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Abstract

A limiting property of the nearest-neighbor recurrence coefficients for multiple orthogonal polyno-
mials from a Nevai class is investigated. Namely, assuming that the nearest-neighbor coefficients have a
limit along rays of the lattice, we describe it in terms of the solution of a system of partial differential
equations.

In the case of two orthogonality measures the differential equations become ordinary. For Angelesco
systems, the result is illustrated numerically.
c⃝ 2020 Published by Elsevier Inc.
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1. Introduction

1.1. Orthogonal polynomials on the real line and Jacobi matrices

Given a probability measure µ on R with infinite support, the sequence of its monic
orthogonal polynomials {Pk}

∞

k=0 satisfies the well-known three-term recurrence relation

x Pn(x) = Pn+1(x) + bn Pn(x) + an−1 Pn−1(x) (1.1)

with P−1 = 0, P0 = 1, where the recurrence coefficients {ak, bk}
∞

k=0 satisfy ak > 0, bk ∈ R.
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The corresponding Jacobi matrix is defined to be

J =

⎛⎜⎜⎜⎜⎜⎝
b0

√
a0 0

√
a0 b1

√
a1

. . .

0
√

a1 b2
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ . (1.2)

Assuming {ak}
∞

k=0 and {bk}
∞

k=0 are bounded, the spectral measure of J with respect to
(1, 0, 0, . . .)T coincides with the orthogonality measure µ. Favard’s theorem establishes a one-
to-one correspondence between all µ with compact infinite support and all such bounded
self-adjoint Jacobi matrices J .

We say that a probability measure on R belongs to the Nevai class N (a, b) if its Jacobi
coefficients (in (1.1)) satisfy bn → b and an → a as n → ∞.

Weyl’s theorem on compact perturbations implies that any measure in N (a, b) has σess(µ) =

[b − 2
√

a, b + 2
√

a]. For the converse direction, we have the Denisov–Rakhmanov theorem
stating that if σess(µ) = [α, β] and dµ

dx > 0 a.e. on [α, β] then µ ∈ N
((

β−α

4

)2
,

α+β

2

)
.

See, e.g., [14] for more details from the theory of orthogonal polynomials.

1.2. Multiple orthogonal polynomials and the nearest neighbor recurrence relations

Let us now describe multiple orthogonality situation with respect to the vector-measure
µ⃗ := {µi }

d
i=1 on R. For the rest of the paper we will use the notation |v⃗| := v1 + · · · + vd for

any vector-valued object v⃗ = (v j )d
j=1.

For any n⃗ = (n1, . . . , nd ) ∈ Zd
+

, let Pn⃗ be the monic polynomial of smallest degree which
satisfies∫

Pn⃗(x)xkdµi = 0, k ∈ {0, . . . , ni − 1}, i ∈ {1, . . . , d}. (1.3)

The polynomial Pn⃗(x) is called the type II multiple orthogonal polynomial (MOP). Obviously,
Pn⃗ is uniquely determined and deg Pn⃗ ≤ |n⃗|. When deg Pn⃗ = |n⃗| the multi-index n⃗ is said to be
normal. If all multi-indices of the lattice Zd

+
are normal then the system of measures {µi }

d
i=1

is called perfect. It is known [15,16], that (similarly to the case with one measure) MOPs for
the perfect systems satisfy the following nearest neighbor recurrence relations (NNRR)

z Pn⃗(z) = Pn⃗+e⃗ j (z) + bn⃗, j Pn⃗(z) +

d∑
i=1

an⃗,i Pn⃗−e⃗i (z), (1.4)

where e⃗ j is the j th standard basis vector of Rd . Here we have d recurrence relations for
j = 1, . . . , d . Thus for each n⃗ ∈ Zd

+
we have two sets of the coefficients for NNRR, namely

{bn⃗, j }
d
j=1 and {an⃗,i }

d
i=1. Note that for each fixed j , {ake⃗ j , j }

∞

k=1 and {bke⃗ j , j }
∞

k=1 are the {ak}
∞

k=0

and {bk}
∞

k=0 from the usual three-term recurrence (1.1) for the measure µ j .
In order to define by means of (1.4) the polynomials {Pn⃗(z)} in unique way the NNRR

coefficients cannot be taken arbitrary. As was shown in [16], the recurrence coefficients must
satisfy the compatibility conditions (CC):

bn⃗+e⃗ j ,i − bn⃗,i = bn⃗+e⃗i , j − bn⃗, j , i < j, (1.5)

det
(

bn⃗+e⃗ j ,i bn⃗,i

bn⃗+e⃗i , j bn⃗, j

)
=

d∑
k=1

an⃗+e⃗ j ,k −

d∑
k=1

an⃗+e⃗i ,k, i < j, (1.6)
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an⃗,i

an⃗+e⃗ j ,i
=

bn⃗−e⃗i , j − bn⃗−e⃗i ,i

bn⃗, j − bn⃗,i
, i ̸= j. (1.7)

