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Abstract

Let 0 < o < oo and let {B(x, €)}e, € > 0, denote a net of intervals of the form (x — e, x + €) C
[0, @). Let f€(x) be any best constant approximation of f € Aw,¢’ on B(x,€). Weak inequalities for
maximal functions associated with {f€(x)}e, in Orlicz-Lorentz spaces, are proved. As a consequence
of these inequalities we obtain a generalization of Lebesgue’s Differentiation Theorem and the pointwise
convergence of f€(x) to f(x),ase — 0.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let My be the class of all real extended p-measurable functions on [0, @), 0 < @ < o0,
where p is the Lebesgue measure. As usual, for f € My we denote its distribution function by
nrs) = pn({x € [0,0) 2 [f(x)] > s}), s > 0, and its decreasing rearrangement by f*(¢) =
inf{s : pr(s) <t}, ¢ > 0. For properties of 11y and f*, the reader can look at ([2], pp. 36-42).

Let ¢ : R — R, be a differentiable and convex function, ¢(0) = 0, ¢(¢) > 0, r > 0, and
let w : (0, ) — (0, c0) be a weight function, non-increasing and locally integrable. If « = oo,
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we also assume ]OOO wdp = oo. We denote by W : [0, @) — [0, co) the function

W(r) = /r w(t)de.
0

For f € My, let

wnr(0)
Uy o(f) = /0 ¢ (fHHwdpu.

In [9,11-13], several authors studied geometric properties of the regular Orlicz—Lorentz space
{f € Mo : Wy ¢(Af) < oo for some A > 0}. We consider the following subspace:

A, ={f € Mo : ¥y g(Af) < ocoforall A > 0}.

Under the Luxemburg norm given by |fllwge = inf{e>0: Vu,é (?f) < 1}, the

Orlicz—Lorentz space is a Banach space (see [11]). If w is constant, it is the Orlicz space Ly

(see [20]). On the other hand, setting ¢ () = t”, 1 < p < oo, we obtain the Lorentz space

Ly,p and ¥y, 4(f) = ||f||fw,. These spaces have been studied in [7]. If w(?) = gt%fl,

1 < g < p < 00, a good reference for a description of these spaces is [10].

A function ¢ satisfies the A,-condition if there exists K > 0 such that ¢ (2t) < K¢ (¢) for all
t > 0. We denote it briefly by ¢ € A,. We recall that if ¢ € A, then the subspace A, 4 is the
Orlicz—Lorentz space.

If ¢’ is the derivative of the function ¢, the space A,, 4 is analogously defined. We write
¢ € Py if ¢’(0) = 0, where ¢’(0) is the right derivative of ¢ at 0.

For g € My, we write N(g) := {|g| > 0} and Z(g) = {g = 0}.

We will denote by S the class of step functions in M with support in a set of finite measure,
ie,geSifg = Z?: | Gk XU, » Where gy are real numbers, Uy are finite measure intervals, and
Xv is the characteristic function of set V.

Observe that the inequalities ¢ (x) < x¢’(x) < ¢ (2x), x > 0, hold. Therefore

{f € Aduwg : (N(f)) <00} C Ay g

Let A C [0, @) be a finite measure set. For f € A, ¢, we write C(f, A) as the set of all
constants ¢ minimizing the expression ¥y, 4 ((f —c)xa). It is easy to see that C(f, A) is a
nonempty compact interval for every f € A 4 (see [17]). Each element of C(f, A) is called a
best constant approximation of f on A. We put f4 = min C(f, A) and f4 = max C(f, A).

We denote by T4 the best constant approximant operator which assigns to each f € Ay ¢
the set C(f, A) = [fa, f Al In [17], T4 is extended from an Orlicz—Lorentz space A4 to
the space A,, 4, in the following way: for f € Ay 4, Ta(f) = [fa, fA1, fa = minfc :
vt ((c = fxa, xa) = 0}, and f4 = max{c : y*((f — c)xa, xa) = 0}, where y* (g, h) is
defined by (2.11) in ([16], Theorem 2.14) for g, h € Ay, 4. Any ¢ € T4(f) is said to be a best
constant approximation of f* € A,, 4 on A. Moreover, the monotonicity property in the sense of
Landers and Rogge (see [14]) of its extension is established.

