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Abstract

We give an elementary calculus proof of the asymptotic formulas for the zeros of the g-sine
and cosine functions which have been recently found numerically by Gosper and Suslov.
Monotone convergent sequences of the lower and upper bounds for these zeros are
constructed as an extension of our method. Improved asymptotics are found by a different
method using the Lagrange inversion formula. Asymptotic formulas for the points of
inflection of the basic sine and cosine functions are conjectured. Analytic continuation of the
g-zeta function is discussed as an application. An interpretation of the zeros is given.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

This paper continues a series of papers dedicated to investigation of the basic
Fourier series introduced recently by Bustoz and Suslov [4]. See [4,7,11,22,23,25] for
an introduction to the theory of g-Fourier series, [12-15,20,21] regarding the
corresponding basic exponential function on a g-quadratic grid [18], a review article
[22], and a forthcoming monograph [26]. The case of a g-linear lattice is investigated
in [3]. In the current paper we give a rigorous proof of the asymptotic formulas for
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the zeros of the basic sine and cosine functions numerically found in [7]. Improved
asymptotics are found by a different method.
The ¢-sine and cosine functions under consideration can be introduced as

(—iw;¢'?) , — (i0;¢"?)

S, (n; =
o(1:2) 2i(—qe?; ),
1 - A Ut 1
- N ke (1.1)
(—q0*: ¢?) ; (ql/2§q1/2)2k+1
and
i l/2 12
Cq(n;w):( iw;q )mj(;uw ) o
2(—qo*q*)
1 © k(k—1/2)
P SN N . A (12)

(—qo* %), = (4'%,4"%) 5

Functions S,(n; ) and C,(n;w) are special cases of the g-sine S,(x;w) and ¢-
cosine C,(x;w) functions in two independent variables x and w when x =n =
(q"/* 4 q~1/%)/2; see [4,26] for more details. We use the standard notations [5] for the
basic hypergeometric series and for the ¢-shifted factorials throughout the paper.

The w-zeros of the S, (n; w) are the eigenvalues related to the basic Fourier series
on a g-quadratic grid [4,26]. Their asymptotics are very important for investigation
of the convergence of these series [24]. The main properties of these zeros were
discussed in [4,9,10] from different viewpoints. We remind the reader that when
0<g<1 all zeros of S,(n; w) and C,(n; w) are real. Also these zeros are simple, the
positive zeros of the basic sine function S,(7; ) are interlaced with those of the basic
cosine function C,(n; w); see Theorems 1-4 of [4] or Section 5.4 of [26]. Asymptotic
behavior of the large zeros of these g-trigonometric functions has been discussed in
Theorems 5 and 6 of [4]; see also [7] for numerical investigation of these zeros.

Let 0=wy<w<wy<w3<--- be positive zeros of S,(n;w) and let
w <wy<ws3<-- be positive zeros of C,(n; w). Gosper and Suslov [7] have found
numerically the following asymptotic formulas:

op =g = i) +o(1) (1.3)
and

@n=q"*" —ci(g) +o(1) (1.4)
as n— oo. Here,

4 (@) 4 +9 A +9g)
C1 (Q) - 2(1 _ ql/Z) (qZ;q2)io - 21"52“/2) (15)

and I »(z) is the g-gamma function. Function ¢|(¢) is nonnegative and increasing on
[0, 1]; see [7] or Fig. 6 below for the graph of this function and Appendix C for the
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proof of the monotonicity. The maximum value of this function on [0, 1] is
liIIll c1(q) =2/n~0.63661977236758. (1.6)
q=-1-

Numerical analysis in [7] has shown that asymptotic formulas (1.3)—(1.4) are pretty
accurate.

Our main objective in the current paper is to present a rigorous proof of these
formulas and to find the next terms in these asymptotic expansions. The paper is
organized as follows. In Section 2 we discuss some properties of the basic
trigonometric functions S,(n;w) and C,(n;w) and then give elementary calculus
proofs of the asymptotic formulas (1.3)—(1.4) and some of their modifications in
Section 3. In Section 4 we construct monotone convergent sequences of the lower
and upper bounds for all positive zeros of these g-sine and cosine functions as an
extension of our method. In Section 5 we discuss the points of inflection of the basic
sine and cosine functions. In Section 6 we give a mechanical interpretation of the
zeros. Improved asymptotics of the zeros, which are the main result of this paper, are
established in Section 7 on the basis of the Lagrange inversion formula. The last
section is devoted to an application. Here we apply the above asymptotics of the
zeros in order to present an analytic continuation of the g-zeta function {,(z)
originally introduced in [24] for the half-plane Re z>1 to the larger domain Re z>
—3. Several useful asymptotic formulas and estimates needed for the investigation of
the g-Fourier series are derived in Appendix A. Alternative forms of a constant in the
new asymptotic formulas from Section 7 are derived in Appendix B.

2. Some properties of g-sine and cosine functions

In this section we remind the reader main properties of the basic sine and cosine
functions that are important for further consideration. The large w-asymptotics of
the S,(n;w) and C,(n;w) can be investigated on the basis of the following
expressions:

12,2 3/2/,2. 2 1/2
Cq(f’],w): 12(q w~,q éw;q);}c 5 q<’71q—>
(4'2:9), (¢, —q0*, —q/0* ¢?) , @
(q'%9) , (4, —q0*, —q/w* ¢, "\ o
and
3/2,2 1/2/,2. 2 1/2
(4'2:9), (¢, —q0*, —q/0?; ¢%) . w

(q1/2w2,93/2/w2;6]2)oc S <77¢/2> (2.2)
(@"%9).. (¢, —q0* —q/@% ¢%), '\ o

These formulas follow directly from (4.3) and (4.4) of [7], see also (5.16) and (5.17)

of [4], when we substitute e’ = ¢'/4. One can easily see that Eqgs. (2.1)~(2.2) and
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(1.1)~(1.2) determine the asymptotic behavior of the basic trigonometric functions
Sy(n; w) and Cy(n; w) for the large values of the variable w.

It has been shown in [7] that the graphs of the S,(1; w) and C,(1; ) look much
more elegant if we choose a different normalization for these functions. An analog of
the main trigonometric identity for the basic trigonometric functions established in
[4] is

2. 2
20, 2 (FotgT)

C,(n;0) + Sy(n; 0) = g% ), (23)

Introducing functions
(2.4)
(7610‘)2; qZ) o0 .

one can rewrite (2.3) as

F (o) + G*(w) = 1. (2.6)
The Wronskian of these functions has a simple explicit form

o k)2
o _ q
K(w) = G(w)F'(0) — G'(w)F(w) = ; Th o (2.7)

and the following differentiation formulas hold:
Fl(o) =k(0)G(w), G (0)=—k(w)F(o). (2.8)

See [7,26] for more details.

Functions F(w) and G(w) have the same real zeros as our original functions, the
Sy(n; w) and C,(n; w), but they obey nice properties similar to those for the classical
trigonometric functions [7]. For example, functions F(w) and G(w) are bounded for
all real values of w and change from —1 to 1. Moreover, all extrema of function
F(w) (G(w)) are located at zeros of G(w) (F(w)); function F(w) (G(w)) is
monotone between any two successive zeros of G(w) (F(w)). These properties are
direct consequences of (2.6)—(2.8). See [7] and Section 11.1 of [26] for the graphs of
F(w) and G(w) for different values of parameter ¢. It is worth mentioning that both
functions, F(w) and G(w), satisfy the following differential equation:

W'+ 1*u = (logx)'u/. (2.9)

We shall use these properties of the functions F(w) and G(w) in order to prove the
asymptotic formulas (1.3)—(1.4).
One can easily see from (2.7) that

w el

K (0) = 2w —r
= (1+ w2qk)2

(2.10)
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which means that the x(w) is increasing for all negative values of the w, decreasing
for all positive ones, and attains its maximum at w = 0. The large w-asymptotic of
k(w) can be found from the expansion [24]

. \2 2.2 1/27.2. 1/2 1/2
- (:9) (=470, —¢"/0%q), 4 K(q ) (2.11)

(¢'%q)°, (0% —q/otq), w?

K(w >

which is an easy consequence of the Ramanujan ;i;-summation formula; see, for
example, [5]. We remind the reader that the x(w) determines the #?-norm of the
basic trigonometric system up to a factor [4,24,26].

The large w-asymptotic of the x’(w) follows from

oy (g9 (=4 —q' o),
K(w) = - 1/2. ;)2 — o —a/ w2
(¢ q)7, o(-0* —q/0*q),
_ (q'q)2 (q1/2,q1/2)2 w(ql/zwz,l/wz;ql/z)w
'4) w0 ) 0 (_w27_q/w2;q)io

12 k)2

2q q

+ .
@ = (14 gtk Jw?)?

(2.12)

We shall derive this formula in Appendix A together with asymptotic expression for
the x”(®) and uniform bounds for these derivatives.