It is not hard to see that these 2d(d − 1) equalities can be rewritten as

∇ j bn⃗,i = ∇i bn⃗, j , i < j, (1.8)

bn⃗, j∇i bn⃗, j − bn⃗,i∇ j bn⃗,i =

⟨
(
−→
∇ j −

−→
∇ i ), a⃗n⃗

⟩
, i < j, (1.9)

(∇i ln)an⃗, j = (∇ j ln) (bn⃗−e⃗ j ,i − bn⃗−e⃗ j , j ), i ̸= j, (1.10)

where we denote

∇ j bn⃗,i := bn⃗+e⃗ j ,i − bn⃗,i ,
−→
∇ i := (∇i , . . . ,∇i ), (∇i ln)an⃗, j :=

(
an⃗+e⃗i , j

an⃗, j
− 1

)
.

The system of difference equations (1.8)–(1.10) together with the marginal conditions

an⃗, j = 0, whenever n j = 0, (1.11)

is also called Discrete Integrable System (DIS) for details see [3]. The boundary problem for
DIS (1.8)–(1.10) in Zd

+
means the following. We start with boundary data, that is, the Jacobi

coefficients corresponding to the usual orthogonal polynomials with respect to each of the
measures {µi }

d
i=1. Then we have to find all the NNRR coefficients {bn⃗, j }

d
j=1 and {an⃗,i }

d
i=1 by

solving the equations (1.8)–(1.10) .

1.3. Zero asymptotics and limits of the recurrence coefficients

Our goal is to investigate the asymptotic behavior of the recurrence coefficients
{
an⃗,i , bn⃗,i

}
as | n⃗ | grows. This behavior is intimately connected to the asymptotic zero distribution of
multiple orthogonal polynomials Pn⃗ . To state the problem, we need to place some restrictions
on the way | n⃗ | approaches infinity as well as the measures µi . At the same time we have to
be in the class of the perfect systems to keep NNRR.

The important example of a perfect system of measures {µi } is the so-called Angelesco
system defined by1

supp(µi ) = [αi , βi ], with αi < βi < αi+1 for all i. (1.12)

Multiple orthogonal polynomial with respect to Angelesco system has the form:

Pn⃗(z) =:

d∏
i=1

ni∏
l=1

(z − xn⃗,i,l), xn⃗,i,l ∈ [αi , βi ].

Moreover, we restrict our attention to sequences of multi-indices such that

ni = ti | n⃗ | + o (| n⃗ |) , | t⃗ | = 1 (1.13)

for some t⃗ ∈ (0, 1)d . We denote limN to be the limit as |n⃗| → ∞ along the sequence of
multi-indices satisfying (1.13). Asymptotic zero distribution for Pn⃗(z) (or limiting zero counting
measure):

ω(x) := lim
N

1
| n⃗ |

d∑
i=1

ni∑
l=1

δ(x − xn⃗,i,l), (1.14)

1 If supports of measures are intervals with nonintersecting interiors then system {µi } is perfect as well.
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for Angelesco systems (1.12) with µ′

i > 0 a.e. on [αi , βi ] in the regime (1.13) was obtained
by Gonchar and Rakhmanov [10]. To state their result we fix t⃗ as in (1.13), and denote

Mt⃗
(
{αi , βi }

d
1

)
:=
{
ν⃗ = (ν1, . . . , νd ) : νi ∈ Mti (αi , βi ), i ∈ {1, . . . , d}

}
,

where Mt (α, β) is the set of positive Borel measures of mass t supported on [α, β].

Theorem 1 ([10]). (1) There exists the unique vector of measures ω⃗ ∈ Mt⃗
(
{αi , βi }

d
1

)
:

I [ ω⃗ ] = min
ν∈Mt⃗ ({αi ,βi }

d
1 )

I [ ν⃗ ], I [ ν⃗ ] :=

d∑
i=1

(
2I [νi ] +

∑
k ̸=i

I [νi , νk]
)

, (1.15)

where I [νi ] := I [νi , νi ] and I [νi , νk] := −
∫ ∫

log |z − x |dνi (x)dνk(z).
(2) Moreover, for the limiting counting measure (1.14) it holds: ω = |ω⃗|.

An important feature of the case d > 1 (in comparison with the classic d = 1) is the fact
that measures ωi might no longer be supported on the whole intervals [αi , βi ] (the so-called
pushing effect), but in general it holds that

supp(ωi ) = [αt⃗,i , βt⃗,i ] ⊆ [αi , βi ], i ∈ {1, . . . , d}. (1.16)

Namely the supports of the extremal measures (not the supports of the multiple orthogonality
measures2 ) define the recurrence coefficients limits.

