1 \Yeron | 7= Nz
V[4//](x y) _ 1 26—2f 3 1 + e—4t _ (1 _ e—2t)2
S V2r \l—e ™ 1—e V2 (1l — ey’

[4"] 1+ e_4t 26_2t 1
o = Ve T4 ) T an )

By using (5.27) and (5.3) one obtains
1
dt
T, ) == < Clx — y| 712
[, ez

Also, as in Case 1, we get

/oo (ITB](x W+ T (x y)|) At _epm,
| t ’ t ) \/; =

247

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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Next,
1 —a/2 5
dt B(xy)
[3]

T (x,y)— — _ —— =D —Dg = D;—D;y1), (530

/0 i ( y)\/; X< T @ = ) 1 — Ds ;:1( j = Dj+1), (5.30)
where

Dy — e 'l 4e™) x—y

B 0 /Tl —e4)3/2 (xy)%
e (1 —e2)2 dt
o~ % 7 “r

|
__ /2 _ _
D; = /0 4t\/ﬁ(xy) (x —y)exp (

y74 o)
Dy =— - —y)exp| —
4 /0 4t\/;(xy) (x —y)exp ( a7

exp (—

l+e ™ (x —y)?
1 —e ¥ 2

(x — y)?

exp (—t )dt
xp (—txy) —,
41 pimxy) =

N2
St ”)exp(—rxy)?,

y74 (x —y)?\ dt
De— _ —a/2,. _ _ y)_yat
5 /0 4tﬁ(xy) (x—y) eXP( 1 ) o

Deg

* ]
—X{ylx—vy|<1 a
{ylx—yl< }/0 4tﬁ (xy)?
(xy)~®/2
= _X{y|x7y|<1}—ﬁ(x — y)'

)C—ye

(-

(x — y>2> dt
4t t

By using the mean-value theorem, (5.3) and (5.24) one obtains

IDj — Djy1] < Cx™* V2 x —y|712 forj=1,2.

To deal with D; — D1 for j = 3,4, 5 we consider:

Subcase 1: y|x — y| < 1.

1
D3 — D4l < C/
y2/4

y2/4 (x—y)?/4
|D4—D5|=/ :/ ...d[+/
0 0 (

(x—y)?
mi<c f PNl et 2 ) 2N gy < ooty
0

)
y /4 dt
|Y2|sc/ o2y Y < e
(x—y)?/4 t
o
|Ds — Dg| < C/

y2/A

1 - dt
~x “lx—y|T§Cx

x—()t+2|x _

(5.31)
e —y),
y72/4
s dt =Y+ Y,
x—y)2/4
(5.32)
1
yln ——m——,
ylx =yl

dt
Ty — = = Cx™2x — yl.
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Subcase 2: y|lx — y| > 1.

1 yHx—y|/4 1
|D3—D4|=/ =/ "'dl—i-/ <o dt = Y34 Yy,
y72/4 yT2/4 yHx—yl/4

v/ N=2 1-2N 1-N N
|Y3|§C/ N2y NGy < Cxet Ny
y

1
[Ya] < c/ ; I/4f2x*“(rxy)*N|x —yldt < Cx TNy —y|7N, (5.33)
ylx—y
y2/4
|D4 _ D5| S C/ tN71X7a+2|.X _ y|172th S Cx*a‘l’l*MLx _ y|7M’
0
y2/4

dt
|Ds — Dg| = |Ds| = C/ N — y|1—2N7 < Cx7ot =My oy =M
0

Reassuming, (5.27)—(5.33) lead to

/ R B2 ) 5.34
sup R(x, y) — X{ylx—y 1(X)—’ u(x) < oo. (5.34)
voa DR @ D — )
Moreover,
B(xy)~/? B A-B -
X(yle—y|<2)(X) @+ D(x—y) o xetl — yoz+1 o xatl +ya+l =Cx : (5.35)
We claim that
3y/2 3y/2
sup / lg(x, Y)du(x) < C and SUP/ lg(x, )du(x) < C. (5.36)
2<y<3J3 3<yJy/2

To prove (5.36) we split the area of integration into three parts that correspond to white, light
grey, and dark grey regions from Fig. 1.

e if y|x — y| > 2 we have ¢ ((x —y)/p(y)) = 0 and we deduce the statement directly from
(5.34).
e if 1 < y|x — y| < 2 then we apply (5.34)—~(5.35), and the inequality

s (][5
sup
y>2J1<ylx—y|<2

xa—i—l _ ya+l on—l + y(x+1
e if ylx — y| < I then ¢ ((x — y)/p(y)) = 1 and we use again (5.34)—(5.35).

