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Abstract

We obtain matching direct and inverse theorems for the degree of weighted L p-approximation by
polynomials with the Jacobi weights (1 − x)α(1 + x)β . Combined, the estimates yield a constructive
characterization of various smoothness classes of functions via the degree of their approximation by
algebraic polynomials. In addition, we prove Whitney type inequalities which are of independent interest.
c⃝ 2018 Elsevier Inc. All rights reserved.
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1. Introduction and main results

In this paper, we are interested in weighted polynomial approximation with the Jacobi weights

wα,β(x) := (1 − x)α(1 + x)β, α, β ∈ Jp :=

{
(−1/p, ∞), if 0 < p < ∞,

[0, ∞), if p = ∞.
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Let Lα,β
p (I ) :=

{
f |
wα,β f


L p(I ) < ∞

}
, where ∥·∥L p(I ) is the usual L p (quasi)norm on the

interval I ⊆ [−1, 1], and, for f ∈ Lα,β
p (I ), denote by

En( f, I )α,β,p := inf
pn∈Pn

wα,β( f − pn)


L p(I )

the error of best weighted approximation of f by polynomials in Pn , the set of algebraic
polynomials of degree not more than n − 1. For I = [−1, 1], we denote ∥·∥p := ∥·∥L p[−1,1],
Lα,β

p := Lα,β
p ([−1, 1]), En( f )α,β,p := En( f, [−1, 1])α,β,p, etc.

Definition 1.1 ([10]). For r ∈ N0 and 0 < p ≤ ∞, denote B0
p(wα,β) := Lα,β

p and

Br
p(wα,β) :=

{
f | f (r−1)

∈ ACloc(−1, 1) and ϕr f (r )
∈ Lα,β

p

}
, r ≥ 1,

where ϕ(x) :=
√

1 − x2 and ACloc(−1, 1) denotes the set of functions which are locally
absolutely continuous in (−1, 1).

We remark that, in the case p < 1, our definition of derivatives is understood in the classical
sense, i.e., the assumption f (r−1)

∈ ACloc(−1, 1) in the case r ≥ 2 is understood in the sense that
f is the (r − 1)st integral of a locally absolutely continuous f (r−1) plus a polynomial of degree
r − 2.

As is common when dealing with L p spaces, we will not distinguish between a function in
Br

p(wα,β) and all functions which are equivalent to it in Lα,β
p .

Definition 1.2 ([10]). For k, r ∈ N and f ∈ Br
p(wα,β), 0 < p ≤ ∞, define

ω
ϕ

k,r ( f (r ), t)α,β,p := sup
0≤h≤t

Wr/2+α,r/2+β

kh (·)∆k
hϕ(·)( f (r ), ·)


p
, (1.1)

where

W
ξ,ζ
δ (x) := (1 − x − δϕ(x)/2)ξ (1 + x − δϕ(x)/2)ζ ,

and

∆k
h( f, x) :=

⎧⎪⎪⎨⎪⎪⎩
k∑

i=0

(
k
i

)
(−1)k−i f (x −

kh
2

+ ih), if [x −
kh
2

, x +
kh
2

] ⊆ [−1, 1] ,

0, otherwise,

is the kth symmetric difference.

For δ > 0, denote (see [9])

Dδ :=
{

x
⏐⏐ 1 − δϕ(x)/2 ≥ |x |

}
\ {±1} = [−1 + µ(δ), 1 − µ(δ)],

where

µ(δ) := 2δ2/(4 + δ2).

We note that Dδ1 ⊂ Dδ2 if δ2 < δ1 ≤ 2, and that Dδ = ∅ if δ > 2. Also, since ∆k
hϕ(x)( f, x) = 0

if x ̸∈ Dkh ,

ω
ϕ

k,r ( f (r ), t)α,β,p = sup
0<h≤t

Wr/2+α,r/2+β

kh (·)∆k
hϕ(·)( f (r ), ·)


L p(Dkh )

. (1.2)

In particular, ω
ϕ

k,r ( f (r ), t)α,β,p = ω
ϕ

k,r ( f (r ), 2/k)α,β,p, for all t ≥ 2/k.
Following [10] we also define the weighted averaged moduli.
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Definition 1.3 ([10]). For k ∈ N, r ∈ N0 and f ∈ Br
p(wα,β), 0 < p < ∞, the kth weighted

averaged modulus of smoothness of f is defined as

ω
∗ϕ

k,r ( f (r ), t)α,β,p :=

(
1
t

∫ t

0

∫
Dkτ

|W
r/2+α,r/2+β

kτ (x)∆k
τϕ(x)( f (r ), x)|

p
dx dτ

)1/p

.

If p = ∞ and f ∈ Br
∞

(wα,β), we write

ω
∗ϕ

k,r ( f (r ), t)α,β,∞ := ω
ϕ

k,r ( f (r ), t)α,β,∞ . (1.3)

Clearly,

ω
∗ϕ

k,r ( f (r ), t)α,β,p ≤ ω
ϕ

k,r ( f (r ), t)α,β,p, t > 0. (1.4)

Moreover, it was proved in [10] that if r/2 + α, r/2 + β ≥ 0, then the weighted moduli and
the weighted averaged moduli are equivalent.

Throughout this paper, all constants c may depend only on k, r , p, α and β, unless a specific
dependence on an additional parameter is mentioned.

We have the following direct (Jackson-type) theorem.

Theorem 1.4. Let k ∈ N, 0 < p ≤ ∞, α ≥ 0 and β ≥ 0. If f ∈ Lα,β
p , then for every n ≥ k and

0 < ϑ ≤ 1,

En( f )α,β,p ≤ cωϕ

k,0( f, ϑ/n)α,β,p , (1.5)

where the constant c depends only on k, α, β, p and ϑ .