Let {B(x, €)}c, € > 0, denote a net of intervals of the form (x — €,x + ¢) C [0, o). For
f ey, y,wedefineby Mf : (0, ) — R the maximal function

P, (f XB(x.e))

Mf(x):sup{ Voo ttce) .e>0andB(x,6)C(0,ot)}.
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In [1], weak inequalities for M f have been studied for when valp/ is the Lorentz space L 4,
1 <p,g<o0.

Let f€(x) be any best constant approximation of f € A, 4 on B(x,€). For f € L, it
is easy to check that f€(x) is the average m fB(x’e) f. From [5], we have that if f is
differentiable at x, then these averages converge to f(x) a.e., as € — 0. A more adequate version
of this fact is given by Lebesgue’s Differentiation Theorem, which says that f€(x) — f(x), as
€ — 0, for every locally integrable function f (see [22]). In [15] the authors extend the best
approximation operator from L, to L, 1, when p > 1 and the approximation class is a o
lattice of functions. They studied almost everywhere convergence of best approximants. In [19],
Lebesgue’s Differentiation Theorem was generalized using best approximation by constants over
balls in the L ,(R") spaces with 1 < p < oo. They extended the best approximation operator by
constants over balls from L ,(R") to L,_1(R") + Lo (R"), for 1 < p < oo, and they showed the
convergence of best constant approximations when the diameters of the balls shrink to 0. Similar
results in a subspace of the Orlicz space Ly (R") have appeared in [6].

Other generalizations of the classical Lebesgue’s Differentiation Theorem can be considered;
for example to prove that certain integral averages of a function g from the space converge to
g a.e.. The convergence of integral averages of a function from L,, 1 < p < o0, can be seen
in [22,23].

In Section 2, we present a certain type of Dominated Convergence Theorem in A, 4.
Moreover, the density of the simple functions and also that of the step functions are established.
In Section 3, we show weak inequalities for the maximal function Mf. As a consequence
of these inequalities we prove the convergence of integral averages of a function from A,, 4/,
i.e., a generalization of Lebesgue’s Differentiation Theorem. In Section 4, weak inequalities are
proved for the maximal function associated with the family {f€(x)}., which are used in the
study of pointwise convergence of f€(x) to f(x), as € — 0, another extension of Lebesgue’s
Differentiation Theorem. The results of this paper generalize [19,6] for the case of one-variable
functions.

2. Dominated convergence and density in A, 4

We begin this section by proving a type of Dominated Convergence Theorem in A,, 4.
Let h € Ay ¢ and let D C [0,a) be a measurable set such that N(h) C D. Let
p : D — [0, n(D)) be any measure preserving transformation (m.p.t.). It is easy to see that

(w(p)* =w, on (0, (D))
(see [2], pp. 80), and

(@"(IRDxn@m)™ = &' (W) x10.u00). 0N [0, ).
From the Hardy and Littlewood’s inequality (see [2], pp. 44) it follows that
, w(B) ,
[ o i < /0 o (hyw < Wy g (), M
B
for every measurable set B C N (h).

Lemma 2.1. Let f, g € Ay, g be nonnegative functions. If min{ f, g} =0, then ¥, »(f +g) <
!pw,(b’(f) + Ww,d)’(g)-
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Proof. Since lim;_, oo (f + g)*(t) = 0, thereisam.p.t. p : N(f + g) — [0, it y4,(0)) such that
f+g=(f+g*op,ae.on N(f+g) (see[2], pp. 83). By hypothesis, N(f+g) = N(f)UN(g)
and N(f) N N(g) = @. Therefore

Ty (f +8) = / w(p)d' (f + g)du

N(f+g)
= [ wew i [ wed @
N(f) N(g)
Finally, the proof follows from (1). [
Remark 2.2. We observe that ¥,, 4/ (f) < ¥, ¢(g) if | f| < |g[, a.e. on [0, ).

