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Abstract

We investigate the efficiency of the Thresholding Greedy Algorithm, by comparing it to optimal
“weighted” approximations. For a weight w, we describe w-greedy, w-almost-greedy, and w-partially-
greedy bases, and examine some properties of w-semi-greedy bases. To achieve these goals, we introduce
and study the w-Property (A).
c⃝ 2019 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we compare the error of the Thresholding Greedy Algorithm (TGA) with the
smallest error obtained by a “weighted” adaptive approximation. Throughout, (X, ∥·∥) is a real
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Banach space with a semi-normalized Schauder basis (or simply “basis”) B = (en)∞n=1, with
biorthogonal functionals (e∗

n)∞n=1 (see the precise definition in Section 2.1).
The Thresholding Greedy Algorithm (TGA) was introduced in [15]: for x ∈ X we produce

the sequence of greedy approximands

Gm(x) =

∑
k∈Am (x)

e∗

k (x)ek,

where Am(x) is a mth greedy set of x , that is, |Am(x)| = m and infk∈Am (x) |e∗

k (x)| ≥

supk /∈Am (x) |e
∗

k (x)|. A basis B is quasi-greedy [15] if there is a positive constant C such that

∥x − Gm(x)∥ ≤ C∥x∥, ∀x ∈ X, ∀m ∈ N. (1)

The quasi-greedy constant of B is the least C satisfying (1); henceforth it is denoted by Cq .
By [17], a basis is quasi-greedy if and only if the TGA converges for any x — that is,

lim
m→∞

∥x − Gm(x)∥ = 0, ∀x ∈ X.

A basis B is called greedy [15] if the TGA produces an “optimal” approximation, that is,
there exists a positive constant C so that

∥x − Gm(x)∥ ≤ C inf{∥x −

∑
n∈A

anen∥ : A ⊂ N, |A| = m, an ∈ R}, ∀x ∈ X, ∀m ∈ N. (2)

By [15], a basis B in a Banach space X is greedy if and only if it is democratic and
unconditional.

When defining the “greediness” of a basis, one compares the greedy approximation error
with the smallest error of m-term approximation – that is, approximation supported on a subset
of N of cardinality m. In some practical situations, certain subsets of N are “more equal than
others”. Building on the earlier work [7,14] considers a weight w = (wi )∞i=1 ∈ (0, ∞)N. For
A ⊂ N, w(A) =

∑
i∈A wi denotes the w-measure of A. We define the error σw

δ (x) as

σw
δ (x,B)X = σw

δ (x) := inf{∥x −

∑
n∈A

anen∥ : |A| < ∞, w(A) ≤ δ, an ∈ R}.

Definition 1.1 ([14]). A basis B in a Banach space X is w-greedy if there exists a constant
C ≥ 1 such that

∥x − Gm(x)∥ ≤ Cσw
w(Am (x))(x), ∀x ∈ X, ∀m ∈ N. (3)

We say that B is C-w-greedy, and denote by Cg the least constant that satisfies (3).

In this notation, being greedy corresponds to being w-greedy with w ≡ 1. Above, we
mention that a basis is greedy if and only if it is unconditional and democratic. We therefore
need a “weighted” notion of democracy. We use shorthand notation

1A =

∑
i∈A

ei , and 1εA =

∑
i∈A

εi ei ,

where A is a finite set and ε = (εn)n , with εn = ±1.

Definition 1.2 ([14]). A basis B in a Banach space X is w-democratic (w-superdemocratic)
if there exists a constant C ≥ 1 such that

∥1A∥ ≤ C∥1B∥, (resp. ∥1εA∥ ≤ C∥1ηB∥), (4)
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for any pair of finite sets A, B with w(A) ≤ w(B), and ε, η are sequences of ±1’s. We
say that B is C-w-(super)democratic, and denote by Cd (resp. Cs) the least constant that
satisfies (4).

Recently, several researchers became interested in w-greedy bases. A characterization of
w-greedy bases in terms of their unconditionality and w-democracy is given in [16]. In [4],
the first author and Ó. Blasco characterize w-greedy bases using the best m-term error in
the approximation “by polynomials with constant coefficients”, generalizing the proven result
in [5].

Of further interest are precise estimates on the greedy constant. By [9], even for w ≡ 1, the
w-democracy and unconditionality alone do not determine whether a given basis is w-greedy
with constant 1. In this setting, F. Albiac and P. Wojtaszczyk introduced in [2] the so called
Property (A) (defined below) in order to obtain finer estimate for the greedy constant Cg (and,
in particular, to characterize bases with Cg = 1). The results of [2] were further generalized
in [10]. Thus, in our setting, precise estimates for the greedy constant require a weighted version
of Property (A):

Definition 1.3. A basis B in a Banach space X satisfies the w-Property (A) if there exists a
constant C ≥ 1 such that

∥x + t1εA∥ ≤ C∥x + t1ηB∥, (5)

for any x ∈ X, for any pair of finite sets A, B such that w(A) ≤ w(B), A ∩ B = ∅,
supp (x) ∩ (A ∪ B) = ∅, for any ε, η ∈ {±1} and t ≥ sup j |e∗

j (x)|. We say that B has the
C-w-Property (A), and denote by Ca the least constant that satisfies (5).

The paper is structured as follows. In Section 2, we collect the necessary definitions and
facts (especially concerning Schauder bases). Section 3 is dedicated to examining one of our
main tools: the w-Property (A). We connect this property to others, used to study the TGA.
Democracy is handled in Section 3.3. Further, in Section 3.4 we introduce the Property (C)
(possessed by all quasi-greedy bases). Proposition 3.13 shows that w-superdemocracy and
Property (C) imply w-Property (A).

The main results of the paper are contained in Section 4. There, we describe w-greedy
and w-almost greedy bases in terms of their unconditionality (or being quasi-greedy) and
w-Property (A) (Theorems 4.1 and 4.3). The condition of being w-almost greedy is weaker than
w-greedy: instead of comparing the greedy approximand with all approximands of supported
on a set of bounded weight, we compare with approximands whose coefficients are identical
to those of x (see Definition 4.2).

In Section 5, we consider the w-semi-greedy bases – that is, the bases where the Chebyshev
greedy approximands are optimal. Theorem 5.2 shows that such bases necessarily possess the
w-Property (A).

