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Abstract

We investigate the mutual location of the zeros of two families of orthogonal polynomials. One of the
families is orthogonal with respect to the measure dµ(x), supported on the interval (a, b) and the other with
respect to the measure |x − c|τ |x − d|

γ dµ(x), where c and d are outside (a, b). We prove that the zeros of
these polynomials, if they are of equal or consecutive degrees, interlace when either 0 < τ, γ ≤ 1 or γ = 0
and 0 < τ ≤ 2. This result is inspired by an open question of Richard Askey and it generalizes recent
results on some families of orthogonal polynomials. Moreover, we obtain further statements on interlacing
of zeros of specific orthogonal polynomials, such as the Askey–Wilson ones.

c⃝ 2013 Elsevier Inc. All rights reserved.

Keywords: Orthogonal polynomials; Classical orthogonal polynomials; q-orthogonal polynomials; Zeros; Interlacing;
Monotonicity

✩ This research was supported by the Research Grants Council of Hong Kong under Contract number 101410, a grant
from King Saud University, Saudi Arabia, and the Brazilian foundations CNPq under Grant 305622/2009-9 and FAPESP
under Grants 2009/13832-9 and 2011/00658-0. Part of the work was done while the first author was visiting the City
University of Hong Kong. He thanks the financial support and the hospitality.

∗ Corresponding author.
E-mail addresses: dimitrov@ibilce.unesp.br (D.K. Dimitrov), ismail@math.ucf.edu (M.E.H. Ismail),

rafaeli@ibilce.unesp.br (F.R. Rafaeli).

0021-9045/$ - see front matter c⃝ 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jat.2013.07.007

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jat.2013.07.007&domain=pdf
http://www.elsevier.com/locate/jat
http://dx.doi.org/10.1016/j.jat.2013.07.007
http://www.elsevier.com/locate/jat
mailto:dimitrov@ibilce.unesp.br
mailto:ismail@math.ucf.edu
mailto:rafaeli@ibilce.unesp.br
http://dx.doi.org/10.1016/j.jat.2013.07.007


D.K. Dimitrov et al. / Journal of Approximation Theory 175 (2013) 64–76 65

1. Introduction and statement of results

Let {pn(x)}∞n=0 be a sequence of orthogonal polynomials with respect to a positive Borel
measure dµ(x) supported in the finite or infinite interval (a, b). It is well known that the zeros of
pn(x) are real, distinct and lie in (a, b). Moreover, if we denote by xn,k , k = 1, . . . , n, the zeros
of pn(x), then

a < xn+1,1 < xn,1 < xn+1,2 < xn,2 < · · · < xn+1,n < xn,n < xn+1,n+1 < b.

In other words, the zeros of pn(x) and pn+1(x) interlace.
If c, d ∉ (a, b) and τ, γ ∈ R, let xn,k(τ, γ, c, d), k = 1, . . . , n, be the zeros of the polynomial

pn(τ, γ, c, d; x), orthogonal with respect to the measure

dµτ,γ (c, d; x) := |x − c|τ |x − d|
γ dµ(x). (1)

Obviously

a < xn,1(τ, γ, c, d) < · · · < xn,n(τ, γ, c, d) < b

for every τ, γ ∈ R and the zeros of pn(x) and pn(τ, γ, c, d; x) coincide when τ = γ = 0.
Then the natural question arises as to whether there is a neighborhood of the origin, such that the
zeros of pn(τ, γ, c, d; x) interlace with those of pn(x) and pn+1(x) when the parameters τ and
γ are in the neighborhood. It is also interesting to know how the location of the points c and d
influences this interlacing property.

Richard Askey [1] asked these questions in a particular situation. He conjectured that the zeros
of the Jacobi polynomials P(α,β)

n (x) and P(α+2,β)
n (x) interlace. The classical Theorem of Markov

(see [19, Theorem 6.12.1] or [12, Theorem 7.1.1]) implies that the zeros of the Jacobi polynomi-
als are decreasing functions of the parameter α. Then the conjecture of Askey is equivalent to the
statement that the zeros of P(α,β)

n (x) and P(α+γ,β)
n (x) interlace if 0 < γ ≤ 2. Observe that in this

case dµ(x) = (1 − x)α(1 + x)βdx , τ = 0, a = −1, b = d = 1 and 0 < γ ≤ 2. Driver, Jordaan
and Mbuyi [10] established the latter generalized version of Askey’s conjecture. Moreover, they
provided an example which shows that if we stay within the class of Jacobi polynomials then the
interval 0 < γ ≤ 2 is the largest possible one with the above property.