3. Proof of asymptotic formulas

In this section we give a rigorous proof of (1.3)—(1.4) by means of, essentially,
elementary calculus tools only. These formulas have been conjectured in [7]. Let us
reformulate the main result in the form of a theorem.

Theorem 1. Let 0 = wo<wi<wy<w3<--- be positive zeros of S,(n;w) and let

wi <wy<ws3<-- be positive zeros of Cy(n;w) for 0<g<1. Then,

on = q'* " = er(g) + o(1), (3-1)

wn = ¢ " —ci(q) +o(1) (3:2)

as n— oo, where

q (: 4>, (3.3)

2(1=4"2) (g% %)%

1/4

alq) =

Proof. Denote

ol = ¢!/, (3.4)



S.K. Suslov | Journal of Approximation Theory 121 (2003) 292-335 297

In view of (2.1)-(2.2) and (2.4)-(2.5)

Flog) _ Symo”) _ Sy(n:q" /o) _ (35)
Goy)  Cmay))  Culnq?/oy))

for all ¢!/ /o < @, or ¢"/*" < . The last inequality holds for all sufficiently large

values of n for any 0 <g< 1. This means that for the sufficiently large n we always

have com<w,<,0) <wmi1, Where m, generally speaking, may be different from n (we
shall show later that m = n for sufficiently large n). By the Mean Value Theorem for

the interval [w,,, wf,o)] one can write (see Fig. 1)

F(ol) = F'(¢)(@) — o), (3.6)
where c€ (o, wﬁ,o)). Hence,
F(ol)
0
w; ) — oy, = F’(Z) , (3.7)

where F'(c¢) = x(c)G(c) by (2.8).
The following main inequalities hold:

Fo)| _F@))  F(oy)

0< (3.8)
k(W) F'(c) K(CO,(P))G((U,(P))
in view of the monotonicity properties
k() >K(0)>K(0f),  |G(wn)] = 1>|G(c)|>|G(w))] (3.9)
y
1
F(w)
0 /?Um On € ol® D @
G(w)
-1

Fig. 1. The Mean Value Theorem and Concavity of F(w) on the interval [w,,“w&")], m=2l.
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0 . . . L. .
on wm<c<w,<1 ) <wme1- These properties admit a simple geometric interpretation,

namely, function |F(w)]| is concave and
F' (@) <|F' ()] <|F'(m)]

(0)

on o, <c<wy, <wyy (see Fig. 1). As a result

(0) (0)
oF@ o, o Flo) (3.10)
k() " k(i) G
by (3.7) and (3.8).
Our next step is to show that
0
im _F@) @ (), a(q). (3.11)
=2 (o) Glof) 21 =477) (g% 47),
Indeed, by (1.1)
: 1/4 611/4
nlLHCIQ g "Sy(n;q / Ty = T (3.12)
and by (2.11)
lim ¢ "k(g"/*™")
n— oo
_ (@9 (=),
12, 02 lim 1/2-2n.
(¢'1%9)°, == " (—¢q $q) o
_ g9y e (4 ().
(q'2:q)% e (=422 q),(=4' %5 9)
IR T i (L)
(¢ 9)% (=4"%9) . n=>= (=4"%q),,
)2 2. 232
o, @—way (a4, (3.13)

(@' =4"%9°%, (@),
We have used (1.9) of [5] in the third line here. Thus, from (3.5) and (3.12)—(3.13)

. Floly S, (14" /o))
lim ——, ©) ! 0) ©
= w(wn ) )Glon) " k(o) Coln; ¢ fan”)
-ng . ,1/4+n

_ i 9"Salma )

n— oo q—”;c(ql/“—”)

= c1(q)-

Let us rewrite (3.10) as

W 1 F(wy”)
0<l——Pe—— "7 (3.14)
o ol k() G(w))
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Taking the limit n— oo one gets by (3.11) and the Squeeze Theorem

wﬂl

lim —w=1, or lm ¢'w,= q'*. (3.15)
n— oo a)n n— oo
This justifies the leading term in (3.1) (cf. [4, Theorem J5]), if one can show that
m = n. This can be done on the basis of Jensen’s Theorem and it is the only
‘nonelementary’ part of our proof.
The Jensen Theorem [16] states that if f(z) is holomorphic in a circle of radius R
with the center at the origin, and f(0)#0, then

/ RMWZZL / " log [f (Re")[d0 — log £ (0)] (3.16)
0 TJo

r

where n/(r) is the number of zeros of f(z) in the circle |z| <r.

In view of (3.15), one can write wm+1<wﬁl<wm+2. Indeed, if

O <co,(10> <w,(£21 < w1, then in a similar fashion,
(0)
W O
1 = lim —~ = lim n | =g
e (5)

which is a contradiction. By the definition of the ny(r) and (3.15)

©

) (0)
Ceng(r) o () o [
o r wf,ﬂ) r o) r

n m+1
(0)

4 2(m+ 1) log 2l
WOm+1

Wm+1

0
Q)n)

(
(0) (0)
=2mlog Guil 4 5 log Ol

(,0}(,[0> W1

=2mlogq '+ o(1), n- oo, (3.17)

=2mlog

where f(w) is an entire function with the simple zeros at v = + oy, +wz, +ws, ...
defined by

£(@) = (—qo?; 222

w
(¢*0?, q'* |0 4%) ( ,ql/2>
@79), @ —a/? ), '\ o
(92026 q) ( g)
@7%59), (@ —ajo% g2, o\

2. 42
B <q4(32f Z/)”) g )1+ o(1)) (3.18)
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by (1.1)(1.2) as @ = fig~" — 0. By (3.16)

o n (@i
/&)7!+1 nf(}") dr — 1/2 log (o\)ngle.ﬁ) "
Wo® 27 /o f(w,(q )ez())

and in view of (3.18)

) o
L0 _ (1= g2 (1 +0(1))
f(@)e)
= —q (1 +0(1), n—oo.
Thus,

1 2n 0) io
/ log‘]M dO =2nlogqg '+ o0(1), n— oo
0

2 f(w’(f))eie)

and, finally, by (3.17) and (3.19)—(3.20) we obtain

m=n+o(l), n- o0,

(3.19)

(3.20)

(3.21)

which implies that m = n for sufficiently large n because m and n are both integers.
In order to complete the proof of the theorem one can now rewrite (3.10) with

m =n as

Due to (3.15) where m = n,

lim |G(o)| = |G(w,)| = 1
n— oo

and

lim x(0®)/k(w,) = 1.

n— oo

Indeed, by (2.1) and (2.5)

_43/2-2n. 2 1
G(CO 0)) _ ( q 4 )oc

(=q'>2¢%) . (4'%59),,
1-2n ,1+2n.

(@' ¢%)

X AUR
(q’ _q3/272n, _q1/2+2n; qZ)OO q

1/4+n).

(3.22)

(3.23)

(3.24)
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Using (1.9) of [5]
lim |G(w)]

n— oo

— lim qn/2 (_q1/2§q2)n(_q3/2;q2)o@ 1
n— o (=*%¢),(=4"% %) . (4'%59) .,
s (@:4%),(d"" %), C g4
%), (=g 2, =gy,

. (4:4°) _@d).
(@2q) . (4" =% . (6:4%) .,

In a similar fashion, in view of (2.11) and (3.15) with m = n,

xq

=1.

0 _
i K(on) _ T G it A2 )
n— oo K((U,,) n— o (—q1/2—2n’ _ql/sz.q)

0

(49, 4 (1L —q/(@34”): ),

S, P P g )
o k),
I TR0
(_qa_lv_ /2 ’ I/Z’q)

= =1.
(_ql/Z, _q1/27 _15 —q; q)ao

Our final step is to take the limit n— oo in (3.22). By the Squeeze Theorem
lim (@0 — w,) = c1(q) (3.25)

n— oo

due to (3.11), (3.23) and (3.24). This proves (3.1). The asymptotic formula (3.2) can
be justified in a similar fashion. We leave the details to the reader. [

Asymptotic formulas (3.1)—(3.2) can be modified in the following manner to give a
better approximation for the small zeros.

Theorem 2. Let 0 = wo<w; <wy<w3<--- be positive zeros of S,(n;w) and let
w <wy<ws3<-- be positive zeros of Cy(n; w) for 0<g<1. Then,

o = o/ 1=2¢, (q)/cuﬁ,0> +o(1), (3.26)

@y =@/ 1= 2¢1(q)/ @ + o(1) (3.27)

as n— oo. Here wﬁ,()) =g/ V= ¢4, and ¢\ (q) is defined by (3.3).
Proof. Let us consider the case of the g-sine function. Introduce

oV =0 04/1 - 2cl(q)/a),(10) (3.28)



302 S.K. Suslov | Journal of Approximation Theory 121 (2003) 292-335

and rewrite (3.10) where m = n in the form

F(o) Flol
K(a),,) F/(a)n )
Taking the limit 7 — oo with the help of the same arguments as in Theorem 1 one gets
lim (o) —o,) =0, (3.30)
n— oo

which proves (3.26). The proof of (3.27) is similar. [I

Numerical analysis shows that asymptotics (3.26)—(3.27) are pretty accurate. It is
of interest, nonetheless, to find next terms in asymptotic expansions (3.1)—(3.2).
Numerical analysis similar to one in [7] strongly indicates that the following
asymptotics hold.