To describe the asymptotics of the recurrence coefficients, we shall need a (d + 1)-sheeted
compact Riemann surface, say Rt⃗ , that we realize in the following way. Take d+1 copies of C.
Cut one of them along the union

⋃d
i=1

[
αt⃗,i , βt⃗,i

]
, which henceforth is denoted by R(0)

t⃗ . Each
of the remaining copies are cut along only one interval

[
αt⃗,i , βt⃗,i

]
so that no two copies have

the same cut and we denote them by R(i)
t⃗ . To form Rt⃗ , take R(i)

t⃗ and glue the banks of the cut[
αt⃗,i , βt⃗,i

]
crosswise to the banks of the corresponding cut on R(0)

t⃗ . It can be easily verified
that thus constructed Riemann surface has genus 0. Denote by π the natural projection from
Rt⃗ to C. We also shall employ the notations z for a point on Rt⃗ and z(i) for a point on R(i)

t⃗
with π (z) = π (z(i)) = z.

Since Rt⃗ has genus zero, one can arbitrarily prescribe zero/pole multisets of rational
functions on Rt⃗ as long as the multisets have the same cardinality. Hence, we define Υi ,
i ∈ {1, . . . , d}, to be the rational function on Rt⃗ with a simple zero at ∞

(0), a simple pole
at ∞

(i), and otherwise non-vanishing and finite. We normalize it so that Υi (z(i))/z → 1 as
z → ∞. Then the following theorem holds.

Theorem 2 ([2]). Let {µi }
d
i=1 be a system of measures satisfying (1.12) and such that

dµi (x) = ρi (x)dx, (1.17)

where ρi is holomorphic and non-vanishing in some neighborhood of [αi , βi ]. Further, let
Nt⃗ = { n⃗ } be a sequence of multi-indices as in (1.13) for some t⃗ ∈ (0, 1)d . Then the recurrence
coefficients

{
an⃗, j , bn⃗, j

}
given by (1.4) and (1.3) satisfy

lim
Nt⃗

an⃗,i = At⃗,i and lim
Nt⃗

bn⃗,i = Bt⃗,i , i ∈ {1, . . . , d}, (1.18)

where At⃗,i and Bt⃗,i are constants: z2Υi (z(0)) = At⃗,i (z + Bt⃗,i ) + O
(
z−1
)

as z → ∞.

2 For d = 1 both of these notions coincide.
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Remarks. (1) We note that Theorem 2 is valid for d = 1 as well.
(2) It is not too difficult to extend the proof (from [10]) of Theorem 1 to include the case of
touching intervals.
(3) We also can affirm (at least for d = 2) that Theorem 2 remains valid for the case of
touching intervals (technicalities can be taken from [7]) and for weight functions (1.17) with
singularities of the types: Jacobi and Fisher–Hartwig weights [18]. ■

Let us make the following definition by analogy with the scalar case (see Section 1.1).

Definition. We say that a perfect system of measures {µi }
d
i=1 belongs to the multiple Nevai

class if for each i ∈ {1, . . . , d} the limits

lim
Nt⃗

an⃗,i and lim
Nt⃗

bn⃗,i

exist along each sequence (1.13) for any t⃗ ∈ [0, 1]d , |t⃗ | = 1.

Perfect systems from multiple Nevai class appear naturally in various contexts [1,4,6,11,17],
e.g., in random matrix theory [8]. Note that if a system of measures belongs to a multiple Nevai
class, then the recurrence along the step-line has asymptotically periodic recurrence coefficients.

Notice that Theorem 2 can be viewed as a partial analogue of the Denisov–Rakhmanov
theorem, and Angelesco systems from Theorem 2 belong to the multiple Nevai class. It is an
interesting open problem to generalize this analogue of Denisov–Rakhmanov result to more
general measures (i.e. to Angelesco systems with µ j > 0 a.e. on σess(µ j )).

The organization of the paper is as follows. In Section 2 we state and prove our main result: a
conditional theorem on partial differential equations for the limiting value (in the regime (1.13))
of the NNRR coefficients. In Section 3 we discuss the special case of two d = 2 orthogonality
measures when our partial differential equations become ordinary differential equations. In
Section 4, using a parametrization of Rt⃗ from [13], we give a constructive procedure for
determination of limits in (1.18). Finally, in Section 5 we present numeric illustrations.

2. Differential equations for the limits of NNRR coefficients

2.1. Construction of the approximating functions

For the rest of the paper, let us denote

Sd−1 := {s⃗ ∈ [0, 1]d−1
: |s⃗| ≤ 1}. (2.1)

Assume that {µ j }
d
j=1 form a perfect system from the multiple Nevai class.