There are many results in the literature which deal with interlacing of zeros of classical
discrete and continuous orthogonal polynomials, as well as of q-orthogonal polynomials,
when some of the parameters differ either by one or by two. To the best of our knowledge,
Levit [15] was the first to study these questions in the case of Hahn polynomials. If we
adopt the contemporary notation, as in [12], amongst the others, Levit proved that the zeros
of Qn(x; α, β, N ) interlace with the zeros of Qn(x; α, β + 1, N ) (see Theorem 5 in [15])
and also that the zeros of Qn(x; α, β, N ) and Qn(x; α − 1, β + 1, N ) interlace (Theorem 4
in [15]). Observe that the limit relation between Hahn and Jacobi polynomials [12, formula
6.2.10] immediately implies that the zeros of P(α,β)

n (x) interlace with those of P(α,β+1)
n (x) and

of P(α−1,β+1)
n (x). It is worth mentioning that Driver and Jordaan [7] considered the question

about interlacing of zeros of hypergeometric polynomials and in one of their applications they
rediscovered the interlacing of the zeros of P(α,β)

n (x) and P(α,β+1)
n (x). Another interesting result

of Levit, namely Theorem 6 in [15], is that Qn(x; α, β, N ) and Qn(x; α, β, N + 1) also have
interlacing zeros. The limit relation between Hahn and Kravchuk polynomials (see the formula
after Proposition 6.2.2 in [12]), one concludes that the zeros of Kn(x; p, N ) and Kn(x; p, N +1)

also interlace. The latter statement was rediscovered various times, first by Laura Chihara and
Dennis Stanton [3] and recently by Jordaan and Toókos [13].
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The recent papers [6,8,9,11,16–18] also deal with problems concerning interlacing of zeros
of families of continuous or discrete orthogonal polynomials.

In most cases the authors of the above contributions obtain, exploring specific formulae for
the corresponding orthogonal polynomials, relations of the form

Cpn(τ, γ, c, d; x) = Apn(x) + Bpn−1(x),

where A, B and C are either constants or polynomials independent of n and the latter
immediately yields the desired interlacing of the zeros of the polynomials involved.

During the Conference on Special Functions and Applications, in 2007 in Marseille, the
second author asked if such techniques could be used to prove similar results for the zeros of q-
orthogonal polynomials. This was done by Jordaan and Toókos in [14] where interlacing of zeros
of the Al-Salam–Chihara, q-Meixner–Pollaczek, q-ultraspherical and q-Laguerre polynomials
with shifted parameters was obtained.

In this paper we approach the problem as suggested above and prove that the zeros of
pn(τ, γ, c, d; x) interlace with those of pn(x) and pn+1(x) in some important situations. This
enables us to obtain most of the above cited results as immediate consequences and to deal with
some other families of orthogonal polynomials. At the end of the paper we provide an example
which involves the Askey–Wilson polynomials. Furthermore, the method of the proof allows us
to understand the role of the points c and d and shed light on some examples furnished in the
previous contributions.

Before we state the main results, we prove that xn,k(τ, γ, c, d), k = 1, . . . , n, are monotonic
functions with respect to the parameters τ and γ .

Theorem 1. Let n ∈ N, c, d ∉ (a, b) and τ, γ ∈ [0, +∞).

(i) If c ≤ a, then each zero xn,k(τ, γ, c, d) is an increasing function of τ .
(ii) If c ≥ b, then each zero xn,k(τ, γ, c, d) is a decreasing function of τ .

(iii) If d ≤ a, then each zero xn,k(τ, γ, c, d) is an increasing function of γ .
(iv) If d ≥ b, then each zero xn,k(τ, γ, c, d) is a decreasing function of γ .

In what follows, when γ = 0 and

dµτ (c; x) := |x − c|τ dµ(x), (2)

the corresponding orthogonal polynomials are denoted by pn(τ, c; x) and their zeros by
xn,k(τ, c), k = 1, . . . , n.

Corollary 1. Let n ∈ N and τ ∈ [0, +∞).