In Section 6, we compare the efficiency of greedy approximation with that of the canonical
basis projections. This gives rise to the notion of an w-partially-greedy basis; such bases
are characterized in Theorem 6.4, using the property of being “w-conservative” (defined in
Section 6). The property of being w-conservative turns out to be strictly weaker than being
w-democratic (Proposition 6.10).

We freely use the standard “greedy” terminology. The reader can consult e.g. [16] for more
information.
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2. Definitions and notation

In this section, we review some common definitions, and introduce the necessary notation.

2.1. Properties of bases

Here we recall definitions pertaining to, and common properties of, bases. More specifically,
we equip our Banach space X with a sequence of its elements (en)n∈N, so that there exists a
sequence of biorthogonal elements e∗

n ∈ X∗ — that is, e∗

i (e j ) = δi, j . Further, we impose the
semi-normalization condition:

0 < c1 := inf
n

min{∥en∥, ∥e∗

n∥} ≤ sup
n

max{∥en∥, ∥e∗

n∥} =: c2 < ∞ (6)

If A is a finite subset of N, we define the coordinate projection PA: for x ∈ X, PA(x) =∑
j∈A e∗

j (x)e j . Pc
A = I − PA is the complementary projection. For m ∈ N, let Sm = P{1,...,m}

be the mth partial sum. We are assuming the basis is Schauder: limm ∥Sm(x) − x∥ = 0 for
any x ∈ X. The basis constant Kb = supm ∥Sm∥ is known to be finite.

The support of x ∈ X is defined via supp (x) = {i ∈ N : e∗

i (x) ̸= 0}.
Recall that a basis B in X is unconditional if any rearrangement of

∑
n e∗

n(x)en converges
in norm to x for any x ∈ X. This is equivalent to the existence of the constant K so that
∥x − PA(x)∥ ≤ K∥x∥ for any x ∈ X, and any finite A ⊂ N (actually, in this situation PA

makes sense even for infinite sets A). We denote by Ku the least constant K above, and call it
the (suppression) unconditionality constant. The basis B is then said to be Ku-(suppression)
unconditional.

The bases (ei ) and ( fi ) are called equivalent if there exists a constant C so that the inequality
C−1

∥
∑

i ai ei∥ ≤ ∥
∑

i ai fi∥ ≤ C∥
∑

i ai ei∥ holds for any finite sequence of scalars (ai ).

2.2. Other notation: sets and functions

The cardinality of a set A is denoted by |A|. If A and B are subsets of N, A < B means
that max j∈A j < min j∈B j . If a and b are functions of some variable, a ≲ b means that there
exists a constant c > 0 such that a ≤ c · b.

3. The w-Property (A)

The w-Property (A) (defined in Section 1) will be used throughout this paper. We start by
examining it closer.

3.1. Equivalent reformulations of the w-Property (A)

For further use, we need the following reformulation of the w-Property (A) (inspired by [1]).

Proposition 3.1. A basis B in a Banach space X has the Ca-w-Property (A) if and only if

∥x∥ ≤ Ca∥x − PA(x) + 1ηB∥, (7)

for any x ∈ X with sup j |e∗

j (x)| ≤ 1, A, B ⊂ N finite sets, w(A) ≤ w(B), B ∩ supp (x) = ∅

and η ∈ {±1}.

The proof requires a technical result.
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Lemma 3.2. Suppose D is a finite subset of N, and x ∈ X\{0} satisfies supp (x)∩D = ∅. Then,
for any ε > 0 there exists a finitely supported y ∈ X, so that ∥x − y∥ < ε, supp (y) ∩ D = ∅,
and max j |e∗

j (x)| = max j |e∗

j (y)|.

Proof. It suffices to consider ε < 1/(2c2). By scaling, we can assume that max j |e∗

j (x)| = 1
(then ∥x∥ ≥ 1/c2). Clearly PD(x) = 0, and Pc

D(x) = x . Now set δ = ε/(3c2
2∥x∥). As span [e j :

j ∈ N] is dense in X, there exists a finitely supported z ∈ X so that ∥x − z∥ < δ/∥Pc
D∥.

Let u = Pc
D(z), then ∥x − u∥ = ∥Pc

D(x − z)∥ < δ. For every j , |e∗

j (x − u)| < c2δ, hence
C = max j |e∗

j (u)| ∈ (1 − c2δ, 1 + c2δ). Now let y = u/C . Then max j |e∗

j (y)| = 1, and

∥x − y∥ ≤ ∥x − u∥ + |1 − C−1
|∥u∥ < δ +

c2δ

1 − c2δ
(∥x∥ + δ) < ε. □

Proof of Proposition 3.1. By Lemma 3.2, it suffices to restrict our attention to finitely
supported vectors x ∈ X only. So, throughout this proof, we assume |supp (x)| < ∞.

Suppose that B has the Ca-w-Property (A), and x, A, B, ε, η are as in the statement of the
proposition with sup j |e∗

j (x)| ≤ 1. Applying the definition of w-Property (A) to PAc x , A, and
B, we obtain

∥PAc (x) + 1εA∥ ≤ Ca∥PAc (x) + 1ηB∥ = Ca∥x − PA(x) + 1ηB∥.

To finish the proof, observe that x belongs to the convex hull of the set
{

PAc (x) + 1εA
}

ε∈{±1}
.

Now, suppose (7), and prove that the basis B has the w-Property (A) with the same constant.
Take x ∈ X with sup j |e∗

j (x)| ≤ 1, A, B finite sets such that w(A) ≤ w(B), A ∩ B = ∅,
supp (x) ∩ (A ∪ B) = ∅ and ε, η ∈ {±1}. Define x ′

= x + 1εA. Using (7),

∥x + 1εA∥ = ∥x ′
∥ ≤ Ca∥x ′

− PA(x ′) + 1ηB∥ = Ca∥x + 1ηB∥. □

Remark 3.3. In this paper, we focus on the situation when B is a Schauder basis. However,
the w-Property (A) can be defined for a more general context, as for example Markushevich
systems; the proof of Proposition 3.1 goes through as well. Also, the following four statements
are equivalent:

(a) B satisfies the w-Property (A) (see Definition 1.3).
(b) There exists a constant C so that ∥x∥ ≤ C∥x − PA(x) + t1ηB∥ for any η ∈ {±1}, x ∈ X,

A, B finite sets such that B ∩ supp (x) = ∅, w(A) ≤ w(B) and t ≥ sup j |e∗

j (x)|.
(c) There exists a constant C ′ so that ∥x + s1εA∥ ≤ C ′

∥x + s1ηB∥ for any x ∈ X, A, B finite
sets such that w(A) ≤ w(B), A ∩ B = ∅, supp (x) ∩ (A ∪ B) = ∅, ε, η ∈ {±1} and
s = sup j |e∗

j (x)|.
(d) There exists a constant C ′′ so that ∥x∥ ≤ C ′′

∥x − PA(x)+s1ηB∥ for any x ∈ X, η ∈ {±1},
A, B finite sets such that B ∩ supp (x) = ∅, w(A) ≤ w(B) and s = sup j |e∗

j (x)|.

