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Abstract

A classical formula gives the blossom of the derivative of a polynomial function in terms of

its own blossom. We extend this result to the Chebyshevian framework.
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1. Introduction

How to compute the Bézier points of the derivative of a polynomial function from
its own Bézier points? How to compute the poles of the derivative of a spline from its
own poles? Here are examples of problems the solution of which are made very
elegant by using blossoms. Indeed, Bézier points as well as poles can be expressed in
terms of blossoms, and the blossom of the derivative is easy to derive from the
blossom of the polynomial function itself. Does there exist a similar result
concerning the derivatives in the Chebyshevian framework? This is the issue we
address in the present paper.
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First of all we shall briefly recall how things work in the polynomial setting. Given

a polynomial function P of degree less than or equal to n; with values in Rd ; its
blossom is the unique function p of n variables which is symmetric, n-affine (i.e.,
affine in each variable) on Rn; and which gives P by restriction to the diagonal
of Rn; i.e.,

pðt½n�Þ ¼ PðtÞ ; tAR; ð1:1Þ

where the notation t½k� stands for t repeated k times. Differentiating (1.1) and using
the symmetry and the multi-affinity of p; it is straightforward to calculate the
derivative of P; which provides us with the following classical result [8]:

P0ðtÞ ¼ n

y � x
½ pðt½n�1�; yÞ � pðt½n�1�; xÞ�; ð1:2Þ

where x; y denote any real numbers such that xay: As a polynomial of degree less

than or equal to ðn � 1Þ; P0 has a blossom, which we denote by pf1g: it is the unique
function of ðn � 1Þ variables which is symmetric, ðn � 1Þ-affine, and which gives P0

by restriction to the diagonal of Rn�1: Hence (1.2) readily leads to

pf1gða1;y; an�1Þ ¼
n

y � x
½ pða1;y; an�1; yÞ � pða1;y; an�1; xÞ�: ð1:3Þ

Again this equality is valid for any real numbers x; y; with xay:
The purpose of this paper is to extend formulae (1.2) and (1.3) to the

Chebyshevian framework, and this will be done in Section 3. Now, in the polynomial
setting, differentiation diminishes the degree, or, equivalently, the dimension of the
space we are working with, hence the number of variables in the blossoms. This is no
longer true in the general Chebyshevian setting, at least using the ordinary
differentiation. But, as is well known, with any extended Chebyshev space it is
possible to associate appropriate differential operators which, in this larger setting,
play the same role as the ordinary derivatives in polynomial spaces, whence the
expression ‘‘generalized derivatives’’ appearing in the title. A brief summary
concerning these generalized derivatives is given in Section 2, in which we also
recall how blossoms are defined, and how they can be calculated using the
generalized derivatives.

2. Preliminaries

We briefly present here all the tools about extended Chebyshev spaces and
Chebyshev blossoming which will be necessary in the following section. For further
acquaintance with these subjects, the reader can, for instance, refer to [1,2,9] and
[3,4,6,7], respectively.
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2.1. Extended Chebyshev spaces

Let En be an ðn þ 1Þ-dimensional space of CN functions on a given interval I with
a nonempty interior. Given a basis ðV0;y;VnÞ of En; we set VðtÞ :¼
ðV0ðtÞ;y;VnðtÞÞ for all tAI : Let us first recall that En is said to be an extended

Chebyshev space (EC) on I when any of its nonzero elements vanishes at most n times
on I ; counting multiplicities. Equivalently, it is an EC space on I iff any system

/X ;VðkÞðbiÞS ¼ ak
i ; 0pkpmi � 1; 1pipr; ð2:1Þ

has a unique solution, in which /: ; :S stands for the inner product of Rnþ1; b1;y; br

are pairwise distinct elements of I ; m1;y; mr are positive integers such that
Pr

i¼1 mi ¼
n þ 1; and the ak

i s are any real numbers.

