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Abstract

We shall present a new characterization of greedy bases and 1-greedy bases in terms of certain
functionals defined using distances to one dimensional subspaces generated by the basis. We also introduce
a new property that unifies the notions of unconditionality and democracy and allows us to recover a better
dependence on the constants.
c⃝ 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let (X, ∥ · ∥) be a real Banach space and let B = (en)∞n=1 be a semi-normalized Schauder
basis of X with biorthogonal functionals (e∗

n)∞n=1, i.e., 0 < infn ∥en∥ ≤ supn ∥en∥ < ∞ and
for each x ∈ X there exists a unique expansion x =


∞

n=1 e∗
n(x)en . We denote by c00(N)

(resp. c0(N)) the space of all sequences of real numbers with a finite number of non-zero terms
(resp. converging to zero). As usual supp(x) = {n ∈ N : e∗

n(x) ≠ 0}, |A| stands for the
cardinal of A, PA(x) =


n∈A e∗

n(x)en and 1A =


n∈A en . Throughout the paper, we write
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x̃ = (e∗
n(x))n∈N ∈ c0(N), ∥x̃∥∞ = supn |e∗

n(x)| and xy = 0 whenever supp(x) ∩ supp(y) = ∅.
We use the notation Xc for the subspace of X of elements with finite support, i.e. x ∈ X and
|supp(x)| < ∞ or x̃ ∈ c00(N). Also for each m ∈ N, |A| = m and (εn)n∈A ∈ {±1}, we
denote by 1εA =


n∈A εnen , by [1εA] the one-dimensional subspace generated by 1εA and by

[en, n ∈ A] the m-dimensional subspace generated by {en, n ∈ A}.
Recall that a basis B in a Banach space X is called unconditional if any rearrangement of

the series


∞

n=1 e∗
n(x)en converges in norm to x for any x ∈ X. This turns out to be equivalent

the fact that the projections PA are uniformly bounded on all sets A, i.e. there exists a constant
C > 0 such that

∥PA(x)∥ ≤ C∥x∥, x ∈ X and A ⊂ N. (1)

In such a case we say that B is a C-suppression unconditional basis. The smallest constant that
satisfies (1) is the so-called suppression constant and it is denoted by Ksu . Moreover, we have
that

Ksu = sup{∥PA∥ : A ⊆ N is finite} = sup{∥PA∥ : A ⊆ N is cofinite}.

In particular, for unconditional bases one has that x =


∞

n=1 e∗

π(n)(x)eπ(n) where π : N → N is
any permutation so that |e∗

π(n)(x)| ≥ |e∗

π(n+1)(x)| for all n ∈ N.
For each x ∈ X and m ∈ N, S.V. Konyagin and V.N. Temlyakov defined in [5] a greedy sum

of x of order m by

Gm(x) =

m
n=1

e∗

π(n)(x)eπ(n),

where π is a greedy ordering, that is π : N −→ N is a permutation such that supp(x) = { j :

e∗

j (x) ≠ 0} ⊆ π(N) and |e∗

π(i)(x)| ≥ |e∗

π( j)(x)| for i ≤ j . Any sequence (Gm(x))∞m=1 is called
a greedy approximation of x . Of course we can have several greedy sums of the same order
whenever the sequence (e∗

j (x))∞j=1 contains several terms with the same absolute value.

Given x =


∞

i=1 e∗

i (x)ei ∈ X, we define the natural greedy ordering for x as the map
ρ : N −→ N such that supp(x) ⊂ ρ(N) and so that if j < k then either |e∗

ρ( j)(x)| > |e∗

ρ(k)(x)|

or |e∗

ρ( j)(x)| = |e∗

ρ(k)(x)| and ρ( j) < ρ(k). The mth greedy sum of x is

Gm[X, B](x) := Gm(x) =

m
j=1

e∗

ρ( j)(x)eρ( j),

and the sequence of maps {Gm}
∞

m=1 is known as the greedy algorithm associated to B in X. With
this notation out of the way we have that

lim
m→∞

∥x − Gm(x)∥ = 0, (2)

for any x ∈ X whenever B is unconditional.
Konyagin and Temlyakov (see [5]) also introduced the term of quasi-greedy basis for the basis

satisfying the existence of a universal constant C > 0 such that

∥Gm(x)∥ ≤ C∥x∥, x ∈ X, m ∈ N. (3)

In such a case the basis is called a C-quasi-greedy basis.
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A bit later Wojtaszczyk (see [7]) proved that condition (3) is actually equivalent to (2). Of
course, (3) is equivalent to the existence of a universal constant C ′ > 0 such that

∥x − Gm(x)∥ ≤ C ′
∥x∥, x ∈ X, m ∈ N. (4)

Since Gm(x) = PΛ(x) for given Λ with |Λ| = m, one has that any C-suppression uncondi-
tional basis is also a C-quasi-greedy basis.