Lemma 2.3. Let f,g € Ay g. Then Uy, 5 (f + g) < Wy 2f) + Yy ¢ (28). In addition, if
¢ € Ay then there exists C > 0 such that W, o (f + 8) < C (Vg0 () + Vg (8)) -

Proof. From Lemma 2.1 it follows that

Uy (f +8) < Wy (1 f1+18D) = P ((F1+ 18D X1 112101 + (ST + 18D X1F1<11)
y—/w,dﬂ(zf) + y7w,¢’(2g)'

Now, we assume ¢ € Aj. Then there exists K > 0 such that ¢ (27) < K¢(¢), t > 0. According
to ([6], Lemma 13), we have

=
=

K2
¢'(a+b) < 7(¢>/(a) +¢' (b)), a,b>0. 2
Therefore, ¥y, ¢/ (f +g) < K2 (Ww,qy(f) + &Uw,(,,/(g)). O

Theorem 2.4 (Dominated Convergence). Let g € Ay, . If fu, n € N, and f are measurable
functions satisfying | fu| < |g|, and lim, . f, = f a.e., then

W fu— 1 (8)
lim wp_r(s) =0 and lim / O ((fn—HHw =0, s>0. 3)
n— o0 n—o0 0
In addition, if ¢ € Py thenlim, o0 ¥y ¢ (fn — f) =0.

Proof. Lets > 0and set i, (x) = SUpgs, | fi(x) — f(x)], n € N. Clearly | f, — f| < |ha| < 28]
a.e., which gives wyr, s < up, < pog. Since h, | 0 ae. and up, (s) < oo, we see that

Mh, (8) 4 0and so lim, o0 tt 1, — r(s) = 0.
Now, the inequality

W fu—r (8) B fu—r (8)
/0 & ((fu— HHw < /o ¢ 2g"w

implies the second part of (3).
Finally, we assume ¢ € @&p. From ([11], Lemma 2.1) we have A | 0, and consequently

limp— o0 ¢'((fu — /)*) = 0. Since

124 (0)
V. (fn — ) < /0 &' ((fu — HHw,

the Lebesgue Dominated Convergence Theorem implies lim;, 0 ¥y ¢ (fn — f) =0. O
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Next, we prove that the sets of simple functions and step functions are dense.

Lemma 2.5. Let [ be a simple function with finite measure support. Then for each € > 0, there
exists g € S such that pg_r(s) <€, foralls > 0and ¥, (g — f) < €.

Proof. Let ¢ > 0. If f = O, it is obvious. Without loss of generality we can assume that
f= ka=1 ak XE, , where the sets Ey are pairwise disjoint subsets of (0, ) with finite measure,
ar #0,1 <k <m,anda; # a; if i # j. Since lim,_,o+ W(r) = 0, there exists §, 0 < § < e,
such that

€
We) < —— 4
@O = Sl ) @

For each k, 1 < k < m, let Uy be a finite union of open intervals such that u(Uy A Ey) < %
Setg = > akxu,. ltisclearthat g € Sand |g — f| < m||f||ooXUk’"=] U, rE, - Therefore, we
have pg— < 8Xj0.miifllo) < € and

m

Vg (g = f) = ¢'(ml fllocc) W (u (U(Uk A Ek))) <¢'mlflle)W(©) <e. O

k=1
Theorem 2.6. Let f € Ay, g. If ¢ € Ay, then there exists a sequence { fp}, C S such that

K (5)
lim wg_r(s) =0 and lim f &' (fu—HHw =0, s>0.
n—oo n—o0 0
In addition, if ¢ € Dy, then limy, 0 ¥y ¢ (fn — f) =0.

Proof. Let s > 0 and let {%,}, be a sequence of simple functions, each with support in a set of
finite measure such that |k, | < |f| for all n and lim;,—, o0 h, = f a.e.. According to Lemma 2.5,
there exists a sequence { f;,}, C S such that

1 1
i <5 A Ty = he) < (5)
Since s, f(s) < tfy—h, (3) + tn,— s (5), by Theorem 2.4 we get
nll)ngo mg,—r(s)=0. 6)

On the other hand, (f, — /)*(t) < (fu — ha)* (5) + (hn — £)* (%), 1 > 0. From (2) it follows
that there is a K > 0 satisfying

2
¢ (fa— (1) = KT (cb/ ((fn — hn)* (%)) +¢' <(hn - N <%>)) . 1>0.