(i) If c ≤ a, then each zero xn,k(τ, c) is an increasing function of τ .
(ii) If c ≥ b, then each zero xn,k(τ, c) is a decreasing function of τ .

Now we state the interlacing property comparing the zeros of the polynomial pn(τ, c; x) and
those of pn(x) and pn+1(x).

Theorem 2. Let 0 < τ < 2.

(i) If c ≤ a, then

xn+1,1 < xn,1 < xn,1(τ, c) < xn,1(2, c) < · · · < xn+1,n

< xn,n < xn,n(τ, c) < xn,n(2, c) < xn+1,n+1.
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(ii) If c ≥ b, then

xn+1,1 < xn,1(2, c) < xn,1(τ, c) < xn,1 < · · · < xn+1,n

< xn,n(2, c) < xn,n(τ, c) < xn,n < xn+1,n+1.

Our next statement concerns the mutual location of the zeros of pn(τ, γ, c, d; x), pn(x) and
pn+1(x).

Theorem 3. Let n ∈ N and τ, γ ∈ (0, 1].

(i) If c, d ≤ a, then

xn+1,1 < xn,1 < xn,1(τ, γ, c, d) < · · · < xn+1,n

< xn,n < xn,n(τ, γ, c, d) < xn+1,n+1.

(ii) If c, d ≥ b, then

xn+1,1 < xn,1(τ, γ, c, d) < xn,1 < · · · < xn+1,n

< xn,n(τ, γ, c, d) < xn,n < xn+1,n+1.

Observe that, if we set c = d in Theorem 3, we immediately obtain the result in Theorem 2.
Nevertheless, we prefer to have separate statements because of their applications. Moreover, we
provide an independent proof of Theorem 2 first and then use some of the arguments in the proof
of Theorem 3.

The principal tools in our proofs are the classical Markov theorem which implies Theorem 1
immediately and an equivalent form of Christoffel’s formula [4] (see also [19, Theorem 2.5])
which provides a representation of pn(τ, γ, c, d; x) in terms of pn(x) and pn+1(x) for integer
values of τ and γ . We emphasize that this form of Christoffel’s formula, stated in Lemma 1
below, is very useful in establishing Theorems 2 and 3.

2. Preliminaries

Christoffel’s formula [19, Theorem 2.5] implies that the monic polynomial pn(τ, c; x), with
τ = 1, can be written as

(x − c)pn(1, c; x) =
−1

pn(c)

pn(x) pn+1(x)

pn(c) pn+1(c)

 , (3)

or equivalently,

pn(1, c; x) =
1

x − c


pn+1(x) −

pn+1(c)

pn(c)
pn(x)


.

Chihara [2, p. 37] obtained another representation of pn(1, c; x) which shows that it is a constant
multiple of the monic kernel polynomial Kn(c, x) corresponding to pn(x),

pn(1, c; x) =
∥pn∥

2
µ

pn(c)
Kn(c, x),

where

Kn(c, x) =

n
j=0

p j (c)p j (x)

∥p j∥
2
µ

and ∥p j∥
2
µ =

 b

a
|p j (x)|2dµ(x). (4)
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As an immediate consequence of the above formulae, Chihara obtains the following interlacing
property involving the zeros of pn(1, c; x), pn+1(x) and pn(x) (see [2, Theorem 7.2]):

if c ≤ a, then

xn+1,1 < xn,1 < xn,1(1, c) < xn+1,2 < · · · < xn,n < xn,n(1, c) < xn+1,n+1; (5)

if c ≥ b, then

xn+1,1 < xn,1(1, c) < xn,1 < · · · < xn+1,n < xn,n(1, c) < xn,n < xn+1,n+1. (6)

For the monic polynomial pn(2, c; x), Christoffel’s formula [19, p. 30] reads as

(x − c)2 pn(2, c; x) =
1

pn(c)p′

n+1(c) − pn(c)pn+1(c)


pn(x) pn+1(x) pn+2(x)

pn(c) pn+1(c) pn+2(c)

p′
n(c) p′

n+1(c) p′

n+2(c)

 .
Using the formulae (3) we obtain the following useful representation for the polynomial
pn(2, c; x).