Theorem 3. Let 0 = wo<w;<wy<w3<--- be positive zeros of S,(n;w) and let
wy <wy<w3<--- be positive zeros of Cy(n; ) for 0<g<1. Then

oy = o) —ci(q) = c(g)/ o) + 01/ (@), (3.31)
@, = @y — alg) - i(9)/2ay) + 01/ (=)’ (3.32)

as n— 0. Here o) = ¢4, =) = $3/4" and ¢(q) is defined by (3.3).

These asymptotics formally appear also if one expands the first terms in (3.26)—
(3.27). This observation proves our next result.

Theorem 4. The symbols o(1) in (3.26)—(3.27) should be replaced by o(l/a)ﬁ,o)) and
o(l/wﬁ,o))7 respectively.

It does not look that there are simple proofs of these theorems by the methods of
elementary calculus. We shall derive these and other improved asymptotics in
Section 7; see Theorem 7 for the main result of this paper.

4. Lower and upper bounds

The following theorem provides monotone convergent sequences of the lower and
upper bounds for all positive zeros of the basic sine and cosine functions.

Theorem 5. Let {w,},-, be positive zeros of S,(1; ») and {zw,},-, be positive zeros of

C,(n; ) arranged in ascending order of magnitude. Choose w, < U,(l0>

R
FUfYy

< Wp+tl,

L0 — ylk-1) (4.1)
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(k=1)
u® — gl _ |F(U )

and w, < (7<,,0)<w,,,
~(k—1
FUo — k=1 _ G(qu ))
Ly =0, ~(k—1)y’
@)
~(k—1
o _ gy 1G]
n " 7 (%)
k(Ly")
for all positive integer k =1,2.3, ... . Then
LV < o< LF D <0<y, <UD <UD <... <y
lim LY = lim UV = o,,
k— o0 k— 0

and

E(l)< ...<E(k71><£(k)<wn<l_]’(jk)<(__]£lk71)<... <L_]£10)7

n n n

lim LW = lim 0% = ,.

k— oo k—

303

(4.2)

(4.5)

(4.6)

(4.7)

(4.8)

Proof. Consider the case of the basic sine function. Let we(w,, @,+1) and
¢e(wp, wy,). The same arguments as in Section 3—see (3.8)—(3.10) with m = n—

y 1
l -4
F (o) N
0 (= U,(1k) w= U,gk_l) Dn4q
1

-1

Fig. 2. Geometric interpretation of the lower ¢=w — F(w)/F'(0)= LY and upper (=ow-—

|[F(w)|/k(&) = U bounds of the zero w, in Theorem 5, n = 2m.
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result in
F F F
FI_IF@_,, ,, Fo) 49)
k(&) x(on) F'(w)
or solving for w,
F(w) |F (o))
— — . 4.10
%) F’(w)<w"<w e (4.10)
Substituting o = U,Skil) and ¢ = L,(f‘) (see Fig. 2) one gets
LY <w,<UW k=123, ... (4.11)

The monotonicity of the sequence of the upper bounds {U,Ek> o follows directly
from (4.2),

k—1
o _ FW)

k—1
Uk _ ) >0. (4.12)
On the other hand, function
Flw _
Lw)=o - % LUFE)=LP (4.13)

defined by (4.1) is monotone on (w,, @,.1) because its derivative

dL(w) _ F(@)F"(0) _ F(o)((0)G(0) - K*(0)F(o)) 414
dow (F’(a)))2 (F’(w))z (4.14)

does not change the sign on this interval. Hence, the sequence {U,gk)} o is decreasing
and bounded below, while the {Lﬁ,k)},fi | 1s increasing and bounded above. By the
Monotone Convergence Theorem the following limits exist:

klirrgo L;(qk) = Ly <y, khf; Un(k> = U,z . (4.15)

Finally, taking the limit k— oo in (4.1)—(4.2) one gets
L,=U, =w,. (4.16)

This proves (4.5)—(4.6). Similar arguments hold for the case of the basic cosine
function. We leave the details to the reader. [

Construction the lower and upper bounds for the zeros of the basic sine and cosine
functions in Theorem 5 is based on a simple geometric principle similar to geometric

interpretation of Newton’s method (see Fig. 3). Notice if, e.g., L,gk> and U,5k71> satisfy
(4.1), then Lﬁk) is the w-intercept of the tangent line to y = F(w) at the point
(U,gkfn,F(U,(,k*l))). Also, notice that U,gk> defined by (4.2) is the w-intercept of the

line passing through the same point (U,(,kfl),F (U£k71>)) with the slope
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( ) F(w)

F UlSO)/
Fu®)

LW L@ o Ul u® v o

Fig. 3. First upper U,Sk) and lower L,(zk) bounds of the zero w, in Theorem 5, n = 2m.

(—1)"K(L§,k)), such that K(Lﬁ,k))>rc(wn) = |F'(w,)|. Egs. (4.3)(4.4) admit a similar
geometric interpretation.

(1) {0

If the convexity of F(w) does not change on the interval (Ln , ) we can

choose the w-intercepts of the chords passing through the points (L,(,k),F (Lffd))

and (U,Skil), F (Uﬁkil)» as another sequence of the upper bounds (see Fig. 4). This

consideration leads to the following theorem.

Theorem 6. Let {w,},-, be positive zeros of Sy(n; w) and {zw,},-, be positive zeros of

C,(n; w) arranged in ascending order of magnitude. Choose w, < U,50> < Tpii,

F(U¥D
= ygon LG ), (4.17)
F'(Up )
(k=1) _ g ()
Ul = uleh — F(Ule ) —= e (4.18)

FIUE ) = F(LP)
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F(L(nl))
Fig. 4. First upper U,Sk) and lower Lflk) bounds of the zero w, in Theorem 6, n = 2m.

~(0
and wn<lij)< W,

LK = gD — G(ff”kil))

A D)

Fk—1) 7 (k)
gt — gtk — G(U(lcfl) o - L

RCCRETCD
fork=1,2,3, ... . If F"(LYF"(U")>0, then

LV <. . <D0 <y, <UD <U*D<... <y,

lim L® = lim U® =,
k— oo k— o

(4.19)

(4.20)

(4.21)

(4.22)
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F(w)

(a), F(w))

(¢ F()

Fig. 5. Geometric interpretation of the lower ¢=w — F(w)/F'(w) and upper {=w — F(w)(w —
&)/(F(w) — F(&)) bounds of the zero w, in Theorem 6, n = 2m.

and ifG”( )G”( )>O then

LVW< . <D0 < g <« 00 < OFD <. <0 (4.23)
lim L® = lim OW = (4.24)
k— o0 k—

Proof. We supply the details of the proof only for the case of the basic sine function.
The proof for the g-cosine function is similar. One can replace (4.10) by

F(w) w—E
Fl(w) F(w) = F(&)
when we (w,, wy+1), €(wn, w,) and F"(E)F"(w)>0. The second inequality holds

due to the convexity of the basic sine function. Consider, for example, the case of
even zeros w, = wy, when F is concave on (¢, w) and F” <0 (see Fig. 5). The case of

<o — F(w)

(4.25)
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odd zeros can be discussed in a similar fashion. By the definition of concave function
F(w) = F(&)

F(c)> o ¢

(c— o)+ Flw), ce(é w), (4.26)

which means that the chord through the points (&, F(&)) and (w, F(w)) lies below the
graph of F on (&, w). The w-intercept of this chord is

w—¢
C:wiF(w)F(w)—F(f) (4.27)
and
F({)>0, (> wy, (4.28)
which justifies the second inequality in (4.25).
Substituting o = U,(,k_l) and & = L,Sm in (4.25) we get
LO <w,<UR k=123, ... (4.29)

The monotonicity property (4.21) can be justified in the same manner as in the proof
of Theorem 5. Taking the limit k— oo in (4.17)—(4.18) one gets (4.22). We leave the
details to the reader. [

Numerical examples of the monotone sequences of the lower and upper bounds
for the zeros of basic sine and cosine functions constructed in Theorems 5 and 6 are
presented in Appendix F of [26], where we consider only the cases of the first zeros in
order to compare the results with the corresponding sequences of the lower and
upper bounds for the first zeros available from the Euler—Rayleigh method in [7]; the
convergence is up to three or four times faster then one in the Euler—Rayleigh
method.