Recently, Albiac and Ansorena [1, Theorem 2.1] showed that B is 1-suppression unconditional
if and only if supm∈N ∥Gm(x)∥ ≤ ∥x∥ and if and only if supm,k∈N{∥Gm(x)∥, ∥x −Gk(x)∥} ≤ ∥x∥.

For each m ∈ N, the m-term error of approximation with respect to B is defined as

σm(x, B) = σm(x) := inf{d(x, [en, n ∈ A]) : A ⊂ N, |A| = m},

where d(x, Y ) = inf{∥x − y∥ : y ∈ Y } for each Y ⊂ X. Clearly σm(x) ≤ ∥x − Gm(x)∥. Bases
where the greedy algorithm is efficient in the sense that the error we make when approximating x
by Gm(x) is comparable with σm(x) were first considered in [5] and called greedy bases. Namely
a basis B is said to be greedy if there exists an absolute constant C ≥ 1 such that

∥x − Gm(x)∥ ≤ Cσm(x), ∀x ∈ X, ∀m ∈ N. (5)

In this case, we will say that B is C-greedy. The smallest constant C that satisfies (5) is the greedy
constant and is denoted by Cg .

In the same paper, a basis B was said to be democratic if there is a constant D ≥ 1 such that

∥1A∥ ≤ D ∥1B∥ (6)

for all A, B ⊂ N finite and the same cardinality. The smallest constant appearing in (6) is called
the democracy constant and B is said to be a D-democratic basis.

Theorem KT ([5,6]).

(i) If B is a C-greedy basis then B is C-democratic and C-suppression unconditional.
(ii) If B is Ksu-suppression unconditional and D-democratic then B is (Ksu + K 3

su D)-greedy.

Notice from the dependence on the constants that 1-suppression unconditional and
1-democratic only gives 2-greedy. To characterize 1-greedy bases, Albiac and Wojtaszczyk
(see [3]) introduced the so-called Property (A). For each |S| < ∞ and x =


n∈S e∗

n(x)en ∈ X,
we write M(x) := {n ∈ S : |e∗

n(x)| = maxm |e∗
m(x)|}. A basis is said to have Property (A)

whenever

∥x∥ =

 
n∈M(x)

θne∗
n(x)eπ(n) + (x − PM(x)x)

 , (7)

for all injective maps π : S → N such that π( j) = j if j ∉ M(x) and θn ∈ {±1} with θn = 1
whenever π(n) = n for n ∈ M(x).

Theorem AW ([3, Theorem 3.4]). Let X be a Banach space and B a Schauder basis. Then B is
a 1-greedy basis if and only if B is 1-suppression unconditional and it has Property (A).

It has been recently shown by Albiac and Ansorena (see [2, Theorem 3.1]) that the bases with
Property (A) coincide with the almost-greedy bases with Cag = 1, that is to say

∥x − Gm(x)∥ ≤ inf
|A|=m

∥x − PA(x)∥, ∀x ∈ X, ∀m ∈ N. (8)
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Later on, Theorems AW and KT were generalized in [4] using the so-called Property (A) with
constant C (which has been also called C-symmetric for largest coefficients in [2]) where the
equality (7) is replaced for an inequality

∥x∥ ≤ C

 
n∈M(x)

θne∗
n(x)eπ(n) + (x − PM(x)x)

 . (9)

Theorem D ([4, Theorem 2]).

(i) If B is a C-greedy basis then B is C-suppression unconditional and it has Property (A) with
constant C.

(ii) If B is Ksu-suppression unconditional and Property (A) with constant C then B is
K 2

suC-greedy.

Let us first reformulate Property (A) in terms useful for our purposes (see [4]).

Lemma 1.1. Let B be a Schauder basis of X. The basis B has the Property (A) with constant C
if and only if

∥x + 1εA∥ ≤ C∥x + 1ε′ B∥

for any ε, ε′
∈ {±1}, |A| = |B| < ∞, A ∩ B = ∅, x ∈ Xc with supp(x) ∩ (A ∪ B) = ∅ and

∥x̃∥∞ ≤ 1.