Lemma 1. The polynomial pn(2, c; x) can be represented as

pn(2, c; x) =
1

(x − c)2


pn+2(x) − dn pn+1(x) + en pn(x)


, (7)

where

dn =
pn+2(c)

pn+1(c)
+

pn+1(1, c; c)

pn(1, c; c)
=

pn+2(c)

pn+1(c)
+

pn(c)

pn+1(c)
en

and

en =
pn+1(1, c; c)

pn(1, c; c)

pn+1(c)

pn(c)
=

∥pn+1∥
2
µ

∥pn∥2
µ

Kn+1(c, c)

Kn(c, c)
> 0.

Proof. Having in mind (3), we obtain

pn(2, c; x) =
1

x − c


pn+1(1, c; x) −

pn+1(1, c; c)

pn(1, c; c)
pn(1, c; x)


.

Now (7) follows from the definition of pn+1(1, c; x) and pn(1, c; x).

3. Proofs of the theorems

Proof of Theorem 1. Using Markov’s theorem (see [19, Thm. 6.12.1] or [12, Thm. 7.1.1]) we
shall prove that all the zeros of pn(τ, γ, c, d; x) are increasing or decreasing functions of the
parameters τ and γ , depending on the location of the points c and d .

We recall that the polynomial pn(τ, γ, c, d; x) is orthogonal with respect to

dµτ,γ (c, d; x) = |x − c|τ |x − d|
γ dµ(x).

Since, for every fixed x ∈ (a, b),

∂

∂τ
ln |x − c|τ |x − d|

γ
= ln |x − c|
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and

∂ ln |x − c|

∂x
=

1
x − c


> 0, if c ≤ a

< 0, if c ≥ b,

the statements (i) and (ii) of Theorem 1 follow from Markov’s theorem. The other two statements
follow in a similar way.

Proof of Theorem 2. We shall establish the interlacing of the zeros of pn(2, c; x) with those of
pn(x) and pn+1(x). For the proof, we apply the recurrence relation

pn+2(x) = (x − βn+1)pn+1(x) − γn+1 pn(x)

in (7) to obtain

pn(2, c; x) =
1

(x − c)2


(x − βn+1 − dn)pn+1(x) + (en − γn+1)pn(x)


.

It is important to note that

en − γn+1 =
∥pn+1∥

2
µ

∥pn∥2
µ


Kn+1(c, c)

Kn(c, c)
− 1


> 0. (8)

Evaluating pn(2, c; x) at the zeros xn+1,k we obtain

sign


pn(2, c; xn+1,k)


= sign

(en − γn+1)pn(xn+1,k)


= sign


(en − γn+1)]sign[pn(xn+1,k)


= sign


pn(xn+1,k)


= (−1)n−k+1,

for k = 1, . . . , n + 1. Since pn(x) and pn+1(x) have interlacing zeros, we conclude that

xn+1,1 < xn,1(2, c) < xn+1,2 < · · · < xn+1,n < xn,n(2, c) < xn+1,n+1. (9)

On the other hand, evaluating

(x − c)2 pn(2, c; x) = (x − βn+1 − dn)pn+1(x) + (en − γn+1)pn(x) (10)

at x = c and using (8), we obtain

(βn+1 + dn − c)
pn+1(c)

pn(c)
= en − γn+1 > 0.

Since, when c ≤ a, we have pn+1(c)/pn(c) < 0, and when c ≥ b, we have pn+1(c)/pn(c) > 0,
we deduce that βn+1 + dn < c if c ≤ a and βn+1 + dn > c if c ≥ b. Hence, evaluating (10) at
x = xn,k , we derive

sign


pn(2, c; xn,k)


= sign

(xn,k − βn+1 − dn)pn+1(xn,k)


= sign[(xn,k) − (βn+1 + dn)]sign[pn+1(xn,k)],

for k = 1, . . . , n. Since, when c ≤ a, we have βn+1 + dn < c < xn,k , and when c ≥ b, we have
βn+1 + dn > c > xn,k we conclude that

sign


pn(2, c; xn,k)


= sign


pn+1(xn,k)


= (−1)n−k+1 if c ≤ a

and

sign


pn(2, c; xn,k)


= −sign


pn+1(xn,k)


= (−1)n−k if c ≥ b.
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Thus, if c ≤ a,

βn+1 + dn < c < xn,1 < xn,1(2, c) < · · · < xn,n < xn,n(2, c), (11)

and, if c ≥ b,

xn,1(2, c) < xn,1 < · · · < xn,n(2, c) < xn,n < c < βn+1 + dn . (12)

Therefore, (9), (11), (12) and Corollary 1 yield the desired result.