5. Points of inflection

The graphs of the F(w) and G(w) presented in [7] show that the concavity of these
g-sine and cosine functions changes somewhere before the zeros w, and ww,,
respectively. Here we discuss briefly the corresponding points of inflection. Detailed
analysis and numerical investigation will appear somewhere else. Consider the case
of the basic sine function F(w). In view of (2.8),

F'(0) = ' (0)G(0) — k*(w)F(w), (5.1)
and the location of the points of inflection can be found as the roots of the equation
Flo) (o) 1Y
= = — ) 5.2
Gl@) (@) \r) 52

i(w> _ ko) (53)
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and the g-tangent function F(w)/G(w) is increasing from —oo to + o0 on the each
interval (z,,@,1). On the other hand, function x'(w)/x*(w) is negative and
bounded for all @>0. Thus, Eq. (5.2) has at least one solution on the each of the
subinterval (@, w,).

A similar analysis shows that the points of inflection of the basic cosine function
G(w) are determined as solutions of

Glw)  K¥(w) I
Flo) x%w)‘(x(w)) 54

and this equation has at least one root on the each interval (w,_1, w@,).
Let us consider “asymptotic solutions’ of (5.2) in the form

w=pg", qt<p<q'. (5.5)

Substitute (5.5) into (5.2) and take the limit n— co. Using the limits

im FB) _ (@B 4/ (5:6)

n=o G(Bg™) T (q'2B%, ¢ q?)

and

(@) o K
(¢ q)% " n= kH(Bg™)
_ B—a/Ba).
(—q'2B, —4'2/B*;q) .
NSV ﬁ2<q1/2,q1/2,q1/2/32, /854",
” (—q'2B*, —4" /B q)°,

, (5.7)

which follow from (2.1)—~(2.2) and (2.11)—(2.12) in a similar fashion as in Section 3,
we obtain the following transcendental equation:

 (@9h o (@B,
(@292 @R, ¢P B4,
P alFia),
(4B, —q'* /B q).,
LR B (4'%,4", "B, 1/B% 4", (5:5)
T (g2 =42 B ),

for the parameter 5. One can easily see that this equation has at least one solution for
(13/4<ﬁ<(11/4.



310 S.K. Suslov | Journal of Approximation Theory 121 (2003) 292-335

Similar arguments hold in the case of the g-cosine function. The corresponding
“asymptotic equation” has the form

(@9 @62 /B54) .,
(@'7%9)% (B4 /B 47)
_ (B-alBa).
(—q'2B, —4'2/B*;q) .
T (ql/z;q)zoo [32 (ql/z,ql/z’gl/2ﬁ27 1/322§q12/2)m.
(=q'2B%,—4'2 /5% q)7,

This consideration motivates the following conjecture.

Conjecture 1. The leading terms of the large asymptotics of the points of inflection y,
and j, of the basic sine F(w) and cosine G(w) functions, respectively, are defined by

Tim ¢z, =By, g <Po<q"* (5.10)
and
lim q"7u = Po, gt <Po<q " (5.11)

Here B, and By are solutions of the transcendental equations (5.8) and (5.9),
respectively.

6. Interpretation of zeros and other results

The following mechanical interpretation of the functions F(w) and G(w) defined
by (2.4)—~(2.5) can be given. Introducing a new variable

(6]
v(w) =/ K(s) ds (6.1)
0
one can rewrite these functions as
F(w) =sinv(w), G(w)=cosv(w) (6.2)

in view of (2.8); see also [8]. These equations describe a circular motion with the
angular velocity

d

o= (@), (63)
where the v(w) represents the total angle of rotation as a function of “time” w. Due
to (6.1) and (6.2) the following “quantization rules’ hold

v(w,) = /Ow K(s) ds = nn, (6.4)

o) = /0 7 els) ds = 2 (6.5)



S.K. Suslov | Journal of Approximation Theory 121 (2003) 292-335 311

with n =0,1,2, ... for the nonnegative zeros w, and w, of the F(w) and G(w),
respectively. This gives also a geometric interpretation of these zeros in terms of the
area under the graph of function x(w). By (6.4)—(6.5) these zeros are completely
defined in terms of the function x(w) given by (2.7) only.

On the other hand, one can easily verify that

_y AP 1d, e, (6.6)
—1+o’qh 2ido (iw;¢'?) ’
Therefore
B ® B 1 (—l(U ql/Z)
U(CU) = /(; K(S) ds = ZlOgm (67)
and our functions F(w) and G(w) can be rewritten as
1 (—iw; ql/z)
F( ) —Sll’l(zlogm
- - Z Lﬂ)w%ﬂ (6.8)
a)2 1/2 4"%4'2) 5, ) :
G _ 1 l (—ZCU ql/z)
(CU) =COS 21 OgW
gFk=1/2) -
= a2 —ig)? Z 1/2 777) w (6.9)

by (1.1)—(1.2) and (2.4)—(2.5). In (6.7) we use the branch of the logarithm which takes
the value 27min at w, for each of the intervals w,<w<w,; with the cut along the
positive real axis. One can view this substitution as a g-analog of the logarithmic
scale.

It is important for the further consideration to find the large w-asymptotics of the
“phase function” v(w). Introducing the basic exponential function

> (s . (—lw ql/ e
see, for example, [22]; one can rewrite transformations (2.1)—(2.2) as
&q(n;iw)
_ (), (@R’ ¢ e’ d), +io(@ o ¢ o’ ¢)
C(4'%54'7), (—q0?, —q/0? %) .
iq'/?
xé"q(r], > (6.11)

The expression in the second line here can be viewed as an analog of the ¢-
exponential function corresponding to the g-trigonometric functions discussed in [6].
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The last equation can be rewritten as
(—ic;q'?) _iT)s
© (4Y%4'?)
422 ¢ 0k ), +io(gPe? ¢! 0 q),
(iq"?[w;q'?) ’

which gives the asymptotic behavior of the ¢-shifted factorials for the large values of
the w. Therefore

(6.12)

pinto) _ (Z10:4')
(i0;4"2)

(q'/2w2,q3/2/w2;q2)m + ico(q3/2w2,q1/2/a)2;q2)oo

(¢"P0?, ¢ 0% ¢?) ,, —io(g3Pa?, ¢ [0 ¢%)
i 1)2 0. 1)2

><(.161 [®;q'7) (6.13)
(ig" 2w q' )

and the following ““phase transformation’ determines the large w-asymptotic of the
function v(w):

1 6P, i ),
2i g(q1/2w27q3/2/w2;q2)w —io(q¥?w?, q'? Jo?; )

+ v(¢"* ) w). (6.14)
In view of (6.3) and (6.12) this implies
_1 d o (_iwaiql/z/w;ql/z)ao
T2ido F(iw,—ig P Joiq' ),

1/2 1/2

S <"). (6.15)

w? w

v(w) -

K(@)

Comparing this transformation with (2.11), we arrive at the following differentiation
formula:
1d (iR o),
2ido % (i, —iq P [wiq'?),
(4:9)% (=40 —¢'/?q),
5 > 5 (6.16)
(¢ q)7, (-0’ —q/o*q),

and at the corresponding indefinite integral
(49 [ (=420 —q'?/0*q),
(q1/2'q)2 / (_wza_q/wz;q)oo o
' 4) oo
2i % (iw,—ig' 2 Jw; q'/?)

(6.17)
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Use of (6.6) gives an independent proof of these relations
Ao (i o g ),
d(/) g(lw7ilq1/2/a)7ql/2)oc

d  (—iw;g"?), d . (=ig"?|oq'?),

do ¥ (g ), do (g ]oq ),
2 /)2 E2 k/2

o q'? (q . q

=2i (K(w) T K(—a) )) =2i kZ Tt o

=—00

4.9, —4"*0*, —¢'*/0*; q) , (6.18)

P
(47,42, —?, —q/w*;q) ,

by the Ramanujan 1y, summation formula (cf. [24, Appendix 12.2]).

In the next section we shall derive new asymptotic formulas which improve (1.3)—
(1.4) and (3.25)—(3.26) with the help of (6.4)—~(6.5) and (6.14). This will be done by
means of the inverse function of the “phase function” v(w), which can be found by
the Lagrange inversion formula. To make our paper as self-contained as possible, we
remind the reader this formula; see, for example, [1,2,17] and Appendix B.2 of [26]
for more details.

Let w = g(z) be regular at z = zy:

0
w=g(z) =wo + Z an(z —z0)", a1 =4g'(z0)#0. (6.19)
n=1

Then the inverse function z = g~!'(w) = h(g(z)) can be found by the Lagrange
inversion formula as

z=h(w)=z0+ Z bu(w — wy)", (6.20)
n=1
where
_ zg'(2)
b2 ez (g(2) — wo)"!