Proof. Assume B has Property (A) with constant C . For each ε, ε′
∈ {±1}, A, B and x such that

|A| = |B|, A ∩ B = ∅ and ∥x̃∥∞ ≤ 1 with supp(x)∩ (A ∪ B) = ∅, we write y = 1εA + x . Hence
M(y) = A ∪ {n ∈ supp(x) : |e∗

n(x)| = 1}. Let π : A → B be a bijection and set θn = ε′

π(n) for
n ∈ A. Hence ∥y∥ ≤ C∥1ε′ B + x∥.

Conversely given x ∈ Xc with supp(x) = S and α = max{|e∗
n(x)| : n ∈ S} one can consider,

for each π and θ in the conditions above, the set A = { j ∈ M(x) : π( j) ≠ j} and define
εn =

e∗
n(x)

|e∗
n(x)|

for each n ∈ A. Now, selecting B = π(A) and ε′
n = θn for n ∈ B, we have

∥x∥ = α

1εA +
1
α

(x − PAx)


≤ Cα

1ε′ B +
1
α

(x − PAx)


= C


n∈A

θne∗
n(x)eπ(n) + (x − PAx)

 . �

We would like to introduce here two properties which encode the notions of unconditionality
and democracy or unconditionality and Property (A) at once.

Definition 1.2. A Schauder basis B is said to have Property (Q) with constant C whenever

∥x + 1A∥ ≤ C∥x + y + 1B∥ (10)

for any |A| = |B| < ∞, A ∩ B = ∅ and x, y ∈ Xc such that xy = 0, ∥x̃∥∞ ≤ 1 and
supp(x + y) ∩ (A ∪ B) = ∅.
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Remark 1.3. Clearly Property (Q) with constant C on a basis B implies that B is
C-democratic and C-suppression unconditional. Conversely if B is D-democratic and
C-suppression unconditional then B has Property (Q) with constant C(1 + D).

Definition 1.4. Let z ∈ Xc. We write Γ0 = Xc and for z ≠ 0 we define

Γz = {y ∈ Xc : zy = 0, |supp(z)| ≤ |{n : |e∗
n(y)| = 1}|}. (11)

Definition 1.5. A Schauder basis B is said to have Property (Q∗) with constant C whenever

∥x + z∥ ≤ C∥x + y∥ (12)

for any x, z, y ∈ Xc such that xz = 0, xy = 0, max{∥x̃∥∞, ∥z̃∥∞} ≤ 1 and y ∈ Γz .

Remark 1.6. It is clear that Property (Q∗) implies the Property (Q) and Property (A) with the
same constant.

Conversely if B is K -suppression unconditional and it has Property (A) with constant C then
B has Property (Q∗) with constant K C .

Indeed, let x, z, y ∈ Xc such that xz = 0, xy = 0, max{∥x̃∥∞, ∥z̃∥∞} ≤ 1 and y ∈ Γz . If
z = 0 we have ∥x∥ ≤ K∥x + y∥ using that the basis is K -suppression unconditional. Assume
now that z ≠ 0 with A = supp(z). Select B ⊆ {n : |e∗

n(y)| = 1} with |B| = |A| < ∞ and

ε′
n =

e∗
n(y)

e∗
n(y)

for n ∈ B. Therefore

∥x + 1εA∥ ≤ C∥x + 1ε′ B∥ ≤ C K∥x + y∥.

Notice that ∥z̃∥∞ ≤ 1 implies that z ∈ co({1εA : |εn| = 1}). Hence x + z =m
j=1 λ j (x + 1ε( j) A) for some |ε

( j)
n | = 1 and 0 ≤ λ j ≤ 1 with

m
j=1 λ j = 1 and we obtain

∥x + z∥ ≤ C K∥x + y∥. �

In this paper we also introduce two functionals depending only on distances to one
dimensional subspaces which allow us to characterize the greedy bases and 1-greedy bases.

Definition 1.7. Let B be a basis in a Banach space X, x ∈ X and m ∈ N. We define

Dm(x, B) = Dm(x) := inf{d(x, [1A]) : A ⊂ N, |A| = m},

and

D∗
m(x, B) = D∗

m(x) := inf{d(x, [1εA]) : (εn) ∈ {±1}, A ⊂ N, |A| = m}.