)dM(X) =C

Cased:x,y <3,x <y/2.
By similar analysis to that we have used in Case 1 we obtain

/xy (171 + 172 1) L < <5>Mx‘“—‘
o v C VT Ty ’

1
dt
[1] (2] —a/2 —1
7 (e, I+ 1T (e, ) —= = Clxy) 7 x
/xy< t t ) «/;
= (i [2) dt
(1w TP l) S c
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Therefore

y/2
Sup/ [R(x, y)|du(x) < oo
y<3J0

and, consequently,

y/2
SUP/ lg(x, y)|du(x) < oo, (5.37)
y<3J0
since
y/2 B A—B
fligfo yot+l — ya+l yotl + yoz+l d““(x) < ©0.

Case5:x,y <3,y <2x/3.
By using (5.2) and (5.3), similarly as in Case 2, one obtains

Xy dt M
[ 2] dr My
[ (w17 Zo< o () e,

x? [1] dt y 2
/ T 01 sc(;) xmo (5.38)
xy
1 dt 2
[1] y —a—1
T, — < z
fx2| Mz =c(Q) v

/oo (T 1 +17 1) % < c.
] t ’ t ) \/; =

Recall that A = -2y, yz_l, where y1 = I'(e/2 + 1) and y» = ['((« 4 1)/2). We write

1 3
/ TP — B - Ee= Y (E - ), (5:39)
y \/; (x2 + y2)a/2+1 o
where
a—1
E /1 2e 2 (1 + e %) T4+e ™ x24+y2\ e *odt
=— ———xexp| —— —_— —,
2 oy (=2 P\lTTZea 2 )2 \1—e= :
1 2 2
2 dt
E3 = —/ Z (4~ xexp (_x +y ) —,
xy V2 4t t
© 9 2 2 dt
Ey = _/ —(4t)_“/2_1x exp (_X ty ) R —Zﬁﬁ
) 4t t y2 (x2 + y2)@/2+
Applying (5.2) and the mean-value theorem, one gets
|Ey — E2] < Cy*x7,
|Ez — E3| < Cx~**,
|E3 — E4| < Cmax(1, yMx—o—1=M), (5.40)
Moreover,
B A—B
E4— <Cyx 2 (5.41)

xoz+1 _ ya—i-l + xot+1 + y(x+l
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As a consequence of (5.38), (5.39), (5.39) and (5.41) we get

3 A-B
ilig/3y/2 R(x,y) - xo+l _ yatl T yatT ol dp(x) < 0.
Also,
. 3 B A—B 4
yj;/l Xly<2x/3) ( xotT — et | ek et ) H(x) < oo.

251

(5.42)

(5.43)

Observe that if x < 1 then ¢ ((x — y)/p(y)) = 1 (see Fig. 1). Therefore (5.42)—(5.43) lead to

3
SUP/ lg(x, y)|du(x) < oo.
y<2J3y/2

Case6:x,y <3,|x —y| <y/2.
By using the decomposition (5.27) one obtains

/xy 190 )1 2L < O =y /2o
t ’ = .
0 NG

In addition

1
dt
[3] (4] —a—1
T (x, + |7, (x, ) — < Cx ,

foo (1759 1+ 176 1) 2 < c
1 t ’ t 9 ﬁ =

Denote

(5.44)

(5.45)

(5.46)

4
/xyTzB](x,y)ﬂ— i + A8 =F1—F5=Z(Fj—Fj+1),
0 \/; xa+1 _ yOH—l xa—H + yot+l =

where
Xy ﬁe"(l+e_4’)

14+ e—4l (X _ y)2

P = ()T I(r —y)ex (—
’ 0 V2m(l —e4)3 P

(1 —e2)2 dt
X exp —ﬁxy Ev
1 (x —y)?

Xy
F3=— /2y — -,
3 /0 y) ﬁtz(xy) (x—y) eXP< P )

1 _ (x — y)? (xy)
_ /2, S _
Fa= /0 4. /mt? (xy) 7 = y) exp < 4t ) di =

Similar analysis to that we have done in (5.39) leads to

1l—e% 2

|Fi— Fgl<Cx™ @', i=1,...,4
Thanks to (5.45)—(5.47), we have

R A—B
) = T yotT e+l el

3
SUP/O X{lx—yl<y/2}

y<3

T

du(x) < oo.

(5.47)

(5.48)



252 M. Preisner / Journal of Approximation Theory 164 (2012) 229-252

Observe that
3
SUP/O X{lx=yl<y/2) X{lx—y|>1/2}

y<3
X (

Note that if |[x — y| < 1/2 then ¢ ((x — y)/p(y)) = 1 (see Fig. 1). Therefore, it is not difficult
to see that (5.48)—(5.49) imply

B
xetl yOl-‘rl

A—B
yot+l + yOH-l

)d,u(x) < 0. (5.49)

3
dt
sup/ Alx—yl<y/211g(x, Y| —=du(x) < oo. (5.50)
y<3J0 \/;

Finally, the required estimate (3.2) follows directly from (5.25), (5.26), (5.36), (5.37), (5.44),
(5.50). O
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