1 dr! z—z0 \"

=—lim —(—— 21
7l 255 dzn 1 <g(z) - w0> ’ (6.21)

see, [2,17] for the proof. Moreover, the first coefficients of expansion (6.20) are given
explicitly by

1 1 ?
by=—, b= _a_z’ by = _3<2 (@) - @) (6.22)
aj Cl’l al ay ay

We introduce the inverse of the v(w) as the power series

o0

w=f() =m0+ biv— 1) (6.23)

k=1
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with the coefficients

W) 1 _ oK(®)
by = A}—wo” (U( “

kU 2mi @) — vo)*"!

1 a1 [ w—w k
=— 1i 24
k! (uan})o dwk*I (v(a)) — U()) (6 )

in view of (6.20)—(6.21) and (6.3). The first terms of this Lagrange expansion are

1 K'(w
= my +m(v — ) — %(v —)?
1 K'(wo) 2 K" (wy) 3
+ 25 (@) ((K(wo)) 3K(w0)> (v—100)” + - (6.25)

due to (6.22).

Remark 1. Relation (6.12) can be rewritten as

(ql/z;q1/2) o
(([2' q2) = (71607 lql/z/a); ql/z)oc
’ 0

_ (q1/2w27q3/2/w2§q2)00 + iw(q3/2602,q1/2/(1)2;q2)00, (626)
which implies another identity

2
((11/2;(]1/2)OO
2
(4%,
_ <q1/2w2’q3/2/wz;qz);@ n wz(q3/2w2,q‘/2/a)2;q2)i. (6.27)

(—w*, —q/w*;q)

Eq. (6.26) can also be derived as a special case of the Exercise 5.21 of [5].

Remark 2. Let us notice also how the limiting case ¢ — 1~ of Eq. (6.8)—(6.9) gives the
classical sine and cosine functions. By (6.7)

L (—iwsg'?), 1 : .
U(CU) = 271 og W = 271 log(eq]/z(l(l)) qu/z(la))>, (628)
where the Jackson g-exponential functions,
N 1
eq(z) = = . lzl< 1, (6.29)
! — (9, (549,
0 P
E(5) =) ¢ ———=(-%4).,, (6.30)

have the limits

linl”l e,(1—gq)z) = lirrll E,((1 —q)z) =€,
g=1" q—1"
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see, for example, [5]. Thus
lim (1 - ¢"%))
e

1 i / 12 ; 12
= Zlog(qlinll eql/z(l(l —q / )w)qu/z(l(l _g / )w)

= %log(exp(%w)) =w
i

and

lim F((1 - ¢"*)w) =sin o, lil’Ill G((1 = ¢"*)w) = cos .
g—1"

Remark 3. In a similar fashion, one can see that

(4:9),

0 —gr—l+a +q+q) - (l+qg+-+q"")

nn—1
S (o= (R RR )
as ¢— 1~. This means, formally,

(1= 92 = ¢ (1451 - 92) + 0((1 - )

EA(1- 07 = ¢ (1= 30~ 02) + 001 - )
and

eg((1 = @)2)Ey(1 = q)2) = e + O((1 - q)*), q—1".
Thus we obtain

o((1—¢'*)w)

1 . .
= 5:10g(egr(i(1 = ¢)w)Epn(i(1 = ') o)

= %ilog(exp (2iw)(1 4 O((1 — ¢'/*)?)))
=w+0((1—-4¢"*?),

315

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

formally, as ¢ — 1. In view of (6.4)—(6.5), this automatically leads us to the following

asymptotic formulas:
o, = n(l = ¢"%) + 0((1 - ¢'7)?),

@ = () (1= ¢ +0((1 - "))

(6.38)

(6.39)

valid for small zeros of the basic sine and cosine functions, respectively, in the limit
g—17. It has been suggested by the referee that these asymptotics can be obtained by

applying Sturm-Liouville theory to Eq. (2.9).
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7. Improved asymptotics

This section contains the main result of this paper. It is written in response to the
referee’s suggestion to establish a few more terms in asymptotic expansions (1.3)—
(1.4) for the g-sine and cosine functions under consideration. Before seeing the
referee’s report the author was able independently to prove formulas (3.31)—(3.32),
which have been originally conjectured in the first version of this paper, and to find
one more term by a completely different method mused, partially, by the referee.
Similar idea can be applied in order to establish next terms of these asymptotic
expansions if needed. These are our findings.

In principle, Eqgs. (6.4)—(6.5) give explicit formulas for the zeros w, and w, in
terms of the inverse function (6.23), namely,

w, = f(nn), w, :f<g+7m). (7.1)

The problem is to find a convenient representation for the f(v) valid for the large w.

In the case of the basic sine function, consider wy = a)§,0> = ¢'/*" In view of (6.14)
we get

00 = p(@) = + v L/Z (7.2)
n n (0) .

Wn

and by (6.25)

()
Wp

0
oL (4P K@) S(e”
" K(w,(f))) a)ﬁ,o) 2K3(w§,0)) a)ﬁ,o)

2
1 K/(wy(zo)) K//(w’(:))) 5 q]/z
- 0 ) O A PRON R (73)
213 (wn ") \ \x(wp) 3r(wp ) oy
where the series converges absolutely and uniformly in a certain closed disk centered
(0)
at v, .

In order to establish an asymptotic formula for the large positive zeros w, of the ¢-
sine function one can consider the large m-asymptotic of the first terms in the
convergent series (7.3). This can be done with the help of the Taylor expansions

<, (=1)Fw* 1 w? o

k(w) = = - + -, (7.4)

= 1 — qk+1/2 1 — q1/2 1 — q3/2 1 — q5/2

0 k_ 2k+1

(—)w

v(w) =

kz:; (2k + 1)(1 — gk+1/2)

3 N
(@) [0)) w o (7.5)

ST A=) 51—
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valid for |w|<1 as easy consequences of (6.1) and (6.6) and with the help of the
following lemma.

Lemma 1. The following asymptotics hold.

(@92 (=g, ¢/ (@) q)

@297 (—(@") —q/(@)5q)
1/2

=t @) 1+ o)), (7.6)
o) =L ()
(e o)
Vo) =~ )

y (1 L2, 4 aly)

(04 7.8
(l)ﬁ,o) 1+ ql/Z +q ((1)1(10))3 + 0((60’1 ) ))a ( )

2,
K”((Uﬁ,o)) — 1 i q1/2 61((qq)) (a)(O))—B

as n— w. Here o) = ¢!/ 0<q<1; ¢|(q) is defined by (3.3), and

(45 0)% (454 )( 2% q3k/2>
=3-2
) @), (@0 Z
( 1/2’q1/2)4%
(—q'/%5q12)%
(0>:q3/47n'

The same asymptotics are valid in the case wy

+2 (7.10)

Proof. By the g-binomial formula
(=4'?/0% ), _ z”: (q_l/ZQQ)k(_i)k
(—q/0%q), = (Gap \ @
g\

1+q1/2w72+0(w’4), |w] > o0. (7.11)
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Also
0 Com _
(=420 50) _ (4", _ (=400~ 59). (7.12)
(—(@)iq),  (=d'Fa), (=4'272q),,(—4"q),
and by (1.9) of [5] and the g-binomial theorem
4 _ o L) (C470), (FLi4),
(—4'>21q),, (—4'%9),, (—*59),, (—4"%49) .,
(=1Lq). 7" 4
=g x (- o(g™ . 7.13
TP\ T TrgrtOW), nm e (7.13)
As a result
0
(a2 0) 1 (C4:0)%
(—(@)39)., (=4"%4)’,
0)\—1 ql/z 0)\—2 0)\—4
<o) (1 LA 2 0l ).
(7.14)

Combining (7.11) and (7.14), one gets (7.6) with the help of (3.3).

Eq. (7.7) follows now from (2.11), (7.4) and (7.6). In a similar manner, Eq. (7.8)
follows from (2.12), where
© qlc/2 1 2m2

(o) 1-q7 1-¢P

Ki(w) = + O(w*) (7.15)
as |w|—0.
The proof of (7.9) can be given on the basis of formula (A.5) from Appendix A. By
the ¢g-binomial formula
@/0%4) & (—l;q)k( q )’f
(—q/0*q), = (G \ @
2 24°
q w2 q

TT-¢” Ty

=1

S0t + 0w ), |o|->w0. (7.16)
On the other hand

2
(((u;(lo)) ;61> <q1/2_2n, ) (ql/zfzn.q) (q1/2.q)
0 _ Ao VRIS A VA (7.17)

(—(w,(,()))z‘q> (=¢'77q),,  (=4'79)5(—4"2q).,
0

and by (1.9) of [5] and the g-binomial theorem
@22 0) _ (@%4)y _ (=479), (@'%49) .