This means that there exist Sd−1 → R functions A j (s⃗), B j (s⃗) (1 ≤ j ≤ d) defined via

A j (s⃗) = lim
N

an⃗, j , (2.2)

B j (s⃗) = lim
N

bn⃗, j , (2.3)

where limN notation is defined in Section 1.3 with t⃗ = {s⃗, 1 − |s⃗|} (that is, s⃗ consists of the
first d − 1 coordinates of t⃗ which defines the direction of the approach to infinity).

In this paper we investigate the possibility of describing functions {A j , B j }
d
j=1 through

differential equations. This is done in Theorem 3.
Before stating the main result, let us introduce the families of approximations A(m)

j and B(m)
j

of the limiting functions A j and B j .
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Fix m ∈ Z+ and 1 ≤ j ≤ d . We take all the coefficients {an⃗, j } with |n⃗| = m and form an
approximating function A(m)(s⃗) as follows. First, for any n⃗ with |n⃗| = m, define s⃗ ∈ Sd−1 via
s j :=

n j
m (1 ≤ j ≤ d − 1) and let

A(m)
j (s⃗) = an⃗, j .

For points in 1
mZ

d−1
+ that are not in Sd−1 we can choose A(m) to be zero. Then we can

extend A(m)
j to the rest of the simplex Sd−1 via the multilinear interpolation which can be

written as follows. Choose a cube K of side length 1
m with vertices in 1

mZ
d−1
+ ; let us denote

them {P (k), Q(k)
}

2d−2

k=1 , where for each k, vertices P (k) and Q(k) are opposite of each other. If
P (k)

= (p(k)
1 , . . . , p(k)

d−1) and Q(k)
= (q (k)

1 , . . . , q (k)
d−1) then we let

A(m)
j (u⃗) :=

2d−2∑
k=1

[
A(m)

j (P (k))
d−1∏
l=1

q (k)
l − ul

q (k)
l − p(k)

l

+ A(m)
j (Q(k))

d−1∏
l=1

p(k)
l − ul

p(k)
l − q (k)

l

]
. (2.4)

for u⃗ ∈ K .
The main features of this multilinear interpolation function (2.4) that are important to us

are:
1. The right-hand side of (2.4) agrees with the left-hand side of (2.4) when u⃗ ∈ {P (k),

Q(k)
}

2d−2

k=1 , so that the function is well defined at the vertices of our cubes;
2. For u⃗ belonging to any face of a cube K , the expression (2.4) reduces to the multilinear

interpolation of one dimension lower over the vertices of that face. As a result, (2.4) on a face
of a cube K will agree with (2.4) defined through another cube sharing the same face. So the
function A(m) is well-defined on Sd−1. Moreover, it is continuous on Sd−1 and is differentiable
on the interiors of each of the cubes K ;

3. In each of the d − 1 variables ul , the function A(m)
j is linear within each of the cubes K .

This will be used in the proof of Theorem 4;
4. Partial derivatives of the right-hand side of (2.4) are linear functions along each path

parallel to the coordinate axes. In particular, it implies that the maxima and minima over K
of partial derivatives of A(m)

j are attained at {P (k), Q(k)
}

2d−2

k=1 . This will be used in the proof of
Lemma 1.

We can do the same construction with coefficients bn⃗, j to form the multilinear approxima-
tions B(m)

j : Sd−1 → R for functions B j .
Notice that (2.2)–(2.3) implies pointwise convergence A(m)

j and B(m)
j on Sd−1 to A j and B j ,

respectively, as m → ∞.

2.2. The main theorem

For the rest of the paper we assume that the functions A j and B j (1 ≤ j ≤ d) are
piecewise continuously differentiable on Sd−1 in the following sense. We suppose that Sd−1
can be decomposed into a finite union of closed sets {Di } such that:

(i) A j and B j are differentiable on the interior Int(Di );
(ii) Each of the partial derivatives of A j and B j are continuous in Int(Di ) and can be

continuously extended to Di .
Note that the latter condition means that each of the partial derivatives of A j and B j is

uniformly continuous on Int(Di ), a fact that we use in the proof of Lemma 1.
We also assume that sets Di are not pathological, in particular, the closure of Int(Di ) is

assumed to be Di .
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Recall that {e⃗ j }
d
j=1 is the standard basis of Rd . For the notational convenience, let us denote

δ⃗ j (1 ≤ j ≤ d − 1) to be the j th standard basis vector in Rd−1, while δ⃗d to be the zero vector
in Rd−1.

Theorem 3. Assume that we have a perfect system {µ j }
d
j=1 from the multiple Nevai class

satisfying the conditions

(i) A j and B j are piecewise continuously differentiable on Sd−1 for each 1 ≤ j ≤ d;
(ii) For each 1 ≤ j ≤ d, we have uniform convergence:

|A(m)
j (s⃗) − A j (s⃗)| ≤ o( 1

m ), (2.5)

|B(m)
j (s⃗) − B j (s⃗)| ≤ o( 1

m ), (2.6)

as m → ∞, where sequences o( 1
m ) are independent of s⃗ ∈ Sd−1.