Proof of Theorem 3. Recall that the polynomial pn(τ, c; x) is orthogonal with respect to

dµτ (c; x) = |x − c|τ dµ(x)

and, for τ = 1, pn(1, c; x) reduces to the Christoffel polynomial which, by (3), can be
represented in the form

pn(1, c; x) =
1

x − c


pn+1(x) −

pn+1(c)

pn(c)
pn(x)


=

∥pn∥
2
µ

pn(c)
Kn(c, x).

Set τ = γ = 1 in (1). We have

dµ1,1(c, d; x) = |x − c||x − d|dµ(x) = |x − d|dµ1(c; x). (13)

Similar reasoning to that used in the proof of Theorem 2 yields

pn(1, 1, c, d; x) =
1

(x − c)(x − d)


(x − βn+1 − dn)pn+1(x) + (en − γn+1)pn(x)


, (14)

wheredn =
pn+2(c)

pn+1(c)
+

pn(c)

pn+1(c)
en,

en =
∥pn+1∥

2
µ

∥pn∥2
µ

Kn+1(c, d)

Kn(c, d)
≠ 0,

en − γn+1 =
∥pn+1∥

2
µ

∥pn∥2
µ


Kn+1(c, d)

Kn(c, d)
− 1


≠ 0,

and then, as a consequence of (14), we obtain:

• if c, d ≤ a, then

xn+1,1 < xn,1 < xn,1(1, 1, c, d) < · · · < xn+1,n

< xn,n < xn,n(1, 1, c, d) < xn+1,n+1; (15)

• if c, d ≥ b, then

xn+1,1 < xn,1(1, 1, c, d) < xn,1 < · · · < xn+1,n

< xn,n(1, 1, c, d) < xn,n < xn+1,n+1. (16)

On the other hand, by (13), (5) and (6), we conclude that, for every τ ≥ 0,

• if c, d ≤ a, then

xn+1,1(τ, c) < xn,1(τ, c) < xn,1(τ, 1, c, d) < · · · < xn+1,n(τ, c)

< xn,n(τ, c) < xn,n(τ, 1, c, d) < xn+1,n+1(τ, c); (17)
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• if c, d ≥ b, then

xn+1,1(τ, c) < xn,1(τ, 1, c, d) < xn,1(τ, c) < · · · < xn+1,n(τ, c)

< xn,n(τ, 1, c, d) < xn,n(τ, c) < xn+1,n+1(τ, c). (18)

Having in mind the monotonicity of xn,k(τ, γ, c, d) with respect to τ , 0 < τ ≤ 1, as well as
(15)–(18), we conclude that, for every 0 < τ ≤ 1,

• if c, d ≤ a, then

xn+1,1 < xn,1 < xn,1(τ, 1, c, d) < · · · < xn+1,n

< xn,n < xn,n(τ, 1, c, d) < xn+1,n+1;

• if c, d ≥ b, then

xn+1,1 < xn,1(τ, 1, c, d) < xn,1 < · · · < xn+1,n

< xn,n(τ, 1, c, d) < xn,n < xn+1,n+1.

Now fix τ and vary γ . Since xn,k(τ, γ, c, d) is monotonic with respect to γ and xn,k(τ, c) =

xn,k(τ, 0, c, d), from the above results and Theorem 2, we finally obtain the desired inequalities
for the zeros of pn(τ, γ, c, d; x), pn(x) and pn+1(x).

4. Some applications

4.1. Interlacing of zeros of Jacobi polynomials

Consider the sequence of Jacobi polynomials pn(x) = P(α,β)
n (x) which are orthogonal

with respect to dµ(α, β; x) = ω(α, β; x)dx in the interval (−1, 1), where ω(α, β; x) =

(1 − x)α(1 + x)β , with α, β > −1 (see [12, p. 80]). If we take, for −1 < x < 1,

dµ(τ, α, β; x) := |x + 1|
τω(α, β; x)dx = (1 − x)α(1 + x)β+τ dx (19)

and

dµ(γ, α, β; x) := |x − 1|
γ ω(α, β; x)dx = (1 − x)α+γ (1 + x)βdx, (20)

then the polynomials which are orthogonal with respect to (19) and (20) are P(α,β+τ)
n (x) and

P(α+γ,β)
n (x), respectively. Thus, by Theorem 2, we obtain the following.