1q
(=q'27250)y,  (=4"%4),  (617749), (=4'%4).,

(ql/Z; ) 2q1/2+2n 2q1+4n 6
= 2 (1+ + +0(q™) (7.18)
(=4'%:9). l=q (1-¢)




S.K. Suslov | Journal of Approximation Theory 121 (2003) 292-335 319

as n— oo. Thus

((wfqo))z;q

(—()5q)

_ @93
(-4 )%,
2
(12 00) 420 4 o)) (7.19)
I—q (1—-4q)

as n— oo and combining (7.16) and (7.19), one gets

(wg()))z"f/ (“)50)>2;q o )
(<(‘°'(’0))27W(w20))2;>q§ :(( qi/;,q;) <1+0<(w}(10>) >> (7.20)

as n— oo. Now asymptotic (7.9) follows from (A.5), (7.6) and (7.20). The case

wgo) _ q3/4—n

can be considered in a similar fashion. O

The new improved asymptotic formula for the w, can be derived now from
expansion (7.3) if we substitute

1 1/2
Y’ %
K(co,, ) W

—ail0) + @O +a@) (G0 - 35y ) @)

@G0 ) (@) +o((@0) ). @

_ _C](q)<1 + e (g)(@®)! _L(w20)>2+0(w;0))—3> (7.22)

and

as n— oo in view of (7.4)—(7.9).
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The case of the g-cosine function can be considered in a similar fashion. We
summarize our results in the following main theorem of this paper.

Theorem 7. Let 0 = wo<w; <wy<w3<--- be positive zeros of S,(n;w) and let
w <wy<ws< - be positive zeros of Cy(n; w) for 0<g<1. Then

2
C
on=off — )~ 1Y
Wy
~(C@al) +3) - —24 ) 9D om0y (7.4
1 11472 +¢ 6(w£10>)2 n
and
(g
Wy = w’(ZO) - Cl(q) - 21((0))
Whn
(@alg +3) - —24 )DL oz0)) (7.05)
1 1+ql/2+q 6(@;(70))2 n
as n— oo. Here w§,0> = q1/4_", w,(10> = 43/4_", and
1/4 . 2)2
() = —-1 (4:4°) (7.26)

2(1=4"2) (g% 422

1/2. N4 (,2.,.2)2 0 3k/2
Cz(q):(q ,q)m(q,q)w<1+24z q )

(¢:9)%, (¢:4%)>, = (1+4¢)’°
(g9

. 7.27)
4 (
(—4'%4'2)7,

The functions ¢;(q) and ¢;(g) are nonnegative and increasing on [0, 1]; see Fig. 6.

0.60
. | — |al@
1/ o)
0.40
> ] /
0.20
000 T T T T T T T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00
0.00 < X<1.00;0.00<Y <0.64 X

Fig. 6. Functions ¢(¢) and ¢»(g), 0<g<1.
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Numerical examples demonstrating accuracy of these formulas are given in
Appendix D of [26]; these asymptotic formulas give a very good approximation even
for small zeros. See also Egs. (B.3) and (B.5) from Appendix B here for alternative
forms of the constant ¢;(g). The proof of the monotonicity of the ¢;(g) is given in
Appendix C.

8. Application: analytic continuation of g-zeta function

The Riemann zeta function is

{(2) =§: ni (8.1)

n=1

This series converges uniformly and absolutely for Re z>1 and, therefore, defines a
holomorphic function in the half-plane Re z> 1. For the analytic continuation of this
function in the entire complex plane, other properties and applications, see, for
example, [1,27].

An extension of the zeta function has been recently introduced in [24], see also our
review paper [22] and Section 10.6 of [26], as

& 1

Ly(2) ; P (8.2)
where {w,},-, are the positive zeros of the g-sine function (1.1) and the x(w) is
defined by (6.6). The right side here is a uniformly and absolutely convergent series
of analytic functions in any domain Rez>1 and consequently the series is an
analytic function in such a domain. See [24] for the details. Here we give, first of all,
an independent proof of this result using elementary facts about convergence of the
Dirichlet series of the general form [2,17]

zw: aye ™, (8.3)
n=1

where the @, are complex numbers and the exponents 4, are nonnegative real
numbers satisfying the conditions

In<Imits m=12.3, ..., lim i, = 0. (8.4)

n— o0
The g-zeta function above is the Dirichlet series with
1

K(wn)’

a, = An = log w,. (8.5)

In view of

a)n:ql/“’”—&—O(l), n— oo (8.6)
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one gets
Jn=logw,=m—1/4)logqg ' +0(¢"), n— oo (8.7)

and both conditions (8.4) are, obviously, satisfied for 0<g<1.

By the definition, the Dirichlet series (8.3) is said to have abscissa of convergence
C, or half-plane of convergence Re z> C, if the series converges at every point of the
half-plane Re z> C, but diverges at any point of the half-plane Re z< C. Similarly,
the Dirichlet series (8.3) is said to have abscissa of absolute convergence A4, or half-
plane of absolute convergence Re z> A, if the series converges absolutely at every
point of the half-plane Re z> A, but not at any point of the half-plane Re z< 4; see
[2,17] for more details. The following theorem is a generalization of the Cauchy—
Hadamard Theorem for the power series.

Theorem 8. For the Dirichlet series (8.3) satisfying conditions (8.4) and

1
lim sup oﬂgn =0, (8.8)

n— oo /Ln

the numbers A and C are given by the formula

A= C = limsup 10%7|a| (8.9)

n— oo ‘n

One can look at [2,17] for the proof of this theorem.
In the case of the g-zeta function (8.2) we get

logn 1 . logn

lims logn im im
u = =
naoop ‘n n— oo I’llqu_l —+ 0(]) ]Og q_] n— oo n

0 (8.10)

due to (8.7) and condition (8.8) is satisfied. We shall show in this section that

2. 232
K(wn)ZZLQ)f "(1+0(1)), n— oo, (8.11)
(4:4°)%
see (8.14) below. Thus
log |a,| = —logk(w,) =nlogqg™ ' + O(1), n— o (8.12)

and by (8.7) and (8.9)
-1
log |a,| — lim nlogg™" + O(1)

A=C=1li —_——
0 T n—» nlogqg='+ O(1)

n— o0

=1 (8.13)

Therefore by Theorem 8 the series (8.2) for the {,(z) converges absolutely and
uniformly in the half-plane Re z>1 and defines an analytic function in such a half-
plane. This series diverges in the half-plane Rez< 1.

Analytic continuation of the {,(z) in the entire complex plane is an interesting
open problem. We shall show here that, as in the classical case, the {,(z) has a simple
pole at z =1 and it has no other singularities in the half-plane Re z>0. With the
help of the improved asymptotic for the zeros of the basic sine function found in
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Section 7, we will be able to show that, in addition, our ¢-zeta function has simple
poles at z = —1 and —2 and it has no other singularities in the half-plane Re z> — 3.
We first establish the following asymptotic formula:

1/2 1/2
_ q on-1 , 4 ci(q)ea(q) (0)y=3
o) = mag @) g @)
1/2 2
I S _ I B VNN
b o (0@ -3+ ) )
+ 0((w™) ), n— oo, (8.14)
where co,(10> = ¢'/4"; which is of independent interest. Indeed, Taylor’s formula
1
K(on) = K@) + 1 (@) (@0 = oY) + 28 @) (00 = o)+ (8.15)

and asymptotics (7.7)—(7.9) and (7.24) result in (8.14) after some simplification.
Eq. (8.14) implies

L _(=¢"Pale) o (1 _d@eq)
2

K(n) q'? !

— (cf(q)@cz(q) — 3) + g qzleZ " q)zf;ig)))z + 0((Q)n0))4)> (816)

as n— oo.
In a similar fashion, with the help of the binomial formula and (7.24)

o = (@) (1 L zalg) , =+ aly)

0),(10) 2(60£,0>)2

L (@)z(ci(q)(z + 1)(z + 5) + e3(q))
6(w)?

as n— oo, where by the definition

e3(q) = ¢i(9)(2e2(q) + 3)

+ 0((w;0>)—4)> (8.17)

2q
1+4'%+g¢
and functions ¢;(g) and ¢»(g) are given by (7.26) and (7.27), respectively.
As a result

1 :(1 7q1/2)cl(q)fw(0))l—l
K(0n) o, giz

calg)z  Al@ai(z)  ci(g)ax(z) B
) <1+ ;}(10) - 12(00,(10;)2 T 16((0,(10?)3 +0((w") 4)) (8.19)

(8.18)

as n— oo, where
a1(z) = 22 + 22 — 2¢5(q) (8.20)
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and
ax(z) = ¢{(q)(z + 1)(2% + 52 = 6¢2(q))
2q 6g
2(g)(2 ) —— ) +93(q) - ————.
+2(G0Ca) +3) - ) 940
(8.21)
Introducing
2
bn _ 1 _1 (qv qz)ao n(z—1)—z/4
K(o)oh  2(42¢2)%
_ 1 ((ﬂqz)io Zqz(n71/4)
4
41 =q'%) (g% ),
6
_ q'* (f];f]z)w a(z) (z4+1)(n—1/4)
16(1— g2V (),
L 2\4
_ 1 (@q97), az(z)q(2+2)()1—1/4)