Then the limiting functions A j and B j , 1 ≤ j ≤ d, satisfy the following system of 2d(d − 1)
differential equations:

∇ Bi (s⃗) ·

(
δ⃗ j − s⃗

)
= ∇B j (s⃗) ·

(
δ⃗i − s⃗

)
, i < j, (2.7)

B j (s⃗) ∇ B j (s⃗) ·

(
δ⃗i − s⃗

)
− Bi (s⃗)∇ Bi (s⃗) ·

(
δ⃗ j − s⃗

)
=

(
d∑

l=1

∇ Al

)
·

(
δ⃗ j − δ⃗i

)
, i < j,

(2.8)

A j (s⃗) ∇
(
Bi (s⃗) − B j (s⃗)

)
·

(
s⃗ − δ⃗ j

)
+ (Bi (s⃗) − B j (s⃗)) ∇ A j (s⃗) ·

(
δ⃗i − s⃗

)
= 0, i ̸= j.

(2.9)

In the system (2.7)–(2.9), u⃗ · v⃗ stands for the standard inner product in Rd−1, and ∇ for the
gradient operator for a function of d − 1 variables.

Remarks. (1) Condition (i) is fulfilled for Angelesco systems from Theorem 2. This follows
from smoothness of the dependence of the residues of Υ on t⃗ . We show it explicitly for d = 2
in the last section. As for (ii), (2.5)–(2.6) holds uniformly on compacts of Int(Sd−1) (this follows
from the proof of Theorem 2). Whether this can be extended to the whole Sd−1 is still unknown.
(2) Since the system {µ j }

d
j=1 is in the multiple Nevai class determined by the functions

{A j , B j }
d
j=1, each of the measures µ j is in the Nevai class, in particular its essential support is

an interval. These intervals (together with (1.11)) allow one to establish boundary conditions
for the functions {A j , B j }

d
j=1. We do this explicitly for d = 2 in the next section.

2.3. Convergence of the derivatives

In order to prove Theorem 3, we will need to control the derivatives of our approximation
functions. This is the purpose of the following lemma.

Lemma 1. Suppose (i)–(ii) of Theorem 3 hold. Then for 1 ≤ k ≤ d − 1 and any point s⃗0 in
Int(Di ), there exists a neighborhood U (s⃗0) ⊂ Int(Di ) such that⏐⏐⏐⏐ ∂

∂sk
A(m)

j (s⃗) −
∂

∂sk
A j (s⃗)

⏐⏐⏐⏐ ≤ o(1), (2.10)
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∂sk
B(m)

j (s⃗) −
∂

∂sk
B j (s⃗)

⏐⏐⏐⏐ ≤ o(1), (2.11)

for all s⃗ ∈ U (s⃗0) as m → ∞, where o(1) is independent of s⃗ ∈ U (s⃗0).

Remark. Partial derivatives of A(m)
j and B(m)

j have jump discontinuities along each side of
the 1

mZ
d−1
+ cubes (see Section 2.1). At a point of discontinuity, we interpret ∂

∂sk
A(m)

j (s⃗) and
∂

∂sk
B(m)

j (s⃗) in (2.10) and (2.11) as one of the limiting values of these functions from the inside

of one of the cubes.

Proof. Fix j . Let us prove (2.10) for k = 1.
Choose M1 ∈ N large enough so that a cube with side length 2

M1
centered at s⃗0 belongs to

Di . Let U (s⃗0) be the cube centered at s⃗0 of side length 1
M1

.
Let ε > 0 be arbitrary. By the discussion in the beginning of the section, ∂

∂s1
A j is uniformly

continuous on Di . We can therefore find M2 ∈ N so that⏐⏐⏐⏐ ∂

∂s1
A j (s⃗) −

∂

∂s1
A j (u⃗)

⏐⏐⏐⏐ ≤
ε

4
(2.12)

for all s⃗ and u⃗ in Di satisfying ∥s⃗ − u⃗∥ ≤
1

M2
. By (2.5) we can find M3 ∈ N so that

m|A(m)
j (s⃗) − A j (s⃗)| ≤

ε

4
(2.13)

for all s⃗ ∈ Sd−1 and m ≥ M3. Now let M = max{M1, M2, M3}.
For any s⃗ in U (s⃗0) and any m ≥ M , choose a cube K (m) of side length 1

m containing s⃗ whose
vertices are at 1

mZ
d−1
+ (as in Section 2.1). By the construction, K belongs to Di , and (2.12)

and (2.13) hold for our m.
Let us first show that the inequality (2.10) holds for the case when s⃗ is a vertex of K . If

s⃗ +
1
m e⃗1 is also a vertex of K (arguments for s⃗ −

1
m e⃗1 are identical), then by the discussion

after (2.4),⏐⏐⏐⏐ ∂

∂s1
A(m)

j (s⃗) −
∂

∂s1
A j (s⃗)