Given n þ 1 weight functions w0;y;wn supposed to be CN and positive on I ; we
consider the differential operators L0;y;Ln defined on CNðIÞ as follows:

L0V :¼ 1

w0
V ; LiV :¼ 1

wi

ðLi�1VÞ0; i ¼ 1;y; n: ð2:2Þ

Denoting by D the ordinary derivative operator, it is known that the ðn þ 1Þ-
dimensional space En :¼ Ker D 3 Ln is then an extended Chebyshev space on I : We
shall denote it as ECðw0;y;wnÞ and we shall say that it is the extended Chebyshev
space associated with w0;y;wn: For instance, the extended Chebyshev space
associated with the weight functions w0 :¼ ? :¼ wn :¼ 1 is the space Pn of all
polynomials of degree less than or equal to n; i.e. Pn ¼ ECð1;y; 1|fflfflffl{zfflfflffl}

nþ1 times

Þ:

A given sequence of weight functions w0;y;wn actually yields a nested sequence
of EC spaces on I :

E0CE1C?CEn�1CEn ð2:3Þ

with

Ei :¼ Ker D 3 Li ¼ ECðw0;y;wiÞ; 0pipn: ð2:4Þ

From (2.2) it is easy to deduce that, for any bAI ; and any positive m; the m vectors
L0VðbÞ;y;Lm�1VðbÞ span the same linear subspace as the m vectors

VðbÞ;y;Vðm�1ÞðbÞ: Therefore, under the same assumptions as in (2.1), any system

/X ;LkVðbiÞS ¼ ak
i ; 0pkpmi � 1; 1pipr; ð2:5Þ

has a unique solution too. In this situation, also of interest are the following spaces:

Efig
n :¼ LiEn :¼ fLiV ; VAEng; 0pipn: ð2:6Þ

Due to the recursive definition of the operators L0;y;Ln; we clearly have

Efig
n ¼ ECð1;wiþ1;y;wnÞ; 0pipn: ð2:7Þ

Hence, (2.6) provides another (nonnested) sequence of EC spaces on the same
interval I :
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Note that, conversely, if the interval I is closed and bounded, any ðn þ 1Þ-
dimensional extended Chebyshev space on I ; is the space ECðw0;y;wnÞ for some
weight functions w0;y;wn (see [7]).

2.2. Blossoms in extended Chebyshev spaces

It is known that blossoms exist in any extended Chebyshev space. However,
defining them in the most general extended Chebyshev spaces requires to work in
projective spaces (see [7]). In order to obtain blossoms in the affine setting, we have
to particularize a little the spaces we are working with. For this reason, from now on
we shall consider a space En of CN functions on the interval I containing the
constants and such that the space DEn is an n-dimensional extended Chebyshev space
on I [3,4,6]. The space En itself is then automatically an ðn þ 1Þ-dimensional extended
Chebyshev space on I :

Select a basis ð1;F1;y;FnÞ in En; and set F :¼ ðF1;y;FnÞ : I-Rn: The
osculating flat of any order iX0 at a point tAI is the affine flat going through

FðtÞ and the direction of which is the linear space spanned by F0ðtÞ;y;FðiÞðtÞ: We
denote it by Osci FðtÞ: For any ipn its dimension is equal to i: In particular,
Osc0 FðtÞ ¼ fFðtÞg:

Given any distinct points t1;y; trAI and any positive integers m1;y; mr the sum
of which is equal to n; the intersection of the r osculating flats Oscn�mi