24(1 = 4') (¢% ¢%)°,

:0(<(wg°>)”>), n— o, (8.22)

one can see that the series

> bl < o0 (8.23)
n=1

converges absolutely and uniformly when Rez> — 3. Also

o i
1 . _ q
- (1-2)/4 n(z—1) _
— =9 q = P (8.24)
n; (wlgo))hfl Z 1 — ¢ 1

when Rez>1 and as a result we arrive at the following series representation for the
g-zeta function:

2 =L ¢ ¢ 1 (aa), =
q 2 (qz;qzﬁ)C 1—g1 " 4(1—4'72) (qz;qz): -
1 (q’ qz)ic al(z)q3z/4+l

16(1 — ¢'2)* (g% ¢2)S, 1 — ¢!
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| (q7q2)4w (12(2)Q3<Z+2)/4
24(1-¢"2) (@2, 1—¢*?
2
) zw: L 1@ i
K(oa)o; 2 (g% ¢2),
4
B 1 (4:9%)", g1
— N2 .2\
4(1—q'2) (2 )t

_|_

_ q'* (q;q2)6oc al(z)q(z+l)(n—l/4)
16(1 - q'2)*(¢% ¢7)5,
1 (%qz)i 4+2)(n—1/4
TR0 =P ) ay(2)q =, (8.25)
’ 0

where the series defines a holomorphic function in the half-plane Re z> — 3.
We summarize our findings in the following theorem.

Theorem 9. The g-zeta function under consideration is a meromorphic function in the
half-plane Re z> — 3. The {,(z) has simple poles at z = 1, —1, =2 with the residues

_ 2
Res (,(z) = —2 Vg, (8.26)
=1 T 2logq (%))

9 (64)°, 20(g) + 1

Res {,(2) = 1610247 (¢% ) (1 - g1/%)? (8.27)
and
B 1 (¢:4°)%,
Res L&) =5, logg='(1—¢'2) (¢ 42)*,
2q
2 2 9) 1 8.28
X (Cl<q)( C2(Q)+ ) 1+q1/2+q ’ ( )

where the ¢\(q) and c;(q) are given by (7.26)—~(7.27). It has no other singularities in the
half-plane Re z> — 3.

The corresponding g-Euler constant can be defined as

- (g4 ¢!
wQW%§22mzl
(4% 4% q

[e0)

— lim i#_quwmm — (8.29)
m— oo k(wp)w, 2 2 v

(% 4%)%,
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which can be viewed as an analog of the classical result

) 1 ) m 1

1153 (C(z) —1= z) = mlgrgc (Z i log m) =7 (8.30)
From (8.25)

Cq(o) = 111’1(1) C(/(Z)

_ 1 (@ &1 1(gd)
T 2(0-9) (g2 +Zl<x(wn) T2 ) (8.31)

This method can also be applied in order to investigate the analytic continuation
of the similar series introduced in [24].
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Appendix A. Some asymptotics and estimates

In order to derive the asymptotic formula (2.12) one can extend the sum in (2.10)
to the corresponding ,,-series,

o0 3k/2 | ol
1 = ’ . 3/2
k;w (l+w2qk)2_(1+w2)22¢2<qwz’qwzquq . (A.1)

which can be transformed by the Exercise 5.20(i) of [5],

—?, —?
2‘”2( Y N
—qw”, —qw
(9.9, —¢" 0 —¢'? /0 q) . < —0?, —q'?? )
2

2 34,4
(ql/za q3/2a _qw27 _q/wz; q)oo _qwzv —q3/2602
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The last ,1, can be summed

—w? —q1/2w2
2 < g, — iq, q)

_ oot
= (—q0?, —q3/2w2'q)k
_ zoc: 7q (q1/2)2k
Lo (qutiq 1/2

k=—o0

1 —w? —w?
=5 1¢1 27q/ 7q +1l//1 2;q1/27_q1/2
2 —q —qo

1 (q'%,¢;4'?),
2(—qo?,—q' 2 ja?; g '),
(S tjorg ™), k0 a3
G724\ q'12) (—q'2, =g 12 4'2) :

X

by a consequence of the Ramanujan /,-summation formula; see, for example, [5].
The original bilateral sum in (A.1) can be rewritten as

g2 ql /2 k)2

2 1t oig) o z; 1 +q‘+k/w2) a9

% 3k/2 o
*
k=0

k=—o0 (1 + wzqk)z -

and as a result we arrive at (2.12) from (A.1) to (A.4).
One can also derive the following formula:
1/2)

q'Pw? 1w’ q
K'(0) =3(g:9)°, (ql/z;q”z)zw( ! 5
(_ 7—Q/(1) 7q)w

(9% (—¢"0?,—q'Jo?q),
(¢'/%q)%, (-0 —q/o?q),

_2('/2,q) (%) ( 42 q3k/2 )

(4:9)% (4:4°),
o @ (@a/ea), ]
(—4:9)", (—0? Q/w2 q)’
1/2 © q_ 3k/2 AS)
Wt z; 1+q1+k/w2 ® ; +q1+k/w2) (A.

which determines the asymptotic behavior of the k”(w) as |o|— .

From (2.10)
g2 pele

:—22 TRy 22 Crof (A.6)
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Rahman [19] has suggested the following transformation of this expression.
Identity

w2g /2 3: e - Pk 3 A7)
(1+w?¢")” (1 +w?¢")” (1 + w?¢h)
gives
/ 2
/)
K'(w) = 0+ ol k (A.8)

and one can use Eq. (2.12) for the first term here. The second sum can be again
extended to the following bilateral series:

1 —?, —w?, —w? ;
= ’ , ; bl /2 . A9
K3 (1 +w2)33%<—qw2,—qw27—qw2 +d (A9)

0 q3/c/2

k=—0 (1 + w2q

Rahman’s original idea [19] is to rewrite the last si;-series as the following special
case:

2 2

y qo?, —qu?, —w?, —0?, —w?, ¢'Pw?, 0?, —w? 3
8 54,
*\ 02, —0?, —qa?, —ge?, —q?, ¢\, qoo?, —qe?

of very-well-poised gig-series and then to apply the transformation formula (I11.38)
of [5]. Here are the details. Let us consider the following transformation:

qo?, —qo?, —?, —0?, —0?, ¢’ e, —ew? ¢
s¥g o? ;

aqa_z
,—0?, —q?, —q?, —qo?, ¢ P?, g0’ [e, —qo* [e T €
2 2 2 2

qo?, —w?, —w?, ew?*, —ew g
=s¥s (wz, —q0?, —qw?, qw? e, —qa’ e ; q’8—2>
(—e0?, —&/w?, qo*, q/0*, ¢;q)
(—qw?, —q?, —qa?, q'2a?, —l'q)
(—q/e,—q/e,—q/e: —qe, —q8, —q,4' %, 4" [5;9) .
(—q/w? —q/w? —q/o?, l/z/cuz,q/swz,qwz/«s, —&%, g% q)

827 qe, —&, —&, _82 q3/2
X5y ;qv—z
€ —qe, —qe, —¢q &
(e’ /0, g0, q/0", 45 q) ,
(_qa)2> _qwza _qﬂ)2> q1/2w2’ -1 ) q) 0
(Q/ga Q/Sa q/gv qé, q¢, q&, —ql/z& _ql/2/8; Q)oo
(—q/@?, —q/0?, —q/ 0, —q/e?, —qo? [e,q'? |0?, —&2, qe%; q) ,

827 —q¢, &, &, 782 q3/2
><5(P4< 345 (A.10)
—¢&,4¢,4¢8, —q €
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and take the limit ¢— 1. Then

&2 —qe e, 6, —&* 3/2
lim 5(p4< ARG G ;qaq—2> =1 (A.11)
e=1 —&, 48,48, —q &
and
. 827 qé, —¢&, —¢, _82 q3/2
lim 5¢, q 5
= & —qe,—qe,—q &
k
=lim( 1+ (I+e) i =6~ 48 gy ‘13/2>
o — qsqkl —q8, =4, 4 @) \ &
o
:1+22( 1#1)1; 3k/2
= (=4 9)x
42002 g2
=142 (A.12)
o (1 + 4k}
Also
D D Y Lo DY ewrstv S VD
= 1+ 0" = (1+0%h)” @ = 1+ql+k/w2)

All this together results in (A.5) after some substitutions. We leave the details to the

reader.
It is worth also noting the following useful estimates:
2x(w)
| ()| <
|
and
!
ey W )]_6K()

o] w?