As w is a non-increasing function,

/ * K2 , % t , « t t
¢ ((fu — " D)w() =< > ((b ((fn — hy) <§>> +¢ ((hn - <§)>) w (§> ,

t > 0, and consequently

W f—f (5) ) 1 fu—f (5)
/0 O (fa— HHw <K /0 (" ((fo —h)) + ¢ ((hy — H))w.  (T)
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It is easy to see that

T f—f (5) Spy— ()
/0 ¢ ((hy — " w < /O ¢ 21" w. ®

We observe that if w7, —p, (0) < %Mfrf(s)’

JHfu—f (s

FH 1 (s) )
/0 ¢/((fn - hn)*)w = ww,¢’(fn — hy) +/ ¢/((fn - hn)*)w
m

Sa—hn (0)
Since (f, — hn)*(t) =0, fort > uy,_p,(0), we get

Sp-s ) ) 1
/(; &' ((fu —h)Hw < Uy g (fn — hn) + 9" (OW <§Mf,,—f(s)) . 9)

Otherwise, (9) is obvious, because

I faf (5)
/O ¢/((fn —h)Mw < ww,¢’(fn — hp).

Thus, (5)~(9) imply limy_so 3~ ¢'((fy — /)w = 0.

Finally, we assume ¢ € $y. By Theorem 2.4, we get lim,, oo ¥y ¢/ (hy — f) = 0. So, the proof
follows from (5) and Lemma 2.3. [

3. Lebesgue’s differentiation theorem in A, 4

In this section, we study weak inequalities for the maximal function M f. As a consequence,
we prove the convergence of integral averages of a function from A, 4. More precisely, we
extend ([23], Lemma 5). In addition, we also extend ([22], pp. 25) for the case of one-variable
functions.

For ¢ € @y, itis easy to see that (¢'(| f))* = ¢'(f*), Yu,¢(f) = [y~ @'(1f1))*w, and

1
(1) < W Y,g (f)s >0 (10)

So, from ([4], Theoerem 2.1) we obtain

V¢ () =/0 W (grp($))ds,  f € Ayg. (11)

Definition 3.1. A,, 4 is said to satisfy a lower W-estimate if there exists a constant N < oo such
that, for every choice of functions { f};_, in 4, 4 with pairwise disjoint supports, we have

NV, ¢ <Z fk> > AW (Z w-! <M)) , A>0. (12)
k=1 k=1

Remark 3.2. In a special case when W (r)=t and ¢'(r) = tP, 1 < p < oo, we recover the

well known notion of a lower p-estimate in L, (see [18]). If W(r) = r% and ¢'(t) = 19,
1 < g < p < oo, then Aw,¢’ is the Lorentz space L, , and it satisfies a lower W-estimate

(see [1]).
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Proposition 3.3. If W(r) = cré, a>1,c¢c>0 and ¢ € Py, then Aw,¢/ satisfies a lower
W -estimate.

Proof. If a = 1, it is obvious. Now assume a > 1. Let A > 0 and let {f;};_, be functions in
Ay, ¢ with pairwise disjoint supports. From (11) and Minkowski’s vector-valued inequality ([8],

pp. 148), we have
[e’e} 1 n
{/ (11 () d }
0 k=1

xw(zw ( w¢/(fk>)>
N ”{(M'(fm(s)) }::1

= /0 (Zwum(s)) ds. a3

Since ¢ € &g and { fi};_, have pairwise disjoint supports, it is clear that

c

la(R™)

Q=

ds
la(R™)

IA

n
D () =1 . )(s), s > 0.
k=1

n () =n
> ¢ (fkl) ¢/(Z L fil
k=1 k=1
So, (11) and (13) imply (12). O

Let f € A, 4 and € > 0. We denote by fe : (0, «) — R the function

Uy (fXB(x.€))

fe(x) = .
Uy (XB(x,e))

Lemma 3.4. Let f € Ay, ¢ and € > 0. If ¢ € Dy, then f. is a measurable function on (0, o).

Proof. Let h = Zzzlak XE, be a nonnegative simple function where the sets Ej are

pairwise disjoint subsets of (0, ) with a; > ap > --- > a, > 0. Then, (hXB(x,e))* =
n

D k=1 U X[my_y (x).my (x))» Where mo = 0 and

k
me(x) =) w(EiNB(x,€), 1<k=n.