⏐⏐⏐⏐ =

⏐⏐⏐⏐m [
A(m)

j (s⃗ +
1
m e⃗1) − A(m)

j (s⃗)
]

−
∂

∂s1
A j (s⃗)

⏐⏐⏐⏐
≤ m

⏐⏐⏐(A(m)
j − A j )(s⃗ +

1
m e⃗1)

⏐⏐⏐+ m
⏐⏐⏐(A(m)

j − A j )(s⃗)
⏐⏐⏐

+

⏐⏐⏐⏐m [
A j (s⃗ +

1
m e⃗1) − A j (s⃗)

]
−

∂

∂s1
A j (s⃗)

⏐⏐⏐⏐ ≤
ε

4
+

ε

4
+

⏐⏐⏐⏐ ∂

∂s1
A j (θ⃗ ) −

∂

∂s1
A j (s⃗)

⏐⏐⏐⏐
for some θ⃗ ∈ (s⃗, s⃗ +

1
m e⃗1). Here we used (2.13) twice and the Mean Value Theorem. The last

expression is ≤ 3ε/4 by (2.12).
Now if s⃗ is not a vertex of K , then by the discussion after (2.4), there are vertices z⃗1 and z⃗2

of K such that ∂
∂s1

A(m)
j (z⃗1) ≤

∂
∂s1

A(m)
j (s⃗) ≤

∂
∂s1

A(m)
j (z⃗2). By (2.12), ∂

∂s1
A j (z⃗2)− ε

4 ≤
∂

∂s1
A j (s⃗) ≤

∂
∂s1

A j (z⃗1) +
ε
4 . Combining these two inequalities together with the estimate at the vertices, we

get
⏐⏐⏐ ∂
∂s1

A(m)
j (s⃗) −

∂
∂s1

A j (s⃗)
⏐⏐⏐ ≤ ε. □

2.4. Proof of Theorem 3

Let s⃗ ∈ Sd−1 belongs to the interior of some Di . Choose a neighborhood U ⊂ Di of s⃗ as in
Lemma 1. We can assume U ⊂ Di (just shrink U if needed). Let a sequence of multi-indices
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n⃗ be given satisfying (1.13) with t⃗ = {s⃗, 1−|s⃗|}, and as a result (2.2), (2.3) also. For each such
n⃗, let m = |n⃗| and define s⃗ (m)

∈ Sd−1 with s(m)
j =

n j
m . Then s⃗ (m)

→ s⃗. For each m let Km be
a cube of side length 1

m+1 containing s⃗ (m) whose vertices are at 1
m+1Z

d−1
+ (as in Section 2.1).

We consider m large enough so that each Km belongs to U .
Let 1 ≤ i ≤ d − 1. Notice that by Taylor’s theorem

an⃗+e⃗i , j = A(m+1)
j ( m

m+1 s⃗ (m)
+

1
m+1 δ⃗i ) (2.14)

= A(m+1)
j (s⃗ (m)) + ∇ A(m+1)

j (s⃗ (m)) ·

(
m

m+1 s⃗ (m)
+

1
m+1 δ⃗i − s⃗ (m)

)
+ o( 1

m ) (2.15)

= A(m+1)
j (s⃗ (m)) +

1
m+1∇ A(m+1)

j (s⃗ (m)) ·

(
δ⃗i − s⃗ (m)

)
+ o( 1

m ) (2.16)

= A j (s⃗ (m)) +
1

m+1∇ A j (s⃗ (m)) ·

(
δ⃗i − s⃗ (m)

)
+ o( 1

m ), (2.17)

where on the last step we used (ii) of Theorem 4 and Lemma 1. However the o( 1
m ) error

term in (2.15) is dependent on s⃗ (m) and can in principle be non-uniform. To justify uniformity
in (2.17) we proceed as follows. We start with (2.14), and note that m

m+1 s⃗ (m)
+

1
m+1 δ⃗i =

s⃗ (m)
+
∑d−1

l=1 ∆⃗(m,i)
l where ∆⃗(m,i)

i =
1−s(m)

i
m+1 δ⃗i and ∆⃗(m,i)

l = −
s(m)
l

m+1 δ⃗l for l ̸= i . These ∆⃗(m,i)
l

are just the increment 1
m+1

(
δ⃗i − s⃗ (m)

)
from s⃗ (m) to m

m+1 s⃗ (m)
+

1
m+1 δ⃗i separated in coordinates,

and
∑d−1

l=1 ∆⃗(m,i)
l =

1
m+1

(
δ⃗i − s⃗ (m)