(A.14)

(A.15)

which follow directly from (2.7), (2.10) and (A.6). Indeed, by (2.7) and (2.10)

wzzl—i—w2

2|a)| a)zzl—i—wz"l—i—oﬂ

In a similar fashion in (A.6)

o) 5k/2 1 0 0)2qk q3k/2
z% 1 + CUZ E k=0 1 + wzqk (1 + wzqk)z
1 & q3k/2

@ 5 (1 + )’

_ K@) (A.16)

w?

(A.17)
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and
o 3k/2 _3
" q K(CO)
K'(w)<(-2+8 = , A.18
<2483 o= (A.18)
which results in (A.16). Also,
1 (o) <2 ()] 10x() (A.19)

] ?

Appendix B. Alternative forms of ¢,(q)

Expression (7.27) for the constant c,(¢g) in the asymptotic formulas (7.24)—(7.25)
can be transformed to a single sum in the following manner. Due to (A.13) and
(I11.23) of [5]

82; qé, —¢&, —&, 782 q3/2
5P4 34—
& —q¢, —q¢&, —q €

&2, qe, —qe, —e, —&, —&, —&2, q‘/zg. ¢
8 ( e, —&, —qe, —qe, —qe, —q, q'%e 78_2)
(9¢* . —q" /e, 4" [£:9) .
(—qe, —qe, 4>, 432 e q)
XgP7 ( qll/z’ q5/4, _q5/4’ e _q1/27 _q1/2/8, e 34, 61) )
9" =4, 4" e, —q, —qe, ¢ Jo, ¢ ¢

(B.1)

and letting ¢ — 1~ one gets

1428 i g 4 —q1/2)2 (q;q)%(q; 612)2mz
1+ (1+¢7 (@79 (@50,

<ql/2,q5/47_q5/47q7_q1/27_q1/2,_17_1. )

_ 1/47q1/2’ —q,—q, _q3/2, _

BT AT ( @24, an (L4424 )1~ g
(4% 4)%, (4% 42)% \(=4"/% 4" ), (1+¢'2)(1 +q)”

q3/2’ 6]7/4, _q7/47 q,—q,—q, _q1/2’ _q1/2

q )

k=1

14,9 (B.2)
3/4 —q3/4, qs/z’ —q3/2, —q3/2, B

)
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by (I1.25) of [5]. From (7.27) and (B.2) we obtain a single series expansion for the
constant ¢,(q) as follows

oa(q) =44 (1 + ¢ + g)(1 — ¢'?)?
© (1 _ q2k+3/2)qk

X .
5 (1= g¥2)(1+ g2 (1 4 g+1)°

(B.3)

This formula is very convenient for numerical evaluation of this constant. On the
other hand, in the last line of (B.2)

0 724" =4, q,—q, —q, —ql/z,—ql/z.q .
8P7 Y,
7= P - - P —
1+9° (¢:4%)] 9,-4'* —q'"%, —¢'
_ ( ) ( )oc 3 q3/2 (B4)

4 3 4q,
(1 =) (1 = ¢%%) (g2 ¢7)%, —¢ g 4

by (II1.23) of [5] and, therefore,

(7)), & ¢k

a(q) = 4q1/2(q2;q2)i0 20 qk“/z)}' (B.5)
By (7.10) and (7.27)
a(q) =3 - 2c(qg), (B.6)

which allows to simplify the expression for this constant in view of (B.3) and (B.5).
Numerical analysis strongly indicates that

qliﬂrrlli ca(q) =1/2. (B.7)

For example, Gosper’s Macsyma program “namesum’ gives
¢2(0.99999) ~0.49999999999616; see also Fig. 6 for the graph of the c¢»(q). The
proof of this result can be given in the following matter. Consider the summand in
(B.5) as function of a continuous variable, say s. Then

d g 3s5/2 3(1 - qﬁlﬂ)

— =1 B.8
ds (1 4 ¢+1/2)? 084 4 2(1 + o412y (B.3)
for 0<g<1 and this function is decreasing on [0, c0). Furthermore
0 35/2d, 0 k+1 3s/2 d
/ q433: Z/ q—s3 (B.9)
o (I+¢2)7 = (T+gH?)
and
3(k+1)/2 kel 352 g 3k/2
‘173</ 72 - 9 (B.10)
(1 + qk+3/2) P (1 + qs-H/Z) (1 + qk+]/2)
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Thus
® 3k/2 1

Z (1 + gk+1/2)3 (1 +q/2)°

=0
7¥d. o 3k/2
/ ) (B.11)
1+qs+1/2 yr (1 +qk+l/2)
and
O 382 g o Pk 1 w 35/2
/ ' 5% k ERS 7T / : 3
o (T+g2)7 = (44127 (14+4'72)7 Jo (1+¢71/2)
Evaluating the integral
/oo q3s/2ds
o (1+ qx+l/2)3
1 (1 1—¢'/?
= —g ¥*arctan ¢'/* — ¢~'/? 7q2 , (B.12)
logg=1\ 4 (1+q'/?)

we obtain the following lower and upper bounds for the sum under consideration:

1 — 1/2 1 1 — 1/2
q : Zq‘”“arctan q1/4_q—1/274

log g~ (1+4¢'2)
/) % el
z; 1 + qk+1/2
1—¢'2 1—-4¢4'2/(1 1—4'/?
< 4 3+ q7 —q 3 *arctan ¢'/* — ¢71/2 —q (B.13)
(1+4¢'2)°  logg ! \4 (1+4'72)
By the Squeeze Theorem
© 3k/2
lim (1 = ¢'/? T
q_.r( 1 ); (1 +qk+l/2)3
] 1— q1/2 1 4 B 1— q1/2 T
-1 Zag M *arctang\/t — g 12— 1) == B.14
1 loggt \ad O T T | T3 (B.14)
From (B.5) and (1.5)
e(q) 1/4 1/2 S gt/
——~=8¢""(1—g¢q _ B.15
atg) M T ey (519

which implies (B.7) in view of (B.14) and (1.6).
The graph of the ¢»(g) in Fig. 6 indicates that lim,_, ;- ¢5(¢) = 0. The author was
unable to give a rigorous proof of this result yet.

Conjecture 2. lim,_,;- ¢5(q) = 0.
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Appendix C. Monotonicity of ¢|(g)

333

The graph of the ¢ (g) in Fig. 6 reveals the monotonicity of this function on [0, ¢].

Here we give a rigorous proof of this result. Differentiating (1.5) one gets

dei(g) — ~2¢1(q) (ilog ((qz;q2)oo 1+ q1/2)z>7

dgq dgq 9%,  8q(l—gq)
where
B L (2k+1 2. (2k + 2)g*H!
d_q L 2; 2k+l o | — g2k+2

R n+1)q
_Z 1_ n+1 :

n=!

The last sum can be transformed as follows:

0 1 + o0
I WLy
n=0 k=0 n=0

% k

T
= (1+ qu)z

in view of the geometric series and its derivative

- n n 1
> D7 =

n=0

with z = g1 <1. Thus
d 2.2 0 k
4 1o 7612)@ -y
dg = (:9%) . =5 (1+ g+
and the substitution of (C.5) into (C.1) results in

deilq) _ (s~ 4 (144

In order to prove the monotonicity of the ¢;(¢) we need to show that

_(+q"?)y
2 8q(1 —q)

0
s 1 + qk+1

for 0<g<1.
The last inequality can be proven in the following manner. One gets

qk <l qurl _ 1 A( 1 )
(14 gk g (L+ g (1 +¢42)  q(1—q) \1+4¢1)

(C.1)

(C4)

(C.5)

(C.6)

(C.8)
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where by the definition 4/(k) = I(k + 1) — I(k). Therefore
A

q 1 1
< = . CJ9
; (1+g+1* q(1 —9q) = <1 +q"“) 1-¢? (€9)

The final step is to show that, in fact,
0 k 1/2)2
q L _(+47)

< < C.10
5 (L+gk+1)? 1—¢> " 8¢(1—q) (C10)
on [0, 1]. The last inequality is equivalent to
(1—-¢"2)(1+ 44"+ ¢) =0, (C.11)
which holds for all 0<g<1. As a result
d
Cc‘léq)>o, 0<g<l, (C.12)
which completes our proof of the monotonicity of the ¢;(g).
In a similar fashion
k k
q q 1 1
> = A , C.13
(L4412 (L+g)(1 44 (1-q) (1+qk> ()
o k
q 1
> , (C.14)
; (14417 2(1=9q)
and in view of (C.9) and (C.14)
1 - q* 1
< < . C.15
(D STy (1
By the Squeeze Theorem then
lim (1 — —_— = C.16
q_,l—( q); (1 +qk+1)2 2 ( )

Numerical analysis strongly indicates that lim,_, - ¢|(¢) = 1/2%n. For example,
Gosper’s Macsyma program ‘“namesum’ gives ¢}(0.99999)~0.50000641104998 /x.
The author was unable to give a rigorous proof of this result.

Conjecture 3. lim,_, - ¢|(¢q) = 1/2x.
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