It follows from [10, Lemma 1.11] that, if k ∈ N, r ∈ N0, r/2 + α ≥ 0, r/2 + β ≥ 0,
1 ≤ p ≤ ∞ and f ∈ Br+1

p (wα,β), then

ω
ϕ

k+1,r ( f (r ), t)α,β,p ≤ ctωϕ

k,r+1( f (r+1), t)α,β,p, t > 0.

Hence, (1.5) implies that, for f ∈ Br
p(wα,β), 1 ≤ p ≤ ∞,

En( f )α,β,p ≤ cωϕ

k+r,0( f, 1/n)α,β,p ≤ cn−rω
ϕ

k,r ( f (r ), 1/n)α,β,p , n ≥ k + r,

provided α, β ≥ 0. We strengthen this result by showing that the last estimate is, in fact, valid
for all α, β ≥ −r/2. Namely,

Theorem 1.5. Let k ∈ N, r ∈ N0, 1 ≤ p ≤ ∞, and α, β ∈ Jp be such that r/2 + α ≥ 0 and
r/2 + β ≥ 0. If f ∈ Br

p(wα,β), then

En( f )α,β,p ≤
c
nr

ω
ϕ

k,r ( f (r ), 1/n)α,β,p , n ≥ k + r. (1.6)

We remark that Theorem 1.5 is not valid if r ≥ 1 and 0 < p < 1 (one can show this using the
same construction that was used in the proof of [5, Theorem 3 and Corollary 4]).

Jackson type estimates of the form (1.5) and (1.6) frequently appear with the inequalities
being valid for n sufficiently large. In order to have these inequalities for small n, we need
certain Whitney type results. We devote Section 3 to Whitney type estimates, and we feel that
the results in this section are of independent interest by themselves.

Next, we have the following inverse result in the case 1 ≤ p ≤ ∞.
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Theorem 1.6. Suppose that r ∈ N0, 1 ≤ p ≤ ∞, α, β ∈ Jp are such that r/2 + α ≥ 0 and
r/2 + β ≥ 0, and f ∈ Lα,β

p . If
∞∑

n=1

rnr−1 En( f )α,β,p < +∞ (1.7)

(i.e., if r = 0 then this condition is vacuous), then f ∈ Br
p(wα,β), and for k ∈ N and N ∈ N,

ω
ϕ

k,r ( f (r ), t)α,β,p ≤ c
∑

n>max{N ,1/t}

rnr−1 En( f )α,β,p (1.8)

+ctk
∑

N≤n≤max{N ,1/t}

nk+r−1 En( f )α,β,p

+c(N )tk Ek+r ( f )α,β,p , t > 0.

In particular, if N ≤ k + r , then

ω
ϕ

k,r ( f (r ), t)α,β,p ≤ c
∑

n>max{N ,1/t}

rnr−1 En( f )α,β,p

+ctk
∑

N≤n≤max{N ,1/t}

nk+r−1 En( f )α,β,p, t > 0.

Remark 1.7. (i) Note that the first term in (1.8) disappears if r = 0.
(ii) If α = β = 0, Theorem 1.6 was proved in [9].
(iii) The case α, β ≥ 0, N = 1 and r = 0 follows from [3, Theorem 8.2.4] by virtue of (4.2).

Denote by Φ the set of nondecreasing functions φ : [0, ∞) → [0, ∞), satisfying
limt→0+φ(t) = 0. The following is an immediate corollary of Theorem 1.6 (in fact, it is a
restatement of Theorem 1.6 in terms of φ).

Corollary 1.8. Suppose that r ∈ N0, N ∈ N, 1 ≤ p ≤ ∞, α, β ∈ Jp are such that r/2 + α ≥ 0
and r/2 + β ≥ 0, and φ ∈ Φ is such that∫ 1

0

rφ(u)
ur+1 du < +∞

(i.e., if r = 0 then this condition is vacuous). Then, if f ∈ Lα,β
p is such that

En( f )α,β,p ≤ φ

(
1

n + 1

)
, for all n ≥ N ,

then f ∈ Br
p(wα,β), and for k ∈ N and 0 < t ≤ 1/2,

ω
ϕ

k,r ( f (r ), t)α,β,p ≤ c
∫ t

0

rφ(u)
ur+1 du + ctk

∫ 1

t

φ(u)
uk+r+1 du + c(N )tk Ek+r ( f )α,β,p.

In particular, if N ≤ k + r , then

ω
ϕ

k,r ( f (r ), t)α,β,p ≤ c
∫ t

0

rφ(u)
ur+1 du + ctk

∫ 1

t

φ(u)
uk+r+1 du.

Remark 1.9. We take this opportunity to correct an inadvertent misprint in three of our earlier
papers where the inverse theorems of this type were proved in the case α = β = 0. Namely, the
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inequality En( f )p ≤ φ (1/n) in [7, Theorem 3.2] (the case p = ∞), and in [9, Theorem 9.1]
and [8, Theorem Ir ] (the case 1 ≤ p ≤ ∞), should be replaced by En( f )p ≤ φ (1/(n + 1)).
Otherwise, the last estimates in these results are not justified/valid if N = 1 , k = 1 and r = 0
since Ek+r ( f )p = E1( f )p ≤ φ (1) cannot be estimated above by

∫ 1
t φ(u)u−2du without any

extra assumptions on the function φ.

It immediately follows from Theorem 1.4 that if α, β ∈ Jp, r/2 + α ≥ 0, r/2 + β ≥ 0
and ω

ϕ

k,r ( f (r ), t)α,β,p ≤ tγ , then En( f )α,β,p ≤ cn−r−γ . Conversely, an immediate consequence
of Theorem 1.6 (Corollary 1.8) is the following result which, for α, β ≥ 0, was proved by a
different method in [8, Theorem 5.3].