Indeed, the implications (a) ⇒ (c) and (b) ⇒ (d) (with C ′′
= C) are immediate. The

equivalence (a) ⇔ (b) (with the same constant) has been established in Proposition 3.1. Minor
adjustments to that argument give us (c) ⇔ (d).

To establish (d) ⇒ (b), take x, A, B, η as in (b) and t ≥ sup j |e∗

j (x)|. As before, we can
assume that x is finitely supported. Find k so that |e∗

k (x)| = sup j |e∗

j (x)|. By replacing x by
−x if necessary, we can assume s = e∗

k (x) ≥ 0. Let c = t − s, and consider

x ′
= x + cek =

∑
j∈supp (x)\{k}

e∗

j (x)e j + tek .
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Note that ∥x − x ′
∥ ≤ cc2 ≤ tc2. Furthermore, x ′

− PA(x ′) equals either x − PA(x) (if k ∈ A),
or x − PA(x) + cek (if k /∈ A). In either case,

∥x − PA(x) + t1ηB∥ ≥ ∥x ′
− PA(x ′) + t1ηB∥ − tc2.

By (d), we have ∥x ′
∥ ≤ C ′′

∥x ′
− PA(x ′) + t1ηB∥. By the above,

∥x∥ − tc2 ≤ C ′′(∥x − PA(x) + t1ηB∥ + tc2)

As ∥x − PA(x) + t1ηB∥ ≥ tc−1
2 , we conclude that ∥x∥ ≤ (C ′′

+ 2c2
2)∥x − PA(x) + t1ηB∥.

3.2. Equivalent weights

We show that the w-Property (A) is preserved under a “bounded perturbation” of the
weight w.

Definition 3.4. We say that the weights v = (vn)∞n=1 and w = (wn)∞n=1 are equivalent (v ≈ w)
if there exist 0 < a ≤ b < ∞ so that avn ≤ wn ≤ bvn for any n ∈ N.

Proposition 3.5. Let v, w be weights and suppose that v ≈ w. Then every basis in a Banach
space X with the w-Property (A) also has the v-Property (A).

Proof. Let x ∈ X with |supp (x)| < ∞ and sup j |e∗

j (x)| ≤ 1, A and B finite satisfying
v(A) ≤ v(B), A ∩ B = ∅, supp (x) ∩ (A ∪ B) = ∅ and ε, η ∈ {±1}. We set

Γ = {n ∈ A : wn ≥ w(B)} .

Observe that

w(A) ≤ b · v(A) ≤ b · v(B) ≤
b
a

· w(B),

which gives us

w(A) ≥ w(Γ ) ≥ |Γ | · w(B) ≥ |Γ | ·
a
b

· w(A),

and hence |Γ | ≤ b/a. Next, we give the following partition of A \ Γ : A1 < · · · < Am , so that
for each i = 1, . . . , m, the set Ai is a maximal such that w(Ai ) ≤ w(B). Due to maximality,

w(B) < w(Ai ) + w(Ai+1) for all i = 1, . . . , m − 1.

Thus,

(m − 1) · w(B) <

m−1∑
i=1

[w(Ai ) + w(Ai+1)] < 2 · w(A \ Γ ) ≤ 2 · w(A) ≤
2b
a

· w(B).

This gives us

m ≤
2b
a

+ 1.

Hence, using the bounds of |Γ |, m and the condition of the w-Property (A) with constant
Ca ,

∥x + 1εA∥ ≤ ∥1εΓ∥ + ∥x +

m∑
i=1

1εAi ∥ ≤

∑
n∈Γ

∥en∥ +

m∑
i=1

∥
x
m

+ 1εAi ∥
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≤ c2
2|Γ |∥x + 1ηB∥ + Cam∥

x
m

+ 1ηB∥ ≤
c2

2b
a

∥x + 1ηB∥ + Ca∥x + m1ηB∥

≤
c2

2b
a

∥x + 1ηB∥ + Cam∥x + 1ηB∥ + Ca(m − 1)∥x∥

≤
c2

2b
a

∥x + 1ηB∥ + Cam∥x + 1ηB∥ + C2
a (m − 1)∥x + 1ηB∥

≤

(
c2

2b + (2b + a)C2
a

a

)
∥x + 1ηB∥. □

Remark 3.6. In a similar fashion, one can show that, if the weights w and v are equivalent,
then any w-democratic (w-superdemocratic, w-conservative – for the definitions, see below)
basis is also v-democratic (resp. v-superdemocratic or v-conservative).

Remark 3.7. The converse to Proposition 3.5 does not hold in general. For example, suppose
the weights w, v belong to ℓ1. By [13], the family of w-democratic (or v-democratic) bases
consists precisely of those bases which are equivalent to the canonical basis of c0. However,
w and v need not be equivalent.

3.3. Democracy-like properties

We show that the w-Property (A) is stronger than w-super-democracy (which, in turn, is
stronger than the w-democracy).

Proposition 3.8. If a basis B in a Banach space X has the Ca-w-Property (A), then B is
2Ca-w-superdemocratic.

The converse is not true: Example 3.15 presents a basis which is superdemocratic but fails
the Property (A).

Proof. Take two finite sets A, B with w(A) ≤ w(B), and show that, for any choice of
signs, ∥1ηA∥ ≤ 2Ca∥1εB∥. As in [6, Subsection 4.4], it is enough to prove our inequality
for ε ≡ 1 (otherwise, replace B = {en : n ∈ N} by {εnen : n ∈ N}). Since 1ηA ∈ 2S, where
S = {

∑
A′⊂A θA′1A′ :

∑
A′⊂A |θA′ | ≤ 1} (see [11, Lemma 6.4]), it suffices to show that

∥1A′∥ ≤ Ca∥1B∥, ∀A′
⊂ A.