)
. Now recall that the multilinear approximation function

A(m)
j (2.4) is linear along coordinate axes, so applying this for each of the d − 1 increment we

get:

an⃗+e⃗i , j = A(m+1)
j

(
s⃗ (m)

+

d−1∑
l=1

∆⃗(m,i)
l

)

= A(m+1)
j

(
s⃗ (m)

+

d−2∑
l=1

∆⃗(m,i)
l

)
+ ∇ A(m+1)

j

(
s⃗ (m)

+

d−2∑
l=1

∆⃗(m,i)
l

)
· ∆⃗(m,i)

d−1 = · · ·

= A(m+1)
j

(
s⃗ (m))

+

d−1∑
p=1

∇ A(m+1)
j

(
s⃗ (m)

+

p−1∑
l=1

∆⃗(m,i)
l

)
· ∆⃗(m,i)

p

= A j
(
s⃗ (m))

+

d−1∑
p=1

∇ A j

(
s⃗ (m)

+

p−1∑
l=1

∆⃗(m,i)
l

)
· ∆⃗(m,i)

p + o( 1
m ),

where on the last step we used (ii) of Theorem 4 and Lemma 1 (notice that now o( 1
m ) is

uniform!). Now for any p, ∇ A j

(
s⃗ (m)

+
∑p−1

l=1 ∆⃗(m,i)
l

)
= ∇ A j

(
s⃗ (m)

)
+ o(1) (with uniform

o(1)), since ∆⃗(m,i)
l = o(1) for each l and ∇ A j is continuous and therefore uniformly continuous

on U . Plugging this into the last equation and using ∆⃗(m,i)
p = o( 1

m ) implies (2.17) with uniform
o( 1

m ).
Similar arguments give us for 1 ≤ i ≤ d − 1,

an⃗−e⃗i , j = A j (s⃗ (m)) +
1

m−1∇ A j (s⃗ (m)) ·

(
s⃗ (m)

− δ⃗i

)
+ o( 1

m )
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with uniform o( 1
m ). For i = d , we get the following expressions instead:

an⃗+e⃗d , j = A j (s⃗ (m)) −
1

m+1∇ A j (s⃗ (m)) · s⃗ (m)
+ o( 1

m );

an⃗−e⃗d , j = A j (s⃗ (m)) +
1

m−1∇ A j (s⃗ (m)) · s⃗ (m)
+ o( 1

m )

with uniform o( 1
m ). Notice that these expressions for an⃗±e⃗d , j agree with the expressions for

an⃗±e⃗i , j (with i ≤ d − 1) if we adopt our notation δ⃗d = 0⃗ ∈ Rd−1.
Analogous equalities hold for the b-coefficients and the corresponding B j functions.
Let us now plug these equalities into (1.8). For any 1 ≤ i < j ≤ d, we get:

Bi (s⃗ (m)) +
1

m+1∇ Bi (s⃗ (m)) ·

(
δ⃗ j − s⃗ (m)

)
+ o( 1

m ) − Bi (s⃗ (m))

= B j (s⃗ (m)) +
1

m+1∇ B j (s⃗ (m)) ·

(
δ⃗i − s⃗ (m)

)
+ o( 1

m ) − B j (s⃗ (m)).

Now multiply by m +1, and take limit as m → ∞. Using continuity of ∇ B j ’s, we obtain (2.7).
Similar computations show that (1.9) leads to (2.8) (for any 1 ≤ i < j ≤ d) and (1.10)

produces (2.9) (for any i ̸= j , 1 ≤ i, j ≤ d).

3. d = 2 case: system of ordinary differential equations

3.1. The main theorem: d = 2

In the case d = 2, we have four functions A1, A2, B1, B2 of one variable s ∈ [0, 1], and the
corresponding differential system takes the form stated below.

Theorem 4. (1) Assume that we have a perfect system µ1, µ2 from the multiple Nevai class
satisfying the conditions

(i) A j and B j are piecewise continuously differentiable on [0, 1] for each 1 ≤ j ≤ 2;
(ii) For each 1 ≤ j ≤ 2, we have uniform convergence:

|A(m)
j (s) − A j (s)| ≤ o( 1

m ), (3.1)

|B(m)
j (s) − B j (s)| ≤ o( 1

m ), (3.2)

as m → ∞, where sequences o( 1
m ) are independent of s ∈ [0, 1].