Corollary 1.10. Suppose that r ∈ N0, N ∈ N, 1 ≤ p ≤ ∞, and α, β ∈ Jp are such that
r/2 + α ≥ 0 and r/2 + β ≥ 0. If f ∈ Lα,β

p is such that, for some N ∈ N and r < γ < k + r ,

En( f )α,β,p ≤ n−γ , n ≥ N , (1.9)

then f ∈ Br
p(wα,β), and

ω
ϕ

k,r ( f (r ), t)α,β,p ≤ ctγ−r
+ c(N )tk Ek+r ( f )α,β,p, t > 0.

In particular, if N ≤ k + r , then

ω
ϕ

k,r ( f (r ), t)α,β,p ≤ ctγ−r , t > 0.

Finally, we have the following inverse theorem for 0 < p < 1 which is an immediate corollary
of [6, Theorem 10.1] and [7, Lemma 4.5].

Theorem 1.11. Let k ∈ N, α ≥ 0, β ≥ 0 and f ∈ Lα,β
p , 0 < p < 1. Then there exists a positive

constant ϑ ≤ 1 depending only on k, p, α and β such that, for any n ∈ N,

ω
ϕ

k,0( f, ϑn−1)p
α,β,p ≤ cn−kp

n∑
m=1

mkp−1 Em( f )p
α,β,p.

2. Auxiliary lemma

Lemma 2.1. Let 0 < δ ≤ 2, and let y := y(x), y : [−1, 1] → R be such that

y(x) + δϕ(y(x))/2 = x, x ∈ [−1, 1].

Then,

(i) y is strictly increasing on [−1, 1], and y′(x) ≤ 2, x ∈ [−1, 1],
(ii) y ([−1 + 2µ(δ), 1]) = Dδ ,

(iii) y′(x) ≥ 2/3, x ∈ [−1 + 2µ(δ), 1],
(iv) if yλ(x) := y(x) + λϕ(y(x)), then 1/3 ≤ y′

λ(x) ≤ 3, for all |λ| ≤ δ/2 and x ∈

[−1 + 2µ(δ), 1],
(v) for all x ∈ [−1 + 2µ(δ), 1],

µ(δ) + 2(1 − x)/3 ≤ 1 − y(x) ≤ µ(δ) + 2(1 − x) (2.1)

and

(1 + x)/2 ≤ 1 + y(x) ≤ 1 + x . (2.2)
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Note that it is not difficult to see that the function y = y(x) in the statement of Lemma 2.1 is
well defined for all x ∈ [−1, 1] and, in fact,

y(x) =
4x − δ

√
4 − 4x2 + δ2

4 + δ2 , −1 ≤ x ≤ 1.

However, we will not be using this explicit formula in this paper.

Proof. Since x ≤ 1, we have y + δϕ(y)/2 ≤ 1 which can be rewritten as δ/(2ϕ(y)) ≤ 1/(1+ y),
and so, if y ≥ 0, then

1 −
δy

2ϕ(y)
≥

1
1 + y

≥
1
2
,

and, clearly, 1 − δy/(2ϕ(y)) ≥ 1/2 if y < 0 as well.
Therefore, since

dy
dx

=

(
1 −

δy
2ϕ(y)

)−1

,

we immediately conclude that (i) holds.
Now, since y is nondecreasing, y ([−1 + 2µ(δ), 1]) = [y(−1 + 2µ(δ)), y(1)], and (ii) follows

because y(1) = 1 − µ(δ) and y(−1 + 2µ(δ)) = −1 + µ(δ).
It follows from (ii) that, for x ∈ [−1 + 2µ(δ), 1], we have y − δϕ(y)/2 ≥ −1, which can be

rewritten as δ/(2ϕ(y)) ≤ 1/(1 − y), and so, if y ≤ 0, then

1 −
δy

2ϕ(y)
≤

1 − 2y
1 − y

≤
3
2
,

and, clearly, 1 − δy/(2ϕ(y)) ≤ 3/2 if y > 0 as well. This implies (iii).
Now, it follows from the above estimates that δ/(2ϕ(y)) ≤ 1/(1+|y|), for x ∈ [−1+2µ(δ), 1],

which implies

y′

λ(x) =

(
1 −

λy
ϕ(y)

)
y′(x) ≤ 2

(
1 +

δ|y|

2ϕ(y)

)
≤

2 + 4|y|

1 + |y|
≤ 3,

and

y′

λ(x) ≥
2
3

(
1 −

δ|y|

2ϕ(y)

)
≥

2
3(1 + |y|)

≥
1
3
,

and so (iv) is verified.
Now, by

dy
dx

(ξ ) =
y(1) − y(x)

1 − x
=

1 − µ(δ) − y(x)
1 − x

, ξ ∈ (x, 1),

(i) and (iii) imply (2.1), for x ∈ [−1+2µ(δ), 1]. Finally, the second inequality in (2.2) is obvious,
and the first one immediately follows from (ii) which implies

1 + x = 1 + y + δϕ(y)/2 ≤ 2(1 + y).

Thus, (v) is verified. □

3. Whitney-type estimates

In this section, we prove Whitney-type estimates, which we feel are of independent interest,
and which we need in order to prove the direct (Jackson-type) theorem (Theorem 1.4) for small n.
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Recall that the celebrated Whitney inequalities for the ordinary moduli of smoothness were
first proved by Whitney [16] for functions in C[a, b]. Later Brudnyi [1] extended the inequalities
to L p[a, b], 1 ≤ p < ∞ and, finally, Storozhenko [15] proved the inequalities for L p[a, b],
0 < p < 1.

Theorem 3.1. Let k ∈ N, α ≥ 0, β ≥ 0, 0 < p ≤ ∞, f ∈ Lα,β
p , 0 < h ≤ 2 and x0 ∈ Dh . Then,

for any θ ∈ (0, 1], we have

Ek( f, [x0 − hϕ(x0)/2, x0 + hϕ(x0)/2])α,β,p ≤ cω∗ϕ

k,0( f, θh)α,β,p ≤ cωϕ

k,0( f, θh)α,β,p,

where c depends only on k, α, β, p and θ .