Corollary 2. If xn,1(α, β) < · · · < xn,n(α, β) denote the zeros of P(α,β)
n (x), then the

inequalities

xn+1,1(α, β) < xn,1(α, β) < xn,1(α, β + τ) < · · · < xn+1,n(α, β)

< xn,n(α, β) < xn,n(α, β + τ) < xn+1,n+1(α, β)

and

xn+1,1(α, β) < xn,1(α + γ, β) < xn,1(α, β) < · · · < xn+1,n(α, β)

< xn,n(α + γ, β) < xn,n(α, β) < xn+1,n+1(α, β)

hold for 0 < τ ≤ 2 and 0 < γ ≤ 2.

These are exactly the results in Theorems 2.1 and 2.2 in the paper of Driver, Jordaan and
Mbuyi [10].
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4.2. Interlacing of zeros of Laguerre polynomials

Let pn(x) = L(α)
n (x) be the Laguerre polynomials which are orthogonal in (0, +∞) with

respect to the measure dµ(α; x) = ω(α; x)dx , where ω(α; x) = xαe−x , with α > −1 (see
[12, p. 98]). If we take, for x > 0,

dµ(τ, α; x) := |x |
τω(α; x)dx = xα+τ e−x dx

then, by Theorem 2, we have the following.

Corollary 3. If xn,1(α) < · · · < xn,n(α) denote the zeros of L(α)
n (x) then the inequalities

xn+1,1(α) < xn,1(α) < xn,1(α + τ) < · · · < xn+1,n(α)

< xn,n(α) < xn,n(α + τ) < xn+1,n+1(α)

hold for every 0 < τ ≤ 2.

Thus we have obtained the result in Theorems 2.1 and 2.2 in the paper of Driver, Jordaan and
Mbuyi [11].

4.3. Interlacing of zeros of Meixner polynomials

The Meixner polynomials (see [12, p. 174])

Mn(x; β, c) =2 F1


−n, −x

β
1 −

1
c


,

for β > 0 and c ∈ (0, 1), are orthogonal with respect to a discrete measure whose distribution
has jumps (β)x cx/x ! at x = 0, 1, . . . , where (β)x = β(β +1) · · · (β + x −1) is the Pochhammer
symbol. In other words,

dµ(β, c; x) :=
(β)x

x !
cx , x = 0, 1, . . . .

Then

dµ(β + 1, c; x) =


1 +

x

β


dµ(β, c; x) =

(β + 1)x

x !
cx , x = 0, 1, . . . ,

and

dµ(β + 2, c; x) =


1 +

x

β + 1

 
1 +

x

β


dµ(β, c; x) =

(β + 2)x

x !
cx ,

x = 0, 1, . . . .

Thus, denoting by mn,k(β, c) the zeros of Mn(x; β, c), by Theorem 2, we obtain the following.

Corollary 4. For β > 0, 0 < c < 1 and 0 < τ ≤ 2, the inequalities

mn+1,1(β, c) < mn,1(β, c) < mn,1(β + τ, c) < · · · < mn+1,n(β, c)

< mn,n(β, c) < mn,n(β + τ, c) < mn+1,n+1(β, c)

hold.

The latter results coincide with those in Theorem 2.1 and Corollary 2.2 in Jordaan and Toókos’
paper [13].
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4.4. Interlacing of zeros of Hahn polynomials

The Hahn polynomials (see [12, p. 177])

Qn(x; α, β, N ) = 3 F2


−n, n + α + β + 1, −x

α + 1, −N
1


,

for α, β > −1 and n ≤ N , are orthogonal with respect to a discrete measure

dµ(α, β, N ; x) :=
(α + 1)x

x !

(β + 1)N−x

(N − x)!
, x = 0, 1, . . . , N .

Note that

dµ(α + 1, β, N ; x) =


1 +

x

α + 1


dµ(α, β, N ; x) =

(α + 2)x

x !

(β + 1)N−x

(N − x)!
,

and

dµ(α + 2, β, N ; x) =


1 +

x

α + 2

 
1 +

x

α + 1


dµ(α, β, N ; x)

=
(α + 3)x

x !

(β + 1)N−x

(N − x)!
,

for x = 0, 1, . . . , N .

We denote by qn,k(α, β, N ), 1 ≤ k ≤ n, the zeros of Qn(x; α, β, N ). Then, by Theorem 2,
we obtain the following.