In particular

D∗
m(x, B) = D∗

m(x) := inf{∥x − α(1A1 − 1A2)∥ : |A1 ∪ A2| = m, A1 ∩ A2 = ∅, α ∈ R}.

Of course ∀x ∈ X one has

σm(x) ≤ D∗
m(x) ≤ Dm(x) ≤ ∥x∥.

Our aim is to show that greedy bases can be actually defined using the functionals D∗
m or Dm

instead of σm and the use of the Property (Q∗) allows us to improve the dependence of the
constants.
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Our main results establish firstly that Property (Q) and Property (Q∗) are actually equivalent
(see Theorem 2.4), secondly that the conditions

∥x − Gm(x)∥ ≤ C Dm(x), ∀x ∈ X, ∀m ∈ N,

(resp. ∥x − Gm(x)∥ ≤ C D∗
m(x), ∀x ∈ X, ∀m ∈ N)

imply Property (Q) (resp. Property (Q∗)) with constant C (see Proposition 2.1) and finally that
bases having Property (Q∗) with constant C are C2-greedy bases (see Theorem 2.6). Combining
the results above one gets the following chain of equivalent formulations of greedy bases.

Corollary 1.8. Let X be a Banach space and B a Schauder basis of X. The following statements
are equivalent:

(i) B is greedy.
(ii) There exists an absolute constant C > 0 such that

∥x − Gm(x)∥ ≤ C D∗
m(x), ∀x ∈ X, ∀m ∈ N.

(iii) There exists an absolute constant C > 0 such that

∥x − Gm(x)∥ ≤ C Dm(x), ∀x ∈ X, ∀m ∈ N.

(iv) B satisfies the Q-property.
(v) B satisfies the Q∗-property.

(vi) B is unconditional and democratic.

Corollary 1.9. Let B be a Schauder basis of X. Then B is 1-greedy if only if B satisfies the
Q∗-property with constant 1 if and only if B is 1-unconditional and it has Property (A) with
constant C = 1.

Our proofs will follow closely the ideas in [2–5].

2. Bases with property ( Q) and ( Q∗)

Proposition 2.1. Let X be a Banach space and B a Schauder basis of X. The following
statements are equivalent:

(i) There exists C > 0 such that

∥x − Gm(x)∥ ≤ C Dm(x), ∀x ∈ X, ∀m ∈ N.

(ii) B has Property (Q).
(iii) B is a greedy basis.

Proof. Due to Remark 1.3 and Theorem KV only the implication (i) ⇒ (ii) requires a proof.
Assume (i). We shall see first that the basis is democratic. Let A, B with |A| = |B| = n

and m = |A \ B| = |B \ A|. Define, for each ε > 0, x = (1 + ε)1A\B + 1B and observe that
Gm(x) = (1 + ε)1A\B . Hence,

∥1B∥ = ∥x − Gm(x)∥ ≤ C Dm(x) ≤ C∥x − 1B\A∥ ≤ C∥1A∥ + Cε∥1A\B∥.

Now take the limit as ε → 0 to complete the argument.
Let us now prove the unconditionality of B. Let x ∈ Xc and supp(x) = B. Let A ⊆ B and

write m = |B \ A|. Select α > 0 such that

α > sup
j∈A

|e∗

j (x)| + sup
j∈B\A

|e∗

j (x)|,
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and define

y = x + α1B\A =


j∈B\A

(α + e∗

j (x))e j +


j∈A

e∗

j (x)e j .

Hence Gm(y) =


j∈B\A(α + e∗

j (x))e j and PA(x) = y − Gm(y). Then,

∥PA(x)∥ = ∥y − Gm(y)∥ ≤ C Dm(y) ≤ C∥y − α1B\A∥ = C∥x∥. �

Proposition 2.2. Let B be a basis of X. The following statements are equivalent:

(i) There exists C > 0 such that

∥x + 1εA∥ ≤ C∥x + 1ε′ B + y∥ (13)

for any A, B such that A ∩ B = ∅ and |A| = |B| < ∞, any (εn)n∈A, (ε′
n)n∈B ∈ {±1} and

any x, y ∈ Xc such that xy = 0, ∥x̃∥∞ ≤ 1 and (A ∪ B) ∩ (supp(x + y)) = ∅.
(ii) B has Property (Q∗) with constant C.