Choosing x0 = 0 and h = 2 in Theorem 3.1 we immediately get the following corollary.

Corollary 3.2. Let k ∈ N, α ≥ 0, β ≥ 0, 0 < p ≤ ∞ and f ∈ Lα,β
p . Then, for any θ ∈ (0, 1],

we have

Ek( f )α,β,p ≤ cω∗ϕ

k,0( f, θ)α,β,p ≤ cωϕ

k,0( f, θ)α,β,p, (3.1)

where c depends only on k, α, β, p and θ .

Also, if x0 ± hϕ(x0)/2 = ±1, Theorem 3.1 immediately gives the following result (by letting
h := t

√
4A/(4 − At2), x0 := ±(1 − µ(h)), θ := min{1, 1/

√
2A}, and using monotonicity of the

moduli with respect to t).

Corollary 3.3. Let k ∈ N, α ≥ 0, β ≥ 0, A > 0, 0 < p ≤ ∞ and f ∈ Lα,β
p . Then, for any

0 < t ≤
√

2/A, we have

Ek( f, [1 − At2, 1])α,β,p ≤ cω∗ϕ

k,0( f, t)α,β,p ≤ cωϕ

k,0( f, t)α,β,p,

and

Ek( f, [−1, −1 + At2])α,β,p ≤ cω∗ϕ

k,0( f, t)α,β,p ≤ cωϕ

k,0( f, t)α,β,p,

where c depends on k, p, α, β and A.

Proof of Theorem 3.1. Theorem 3.1 follows from the classical (non-weighted) Whitney’s
inequality (see [2, Theorem 6.4.2 and Theorem 12.5.5]), which readily implies (see e.g.
[13, Sections 3.1 and 7.1]), for each interval J ⊂ [−1, 1], the existence of a polynomial pk ∈ Pk ,
such that

∥ f − pk∥L p(J ) ≤ cωk( f, |J |; J )p

≤ c
|J |

k−1+1/ min{1,p}

δk−1+1/ min{1,p}
ωk( f, δ; J )p, 0 < δ ≤ |J |, (3.2)

where |J | is the length of the interval J .
In order to prove Theorem 3.1, we assume, without loss of generality, that x0 ≥ 0, and denote

[a, b] := [x0 − hϕ(x0)/2, x0 + hϕ(x0)/2], Wp := ω
∗ϕ

k,0( f, θh)α,β,p,

Note that

1 − x ≤ 2(1 − x0) and 1 + x ≤ 2(1 + x0), x ∈ [a, b], (3.3)
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since x0 is the middle of [a, b], and so

ϕ(b) ≤ ϕ(x) ≤ 2ϕ(x0), for all x ∈ [a, b], (3.4)

where the first inequality is valid since |x | ≤ b (because x0 is assumed to be nonnegative).
We will consider two cases: (i) ϕ(x0) ≤ 2ϕ(b) and (ii) ϕ(x0) > 2ϕ(b).
In the case (i), x0 and [a, b] are “far away” from the endpoints of [−1, 1] and so wα,β(x) ∼

wα,β(x0), for all x ∈ [a, b]. This is a simpler case, and we can reduce the proof to the classical
non-weighted Whitney’s inequality. The case (ii) is a bit more involved since the right endpoint
b is now “close to 1” (in fact, we will show that it is sufficient to assume that it is equal to 1),
and so the weight wα,β(x) is no longer equivalent to a constant over [a, b]. The idea of the proof
in this case is to consider the interval J := [a, b] ∩ [−b̃, b̃], where b̃ := 1 − (cθh)2 with some
small constant c depending only on k. Then, wα,β(x) ∼ wα,β(x0), for all x ∈ J , and the main
task remaining in this case is to show that a polynomial pk ∈ Pk that approximates f well on J
also approximates it with the right order on [a, b] \ J .

Case (i): ϕ(x0) ≤ 2ϕ(b).
Then, for all x ∈ [a, b],

1 − x0 ≤ ϕ2(x0) ≤ 4ϕ2(b) ≤ 4ϕ2(x) ≤ 8(1 − x) (3.5)

and

1 + x0 =
ϕ2(x0)
1 − x0

≤
4ϕ2(b)
1 − x0

≤
8ϕ2(x)
1 − x

= 8(1 + x). (3.6)

Note that (3.3), (3.5) and (3.6) imply that

wα,β(x0) ∼ wα,β(x) ≤ cWα,β

kτ (x), if x ± kτϕ(x)/2 ∈ [a, b]. (3.7)

Now, let J := [a, b] and δ := θhϕ(b), and note that

θ

2
|J | =

θ

2
hϕ(x0) ≤ δ ≤ θhϕ(x0) ≤ |J |. (3.8)

So, for p = ∞, we have

ωk( f, δ; J )∞ = sup
0<s≤δ

sup
x∈J

⏐⏐∆k
s ( f, x; J )

⏐⏐ = sup
0<τ≤δ/ϕ(b)

sup
x∈J

⏐⏐∆k
τϕ(b)( f, x; J )

⏐⏐
= sup

0<τ≤θh
sup
x∈J

⏐⏐∆k
τϕ(b)( f, x; J )

⏐⏐ ≤ sup
0<τ≤θh

sup
x∈J

⏐⏐∆k
τϕ(x)( f, x; J )

⏐⏐
≤ cw−1

α,β(x0) sup
0<τ≤θh

sup
x∈J

⏐⏐⏐Wα,β

kτ (x)∆k
τϕ(x)( f, x; J )

⏐⏐⏐
= cw−1

α,β(x0)W∞,

where in the last inequality we used (3.7).
If p < ∞, then it is well known (see e.g. [13, Lemma 7.2]) that