Thus, he(x) = i) 7 (41’)%(26) (W (mg(x)) — W(mg_1(x))). Since {my}i_, are measurable
functions, it follows that he is a measurable function. Now, let {f,};2 | be a sequence of

nonnegative simple functions such that f,, 1 | f|. Then

(faxso) 1 (Iflxsee) s x €0, a).
Therefore, the Monotone Convergence Theorem implies lim,—, oo (f3)e = fe, on (0, @). So, fe
is a measurable function. O

Lemma 3.5. Let f € Ay, g. If ¢ € Py, then M f is a measurable function.

Proof. Given € > 0, it is easy to see that for each x € (0, @), lim,_, .~ f»(x) = fe(x). Therefore,
Mf(x) =sup{fe(x) : € >0,e € Qand B(x, €) C (0, ®)}. Since the family is countable, from
Lemma 3.4, M f is a measurable function. [
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Theorem 3.6. Let [ € Ay . If ¢ € Py and Ay, g satisfies a lower W-estimate, then there
exists a constant C > 0 such that

C
W (1myr(s)) < 7 Yo (). s >0 (14)

Proof. Lets > 0. Foreach x € (% := {Mf > s}, there exists €, > O such that B(x, ;) C (0, )
and

Je, (x) > s. (15)

Let ¢ < u(f2) and let B := Uxeﬂy B(x,€y). Then ¢ < w(B). As p is a regular measure, there
exists a compact set K C B such that ¢ < u(K). Since C = {B(x, €,)},e, is an open covering
of K, we can extract a finite subcovering D C C. Therefore, by Lemma 7.3 in [21], there is a
pairwise disjoint finite collection {B(xy, €x,)};_; C D such that

c < BZM(B(xk,exk)). (16)

k=1
As W(Q3r) <3W(r),r > 0, from (15) and (16) we obtain

- n Voo (F XBlr.c
W) < 3W (Y uB e ) <3w ZW1< o (f X kv.n)) |
k=1 =1 s¢’(1)

Since, by the hypotheses, there exists N > 0 satisfying (12), we have

3N
W(c) < ¢ (1) Dy, g <Z fxBO, elk)) T W, ¢ (f)-

Finally, if ¢ 1 p(f2), the proof is complete. [

Corollary 3.7. Let f € Ay g. If ¢ € Py and Ay, g satisfies a lower W-estimate, then there
exists a constant C > 0 such that

C
(Mf)*(1) < 0 Y, (f)s 1>0. a7)

Proof. Since

sup sW (up(s)) = sup W(h*(t), he My (18)

s>0 t>0

(see [3]), the corollary is an immediate consequence of Theorem 3.6. [

Theorem 3.8. Let f € Ay, y. If ¢ € §9 N Ay and Ay,  satisfies a lower W -estimate, then

lim Uy ((f = FOO)XB(x.0))
=0 le,r/)’ (XB(x,e))

=0 aexe (0, a).

Proof. For h € A,, 4, we denote by Lh : (0, o) — R the function Lh(x) = limsup,_, ¢ A (x).
Letc e Rand g € S. Fora.e. x € (0, @), there exists €(x) > 0 such that

(& = xBxr.e) = (8(X) =) XBr.e), 0 <€ <e(x). (19)
Letx € (0, &), and let € (x) > O satisfy (19). Assume 0 < € < €(x).
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If g(x) = c, we get
Vg ((8 — O XB.e) =0,

because pg—c)yp.c) (0) = 0.