(iii) There exists C > 0 such that

∥x∥ ≤ C∥x − PA(x) + t y∥ (14)

for any x ∈ Xc, t ≥ ∥x̃∥∞, finite set A and y ∈ ΓPA(x) with xy = 0.

Proof. (i) ⇒ (ii) Let x, y, z ∈ Xc with pairwise disjoint supports with max{∥x̃∥∞, ∥z̃∥∞} ≤ 1
and y ∈ Γz .

For z = 0 we apply (13) with A = B = ∅ to obtain ∥x∥ ≤ C∥x + y∥.
For z ≠ 0, denote A = supp(z) and B1 = {n ∈ supp(y) : |e∗

n(y)| = 1}. Since |B1| ≥ |A|

we select B ⊆ B1 with |B| = |A| and write y = PB(y) + PBc (y) = 1ε′ B + PBc (y) where
ε′

n =
e∗

n(y)

|e∗
n(y)|

for n ∈ B. From (13) we have

∥x + 1εA∥ ≤ C∥x + 1ε′ B + PBc (y)∥ = C∥x + y∥, ∀(εn) ∈ ±1.

Notice that ∥z̃∥∞ ≤ 1 implies that z ∈ co({1εA : |εn| = 1}). Hence x + z =
m

j=1 λ j (x +1ε( j) A)

for some |ε
( j)
n | = 1 and 0 ≤ λ j ≤ 1 with

m
j=1 λ j = 1 and we obtain ∥x + z∥ ≤ C∥x + y∥.

(ii) ⇒ (iii) Let x, y ∈ Xc with xy = 0, t ≥ ∥x̃∥∞ and a finite set A with y ∈ ΓPA(x).
In the case A ∩ supp(x) = ∅ we have PAx = 0 and from (12) one gets ∥

x
t ∥ ≤ C∥

x
t + u∥ for

any u ∈ Xc with xu = 0.
In the case A ∩ supp(x) ≠ ∅, let x1 =

x
t − PA( x

t ), z1 = PA( x
t ) and y1 = y. Since

max{∥x̃1∥∞, ∥z̃1∥∞} ≤ 1 and y ∈ Γz1 we can apply (12) to obtain

∥x∥ = t∥x1 + z1∥ ≤ C∥x − PA(x) + t y∥.

(iii) ⇒ (i) Let two finite and disjoint sets A and B with |A| = |B|, (εn)n∈A, (ε′
n)n∈B ∈ {±1},

x, y ∈ Xc such that ∥x̃∥∞ ≤ 1 with xy = 0 and (A ∪ B) ∩ (supp(x) ∪ supp(y)) = ∅. We apply
(14) for t = 1, the set A and u, v ∈ Xc given by u = x +1εA and v = 1ε′ B + y, since ∥ũ∥∞ ≤ 1,
v ∈ Γ1εA and supp(u) ∩ supp(v) = ∅. Therefore

∥x + 1εA∥ = ∥u∥ ≤ C∥u − PA(u) + v∥ = C∥x + 1ε′ B + y∥.

This finishes the proof. �
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Lemma 2.3. Let B be a Schauder basis of a Banach space X, x ∈ X and a finite set A. Then

sup{∥x + 1εA∥ : |εn| = 1} = sup{∥x + u∥ : supp(u) = A, ∥ũ∥∞ ≤ 1}

and

sup
B⊂A

∥x + 1B∥ ≤ sup{∥x + 1εA∥ : |εn| = 1} ≤ 3 sup
B⊂A

∥x + 1B∥.

Proof. Denote

I1 = sup
B⊂A

∥x + 1B∥,

I2 = sup{∥x + 1εA∥ : |εn| = 1},

I3 = sup{∥x + u∥ : supp(u) = A, ∥ũ∥∞ ≤ 1}.

Of course I1 ≤ I2 since each B ⊆ A can be written as 1B =
1
2


1A + (1B − 1A\B)


.

On the other hand I2 ≤ I3 follows trivially selecting u = 1εA. The other inequality I2 ≥ I3
follows using the same argument as in Proposition 2.2 since any u ∈ X with ∥ũ∥∞ ≤ 1 and
supp(u) = A satisfies that u =


j∈A e∗

j (y)e j ∈ co({1εA : |εn| = 1}).