ωk( f, t; J )p
p ≤ c

1
t

∫ t

0

∫
J
|∆k

s ( f, x; J )|
p
dxds, 0 < t ≤ |J |/k.
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Hence, using (3.4) and (3.7) we have

cδωk( f, δ; J )p
p ≤

∫
J

∫ δ

0
|∆k

s ( f, x, J )|
p
dsdx

=

∫
J

∫ δ/ϕ(x)

0
ϕ(x)|∆k

τϕ(x)( f, x, J )|
p
dτdx

≤

∫
J

∫ θh

0
ϕ(x)|∆k

τϕ(x)( f, x, J )|
p
dτdx

≤ cw−p
α,β(x0)ϕ(b)

∫
J

∫ θh

0
|W

α,β

kτ (x)∆k
τϕ(x)( f, x, J )|

p
dτdx

≤ cw−p
α,β(x0)ϕ(b)

∫ θh

0

∫
Dkτ

|W
α,β

kτ (x)∆k
τϕ(x)( f, x)|

p
dxdτ

= cw−p
α,β(x0)θhϕ(b)W p

p .

Thus, for all 0 < p ≤ ∞, we have

ωk( f, δ; J )p ≤ cw−1
α,β(x0)Wp,

which, by virtue of (3.3), yieldswα,β( f − pk)


L p(J ) ≤ cwα,β(x0) ∥ f − pk∥L p(J ) ≤ cwα,β(x0)ωk( f, δ; J )p ≤ cWp,

and so the proof is complete in Case (i).

Case (ii): ϕ(x0) > 2ϕ(b).
We first note that, in this case, it suffices to assume that b = 1. Indeed, suppose that the

theorem is proved for all x̂0 and ĥ such that x̂0 + ĥϕ(x̂0)/2 = 1, and let x0 and h be such that
ϕ(x0) > 2ϕ(b) (recall that b = x0 + hϕ(x0)/2). We let x̂0 := x0 and ĥ := 2(1 − x0)/ϕ(x0) so that
x0 + ĥϕ(x0)/2 = 1. Now, since

1 − x0 =
ϕ2(x0)
1 + x0

>
4ϕ2(b)
1 + x0

= 4(1 − b)
1 + b
1 + x0

≥ 4(1 − b),

we have

hϕ(x0) = 2(b − x0) = 2(1 − x0) − 2(1 − b) > 3(1 − x0)/2.

Therefore, h ≤ ĥ ≤ 4h/3, and so

Ek( f, [x0 − hϕ(x0)/2, x0 + hϕ(x0)/2])α,β,p

≤ Ek( f, [x0 − ĥϕ(x0)/2, x0 + ĥϕ(x0)/2])α,β,p

≤ cω∗ϕ

k,0( f, θ1ĥ)α,β,p ≤ cWp,

where θ1 := 3θ/4.
Hence, for the rest of this proof, we assume that b = 1. Note that

b − a = hϕ(x0) = 2(1 − x0) = 2µ(h) ∈ [h2/2, h2]. (3.9)

Define

h̃ :=
θh
10k

, b̃ := 1 − h̃2 and J := [a, b] ∩ [−b̃, b̃].



K.A. Kopotun et al. / Journal of Approximation Theory 237 (2019) 96–112 105

Then x0 ∈ J , and, for all x ∈ J , we have
1 − x0

1 − x
≤

µ(h)

h̃2
< c,

1 + x0

1 + x
≤

2

max{h̃2, 1 + a}
≤

c
max{h2, 4 − h2}

< c, (3.10)

and, recalling (3.4),

ϕ(b̃) ≤ ϕ(x) ≤ 2ϕ(x0) ≤ cϕ(b̃).

We now let δ := θhϕ(b̃), note that

c|J | ≤ c(b − a) ≤ δ ≤ b − a ≤ c|J |,

and conclude using the same argument that was used in Case (i) and using (3.10) instead of (3.5)
and (3.6), that there is a polynomial pk ∈ Pk , such thatwα,β( f − pk)


L p(J ) ≤ cWp. (3.11)

So, to finish the proof in Case (ii) we have to show that, for the function g := f − pk , the
inequalitieswα,β g


L p[b̃,1] ≤ cWp. (3.12)

and, if a < −b̃,wα,β g


L p[a,−b̃] ≤ cWp. (3.13)

hold. We prove (3.12), the proof of (3.13) being similar and simpler, since a < −b̃ only holds
for “large” h (i.e., those h that are close to 2). More precisely,

a < −b̃ if and only if
θ2h2

100k2 +
4h2

4 + h2 > 2.

We let t ∈ [2h̃/
√

k, 4h̃/
√

k] be fixed for now, and denote by y = y(x) and yi = yi (x),
1 ≤ i ≤ k, the functions such that

y(x) + ktϕ(y(x))/2 = x and yi (x) := x − i tϕ(y(x)) = y(x) + (k/2 − i)tϕ(y(x)).

Note that functions y and yi are well defined (see remark after the statement of Lemma 2.1).
We now note that [b̃, 1] ⊂ [−1 + 2µ(kt), 1], since

− 1 + 2µ(kt) ≤ −1 + k2t2
≤ −1 + 16kh̃2

≤ 1 − h̃2
= b̃

and so Lemma 2.1 with δ = kt implies that, for all x ∈ [b̃, 1], 2/3 ≤ y′(x) ≤ 2, 1/3 ≤ y′

i (x) ≤ 3,
and

ϕ2(y(x)) ≤ (1 + x) (µ(kt) + 2(1 − x)) ≤ 2(µ(kt) + 2h̃2) ≤ k2t2
+ 4h̃2

≤ 25kh̃2. (3.14)

Additionally, note that

yi (x) ∈ J, x ∈ [b̃, 1] and 1 ≤ i ≤ k. (3.15)

Indeed, since y(1) = 1 − µ(kt), we have, for x ∈ [b̃, 1],

yi (x) ≤ y1(x) ≤ y1(1) = 1 − tϕ(y(1)) = 1 − 2µ(kt)/k ≤ 1 − kt2/2 ≤ 1 − 2h̃2 < b̃,

and, using (3.14) and (3.9),

yi (x) ≥ yk(x) ≥ yk(b̃) = b̃ − ktϕ(y(b̃)) ≥ 1 − h̃2
− 5k3/2t h̃ ≥ 1 − 21kh̃2

≥ max{−1 + h̃2, a},
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which yields (3.15). Note also that (3.14) and inequalities t ≤ 4h̃/
√

k and h̃ ≤ (5k)−1 imply that
1 + y(x) ≥ 3ktϕ(y(x))/2, for x ∈ [b̃, 1].