FðtiÞ; 1pipr;

consists of a single point. The blossom of F is then the function j :¼ ðj1;y;jnÞ :
In-Rn defined by setting:

fjðt1;y; tnÞg :¼
\r

i¼1

Oscn�mi
FðtiÞ; ð2:8Þ

whenever ðt1;y; tnÞAIn is equal to ðt½m1�1 ;y; t½mr�
r Þ up to a permutation. It is a

symmetric function and it satisfies the diagonal property

jðt½n�Þ ¼ FðtÞ for all tAI : ð2:9Þ
The third interesting property of the blossom j is that it is pseudoaffine with respect

to each variable. Let us explain what this means. For any ða1;y; an�1ÞAIn�1; equal

to ðb½m1�
1 ;y; b

½mr�
r Þ up to a permutation, with pairwise distinct bi’s and positive mi’s, the

affine flat D :¼
Tr

i¼1 Oscn�mi
FðbiÞ is an affine line. The function jða1;y; an�1; �Þ :

I-Rn takes its values in the line D and it is strictly monotone on I :
Blossoms in the space En are then defined as affine images of j; independently of

the initial choice of the ‘‘mother’’ function F: For instance ji is the blossom of Fi for
1pipn:

2.3. How to compute blossoms?

We need to say more about how to obtain the blossoms, that is about how to find
the function j: Let us first observe that in order to calculate the value of the blossom
j of F at a given n-tuple ðt1;y; tnÞAIn; we can limit ourselves to considering a
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closed bounded subinterval J of I containing the ti’s, and with a nonempty interior.
The restriction of DEnjJ of the space DEn to J can be written as DEnjJ ¼
ECðw1;y;wnÞ for some weight functions w1;y;wn defined on J; and therefore
EnjJ ¼ ECð1;w1;y;wnÞ:

For this reason, without loss of generality we shall assume in the rest of the paper
that En :¼ ECð1;w1;y;wnÞ with fixed weight functions w1;y;wn on I : For any tAI ;
and any ipn; the direction of the osculating flat Osci FðtÞ is then spanned by the i

vectors L1FðtÞ;y;LiFðtÞ as well, where the operators L1;y;Ln are still defined by
(2.2), but with now w0 :¼ 1; that is L0 ¼ Id: In particular, the direction orthogonal to
the affine hyperplane Oscn�1 FðtÞ is given by the vector

L1FðtÞ4?4Ln�1FðtÞ;

where, for any V1;y;Vn�1ARn; we denote by V14?4Vn�1 the unique vector
which represents the linear functional XARn/detðX ;V1;y;Vn�1Þ: Note that, due
to (2.2) and to the equality En ¼ Ker D 3 Ln; we have

DLiF ¼ wiþ1Liþ1F; i ¼ 0;y; n � 1; DLnF ¼ 0: ð2:10Þ

As an immediate consequence, the number

d :¼ detðL1FðtÞ;y;LnFðtÞÞ ð2:11Þ

does not depend on the point tAI : To be convinced of this, just differentiate the
right-hand side of (2.11) and use (2.10). For any tAI ; let us introduce the following n

linearly independent vectors:

F½k�ðtÞ :¼ 1

d
L1FðtÞ4?4Lk�1FðtÞ4Lkþ1FðtÞ4?4LnFðtÞ; 1pkpn: ð2:12Þ

They satisfy

/LjFðtÞ;F½k�ðtÞS ¼ ð�1Þk�1 dj;k; tAI ; 1pj; kpn: ð2:13Þ

Another immediate consequence of (2.10) is that

DF½k�ðtÞ ¼ wkðtÞF½k�1�ðtÞ; 2pkpn; DF½1�ðtÞ ¼ 0; tAI : ð2:14Þ

Consider the weight functions

bwwi :¼ wnþ1�i; 1pipn � 1 ð2:15Þ

and the corresponding differential operators on CNðIÞ:

bLL0V :¼ V ; bLLiV :¼ 1bwwi

ðbLLi�1VÞ0; i ¼ 1;y; n � 1: ð2:16Þ

We can then write the equalities (2.14) asbLLkF½n� ¼ F½n�k�; 1pkpn � 1; DbLLn�1F½n� ¼ 0: ð2:17Þ