For the remaining inequality, denote A+
:= { j ∈ A : ε j = 1} and A−

:= { j ∈ A : ε j = −1}.
Since 1εA = 1A+ − 1A− , with A+, A−

⊂ A, we can write x + 1εA = 2(x + 1A+) − (1A + x)

and therefore ∥x + 1εA∥ ≤ 3I3 and we obtain I2 ≤ 3I3. �

Theorem 2.4. Let X be a Banach space and B a Schauder basis of X. B has Property (Q) if and
only if B has Property (Q∗). Moreover, if we have Property (Q) with constant C1 and Property
(Q∗) with constant C2, then

C1 ≤ C2 ≤ 6C3
1 .

Proof. Of course Property (Q∗) with constant C2 implies Property (Q) with the same constant.
Assume that B has the Property (Q) with constant C1. In particular

∥PM (z)∥ ≤ C1∥z∥, z ∈ Xc, |M | < ∞. (15)

Let |εn| = |ε′
n| = 1, |A| = |B|, A ∩ B = ∅ and x, y ∈ Xc with xy = 0, ∥x̃∥∞ ≤ 1 and

supp(x + y) ∩ (A ∪ B) = ∅. By (15) and Property (Q), for each A′
⊂ A

∥x + 1A′∥ ≤ C1∥x + 1A∥ ≤ C2
1∥x + y + 1B∥, A′

⊂ A. (16)

Applying Lemma 2.3, together with (15) and (16), we obtain, for 1ε′ B = 1B+ − 1B− ,

∥x + 1εA∥ ≤ 3 sup
A′⊂A

∥x + 1′

A∥ ≤ 3C2
1∥x + y + 1B∥

≤ 3C2
1(∥x + y + 1B+∥ + ∥1B−∥)

≤ 6C3
1∥x + y + 1ε′ B∥.

This shows (13) and therefore B has Property (Q∗) invoking Proposition 2.2. �

Let us mention the following result whose proof is borrowed from [3].
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Proposition 2.5. Let B be a C-suppression unconditional basis of X. Let x ∈ X, A ⊆ supp(x)

and εn =
e∗

n(x)

|e∗
n(x)|

for n ∈ A. Then
n∈B

e∗
n(x)en + t1εA

 ≤ C∥x∥ (17)

for each B ⊂ supp(x) \ A and t ≤ min{|e∗
n(x)| : n ∈ A}.

Proof. Given B ⊂ supp(x) \ A and t ≤ min{|e∗
n(x)| : n ∈ A} we define

ft,B(s) =


n∈B

e∗
n(x)en +


n∈A

χ
0, t

|e∗n (x)|

(s)e∗
n(x)en ∈ Xc, 0 ≤ s ≤ 1.

Note that, since ft,B(s) = PAs x , we have that ∥ ft,B(s)∥ ≤ C∥x∥ and
n∈B

e∗
n(x)en + t1εA =

 1

0
ft,B(s)ds.

Hence, using the vector-valued Minkowski’s inequality, (17) is achieved. �

Theorem 2.6. Let X be a Banach space and B a Schauder basis of X.

(i) If there exists C > 0 such that

∥x − Gm(x)∥ ≤ C D∗
m(x), ∀x ∈ X, ∀m ∈ N,

then B has Property (Q∗) with constant C.
(ii) If B has Property (Q∗) with constant C then

∥x − Gm(x)∥ ≤ C2σm(x), ∀x ∈ X, ∀m ∈ N.

Proof. (i) Due to the equivalences in Proposition 2.2 we shall show (13). Let us take ε, ε′
∈

{±1}, |A| = |B|, A ∩ B = ∅ and x, y ∈ Xc such that xy = 0, ∥x̃∥∞ ≤ 1 and
supp(x + y) ∩ (A ∪ B) = ∅. Let us write F = supp(y), ηn =

e∗
n(y)

|e∗
n(y)|

for n ∈ F and
define, for each δ > 0,

z = 1εA + x + y + 1ηF + (1 + δ)1ε′ B .

Using that |e∗
n(y + 1ηF )| = |ηn + e∗

n(y)| = |e∗
n(y)|(1 +

1
|e∗

n(y)|
) ≥ 1 for each n ∈ F we

have Gm(z) = (1 + δ)1ε′ B + y + 1ηF , where m = |B| + |F |. Therefore

∥1εA + x∥ = ∥z − Gm(z)∥

≤ C D∗
m(z) ≤ C∥z − 1εA − 1ηF∥

= C∥x + y + (1 + δ)1ε′ B∥.