Take A′
⊂ A. Obviously, 1A′ = 1A′\B + 1B∩A′ . Then, using the w-Property (A),

∥1A′∥ = ∥1A′\B + 1B∩A′∥ ≤ Ca∥1B\A′ + 1B∩A′∥ = Ca∥1B∥.

We can apply the w-Property (A) because

w(A′) = w(A′
\ B) + w(A′

∩ B) ≤ w(A) ≤ w(B) = w(B \ A′) + w(B ∩ A′)

⇒ w(A′
\ B) ≤ w(B \ A′).

This completes the proof. □

Remark 3.9. It is unknown if the factor of 2 can be removed in the above result.
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Improving [13, Proposition 4.5], we prove that, in certain cases, any w-superdemocratic
basis has to contain a subsequence equivalent to the canonical basis of c0 (c0-basis henceforth),
or even to be equivalent to such basis.

Proposition 3.10. Suppose that B = (en)∞n=1 is a Cs-w-superdemocratic basis in a Banach
space X.

(i) If A is finite and w(A) ≤ lim supn→∞ wn , then maxε∈{±1} ∥1εA∥ ≤ c2Cs .
(ii) If supn wn = ∞, then B is equivalent to the c0-basis.

(iii) If infn wn = 0, then there exist i1 < i2 < · · · so that the sequence (eik )k∈N is equivalent
to the c0-basis. Moreover, if limn wn = 0, then for any infinite set A ⊂ N we can select
i1, i2, . . . ∈ A with the properties described above.

(iv) If
∑

n wn < ∞, then B is equivalent to the c0-basis.

Proof. (i) Find n ∈ N\A so that wn > w(A), then ∥1εA∥ ≤ Cs∥1{n}∥ ≤ c2Cs .
(ii) By (i), ∥1εA∥ ≤ c2Cs for all choices of signs, which yields the desired equivalence.
(iii) Suppose E is an infinite subset of N so that infi∈N wi = 0 (if limi wi = 0, then any

infinite subset of N has this property). Find positive integers N < i1 < i2 < · · · so that
i1, i2, . . . ∈ E , and

∑N
j=1 w j >

∑
∞

k=N+1 wk . Let B = {1, . . . , N } and suppose A is a finite
subset of {i1, i2, . . .}. Then w(B) > w(A), hence, by the w-superdemocracy, ∥1εA∥ ≤ Cs∥1B∥

holds for any choice of signs ε. By convexity, the sequence ei1 , ei2 , . . . is equivalent to the
c0-basis.

(iv) The proof proceeds as in (iii); the key difference is that now, we find N ∈ N so that∑N
j=1 w j >

∑
∞

k=1 wk (that is, ik = k − N ). □

From this we immediately obtain:

Corollary 3.11. If the weight w is unbounded, then a basis has the w-Property (A) if and only
if it is equivalent to the canonical basis of c0.

3.4. Property (C)

The Property (C) (defined below) arises naturally in the study of quasi-greedy bases. It can
also be used to determine whether a given basis has the w-Property (A).

Definition 3.12. A basis B in a Banach space X satisfies the Property (C) if there exists a
positive constant C such that

min
j∈Λ

|e∗

j (x)|∥1εΛ∥ ≤ C∥x∥, (8)

for any x ∈ X, any greedy set Λ of x and ε ∈ {±1}. We denote by Cu the smallest constant C
that satisfies (8) and we say that B has the Cu-Property (C).

It is well known any quasi-greedy basis has Property (C) (see [6, Lemma 2.3]). General-
izing [6, Lemma 2.2], we prove that any w-superdemocratic basis with Property (C) has the
w-Property (A).

Proposition 3.13. If a basis B in a Banach space X is Cs-w-superdemocratic and sat-
isfies Property (C) with constant Cu , then B has the Ca-w-Property (A) with Ca ≤ 1 +

2CuCs .
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Proof. Take x, A, B, ε, η as in the definition of the w-Property (A) and assume that
sup j |e∗

j (x)| ≤ 1. Then,

∥x + 1εA∥ ≤ ∥x + 1ηB∥ + ∥1ηB∥ + ∥1εA∥. (9)

Using the w-superdemocracy and w(A) ≤ w(B), we obtain that ∥1εA∥ ≤ Cs∥1ηB∥. Now,
we only have to estimate ∥1ηB∥. For that, we consider the element y := x + 1ηB . It is clear
that 1ηB is a greedy sum for y, so

min
j∈B

|e∗

j (y)|∥1ηB∥ = ∥1ηB∥ ≤ Cu∥y∥ = Cu∥x + 1ηB∥. (10)

Then, using (9) and (10),

∥x + 1εA∥ ≤ ∥x + 1ηB∥ + 2CsCu∥x + 1ηB∥ = (1 + 2CsCu)∥x + 1ηB∥.

Hence, the basis has the w-Property (A) with constant Ca ≤ 1 + 2CuCs . □

Remark 3.14. We do not know whether the converse of Proposition 3.13 holds. More
specifically, the w-Property (A) implies the w-superdemocracy (see Proposition 3.8), however,
we do not know whether it necessarily implies the Property (C). The following example shows
that superdemocracy alone does not imply Property (C).

Example 3.15. Let X = ℓ1 ⊕ c0 and ∥(x, y)∥ = ∥x∥ℓ1 + ∥y∥∞. Let (en)n be the canonical
basis in ℓ1 and ( fm)m the canonical basis in c0. We define

E2n−1 =

(
1
2

en,
−1
2

fn

)
, E2n =

(
1
4

en,
3
4

fn

)
, n = 1, 2, . . . ,

and consider B = {En}n = {E2n−1, E2n}n . This basis is normalized. To establish superdemoc-
racy, we need a suitable lower estimate for ∥1εA∥. To this end, given a finite A ⊂ N, we
write

A1 = {k ∈ N : 2k ∈ A and 2k − 1 ∈ A},

A2 = {k ∈ N : 2k ∈ A and 2k − 1 ̸∈ A},

A3 = {k ∈ N : 2k ̸∈ A and 2k − 1 ∈ A}.