Hence,

wα,β(x) = wα,β (y(x) + ktϕ(y(x))/2) ≤ 2βwα,β(yi (x)), x ∈ [b̃, 1],

and using (3.15) and (3.11) we get, for 0 < p < ∞,wα,β g(yi )


L p[b̃,1] ≤ 2β
wα,β(yi )g(yi )


L p[b̃,1] ≤ c

wα,β(yi )g(yi )(y′

i )
1/p


L p[b̃,1]

≤ c
wα,β g


L p(J ) ≤ cWp.

If p = ∞, then similar (and, in fact, simpler) arguments yield

∥wα,β g(yi )∥L∞[b̃,1] ≤ cW∞, 1 ≤ i ≤ k.

Now, for x ∈ [b̃, 1],

g(x) = ∆k
tϕ(y(x))(g, y(x)) −

k−1∑
i=0

(−1)k−i
(

k
i

)
g
(

y(x) + (i −
k
2

)tϕ(y(x))
)

= ∆k
tϕ(y(x))(g, y(x)) −

k∑
i=1

(−1)i
(

k
i

)
g (yi (x)) ,

and so

∥wα,β g∥L p[b̃,1] ≤ c
wα,β∆

k
tϕ(y)(g, y)


L p[b̃,1]

+ c
k∑

i=1

(
k
i

)wα,β g(yi )


L p[b̃,1]

≤ c
wα,β∆

k
tϕ(y)(g, y)


L p[b̃,1]

+ cWp

≤ c
Wα,β

tk (y)∆k
tϕ(y)(g, y)


L p[b̃,1]

+ cWp

≤ c
Wα,β

tk ∆k
tϕ(g, ·)


L p(Dkt )

+ cWp.

This completes the proof in the case p = ∞. If p < ∞, then integrating with respect to t over
[2h̃/

√
k, 4h̃/

√
k] we getwα,β g
p

L p[b̃,1] ≤
c

h̃

∫ 4h̃/
√

k

2h̃/
√

k

Wα,β

tk ∆k
tϕ(g, ·)

p

L p(Dkt )
dt + cW p

p ≤ cW p
p .

The proof is now complete. □

We now prove a Whitney-type result for functions from f ∈ Br
p(wα,β), r ∈ N.

Theorem 3.4. Let k ∈ N, r ∈ N, 1 ≤ p ≤ ∞, and let α, β ∈ Jp be such that r/2 + α ≥ 0 and
r/2 + β ≥ 0. If f ∈ Br

p(wα,β), then for any θ ∈ (0, 1],

Ek+r ( f )α,β,p ≤ cωϕ

k,r ( f (r ), θ)α,β,p. (3.16)

Proof. Note that f ∈ Br
p(wα,β) implies that f (r )

∈ Lr/2+α,r/2+β
p , and so it follows from (3.1) that

Ek( f (r ))r/2+α,r/2+β,p ≤ cωϕ

k,0( f (r ), θ)r/2+α,r/2+β,p = cWr,p,

where Wr,p := ω
ϕ

k,r ( f (r ), θ)α,β,p.
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Let P̃k ∈ Pk be a polynomial such thatwr/2+α,r/2+β( f (r )
− P̃k)


p

< cWr,p,

and define Pk+r ∈ Pk+r by

Pk+r (x) := f (0) +
f ′(0)
1!

x + · · · +
f (r−1)(0)
(r − 1)!

xr−1
+

1
(r − 1)!

∫ x

0
(x − u)r−1 P̃k(u)du.

Assuming that x ≥ 0 (for x < 0 all estimates are analogous), we have by Hölder’s inequality

(r − 1)! | f (x) − Pk+r (x)|

≤

∫ x

0
(x − u)r−1

⏐⏐⏐ f (r )(u) − P̃k(u)
⏐⏐⏐ du

=

∫ x

0

(x − u)r−1

wr/2+α,r/2+β(u)
wr/2+α,r/2+β(u)| f (r )(u) − P̃k(u)|du

≤ cAq (x)Wr,p,

where q := p/(p − 1),

Aq (x) :=

(∫ x

0

(
(x − u)r−1

wr/2+α,r/2+β(u)

)q

du

)1/q

, if q < ∞,

and

A∞(x) := sup
u∈[0,x]

(
(x − u)r−1

wr/2+α,r/2+β(u)

)
.

Now, since

(x − u)r−1

wr/2+α,r/2+β(u)
≤

(x − u)r−1

(1 − u)r/2+α
≤ (1 − u)r/2−α−1,

we have

Aq
q (x) ≤

∫ x

0
(1 − u)q(r/2−α−1)du and A∞(x) ≤ sup

u∈[0,x]
(1 − u)r/2−α−1.