Now taking the limit as δ goes to 0 one gets (13).
(ii) By density and homogeneity, it suffices to prove the result when x is finitely supported with

∥x̃∥∞ ≤ 1. Let x ∈ Xc, ∥x̃∥∞ ≤ 1, m ∈ N and let b ∈ [en : n ∈ A] with |A| = m. Select B
with |B| = m and Gm(x) = PB(x).

Set t = min{|e∗
n(x)| : n ∈ B \ A} and set εn =

e∗
n(x)

|e∗
n(x)|

for n ∈ supp(x).
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Taking into account that t ≥ ∥x̃ − PB(x)∥∞, we take in the formula (14) the vector x as
x − PB(x), the set A as A \ B and y = 1ε(B\A). Now from Proposition 2.2 we obtain

∥x − Gm(x)∥ ≤ C∥x − PB(x) − PA\B(x) + t1ε(B\A)∥

= C∥P(A∪B)c (x − b) + t1ε(B\A)∥.

Finally, since t ≤ |e∗
n(x − b)| for n ∈ B \ A, applying Proposition 2.5 one gets

∥x − Gm(x)∥ ≤ C2
∥x − b∥.

This gives that ∥x − Gm(x)∥ ≤ C2σm(x) and the proof is complete. �

Remark 2.7. If we assume that B is a K -suppression unconditional basis satisfying Property
(A) with constant C we would have Property (Q∗) with constant K C (see Remark 1.6), since
the argument in Theorem 2.6 part (ii) only makes use of Proposition 2.2 with constant K C and
Proposition 2.5 with constant K , we would obtain that B is a K 2C-greedy basis. Hence we
recover the result in part (ii) in Theorem D.

3. Some properties of the new functionals Dm and D∗
m

Of course D1(x) = D∗

1(x) = ∥x − G1(x)∥ = ∥x − e∗

ρ(1)(x)eρ(1)∥. However calculating the
functionals Dm(·) and D∗

m(·) for m ≥ 2 is not easy in general. Let us study the situation for
Hilbert spaces and X = ℓp with 1 ≤ p < ∞.

For Hilbert spaces and for orthonormal bases one can compute the functionals explicitly using
the inner product.

Proposition 3.1. Let H be a Hilbert space and B = (en)n be an orthonormal basis of H. Then,
for x ∈ H,

Dm(x) =


∥x∥2 −

1
m

sup

⟨x, 1A⟩2 : |A| = m


,

D∗
m(x) =


∥x∥2 −

1
m

sup

⟨x, 1εA⟩2 : |A| = m, (εn) ∈ {±1}


.

Proof. Let α ∈ R, (εn) ∈ {±1} and |A| = m. Then

∥x − α1εA∥
2

= ∥x∥
2
− 2⟨x, α1εA⟩ + α2

|A|.

Therefore the minimum of ∥x − α1εA∥
2 is achieved at α0 =


k∈A εk e∗

k (x)

m and its value is

∥x∥
2
−

(⟨x,α1εA⟩)2

m . Taking infimum over the corresponding families we obtain the result. �

Theorem 3.2. If H is a Hilbert space and B = (en)n is an orthonormal basis of H, then

lim
m−→∞

Dm(x) = lim
m−→∞

D∗
m(x) = ∥x∥, ∀x ∈ H.

Proof. Since D∗
m(x) ≤ Dm(x) ≤ ∥x∥, it suffices to see that limm→∞ D∗

m(x) = ∥x∥. Assume
first that x ∈ Xc and supp(x) = B with N = |B|. For each (εn) ∈ {±1} and A such that |A| = m,
we have

1
|A|

⟨x, 1εA⟩
2

=
1

|A|

 
k∈A∩B

εke∗

k (x)

2

≤ ∥x∥
2 |A ∩ B|

|A|
≤

N∥x∥
2

m
.
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From Proposition 3.4 we conclude that

∥x∥


1 − N/m ≤ D∗
m(x) ≤ ∥x∥,

which gives the result for x ∈ Xc.
For general x ∈ X, given ε > 0, take first y ∈ Xc with ∥x − y∥ < ε/2 and observe that

D∗
m(x) ≥ D∗

m(y) − ∥x − y∥,

to conclude that

lim
m

inf D∗
m(x) ≥ ∥y∥ − ε/2 ≥ ∥x∥ − ε. (18)

As we know that D∗
m(x) ≤ ∥x∥ for all x ∈ X and m ∈ N, then limm sup D∗

m(x) ≤ ∥x∥. Hence,
using this fact and taking the limit as ε goes to 0 in (18), we obtain the result. �

Now, we are going to show that for any finite set B and the canonical basis B in X = ℓp, we
have the same property as in Theorem 3.2 for concrete elements. To prove this, we shall use the
following elementary lemma.