Observe that the sets A1, A2, A3 are mutually disjoint, and 2|A1| + |A2| + |A3| = |A|. For any
choice of signs,

∥1εA∥ = ∥

∑
k∈A1

ε2k E2k + ε2k−1 E2k−1 +

∑
k∈A2

ε2k E2k +

∑
k∈A3

ε2k−1 E2k−1∥

= ∥

∑
k∈A1

(
[
1
4
ε2k +

1
2
ε2k−1]ek, [

3
4
ε2k −

1
2
ε2k−1] fk

)
+

∑
k∈A2

ε2k(
1
4

ek,
3
4

fk) +

∑
k∈A3

ε2k−1(
1
2

ek, −
1
2

fk) ∥

≥

∑
k∈A1

|
1
4
ε2k +

1
2
ε2k−1| +

∑
k∈A2

1
4

+

∑
k∈A3

1
2
.

Therefore,

∥1εA∥ ≥
1
4
|A1| +

1
4
|A2| +

1
2
|A3| ≥

1
8
|A|,
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establishing the superdemocracy.
To witness the lack of Property(A), take

z =

N∑
i=1

2E2i −

N∑
i=1

E2i−1 and z′
=

N∑
i=1

2E2i+4N −

N∑
i=1

E2i−1.

Then ∥z∥ = ∥
∑N

i=1(0, 2 fi )∥ = 2, and

∥z′
∥ =


N∑

i=1

(
1
2

e2i+4N ,
3
2

fi

)
−

N∑
i=1

(
1
2

ei ,
−1
2

fi

) =
1
2

(2N + 3).

Thus, our basis fails Property(A). In light of Proposition 3.13, it fails Property (C) as well.

4. Characterization of w-greedy and w-almost-greedy bases

First we describe w-greedy bases in terms of their unconditionality and w-Property (A).

Theorem 4.1. Let B be a basis of a Banach space X.

(a) If B is Cg-w-greedy, then the basis is Ku-unconditional and has the Ca-w-Property (A)
with constants Ku ≤ Cg and Ca ≤ Cg .

(b) If B is Ku-unconditional and has the Ca-w-Property (A), then the basis is Cg-w-greedy
with Cg ≤ KuCa .

We next compare the rate of greedy approximation to x with that of approximation by
vectors whose coefficients “come from x”.

Definition 4.2 ([13]). A basis B in a Banach space X is w-almost-greedy if there exists a
constant C ≥ 1 such that

∥x − Gm(x)∥ ≤ C σ̃w
w(Am (x)), ∀x ∈ X, ∀m ∈ N, (11)

where

σ̃w
δ (x,B)X = σ̃w

δ (x) := inf{∥x − PA(x)∥ : |A| < ∞, w(A) ≤ δ}.

We say that B is C-w-almost-greedy, and denote by Cal the least constant that satisfies (11).

In the classical setting (w ≡ 1), [9] characterizes almost-greedy bases in terms of the
quasi-greediness and democracy. Recently, [13] proved that a basis is w-almost-greedy if and
only if it is quasi-greedy and w-democratic. However, these results leave open the question of
describing bases with Cal = 1. For instance, [2, Example 5.3] presents a (1-unconditional) basis
with quasi-greedy and superdemocracy constants equal to 1, yet Cal > 1. To remedy this, we
describe the w-almost-greediness of a basis in terms of its w-Property (A) and quasi-greediness.

Theorem 4.3. Let B be a basis of a Banach space X.

(a) If B is Cal-w-almost-greedy, then the basis is Cq -quasi-greedy and has the Ca-w-
Property (A) with constants Cq ≤ Cal and Ca ≤ Cal .

(b) If B is Cq -quasi-greedy and has the Ca-w-Property (A), then the basis is Cal-w-almost-
greedy with Cal ≤ CqCa .
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Remark 4.4. The theorems above show that max{Ku, Ca} ≤ Cg ≤ KuCa and max{Cq , Ca} ≤

Cal ≤ CqCa . One can observe that there is a gap between the upper and lower estimates for
Cg and Cal . It is an open problem whether this gap can be made more narrow.

Proof of Theorem 4.1. Assume that B is Cg-w-greedy.
Unconditionality: Let x ∈ X and A ⊂ supp (x). Define y := PAc (x) +

∑
n∈A(α + e∗

n(x))en ,
where

α > sup
j∈A

|e∗

j (x)| + sup
j∈Ac

|e∗

j (x)|.

As A is a greedy set of y,

∥x − PA(x)∥ = ∥y − PA(y)∥ ≤ Cgσ
w
w(A)(y) ≤ Cg∥y − α1A∥ = Cg∥x∥.

Thus, the basis is unconditional with constant Ku ≤ Cg .
w-Property (A): Fix x ∈ X and take t ≥ supn |e∗

n(x)|. Consider ε, η ∈ {±1} and finite
sets A, B such that A ∩ B = ∅, w(A) ≤ w(B), and (A ∪ B) ∩ supp (x) = ∅. Set
y := x + t1εA + (t + δ)1ηB with δ > 0. Hence,

∥x + t1εA∥ = ∥y − G|B|(y)∥ ≤ Cgσ
w
w(B)(y) ≤ Cg∥y − t1εA∥ = Cg∥x + (t + δ)1ηB∥.

Taking δ → 0, we obtain that the basis satisfies the w-Property (A) with constant Ca ≤ Cg .
Next we prove that if B is Ku-unconditional and has the Ca-w-Property (A), then it is

w-greedy.
Take x ∈ X and suppose that A is a greedy set of cardinality m for x ∈ X – that is,

PA(x) = Gm(x). For ε > 0 find y ∈ X such that ∥x − y∥ < σw
w(A)(x) + ε, with supp (y) = B

and w(B) ≤ w(A). Then, taking t := min{|e∗

j (x)| : j ∈ A} and η ≡ sgn {e∗

j (x)}, using the
reformulation of the w-Property (A) and [6, Lemma 2.5], we obtain that

∥x − Gm(x)∥ ≤ Ca∥x − PA(x) − PB\A(x) + t1η(A\B)∥ = Ca∥P(A∪B)c (x − y) + t1η(A\B)∥

= Ca∥Tt (I − PB)(x)∥ = Ca∥Tt (I − PB)(x − y)∥ ≤ KuCa∥x − y∥.