Corollary 5. For α, β > −1, n ≤ N and 0 < τ ≤ 2, the inequalities

qn+1,1(α, β, N ) < qn,1(α, β, N ) < qn,1(α + τ, β, N ) < · · · < qn+1,n(α, β, N )

< qn,n(α, β, N ) < qn,n(α + τ, β, N ) < qn+1,n+1(α, β, N )

hold.

We also analyze the interlacing of the zeros of Hahn polynomials with respect to the parameter
β. Observe that

dµ(α, β + 1, N ; x) =


β + 1 + N − x

β + 1


dµ(α, β, N ; x) =

(α + 1)x

x !

(β + 2)N−x

(N − x)!
,

and

dµ(α, β + 2, N ; x) =


β + 2 + N − x

β + 2

 
β + 1 + N − x

β + 1


dµ(α, β, N ; x)

=
(α + 1)x

x !

(β + 3)N−x

(N − x)!
,

for x = 0, 1, . . . , N . Then, by Theorem 2, we have the following.

Corollary 6. For α, β > −1, n ≤ N and 0 < τ ≤ 2, the inequalities

qn+1,1(α, β, N ) < qn,1(α, β + τ, N ) < qn,1(α, β, N ) < · · · < qn+1,n(α, β, N )

< qn,n(α, β + τ, N ) < qn,n(α, β, N ) < qn+1,n+1(α, β, N )

hold.



74 D.K. Dimitrov et al. / Journal of Approximation Theory 175 (2013) 64–76

It is worth mentioning that the latter statement differs from the result in [13, Theorem 5.1]. The
reason is that in that theorem as well as in [12, Theorem 7.1.2] the monotonicity properties of the
zeros of Hahn polynomials, as defined in the present paper, and in these references, are not stated
correctly. These zeros are increasing functions of α and decreasing functions of β, while the
zeros of Jacobi polynomials decrease with α and increase with β. Both results can be established
via Markov’s theorem and the fact that their zeros possess opposite monotonicity behavior with
respect to the parameters α and β is rather clear from the limit relation (see [12, (6.2.10)])

lim
N→∞

Q(N x; α, β, N ) =
P(α,β)

n (1 − 2x)

P(α,β)
n (1)

.

4.5. Interlacing of zeros of Askey–Wilson polynomials

The Askey–Wilson polynomials (see [12, p. 381])

Pn(x; t |q) = t−n
1 (t1t2, t1t3, t1t4; q)n 4φ3


q−n, t1t2t3t4qn−1, t1eiθ , t1e−iθ

t1t2, t1t3, t1t4
q, q


,

where t denotes the ordered tuple (t1, t2, t3, t4) and max{t1, t2, t3, t4} < 1, are orthogonal on
(−1, 1) with respect to the measure

dµ(x; t1, t2, t3, t4|q) :=
(e2iθ , e−2iθ

; q)∞
4

j=1
(t j eiθ , t j e−iθ ; q)∞

1
√

1 − x2
dx,

where x = cos θ . Let t1 = qα . Then obviously

dµ(x; qα+1, t2, t3, t4|q) = (1 − 2xqα
+ q2α) dµ(x; qα, t2, t3, t4|q),

dµ(x; qα+1, qβ+1, t3, t4|q) = (1 − 2xqα
+ q2α)(1 − 2xqβ

+ qβ) dµ(x; qα, qβ , t3, t4|q)

and

dµ(x; qα+2, t2, t3, t4|q) = (1 − 2xqα
+ q2α)(1 − 2xqα+1

+ q2α+2)

× dµ(x; qα, t2, t3, t4|q).

Let κn,k(α) be the zeros of Pn(x; qα, t2, t3, t4|q) and κn,k(α, β) be the zeros of
Pn(x; qα, qβ , t3, t4|q). Then we have the following.