247

If g(x) # ¢, then fi(g—c)ypir.c, (0) = (B(x, €)) and ((g — NXBxe) = 18(X) = clX(0.u(Bx,)1-

In consequence,

Vg ((8 — O XB(r.o) = &' (18(x) — cDW (u(B(x, €))).
Since ¢ € Py and ¥, 4 (XB(x‘e)) = ¢ ()W (u(B(x, €))) we have

Uy o ((§ — O XBx.e)) 1,
he = _ . o |
* Ww&i" (XB(x,e)) ¢/(1)¢ (Ig(x) =) <€ <e€x)

Then,
1
¢’ (1)
From Lemma 2.3, there exists C > 0 such that
L(f —o)(x) < C(L(f — &)x) + ¢'(lg(x) —¢])
<C(M(f—9)(x) +¢'(g(x) —cl)), ae xe(0a),
For f(x) in place of c, it follows that

L(f = f))x) =C(M(f—g)x) +¢'(I(f —0x)), ae.xe (0 a).
Set Es ={x € 0,a) : L(f — f(x))(x) > sC}, s > 0. Then, (20) implies

L(g —c)x) = ¢'(Igx) —cP ae x € (0 ).

s s
W(Es) = m(f—g) <§> + L' (1F—gl) <§> , s>0,

Since
W(a+b) <2(W(a)+ W(b)), a,b>0,

from (21) we have

N

20 s 0 () 9 o o () <=0
As (¢'(|f — g))* = ¢'((f — g)*), according to (10) and (18), we get

N

2
W (“qﬁ/(\ffgl) (2)) =T Yug(f -8 s>0
By Theorem 3.6, there is C’ > 0 satisfying (14). Thus, (23) and (24) show that

4C"+1
W(u(Ey) < % Ty (f —g). s>0.

In consequence, from Theorem 2.6, w(E;) = 0, s > 0. The proof is complete. [

(20)

2n

(22)

(23)

(24)

In [6], a family {B(x, €)]e is said to differentiate Ly if for every f € Ly integrable locally,

P'(f=fD =0 ae.xe0a).

lim ———
=0 w(B(x, €)) JB(x,e)
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As an immediate consequence of Proposition 3.3 and Theorem 3.8 we have the following
corollary.

Corollary 3.9. If ¢ € Do, then the family {B(x, €)}¢ differentiates Ly .
4. Convergence of best constant approximants

In this section, we prove weak inequalities for the maximal function associated with the family
{f€(x)}e of best constant approximants of f € A, 4 on B(x, €), which are used in the study
of pointwise convergence of f€(x) to f(x), another extension of Lebesgue’s Differentiation
Theorem.

Lemmad4.1. Let f € Ay, ¢ be a nonnegative function and let A C [0, a) be a finite measure
set. If ¢ € &y N Ay, then there exists C > 0 such that

P (fHIW((A)) < CWy g (fxa). (25)
Proof. From ([17], Theorem 2.9), f4 = max{c: yT((f —¢)xa, xa) = 0}. As yT(f x4, xa) >
0, then f4 > 0.

By assumption, there exists K > 0, satisfying (2). Therefore
K2
(N = S (¢ +9' (1 = Haw). onlf < fANA. (26)

It follows easily that

P fHW (u(A) = /A W (P paygaa) @ FDdp,

where p f—fA : A — [0, u(A)) is the m.p.t. defined in [16]. For simplicity of notation,

)XA>XA

we write p instead of p( F=FMxanxa Thus, (26) implies
A A K2
¢ (fHW(u(A)) < / w(p)d'(f)du + — w(p)¢'(f xa)du
(f=f4NA 2 Jip<styna
K? A
+ 5 w(p)d'(f* = fHxa)du. 27
{f<f4INA

From ([17], Theorem 2.9), we have

/ w(p)g' (f* = HHxa)du < / w(p)p' ((f — fHxa)dp. (28)
{f<fANA {f=f41NA
But

' ((f — fMxa) <2¢'(fxa), on{f=f4NA (29)
since

¢'(@) +¢'(b) <2¢'(@a+b), a,b=>0. (30)

According to (27)—(29), and ¢ € Py, we get

& (FIYW(u(A) < C fA W) (f xa)dp = C /N W) (f xa)d,

(/HNA
where C = K2 + 1. Finally, (1) implies ¢'(f4)W (u(A)) < C Uyo (fxa). O
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Remark 4.2. Let f € A, 4 and let A C [0, o) be a finite measure set. If ¢ € &y N Ay, then
there exists C > 0 such that

@' (ImDW ((A) < CWy g (fxa), m € Ta(f). (3D
In fact, from ([17], Theorems 2.9 and 3.9) we have max{| f4|, |fA|} < |f|A. Therefore, (31) is
an immediate consequence of Lemma 4.1.
Definition 4.3. Let f € A,, 4. Let I' f : (0, @) — R be the maximal function defined by
I'f(x)=sup{lm| : m € Tpx,e)(f), € > 0and B(x,€) C (0,a)}.