Accordingly, the n components F½n�
1 ;y;F½n�

n of F½n� are linearly independent on I ; and

they span the n-dimensional extended Chebyshev space bEEn :¼ ECð1;wn;wn�1;y;w2Þ:
We know that, for any tAI ; the vector F½n�ðtÞ spans the direction orthogonal to the

osculating hyperplane Oscn�1 FðtÞ: Consequently, for pairwise distinct t1;y; tnAI ;
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the calculation of the point X :¼ ðX1;y;XnÞ :¼ jðt1;y; tnÞ is done by solving the
linear system:

/X ;F½n�ðtiÞS ¼ /FðtiÞ;F½n�ðtiÞS; i ¼ 1;y; n: ð2:18Þ

More generally, according to (2.13), for 1pipn; each vector F½n�rþ1�ðtÞ ¼bLLr�1F½n�ðtÞ; 1prpi; is orthogonal to the ðn � iÞ vectors L1FðtÞ;y;Ln�iFðtÞ which
span the direction of Oscn�i FðtÞ: Hence, the i linearly independent vectors

F½n�iþ1�ðtÞ;y;F½n�ðtÞ form a basis of the linear subspace orthogonal to the direction

of Oscn�i FðtÞ: On this account, if now ðt1;y; tnÞ ¼ ðt½m1�1 ;y; t½mr�
r Þ; for pairwise

distinct tis and positive mis, the calculation of X :¼ ðX1;y;XnÞ :¼ jðt1;y; tnÞ must
be done by solving the system:

/X ;F½n�k�ðtiÞS ¼ /FðtiÞ;F½n�k�ðtiÞS; 0pkpmi � 1; 1pipr: ð2:19Þ

3. Generalized derivative formula

In this section, we assume that En ¼ ECð1;w1;y;wnÞ; with nX2: We now address
the problem of calculating the blossoms in the n-dimensional extended Chebyshev

space Ef1g
n ¼ L1En :¼ fL1V ; VAEng introduced in (2.6), from those in the space En:

From now on, U will stand for the following function

UðtÞ :¼
Z t

a

w1ðxÞ dx; ð3:1Þ

where a is any fixed point in I : Note that ð1;UÞ is a basis of the space E1 ¼ ECð1;w1Þ
introduced in (2.3). Due to the nestedness of the sequence (2.3), this function U is
also an element of the space En:

The following theorem is the central result of the present paper. It gives the
blossom of the generalized derivative of any element of the space En; and it is the
proper extension of formula (1.3) to the Chebyshevian framework.

Theorem 1. Let u denote the blossom of the function U defined in (3.1) viewed as an

element of En: Given a function FAEn; with blossom f ; the blossom f f1g of the function

L1FAEf1g
n is then given by:

f f1gða1;y; an�1Þ :¼
f ða1;y; an�1; yÞ � f ða1;y; an�1; xÞ
uða1;y; an�1; yÞ � uða1;y; an�1; xÞ; ð3:2Þ

where x; y are any two distinct points in I : Hence, in particular,

L1FðtÞ ¼ f ðt½n�1�; yÞ � f ðt½n�1�; xÞ
uðt½n�1�; yÞ � uðt½n�1�; xÞ; tAI : ð3:3Þ

Before proving the latter theorem, let us first check that formulae (3.2) and (3.3)
are indeed direct extensions of the polynomial ones (1.3) and (1.2), respectively. In
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the polynomial setting, w1 ¼ 1 and with a ¼ 0; the corresponding function U is
UðtÞ :¼ t: The blossom u of U viewed as an element of En ¼ Pn is given by

uða1;y; anÞ :¼
a1 þ?þ an

n
; a1;y; anAR:

Hence, uða1;y; an�1; yÞ � uða1;y; an�1; xÞ ¼ ðy � xÞ=n:
As pointed out by formula (3.2), the blossom u of U plays a fundamental role in

calculating the blossoms in the space Ef1g
n : We shall first focus on this function u:

Formula (3.2) cannot be consistent without the function uða1;y; an�1; �Þ being one-
to-one on I : We shall more precisely prove the following result.