If q < ∞ and q(r/2 − α − 1) > −1, then

Aq
q (x) ≤

∫ 1

0
(1 − u)q(r/2−α−1)du = c,

which yields

∥ f − Pk+r∥L∞[0,1] ≤ cWr,p,

and hence

∥wα,β( f − Pk+r )∥L p[0,1] ≤ cWr,p∥wα,β∥L p[0,1] ≤ cWr,p, (3.17)

where we used the fact that α ∈ Jp. Similarly, (3.17) holds if q = ∞ (p = 1) and r/2−α−1 ≥ 0.
If q < ∞ and q(r/2 − α − 1) < −1, then

Aq
q (x) ≤ c(1 − x)q(r/2−α−1)+1,

and so, recalling that x ≥ 0, we have

wα,β(x)Aq (x) ≤ c(1 − x)r/2−1/p.
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Hence,

∥wα,β( f − Pk+r )∥L p[0,1] ≤ c∥wα,β Aq∥L p[0,1]Wr,p ≤ cWr,p. (3.18)

Similarly, one shows that (3.18) holds if q = ∞ (p = 1) and r/2 − α − 1 < 0.
It remains to consider the case q < ∞ and q(r/2 − α − 1) = −1. We have

Aq
q (x) ≤

∫ x

0
(1 − u)−1du = c|ln(1 − x)|,

and so

wα,β(x)Aq (x) ≤ c(1 − x)α|ln(1 − x)|1/q .

For p < ∞, since αp > −1, we havewα,β Aq
p

L p[0,1] ≤ c
∫ 1

0
(1 − x)αp

|ln(1 − x)|p−1dx < c.

Finally, if p = ∞, then q = 1 and α = r/2 > 0, and so
wα,β A1


L∞[0,1] < c. Hence, (3.18)

holds in this case as well.
Similarly, one shows that

∥wα,β( f − Pk+r )∥L p[−1,0] ≤ cWr,p,

and the proof is complete. □

4. Direct estimates: proof of Theorems 1.4 and 1.5

The following lemma is [10, Corollary 4.4] with r = 0.

Lemma 4.1. Let k ∈ N, α ≥ 0, β ≥ 0 and f ∈ Lα,β
p , 0 < p ≤ ∞. Then, there exists N ∈ N

depending on k, p, α and β, such that for every n ≥ N and 0 < ϑ ≤ 1, there is a polynomial
Pn ∈ Pn satisfyingwα,β( f − Pn)


p ≤ cω∗ϕ

k,0( f, ϑ/n)α,β,p ≤ cωϕ

k,0( f, ϑ/n)α,β,p,

and

n−k
wα,βϕk P (k)

n


p ≤ cω∗ϕ

k,0( f, ϑ/n)α,β,p ≤ cωϕ

k,0( f, ϑ/n)α,β,p,

where constants c depend only on k, p, α, β and ϑ .

Proof of Theorem 1.4. Estimate (1.5) immediately follows from Lemma 4.1 for n ≥ N . For
k ≤ n < N , (1.5) follows from Corollary 3.2 with θ := ϑ/N , since

En( f )α,β,p ≤ Ek( f )α,β,p ≤ cωϕ

k,0( f, ϑ/N )α,β,p ≤ cωϕ

k,0( f, ϑ/n)α,β,p. □

Remark 4.2. In the case 1 ≤ p ≤ ∞, it was shown by Ky [11, Theorem 4] (see also Luther and
Russo [12]) that if α, β ≥ 0, then

En( f )α,β,p ≤ cωk
ϕ( f, 1/n)wα,β ,p , n ≥ n0. (4.1)

By virtue of [10, Corollary 1.7 and (5.2)], we have, for 1 ≤ p ≤ ∞,

ω
ϕ

k,r ( f (r ), t)α,β,p ∼ ωk
ϕ( f (r ), t)wα,βϕr ,p, 0 < t ≤ t0. (4.2)
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Thus, in the case 1 ≤ p ≤ ∞, (1.5) with n ≥ n0 follows from (4.1). We also remark that, even
though (4.1) was stated with n0 = k in [11], the proof used [3, Theorem 6.1.1] where 0 < t ≤ t0,
and so was only justified for sufficiently large n.

Proof of Theorem 1.5. The case r = 0 is Theorem 1.4. Thus we may assume that r ≥ 1. It
follows by [3, Theorem 8.2.1 and (6.3.2)] that, for n ≥ n0,

En( f )α,β,p ≤ c
∫ 1/n

0
(Ω k+r

ϕ ( f, t)wα,β ,p/t)dt (4.3)

≤ c
∫ 1/n

0
tr−1Ω k

ϕ ( f (r ), t)wα,βϕr ,p dt

≤
c
nr

Ω k
ϕ ( f (r ), 1/n)wα,βϕr ,p ≤

c
nr

ωk
ϕ( f (r ), 1/n)wα,βϕr ,p ,

where the main-part modulus Ωm
ϕ is defined in [3, (8.1.2)]. Hence, (1.5) follows by (4.2). For

k + r ≤ n < n0, (1.5) immediately follows from Theorem 3.4 with θ := 1/n0, as above. This
completes the proof. □

5. Inverse theorem: proof of Theorem 1.6

We first prove this theorem in the case r ≥ 1.
For the proof we need the following fundamental inequality (see [4,14] as well as [3, (8.1.3)]):

given α, β ∈ Jp, 1 ≤ p ≤ ∞, we havewα,βϕr p(r )
n


p ≤ c(r, p, α, β)nr

wα,β pn


p , pn ∈ Pn. (5.1)

Let f ∈ Lα,β
p and let Pn ∈ Pn be a polynomial of best approximation of f in Lα,β

p . That is,
En( f )α,β,p = ∥wα,β( f − Pn)∥p, n ≥ 1.