Corollary 7. The inequalities

κn+1,1(α) < κn,1(α + τ) < κn,1(α) < · · · < κn+1,n(α)

< κn,n(α + τ) < κn,n(α) < κn+1,n+1(α) (21)

hold for 0 < τ ≤ 2, and

κn+1,1(α, β) < κn,1(α + τ, β + γ ) < κn,1(α, β) < · · · < κn+1,n(α, β)

< κn,n(α + τ, β + γ ) < κn,n(α, β) < κn+1,n+1(α, β) (22)

hold for 0 < τ, γ ≤ 1.
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In order to prove these statements, it suffices to observe that the extra factors which appear
in the above relations between the weight functions of Askey–Wilson polynomials have zeros
greater than one when the parameters are shifted by one or two. Then Theorems 2 and 3, for
these particular cases, imply that (21) holds for τ = 2, while (22) holds for τ = γ = 1.
Finally, Markov’s theorem and straightforward calculations, as those on p. 154 in Jordaan and
Toókos [14], show that, for fixed α, the zeros κn, j (α+τ) are decreasing functions of τ . Similarly,
for fixed α and β, the zeros κn, j (α+τ, β+γ ) are decreasing functions of τ and γ . This completes
the proof of (21) for the whole range 0 < τ ≤ 2 of the parameter τ and the proof of (22) for all
τ and λ with 0 < τ ≤ 1 and 0 < γ ≤ 1.

Using similar arguments, we can establish the results on interlacing of zeros of q-orthogonal
polynomials, given in [14] as well as some extensions in the spirit of Corollary 7.

5. Further open questions

The first natural question which arises in connection with Theorem 2 is if the interval (0, 2]

is the largest possible one, such that, if τ varies in it, the interlacing holds. A straightforward
observation is that this interval can be extended to [−2, 2] provided dµτ (c; x), given by (2) is
well defined. Moreover, it is of interest to see the role the points c and d play when one considers
the latter question.

In most of the above mentioned recent contributions the authors considered this question for
the entire range of the parameters and in the classical cases they found proper numerical examples
which show that in these situations the interval (0, 2] is indeed the largest possible one. In what
follows we try to interpret these examples, especially the ones concerning the zeros of Jacobi
polynomials, using our proof of Theorem 2. Recall the identity

d2

dx2


(1 − x2)P(1,1)

n (x)


= cn P(1,1)
n (x),

where cn is a nonzero constant. If we consider the family of Jacobi polynomials, when these are
defined as hypergeometric functions, they exist beyond the range of orthogonality, so that

(1 − x2)P(1,1)
n (x) = dn P(−1,−1)

n+2 (x), dn ≠ 0.

Let us perform the well known procedure of separating a family of polynomials with respect
to an even measure, in a symmetric with respect to the origin interval, into two families,
via quadratic transformation, as described in [2] in the general setting or in [5] for the
ultraspherical polynomials. Then, denoting by P (α,β)

n (x) the Jacobi polynomials for the interval
[0, 1], orthogonal on it with respect to xα(1 − x)β , we see that the above identity reads as

(1 − x)P (α,1)
n (x) = δn P (α,−1)

n+1 (x), δn ≠ 0,

where either α = −1/2 or α = 1/2. Then, if one chooses α = ±1/2, β > −1, but very close
to −1 and τ = 2, the zeros of P (α,β+τ)

n (x) and P (α,β)

n+1 (x) will interlace but will be very close to
each other. Thus, if we increase τ a bit, beyond the interval (0, 2], the zeros of the corresponding
polynomials will not interlace any longer. This is what happens indeed and it is not a surprise
that the examples given in [10] use parameters when either α or β is very close to −1.

However, this phenomenon permits another interpretation which is obvious from the proof
of Theorem 2. If one analyzes the arguments in that proof, it is clear that the positivity of the
constant en − γn , given by (8) is crucial for the interlacing. The closer to zero it is, the closer
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the zeros of pn(2, c; x) and pn+1(x) will be. On the other hand, because of the (4) of the kernel
polynomials, this constant is close to zero when pn+1(c) is. This explains why the above example
and those provided in [10] use values of α or β near −1. Similar effect occurs for all families of
orthogonal polynomials.

Observe that when either the measure, or the location of the point c is such that the quantity
in (8) remains large, then we might expect that interlacing of the zeros of pn(τ, c; x) with those
of pn(x) and pn+1(x) still holds for all n when τ varies beyond (0, 2]. Thus, we conjecture, for
instance that, if α and β are fixed large positive numbers, then there is ε = ε(α, β) > 0, such that
the zeros of P(α,β+τ)

n (x) interlace with the zeros of both P(α,β)
n (x) and P(α,β)

n+1 (x) for all n ∈ N
and for every τ ∈ (0, 2 + ε).
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