Consequently, for any greedy set A we have ∥x − PA(x)∥ ≤ KuCaσ
w
w(A)(x). □

Proof of Theorem 4.3. Assume that B is Cal-w-almost-greedy.
Quasi-greedy: Since

∥x − Gm(x)∥ ≤ Cal inf{∥x −

∑
n∈B

e∗

n(x)en∥ : w(B) ≤ w(Am(x)), |B| < ∞},

we can select B = ∅. Then, we obtain that ∥x − Gm(x)∥ ≤ Cal∥x∥, hence the basis is
quasi-greedy with constant Cq ≤ Cal .

w-Property (A): We can use the same argument as in Theorem 4.1.
Now, we will prove that if B is Cq -quasi-greedy and has the Ca-w-Property (A), then it is

w-almost-greedy.
For x ∈ X, let A be a greedy set of cardinality m. For ε > 0, find B such that

∥x − PB(x)∥ < σ̃w
w(A)(x) + ε, with w(B) ≤ w(A). Then, taking t := min{|e∗

j (x)| : j ∈ A}

and η ≡ sgn {e∗

j (x)}, using the reformulation of the w-Property (A) and [6, Lemma 2.5],

∥x − Gm(x)∥ ≤ Ca∥P(A∪B)c (x − y) + t1η(A\B)∥

= Ca∥Tt (I − PB)(x)∥ ≤ CqCa∥x − PB(x)∥.

This gives that, for any greedy set A, ∥x − PA(x)∥ ≤ CqCa σ̃w(A)(x) as desired. □
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5. w-semi-greedy bases

In this section we consider the efficiency of the Chebyshev Thresholding Greedy Algorithm
(see [8,12]) in the setting of weighted non-linear approximation (pioneered in the recent
paper [13]). For x ∈ X, m ∈ N, and a greedy set Am(x), we define the Chebyshev Greedy
Approximand of order m as any Gm(x) ∈ span{ei : i ∈ Am(x)} such that

∥x − Gm(x)∥ = min{∥x −

∑
n∈Am (x)

bnen∥ : bn ∈ R}.

Definition 5.1 ([13]). A basis B in a Banach space X is w-semi-greedy if there exists a constant
C ≥ 1 such that

∥x − Gm(x)∥ ≤ Cσw
w(Am (x))(x), ∀x ∈ X, ∀m ∈ N. (12)

We say that B is C-w-semi-greedy, and denote by Csg the least constant that satisfies (12).

Originally, the introduction of the Chebyshev Thresholding Greedy Algorithm was in [8]
where the authors wanted to study an enhancement of the TGA to improve the rate of
convergence. Also, for w ≡ 1, the authors proved that semi-greediness is equivalent to
almost-greediness for bases in Banach spaces with finite cotype. Recently, in [13], the authors
showed the same result using weights. However, in general, we do not have “if an only if”
characterizations of semi-greedy bases, in the spirit of Theorems 4.1 and 4.3. Below, we show
that w-semi-greediness implies the w-Property (A) (without any cotype assumptions).

Theorem 5.2. If a basis B in a Banach space X is w-semi-greedy, then B has the
w-Property (A).

Proof. Assume that ∥x − Gm(x)∥ ≤ Csgσ
w
w(Am (x)) for any x ∈ N and m ∈ N.

We take ε, η, A, B and x in the conditions of the definition of the w-Property (A). In all of
the following cases we consider x ∈ X such that |supp (x)| < ∞ and supn |e∗

n(x)| ≤ 1.
Case 1:

∑
∞

n=1 wn = ∞ and supn wn < ∞.
Case 1.1: w(B) > lim supn→∞ wn . Since

∑
n wn = ∞, we can choose E and n0 ∈ N with

min E > max(A ∪ B ∪ supp (x)) and n0 > max E such that

w(E) ≤ w(B) < w(E) + wn0 < 2w(B).

Set F := E ∪ {n0}. Then, w(E) ≤ w(B) < w(F) < 2w(B).
We define the element z := x + 1εA + (1 + δ)1F . For any scalar sequence ( fn)n∈F , we have

∥x + 1εA∥ ≤ Kb∥x + 1εA +
∑

n∈F fnen∥. As the basis B is w-semi-greedy with constant Csg ,
and w(A) ≤ w(B) < w(F), we conclude that

inf
fn

∥x + 1εA +

∑
n∈F

fnen∥ ≤ Csgσ
w
w(F)(z) ≤ Csg∥x + (1 + δ)1F∥.

Consequently, ∥x + 1εA∥ ≤ KbCsg∥x + (1 + δ)1F∥. Taking δ → 0,

∥x + 1εA∥ ≤ KbCsg∥x + 1F∥ ≤ KbCsg∥x + 1E∥ + KbCsg∥en0∥ (13)

≤ KbCsg∥x + 1E∥ + KbCsgc2

≤ KbCsg(∥x + 1ηB∥ + ∥1ηB∥ + ∥1E∥) + KbCsgc2.
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Now, we set y := 1ηB + (1 + δ)1F . Reasoning as before, we obtain

∥1ηB∥ ≤ Kb inf
cn

∥1ηB +

∑
n∈F

cnen∥ ≤ KbCsgσ
w
w(F)(y) ≤ KbCsg∥(1 + δ)1F∥.

Sending δ → 0, we obtain

∥1ηB∥ ≤ KbCsg∥1F∥ ≤ KbCsg∥1E∥ + KbCsgc2. (14)

On the other hand, taking s := x + (1 + δ)1ηB + 1E ,

∥1E∥ ≤ (Kb+1)∥x+

∑
n∈B

bnen+1E∥ ≤ Csg(Kb+1)σw
w(B)(s) ≤ Csg(Kb+1)∥x+(1+δ)1ηB∥.

Then, taking δ → 0,

∥1E∥ ≤ Csg(Kb + 1)∥x + 1ηB∥. (15)

Finally, using (13)–(15), the basis satisfies the w-Property (A) with constant K =

O(C3
sg K 3

b c2).
Case 1.2: w(A) ≤ w(B) ≤ lim supn→∞ wn . Using Proposition 4.5 of [13],

max{∥1εA∥, ∥1ηB∥} ≤ 2KbCsgc2.

Since 1 = |e∗

j (x + 1ηB)| ≤ ∥e∗

j∥∥x + 1ηB∥ ≤ c2∥x + 1ηB∥ for j ∈ B, then

∥x + 1εA∥ ≤ ∥x + 1ηB∥ + ∥1ηB∥ + ∥1εA∥

≤ ∥x + 1ηB∥ + 4KbCsgc2 ≤ (4KbCsgc2
2 + 1)∥x + 1ηB∥.