Throughout the proof, we often use the estimate
m∑

j=l

(2 j N )ν E2 j N ( f )α,β,p (5.2)

≤ (1 + 2ν)
m−1∑
j=l

(2 j N )ν E2 j N ( f )α,β,p

≤ (1 + 2ν)2ν

m−1∑
j=l

2 j N∑
n=2 j−1 N+1

nν−1 En( f )α,β,p

= (1 + 2ν)2ν

2m−1 N∑
n=2l−1 N+1

nν−1 En( f )α,β,p,

where ν ≥ 1 and 1 ≤ l < m, which is also valid if m = ∞.
We represent f as the telescopic series

f = Pk+r + (PN − Pk+r ) +

∞∑
j=0

(
P2 j+1 N − P2 j N

)
=: Pk+r + Q +

∞∑
j=0

Q j . (5.3)

Since

∥wα,β Q j∥p ≤
wα,β(P2 j+1 N − f )


p +

wα,β( f − P2 j N )


p ≤ cE2 j N ( f )wα,β ,p, (5.4)
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we have by virtue of (5.1) and (1.7), for each 1 ≤ ν ≤ r ,
∞∑
j=0

wα,βϕν Q(ν)
j


p

≤ c
∞∑
j=0

(2 j+1 N )ν E2 j N ( f )α,β,p

≤ cN ν EN ( f )α,β,p + c
∞∑

n=N+1

nν−1 En( f )α,β,p < ∞.

By the same argument as in the proof of [9, Theorem 9.1], it follows that almost everywhere
f (x) is identical with a function possessing an absolutely continuous derivative of order (r − 1)
and f (r )

∈ L p[−1 + ε, 1 − ε], for any ε > 0. In particular, differentiation of (5.3) is justified,
and f ∈ Br

p(wα,β).
By [10, Lemma 4.1], since r/2 + α ≥ 0 and r/2 + β ≥ 0, we have

ω
ϕ

k,r (Q(r )
j , t)α,β, p ≤ c

wα,βϕr Q(r )
j


p

and

ω
ϕ

k,r (Q(r )
j , t)α,β, p ≤ ctk

wα,βϕr+k Q(r+k)
j


p
.

Hence, by (5.1) and (5.4) we obtain

ω
ϕ

k,r

(
Q(r )

j , t
)
α,β,p ≤ c(2 j+1 N )r

wα,β Q j


p ≤ c(2 j N )r E2 j N ( f )α,β,p

and

ω
ϕ

k,r

(
Q(r )

j , t
)
α,β,p ≤ ctk(2 j+1 N )r+k

wα,β Q j


p ≤ ctk(2 j N )r+k E2 j N ( f )α,β,p.

Denoting J := min{ j ∈ N0 : 2− j
≤ Nt} (note that 2−J

≤ Nt < 2−J+1 if J ≥ 1, and Nt ≥ 1
if J = 0) we now have by (5.2)

ω
ϕ

k,r

( ∞∑
j=J+1

Q(r )
j , t

)
α,β,p

≤ c
∞∑

j=J+1

ω
ϕ

k,r

(
Q(r )

j , t
)
α,β,p (5.5)

≤ c
∞∑

j=J+1

(2 j N )r E2 j N ( f )α,β,p

≤ c
∞∑

n=2J N+1

nr−1 En( f )α,β,p

≤ c
∑

n>max{N ,1/t}

nr−1 En( f )α,β,p,

since 2J N + 1 > max{N , 1/t}. Now, if J ≥ 2, then (5.2) implies

ω
ϕ

k,r

( J∑
j=0

Q(r )
j , t

)
α,β,p

≤ ctk
J∑

j=0

(2 j N )r+k E2 j N ( f )α,β,p (5.6)

≤ ctk N r+k EN ( f )α,β,p + ctk
2J−1 N∑
n=N+1

nr+k−1 En( f )α,β,p

≤ ctk N r+k EN ( f )α,β,p + ctk
∑

N≤n≤max{N ,1/t}

nk+r−1 En( f )α,β,p,
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where we used the fact that 2J−1 N ≤ max{N , 1/t}. If J = 0 or 1, then we have

ω
ϕ

k,r

( J∑
j=0

Q(r )
j , t

)
α,β,p

≤ ctk N r+k EN ( f )α,β,p,

and so the last estimate in (5.6) is valid in this case as well.
Finally, if N ≥ k + r , then

ω
ϕ

k,r (P (r )
k+r + Q(r ), t)α,β,p = ω

ϕ

k,r (Q(r ), t)α,β,p ≤ ctk
wα,βϕk+r Q(k+r )


p (5.7)

≤ ctk N r+k
wα,β Q


p ≤ ctk N r+k Ek+r ( f )α,β,p,

and if N < k + r , then ω
ϕ

k,r (P (r )
k+r + Q(r ), t)α,β,p = 0, so that we do not need (5.7).

Combining (5.5)–(5.7) and using the fact that, if N ≥ k + r , then EN ( f )α,β,p ≤ Ek+r ( f )α,β,p

and, if N < k + r , then the first term in the last inequality in (5.6) can be absorbed by the second
term in that inequality, we obtain (1.8), and our proof is complete in the case r ≥ 1.

Suppose now that r = 0. We represent f as

f = Pk + Q +

J∑
j=0

Q j +
(

f − P2J+1 N

)
, (5.8)

where Q := PN − Pk and Q j := P2 j+1 N − P2 j N , and estimate the last term. We havewα,β( f − P2J+1 N )


p ≤ cE2J+1 N ( f )α,β,p,

and in the case J = 0 or 1, we use the fact that Nt ≥ c, to conclude

E2J+1 N ( f )α,β,p ≤ EN ( f )α,β,p = N k tk(Nt)−k EN ( f )α,β,p ≤ c(N )tk EN ( f )α,β,p.

If J ≥ 2, we recall that 2J−1 N < 1/t ≤ 2J N , so that max{N , 1/t} = 1/t , and write

E2J+1 N ( f )α,β,p ≤ (2J−2 N )−1
2J−1 N∑

n=2J−2 N+1

En( f )α,β,p

≤ (2J−2 N )−k
2J−1 N∑

n=2J−2 N+1

nk−1 En( f )α,β,p

≤ 4k tk
∑

N≤n<1/t

nk−1 En( f )α,β,p.

It now remains to apply (5.6) and (5.7) with r = 0, in order to complete the proof of (1.8) in the
case r = 0. □
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