Lemma 3.3. Let 1 < p < ∞ and m, N ∈ N such that m ≥ N. Define, for α ∈ R and
1 ≤ k ≤ N,

H(α, k) = |1 − α|
pk + |α|

p(m − k) + (N − k)

and, for α ∈ R, k1, k2 ∈ N and 1 ≤ k1 + k2 ≤ N,

L(α, k1, k2) = |1 − α|
pk1 + |1 + α|

pk2 + |α|
p(m − (k1 + k2)) + (N − (k1 + k2)).

Then

min
α∈R,1≤k≤N

H(α, k) = min
α∈R,1≤k1+k2≤N

L(α, k1, k2) = N


1 +


m − N

N

−1/(p−1)
−(p−1)

.

Proof. Using that H(α, k) ≥ H(|α|, k) and L(α, k1, k2) = L(−α, k2, k1) we can restrict α to
α ∈ R+. Also since (α − 1)pk + α p(m − k) and (α − 1)pk1 + (1 + α)pk2 + α pk3 are increasing
for α ≥ 1, the minima are achieved over 0 ≤ α ≤ 1.

Let 0 ≤ α ≤ 1 and 0 ≤ k, k1, k2 ≤ N and k1 + k2 ≤ N . We write H(α, k) = Hα(k) = Jk(α),
that is

Hα(k) =


(1 − α)p

− α p
− 1


k + N + α pm.

Similarly we write L(α, k1, k2) = Lα(k1, k2), that is

Lα(k1, k2) =


(1 − α)p

− α p
− 1


k1 +


(1 + α)p

− α p
− 1


k2 + N + α pm.

Since (1 − α)p
≤ α p

+ 1 and (1 + α)p
≥ α p

+ 1 we obtain that

min{Lα(k1, k2) : 0 ≤ k1 + k2 ≤ N } = min{Hα(k) : 0 ≤ k ≤ N }

= (1 − α)p N + α p(m − N ).

Now the minimum of JN (α), 0 ≤ α ≤ 1, is achieved at αmin = (1 + (m−N
N )

1
p−1 )−1 and

JN (αmin) = N


1 +


m − N

N

−
1

p−1
−(p−1)

. �
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Proposition 3.4. Let X = ℓp for some 1 < p < ∞ and B the canonical basis. If B ⊂ N and
|B| = N then

Dm(1B) = D∗
m(1B) = (N − m)1/p, m ≤ N , (19)

Dm(1B) = D∗
m(1B) = N 1/p


1 +

m

N
− 1

−1/(p−1)
−1/p′

, m ≥ N , (20)

where p′
=

p
p−1 .

Proof. Assume first that m ≤ N . Let α ∈ R, |εn| = 1 and A ⊂ N with |A| = m. Set
1εA = 1A1 − 1A2 . Observe that

∥1B − α1εA∥
p

= |1 − α|
p
∥1A1∩B∥

p
+ |1 + α|

p
∥1A2∩B∥

p
+ |α|

p
∥1A\B∥

p
+ ∥1B\A∥

p.

(21)

In particular

∥1B − α1A∥
p

= |1 − α|
p
∥1A∩B∥

p
+ |α|

p
∥1A\B∥

p
+ ∥1B\A∥

p. (22)

Therefore ∥1B − α1εA∥ ≥ ∥1B\A∥ ≥ (N − m)1/p. This gives D∗
m(1B) ≥ (N − m)1/p.

On the other hand, choosing A ⊆ B and α = 1 one concludes that (N −m)1/p
= ∥1B −1A∥ ≥

Dm(1B). Therefore we obtain (19).
Assume now that m ≥ N . Denoting k = |A ∩ B| = ∥1A∩B∥

p, k1 = |A1 ∩ B| = ∥1A1∩B∥
p

and k2 = |A1 ∩ B| = ∥1A2∩B∥
p, we can apply (21) and (22) together with Lemma 3.3 to obtain

(20). �

Remark 3.5. Similar arguments show that for X = ℓ1 and B the canonical basis and B ⊂ N

with |B| = N one has Dm(1B) =


N − m, m ≤ N ;

m − N , N ≤ m ≤ 2N ;

N , m ≥ 2N .
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