(16)

Case 2: If
∑

n wn < ∞ or supn wn = ∞, using Proposition 4.5 of [13], B is equivalent to
the canonical basis of c0 and the result is trivial. □

6. w-partially-greedy bases

Another way of estimating the efficiency of greedy approximation is to compare the
rate of convergence with straightforward Schauder approximation. To this end we consider
w-partially-greedy bases. In [9], the authors defined the partially-greedy bases as those
satisfying

∥x − Gm(x)∥ ≤ C∥x − Sm(x)∥, ∀x ∈ X, ∀m ∈ N,

for some absolute constant C . Moreover, they proved that B is partially-greedy if and only if
B is quasi-greedy and conservative (that is, ∥1A∥ ≲ ∥1B∥ for all pair of finite sets A, B such
that A < B and |A| ≤ |B|). Here, we present the notion of w-partially-greedy bases and we
characterize these bases using w-conservative bases.

Definition 6.1. We say that B is w-partially-greedy if for all m and r such that w({1, . . . , m})
≤ w(Ar (x)), there exists a positive constant C such that

∥x − Gr (x)∥ ≤ C∥x − Sm(x)∥, ∀x ∈ X. (17)

We say that B is C-w-partially-greedy, and denote by C p the least constant C for which (17)
holds.

Definition 6.2. We say that B is w-conservative if there exists a positive constant C such that
∥1A∥ ≤ C∥1B∥, for all pair of finite sets A, B such that A < B and w(A) ≤ w(B). We say
that B is C-w-conservative, and denote by Cc the least constant that satisfies this inequality.
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Remark 6.3. If w ≡ 1, we recover the classical definition of partially-greediness (resp. con-
servativeness), and we will say that B is partially-greedy (resp. conservative).

It is clear that any conservative basis is democratic; Proposition 6.10 shows the converse
need not be true.

Theorem 6.4. A basis B in a Banach space X is w-partially-greedy if and only if it is
quasi-greedy and w-conservative. Quantitatively,

Cc ≤ C p, Cq ≤ C p + C pc2
2 + c2

2, C p ≤ 2Cq + 8C3
q Cc.

Before the proof of this result, we need the following lemma.

Lemma 6.5. If a basis B in a Banach space X is Cc-w-conservative and Cq -quasi-greedy,
then

∥

∑
j∈A

a j e j∥ ≤ 4CqCc max
j∈A

|a j |∥1ηB∥,

for any sign η, any finite sets A, B such that w(A) ≤ w(B), A < B, and any collection of
scalars (a j ) j∈A.

Proof. We prove that ∥1εA∥ ≤ 4CqCc∥1ηB∥ for any signs ε and η. First, we can decompose
1εA = 1A+ − 1A− , where A±

= { j ∈ A : ε j = ±1}. Then,

∥1εA∥ ≤ ∥1A+∥ + ∥1A−∥ ≤ 2Cc∥1B∥.

Now, using the condition to be quasi-greedy, it is clear that ∥1B∥ ≤ 2Cq∥1ηB∥, then

∥1εA∥ ≤ 4CqCc∥1ηB∥.

Now, using convexity, we are done. □

Proof of Theorem 6.4. Assume that B is C p-w-partially-greedy.

(1) w-conservative: take A and B finite sets such that A < B and w(A) ≤ w(B). Let
m = max A and define the set D = [1, . . . , m] \ A. Of course,

w({1, . . . , m}) = w(A ∪ D) ≤ w(B ∪ D).

Define now x := 1A + (1 + δ)1B∪D . Then,

∥1A∥ = ∥x − G|B∪D|(x)∥ ≤ C p∥(1 + δ)1B∥.

Taking δ → 0, the basis is w-conservative.
(2) Quasi-greedy: here, we consider two cases.

(a) Suppose 1 /∈ Ar (x). Define

x̃ = te1 +

∞∑
i=2

e∗

i (x)ei = x + (t − e∗

1(x))e1, where t > max |e∗

i (x)|.

Then Ar+1(x̃) = Ar (x) ∪ {1}, and Gr+1(x̃) = te1 + Gr (x). Therefore,

x − Gr x = x̃ − Gr+1(x̃) + e∗

1(x)e1,

hence, by the triangle inequality,

∥x − Gr (x)∥ ≤ ∥x̃ − Gr+1(x̃)∥ + |e∗

1(x)|∥e1∥ ≤ ∥x̃ − Gr+1(x̃)∥ + c2
2∥x∥.
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We clearly have w({1}) ≤ w(Gr+1(x̃)), hence, due to the w-partially greedy
property,

∥x̃ − Gr+1(x̃)∥ ≤ C p∥

∞∑
i=2

e∗

i (x̃)ei∥ = C p∥x − e∗

1(x)e1∥ ≤ C p(1 + c2
2)∥x∥.

Consequently, ∥x − Gr x∥ ≤ (C p + C pc2
2 + c2

2)∥x∥.
(b) Now suppose 1 ∈ Ar (x). Define x̃ in the same way as above. Then Ar (x̃) = Ar (x),

and x̃ − Gr (x̃) = x − Gr (x). Consequently,

∥x −Gr (x)∥ = ∥x̃ −Gr (x̃)∥ ≤ C p∥

∞∑
i=2

e∗

i (x)ei∥ = C p∥x −e∗

1(x)e1∥ ≤ C p(1+c2
2)∥x∥.

Now, assume that B is Cc-w-conservative and Cq -quasi-greedy, and show that B is
w-partially-greedy. Take x ∈ X, m, and r as in the definition of w-partially-greedy, and consider
the sets

D := {ρ( j) : j ≤ r, ρ( j) ≤ m}, B := {ρ( j) : j ≤ r, ρ( j) > m}, A := [1, . . . , m] \ D,

where ρ is the greedy ordering. Then Ar (x) = B ∪ D, and w(A) = w({1, . . . , m}) − w(D) ≤

w(Ar (x)) − w(D) = w(B).

x − Gr (x) =

∞∑
i=m+1

e∗

i (x)ei − PB(x) + PA(x).

On the one hand, ∥PB(x)∥ ≤ 2Cq∥x − Sm(x)∥. On the other hand, using [9, Lemma 2.2] and
Lemma 6.5 with η ≡ sgn (e∗

j (x)),

∥PA(x)∥ ≤ 4CqCc max
A

|e∗

i (x)|∥1ηB∥ ≤ 4CqCc min
B

|e∗

i (x)|∥1ηB∥

≤ 8C2
q Cc∥PB(x)∥ ≤ 8C3

q Cc∥x − Sm(x)∥.