Proposition 2. For any a1;y; an�1AI ; the function uða1;y; an�1; �Þ is strictly

increasing on I :

Let us first establish the following lemma.

Lemma 3. Given x; yAI ; with xoy; let

pkðx; yÞ :¼ uðx½n�k�; y½k�Þ; 0pkpn; ð3:4Þ

denote the Chebyshev–Bézier points of U (viewed as an element of En) w.r.t. ðx; yÞ:
They satisfy:

p0ðx; yÞop1ðx; yÞo?opnðx; yÞ: ð3:5Þ

Proof. Thanks to the nestedness of the sequence (2.3), for a given i; 1pipn; the
function U can also be viewed as an element of the ði þ 1Þ-dimensional EC space
Ei ¼ ECð1;w1;y;wiÞ; 1pipn: As so, it possesses a blossom, which is a function of

i variables. The values of this blossom at the i-tuples ðx½i�k�; y½k�Þ; 0pkpi; are the
Chebyshev–Bézier points (w.r.t. ðx; yÞ) of the function U viewed as an element of Ei:
Let us denote them

pi
kðx; yÞ; 0pkpi:

In particular, p1
0ðx; yÞ ¼ UðxÞ; p1

1ðx; yÞ ¼ UðyÞ; and pn
kðx; yÞ ¼ pkðx; yÞ for 0pkpn:

We just have to prove, by induction on i; that

pi
0ðx; yÞopi

1ðx; yÞo?opi
iðx; yÞ; ð3:6Þ

for 1pipn: For i ¼ 1; (3.6) simply results from the fact that U is strictly increasing

on I : On the other hand, it is known that, for 1pipn � 1; the points piþ1
k ðx; yÞ;

0pkpi þ 1; can be obtained from the points pi
kðx; yÞ; 0pkpi; by a dimension

elevation process, as follows (see [5,7]):

piþ1
0 ðx; yÞ ¼ pi

0ðx; yÞ;

piþ1
k ðx; yÞ ¼ ð1� ai

kÞpi
k�1ðx; yÞ þ ai

kpi
kðx; yÞ for 1pkpi;

piþ1
iþ1ðx; yÞ ¼ pi

iðx; yÞ
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with 0oai
ko1 for 1pkpi: Hence, if (3.6) is satisfied for a given i; 1pipn � 1; it is

automatically satisfied for i þ 1 too. &

Proof of Proposition 2. Choose a basis ð1;F1;y;FnÞ of the space En such that

F1 ¼ U ; and therefore u ¼ j1: Suppose that ða1;y; an�1Þ ¼ ðb½m1�
1 ;y; b

½mr�
r Þ with

pairwise distinct b1;y; brAI ; and positive integers m1;y; mr: From our recollections
in Section 2.2, we know that the point jða1;y; an�1; tÞmoves in a strictly monotonic

way on the affine line
Tr

i¼1 Oscn�mi
FðbiÞ: Therefore, each component

jkða1;y; an�1; �Þ of jða1;y; an�1; �Þ is either constant on I ; or strictly increasing
on I ; or strictly decreasing on I : Let us show that the first one, uða1;y; an�1; �Þ; is
strictly increasing.

(1) Let us first prove that uða1;y; an�1; �Þ is one-to-one on I : Given two points xay

in I ; let us set

X :¼ ðX1;y;XnÞ :¼ jða1;y; an�1; xÞ;

Y :¼ ðY1;y;YnÞ :¼ jða1;y; an�1; yÞ: ð3:7Þ

We thus have

X1 ¼ j1ða1;y; an�1; xÞ ¼ uða1;y; an�1; xÞ;

Y1 ¼ j1ða1;y; an�1; yÞ ¼ uða1;y; an�1; yÞ: ð3:8Þ

We know that XaY and what we actually have to prove is that X1aY1: Now,
according to (2.8), whether or not x; yAfb1;y; brg; the two points X and Y belong
to Oscn�mi