Theorem 4.4. Let f € Ay, g. If ¢ € Ay, then there exists a constant C > 0 such that:
o W' f >5)) < 555 Vg (s >0,if ¢ € ;

o WIS > s)) < 55 fo/ ¢/ (fw. s > 0,if ¢/(0) > 0,
where |1 is the Lebesgue outer measure.

Proof. Let Hf : (0, ) — R be the maximal function defined by
Hf(x) = sup [|f|B(M> e >0and B(x,€) C (o,a)} .

From ([17], Theorems 2.9 and 3.9), we have max{|fp.c)l, |fE®9)} < |f|B&9. Then,
I'f < Hf on (0, @). The proof is completed showing that the results hold for Hf.
Lets > 0. For each x € {2 := {Hf > s}, there exists €, > 0 such that B(x, €,) C (0, o) and

|f|B(xs€x) > 5. (32)

Let ¢ < us(f2) and let B .= Uxe.QS B(x, €y). Clearly ¢ < w(B). Analogously to the case for
the proof of Theorem 3.6, there is a pairwise disjoint finite collection { B(xy, Exk)}Z=1 such that
¢ <330 w(B(xx, €x)). As W(3r) < 3W(r), r > 0, we obtain

W(c) <3W (Z n(B(xg, Exk))> = 3W(u(By)), (33)

k=1

where B, = |Ji_| B(xk, €x,)-
Suppose ¢ € @p. From Lemma 4.1, there exists K > 0 such that

¢ (IfIPOW (n(By) < K Wy (fxB,) - (34)

AS | fIXBGy.ey) < |f1xB.» 1 < k < n, by ([17], Theorem 3.9) we have | f|BC%) < | |5,
1 < k < n. Then, (32)—(34) imply ¢'(s)W(c) < 3K Wy, (f). Thus, if ¢ 1 14 (£2), the proof in
this case is complete.

Now suppose ¢’(0) > 0. Since

¢' ()W (1£(B,)) < /B w (0071217190 08, 0 ) 8 AT = 1 1) xm. D,
from ([17], Theorem 2.9), (30) and (32) we have

¢/ (OW ((B,)) 52/ . S 1 xmin
(I fI=1fI1B=}NBx ( Af1-1£1% )XB*’XB*) B

54/ w (0071217195, x5 ) 8/ I8
{1 fI>s}NBy ASI=1F15) X B X B
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So, (1) and (33) imply ¢'(O)W(c) < 12 [/ ¢/(f*)w. Finally, if ¢ 1t 1£.(£2), the proof is
complete. [

As we have mentioned in Section 1, we extend ([19], Corollary 3.2) and ([6], Theorems 4 and
9) for the case of one-variable functions. In fact we have:

Theorem 4.5. Let f € Ay g, x € (0,a), and let f(x) € Tpx,e)(f) be any best constant
approximation of f on B(x, €). If ¢ € Ay, thenlime_. f€(x) = f(x), a.e. x € (0, ).

Proof. Let Lf(x) = limsup,_,¢ | f“(x) — f(x)| andlet g € S. For a.e. x € (0, ), there exists
anet {(f — &) (X)}e C Ter.e)(f — &) such that

Lf(x) =lim sup I(f = &) () = (f(x) — g(x))I.

Then Lf(x) < I'(f — g)(x) + |f(x) — g(x)|, a.e. x € (0, ), and consequently w,({Lf >
25 S ux {I'(f —8) > sP + pg—g (), s > 0. From (22), it follows that

W (me({Lf > 251) < 2(W (s AT (f — 8) > sD) + W (y—¢ (5))), s > 0.

Therefore, Theorems 4.4 and 2.6 show that Lf(x) = 0, a.e. x € (0, «). This completes the
proof. [

Remark 4.6. In [6], the authors assume that the family {B(x, €)} differentiates Ly in order to
prove Theorem 4, in the case ¢'(0) = 0. However, by Corollary 3.9, we prove that this property
is always satisfied.
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