Then, ∥x − Gr (x)∥ ≲ C3
q Cc∥x − Sm(x)∥. □

Remark 6.6. The upper bound for C p from this theorem improves the estimate given [9,
Theorem 3.4] for the case w ≡ 1.

Remark 6.7. Note that if the inequality ∥x − Gr (x)∥ ≤ C∥x − Sm(x)∥ is satisfied for m and
r , then it is automatically satisfied – with a different constant – for any n < m and the same
r (since C∥x − Sm(x)∥ ≤ (1 + Kb)C∥x − Sn(x)∥ where Kb is the basis constant). So we only
need to check the condition in the definition of w-partially-greedy for the largest m satisfying
w([1, . . . , m]) ≤ w(Ar (x)).

As we have commented before, using the constant weight w ≡ 1, we recover the usual
definition of partially-greedy bases. Indeed, for w ≡ 1, the largest m satisfying the definition
is m = r , which recaptures the original definition of partially-greedy given in [9].

Under certain conditions on the weight w, a basis is automatically w-conservative.

Proposition 6.8. Let w be a weight and set

sw := sup
{

n ∈ N0 : there exist |A| = n and |B| < ∞

such that A < B and w(A) ≤ w(B)
}

.

Then sw < ∞ if and only if every seminormalized basis is w-conservative.
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Proof. (H⇒): Suppose sw < ∞. Let (en)∞n=1 be a seminormalized basis for a Banach space
X, and select two finite sets A, B such that A < B and w(A) ≤ w(B). Observe that
∥1A∥ ≤ c2 · |A| ≤ c2sw. It follows immediately that ∥1A∥ ≤ c2sw ≤ c2

2sw∥1B∥. Hence, (en)∞n=1
is (c2

2sw)-w-conservative.
(⇐H): Suppose sw = ∞. Let us inductively construct sequences of finite sets (An)∞n=1 and

(Bn)∞n=1 satisfying

A1 < B1 < A2 < B2 < A3 < B3 < · · · ,

and also satisfying |An| ≥ n and w(An) ≤ w(Bn) for all n ∈ N. Let us begin by selecting
A1 and B1 finite sets with |A1| = 1, A1 < B1, and w(A1) ≤ w(B1), which is possible as
sw ≥ 1. This is the base case; from now on, we proceed inductively. Since sw = ∞, we
may select Ân+1 ∈ N<∞ and Bn+1 ∈ N<∞ with | Ân+1| > n + max Bn , Ân+1 < Bn+1, and
w( Ân+1) < w(Bn+1). Now set An+1 = Ân+1 \ {1, . . . , max Bn} so that we have |An+1| > n,
An+1 < Bn+1, and w(An+1) < w(Bn+1). This completes the inductive step, and gives us our
intertwining sequences with the desired properties. We may now define a norm on c00 via the
rule

∥(an)∞n=1∥X = ∥(an)∞n=1∥∞ ∨ sup
k∈N

∑
n∈Ak

|an| ∀ (an)∞n=1 ∈ c00,

and denote by X the completion of c00 under this norm. It is clear that the standard
canonical basis for this space form a normalized 1-unconditional basis. However, it fails to
be w-conservative as ∥1Ak ∥X = |Ak | ≥ k whereas ∥1Bk ∥X = 1 for all k ∈ N. □

Proposition 6.9. Let w be a nonincreasing weight, i.e., wn+1 ≤ wn for all n ∈ N. Then every
conservative basis in a Banach space is w-conservative with the same constant.

Proof. Let (en)∞n=1 be a conservative basis in a Banach space X, and select any pair of finite
sets A, B satisfying both A < B and w(A) ≤ w(B). Now,

|A| · wmax A ≤ w(A) ≤ w(B) ≤ |B| · wmin B ≤ |B| · wmax A,

so that |A| ≤ |B|. □

We finish this section by proving that the condition of being w-conservative is strictly weaker
than w-democracy.

Proposition 6.10. Suppose the weight w = (wn) satisfies supn wn < ∞,
∑

n wn = ∞. Then
there exists a w-conservative unconditional basis which is not w-democratic.

The construction presented below appears to be new, even in the case of w ≡ 1.

Proof. By scaling, we can and do assume that supn wn = 1. For n ∈ N, let WN =

w1 + · · · + wN = w({1, . . . , N }). Define the family

S = {A ⊂ N : w(A) ≤
√

Wmin A−1}

(clearly this family is hereditary: membership passes to subsets). Let X be the completion of
c00 under the norm

∥(an)n∥ = max
{

sup
n

|an|, sup
C∈S

∑
n∈C

wn|an|

}
.
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Clearly the canonical basis of X is 1-unconditional and normalized. For future use, observe
that, for any finite set A,

∥1A∥ = max
{

1, sup
C∈S,C⊂A

w(C)
}
. (18)

Next show that our basis is w-conservative. Indeed, suppose A < B and w(A) ≤ w(B);
show that ∥1A∥ ≤ 2∥1B∥. The inequality is trivial if ∥1A∥ ≤ 2. Otherwise, find C ∈ S so that
w(C) = ∥1A∥ > 2. Find D ⊂ B so that w(D) ≥ B, but no subset of D satisfies this inequality.
Find C ′

⊂ D so that |D\C ′
| = 1. Then C ′

∈ S, and w(C ′) ≥ w(C) − 1, hence

∥1B∥ ≥ w(C ′) ≥ ∥1A∥ − 1 >
1
2
∥1A∥.

Finally, suppose, for the sake of contradiction, that our basis is w-democratic. Then there
exists a constant κ so that

∥1B∥ ≤ κ∥1A∥ whenever w(B) ≤ 2w(A). (19)

Take A = {1, . . . , N }, where N is so large that WN > 1. If C ∈ S is a subset of A, then
w(C) ≤

√
WN , hence ∥1A∥ ≤

√
WN .

Now find M > N so large that WM > (WN + 1)2. Let B = {M + 1, . . . , M + K },
where K is selected to satisfy WN ≤ w(B) ≤ WN + 1. Then B ∈ S, and hence, by (18),
∥1B∥ = w(B) ≥ WN . Invoke (19) to get κ ≥ ∥1B∥/∥1A∥ =

√
WN . As WN can be arbitrarily

large, we obtain the desired contradiction. □

Remark 6.11. The notion of being w-conservative strongly depends on the choice of the
weight w. [3, Section 6.3] provides an example of a w-greedy (hence w-conservative) basis
which is not conservative (hence not greedy).
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