FðbiÞ; 1pipr: By (2.19), we thus have

/X ;F½n�k�ðbiÞS ¼/Y ;F½n�k�ðbiÞS

¼/FðbiÞ;F½n�k�ðbiÞS; 0pkpmi � 1; 1pipr:

Hence

/Y � X ;F½n�k�ðbiÞS ¼ 0; 0pkpmi � 1; 1pipr;

i.e., on account of (2.17)Xn

j¼2

ðYj � XjÞbLLkF
½n�
j ðbiÞ ¼ ðX1 � Y1ÞbLLkF

½n�
1 ðbiÞ; 0pkpmi � 1; 1pipr: ð3:9Þ

From (2.17) and (2.14), we know that

DbLLn�2F½n� ¼ DF½2� ¼ w2F½1�: ð3:10Þ

Now, due to our choice of F1 ¼ U ; the first component of each function
L2F;y;LnF is equal to 0. It therefore results from our definition (2.12) that all

components F½1�
k of F½1� are zero, except for that of index 1: Accordingly, (3.10)

proves that the functions F½n�
2 ;y;F½n�

n belong to Ker D 3 bLLn�2; hence form a basis of

the ðn � 1Þ-dimensional space ECð1;wn;y;w3Þ: Accordingly, considered as a system
with unknowns the ðYk � XkÞ; k ¼ 2;y; n; the ðn � 1Þ equalities (3.9) provide a

ARTICLE IN PRESS
M.-L. Mazure / Journal of Approximation Theory 131 (2004) 47–5854



unique solution. Hence, Y1 ¼ X1 would imply Yk ¼ Xk for all indices k; that is
Y ¼ X ; which is wrong. Therefore, Y1aX1 is proved.

(2) Let us now prove that uða1;y; an�1; �Þ is strictly increasing on I : Using the same
notations as in the previous part of the proof, we just have to show that, a relevant
choice of xoy guarantees that X1 ¼ uða1;y; an�1; xÞoY1 ¼ uða1;y; an�1; yÞ:

Select xoy in I so that xpminða1;y; an�1Þ; and yXmaxða1;y; an�1Þ: For
0pipn � 1; let us introduce the real numbers

qi
k :¼ uða1;y; ai; x½n�i�k�; y½k�Þ; 0pkpn � i:

Since X1 ¼ qn�1
0 ; and Y1 ¼ qn�1

1 ; it is sufficient to show that, for any ipn � 1; the

sequence qi
k; 0pkpn � i; is strictly increasing. This will be done by induction on i:

For i ¼ 0; this follows from Lemma 3, for the points q0
k; 0pkpn; are nothing but

the Chebyshev–Bézier points pkðx; yÞ; 0pkpn; of U w.r.t. ðx; yÞ introduced in (3.4).
Let us assume that the result is proved for a given integer i; 0pipn � 2: If

aiþ1 ¼ x (resp. aiþ1 ¼ y), then we have qiþ1
k ¼ qi

k (resp. qiþ1
k ¼ qi

kþ1) for 0pkpn �
i � 1; and there is nothing to prove. Suppose now that xoaiþ1oy: The

pseudoaffinity of j implies that, for 0pkpn � i � 1; the number qiþ1
k is a strictly

convex combination of qi
k and qi

kþ1: The desired result is thus proved for i þ 1: &

Proof of Theorem 1. Again, we choose a basis ð1;F1;y;FnÞ of En so that F1 ¼ U :

Then, the functions L1F1 ¼ 1;L1F2;y;L1Fn form a basis of the space Ef1g
n : Let

us set

Ff1g :¼ ðL1F2;y;L1FnÞ: ð3:11Þ

We actually intend to determine the blossom jf1g : In�1-Rn�1 of the function Ff1g

using the blossom j of F: Suppose again that ða1;y; an�1Þ ¼ ðb½m1�
1 ;y; b

½mr�
r Þ with

pairwise distinct b1;y; brAI ; and positive integers m1;y; mr with sum equal to n � 1:

We know that the value of jf1g at ða1;y; an�1Þ is given by

fjf1gða1;y; an�1Þg :¼
\r

i¼1

Oscn�1�mi
Ff1gðbiÞ: ð3:12Þ

Given xay any two points in I ; let us use the notations introduced in (3.7). Since
xay; Proposition 2 ensures that X1aY1: Setting

X f1g :¼ Y2 � X2

Y1 � X1
;y;

Yn � Xn

Y1 � X1

� 

; ð3:13Þ

we actually have to prove that

X f1g ¼ jf1gða1;y; an�1Þ: ð3:14Þ

Equality (3.2) will then follow via affine maps. On account of (3.12), in order to

prove (3.14), we just have to check that the point X f1g defined in (3.13) belongs to

each osculating flat Oscn�1�mi
Ff1gðbiÞ; 1pipr:
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Let us consider a given i; 1pipr: Whether or not x or y are equal to bi; the two
points X and Y belong to the osculating flat Oscn�mi

FðbiÞ: Hence, there exist

(unique) numbers li
1ðxÞ;y; li

n�mi
ðxÞ; and li

1ðyÞ;y; li
n�mi

ðyÞ such that

X ¼ FðbiÞ þ
Xn�mi

k¼1

li
kðxÞLkFðbiÞ; Y ¼ FðbiÞ þ

Xn�mi

k¼1

li
kðyÞLkFðbiÞ:

The latter two equalities lead to

Y � X ¼
Xn�mi

k¼1

½li
kðyÞ � li

kðxÞ�LkFðbiÞ: ð3:15Þ

Since L1F1 ¼ 1; and LkF1 ¼ 0 for k41; looking at the first components of the two
sides of (3.15), we obtain

li
1ðyÞ � li

1ðxÞ ¼ Y1 � X1: ð3:16Þ

Consequently, we can write the equality (3.15) as follows:

1

Y1 � X1
ðY � X Þ ¼ L1FðbiÞ þ

Xn�mi

k¼2

li
kðyÞ � li

kðxÞ
Y1 � X1

LkFðbiÞ: ð3:17Þ

Denote by L
f1g
0 ¼ Id;L

f1g
1 ;y;L

f1g
n�1 the differential operators associated to the

weights 1;w2; y;wn; so that Ef1g
n ¼ ECð1;w2;y;wnÞ ¼ Ker D 3 L

f1g
n�1: For 1pkpn;

we then have LkF ¼ L
f1g
k�1L1F: Accordingly, (3.17) yields

X f1g ¼ Ff1gðbiÞ þ
Xn�1�mi

k¼1

li
kþ1ðyÞ � li

kþ1ðxÞ
Y1 � X1

L
f1g
k Ff1gðbiÞ: ð3:18Þ

The equality (3.18) proves that the point X f1g belongs to Oscn�1�mi
Ff1gðbiÞ: &

Note that exploiting better the Eq. (3.9) would give another proof of (3.2). We
preferred a more explicit one.

To conclude, let us comment on Theorem 1. Formula (3.3), which we mentioned
as a particular case of (3.2), is in fact elementary to obtain directly. Indeed, given

distinct x; yAI ; the two points jðt½n�1�;xÞ and jðt½n�1�; yÞ are distinct (this results
from the pseudoaffinity property satisfied by j) and both lie in Osc1 FðtÞ: This
ensures the existence of a nonzero real number lðtÞ such that

jðt½n�1�; yÞ � jðt½n�1�; xÞ ¼ lðtÞL1FðtÞ: ð3:19Þ

As in the proof of Theorem 1, suppose that F1 ¼ U : Then, looking at the first
components in (3.19), we obtain

lðtÞ ¼ uðt½n�1�; yÞ � uðt½n�1�;xÞa0:

Accordingly, (3.19) yields

L1FðtÞ ¼
jðt½n�1�; yÞ � jðt½n�1�; xÞ
uðt½n�1�; yÞ � uðt½n�1�; xÞ ; ð3:20Þ
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which leads to (3.3) via affine maps. In a ðk þ 1Þ-dimensional space it is
usual to derive relations for blossoms from the corresponding relations for

functions by ‘‘blossoming’’ t½k� into t1;y; tk: This is exactly what we did
in the polynomial case to deduce (1.3) from (1.2). What is surprising here is that,

in order to transform (3.3) into (3.2), we have to‘‘blossom’’ t½n�1� both in the
numerator and the denominator of (3.3), which is hidden in the polynomial case.
Note the latter direct proof of (3.20) (hence of (3.3)) does not save us having to prove
(3.2) as we did.

4. Applications

4.1. Chebyshev–Bézier points

Choose two points x; yAI ; with xay: Let Piðx; yÞ :¼ f ðx½n�i�; y½i�Þ; 0pipn;
be the Chebyshev–Bézier points of F w.r.t. ðx; yÞ: Then, applying equality

(3.2) with ða1;y; an�1Þ ¼ ðx½n�1�i�; y½i�Þ; we obtain the Chebyshev–Bézier points of

L1F w.r.t. ðx; yÞ; that is the points P
f1g
i ðx; yÞ :¼ f f1gðx½n�1�i�; y½i�Þ; 0pipn � 1; as

follows:

P
f1g
i ðx; yÞ ¼ Piþ1ðx; yÞ � Piðx; yÞ

piþ1ðx; yÞ � piðx; yÞ ; 0pipn � 1; ð4:1Þ

where as in (3.4), p0ðx; yÞ;y; pnðx; yÞ are the Chebyshev–Bézier points (w.r.t. ðx; yÞ)
of the function U viewed as an element of En: Note that the denominators are
positive if xoy; and negative otherwise. Taking account of (2.2), the particular case
i ¼ 0 gives

F 0ðxÞ ¼ w1ðxÞ
P1ðx; yÞ � P0ðx; yÞ
p1ðx; yÞ � p0ðx; yÞ ¼ w1ðxÞ

f ðx½n�1�; yÞ � FðxÞ
uðx½n�1�; yÞ � UðxÞ: ð4:2Þ

4.2. Iterative differentiation

We shall conclude the paper by observing that iteration of (3.2) enables the

calculation of the blossom f fig of the generalized derivative LiFAEfig
n ; 1pipn � 1;

of any element FAEn (note that Efng
n contains only constants). With this in view,

generalizing (3.1), we first need to introduce the functions

UiðtÞ :¼
Z t

a

wiðxÞ dx; 1pipn; ð4:3Þ

so that the function U is now renamed U1: For a given i; ð1;UiÞ is a basis of the space
ECð1;wiÞ which is a subspace of the ðn � i þ 2Þ-dimensional space Efi�1g

n ¼
ECð1;wi;y;wnÞ: This allows us to consider the following function:

ui :¼ blossom of the function Ui viewed as an element of Efi�1g
n : ð4:4Þ
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It is a function of ðn � i þ 1Þ variables. In particular, u1 ¼ u; and un ¼ Un: Given any

T iAIn�i; the value of f fig at T i can be expressed as

f figðT iÞ ¼
Xi

k¼o

Ai
kðT iÞf ðT i; y½i�k�; x½k�Þ;

where the coefficients Ai
kðT iÞ can be calculated recursively according to the following

formula:

Ai
kðT iÞ ¼

Ai�1
k ðT i; yÞ � Ai�1

k�1ðT i; xÞ
uiðT i; yÞ � uiðT i; xÞ ; 0pkpi;

with the convention that, for any ipn � 1 and any T iAIn�i; Ai
kðT iÞ :¼ 0 if

kef0;y; ig; and with A0
0ðT 0Þ :¼ 1 for any T 0AIn:
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