Then the limiting functions A j and B j , 1 ≤ j ≤ 2, satisfy the following system of ordinary
differential equations:⎛⎝s B(s) 0 (1 − s)A1(s)

0 (1 − s)B(s) s A2(s)
1 1 s(1 − s)B(s)

⎞⎠⎛⎝A′

1(s)
A′

2(s)
B ′(s)

⎞⎠ =

⎛⎝0
0
0

⎞⎠ (3.3)

where

B(s) = B2(s) − B1(s), B ′

1(s) =
A′

1(s) + A′

2(s)
s B(s)

, B ′

2(s) = −
A′

1(s) + A′

2(s)
(1 − s)B(s)

. (3.4)

(2) Suppose an Angelesco system satisfies conditions of Theorem 2 and (ii). Then there exist
c1, c2 ∈ (0, 1) such that the functions A1, A2, B1, B2 : [0, 1] → R are smooth on [0, c1) and
(c2, 1], and satisfy the system of differential equations⎧⎨⎩ (1 + s)sC ′

1(s) + 4sC1(s) + (2 − s)(1 − s)C ′

2(s) − 4(1 − s)C2(s) = 0
s2C ′

1(s)
C1(s)

=
(1 − s)2C ′

2(s)
C2(s)

− 2
(3.5)
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with initial/boundary conditions⎧⎪⎨⎪⎩C1(0) =
1
4

(
−α1 +

α2+β2
2 +

√
(α2 − α1)(β2 − α1)

)2
−

(
β2−α2

4

)2
,

C2(0) =

(
β2−α2

4

)2
,

(3.6)

⎧⎪⎨⎪⎩C1(1) =

(
β1−α1

4

)2
,

C2(1) =
1
4

(
β2 −

α1+β1
2 +

√
(β2 − β1)(β2 − α1)

)2
−

(
β1−α1

4

)2
,

(3.7)

where

A1(s) = s2C1(s), A2(s) = (1 − s)2C2(s), B2(s) − B1(s) =

√
C1(s) + C2(s),

and (3.4). Moreover, A1, A2, B1, B2 are constant on the interval [c1, c2].

Remarks. (1) We note that general (and conditional) part (1) of Theorem 4 admits presence
inside [0, 1] of a subdomain, where A1, A2, B1, B2 are constant. For Angelesco systems it is a
generic situation which happens when “pushing” is not active, see [10].
(2) We note that known information about support of zero counting measure of MOP for
Angelesco system (see [10]) allows us to identify the subdomain where A1, A2, B1, B2 are
constant, i.e. interval [c1, c2]. Then it is possible, using boundary conditions (3.6) and (3.7) to
solve the ODE system (3.5) on [0, c1] and [c2, 1].

3.2. Proof of Theorem 4

Taking d = 2 in (2.7) (with i = 1, j = 2), (2.8) (with i = 1, j = 2), and (2.9) (with
i = 2, j = 1; then i = 1, j = 2) gives us four ODE’s:

B ′

1(s)s + B ′

2(s)(1 − s) = 0; (3.8)

B1(s)B ′

1(s)s + B2(s)B ′

2(s)(1 − s) + A′

1(s) + A′

2(s) = 0; (3.9)

A1(s)(B ′

1(s) − B ′

2(s))(1 − s) + A′

1(s)(B1(s) − B2(s))s = 0; (3.10)

A2(s)(B ′

1(s) − B ′

2(s))s + A′

2(s)(B1(s) − B2(s))(1 − s) = 0. (3.11)

Let us simplify this system. First of all, let

B(s) = B2(s) − B1(s).

Using (3.8) and (3.9), we get B ′

1 =
A′

1+A′
2

s B , B ′

2 = −
A′

1+A′
2

(1−s)B , so B ′
= B ′

2 − B ′

1 = −
A′

1+A′
2

s(1−s)B . This
equation together (3.10) and (3.11) established (3.3). Part (1) of Theorem 4 is proved.

Let us divide interval [0, 1] into two disjoint sets:

I1 = {s ∈ [0, 1] : A′

1(s) = A′

2(s) = B ′(s) = 0} and I2 = [0, 1] \ I1.

From [10] we know that: I1 consists of one point if ∆1 and ∆2 are touching, and otherwise I1
is an interval [c1, c2] inside (0, 1).

For s ∈ I2, the determinant of the matrix in (3.3) must be zero, i.e.,

s(1 − s)B(s)3
−

1−s
s A1(s)B(s) −

s
1−s A2(s)B(s) = 0, (3.12)

which implies

B(s)2
=

1
s2 A1(s) +

1
(1−s)2 A2(s) (3.13)
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on the set where B(s) ̸= 0. This means that

2B(s)B ′(s) =
1
s2 A′

1(s) +
1

(1−s)2 A′

2(s) −
2
s3 A1(s) +

2
(1−s)3 A2(s).

Plugging this into the third equation of (3.3), we get
2

s(1−s) (A′

1(s) + A′

2(s)) +
1
s2 A′

1(s) +
1

(1−s)2 A′

2(s) −
2
s3 A1(s) +

2
(1−s)3 A2(s) = 0,

which simplifies to
1+s

s A′

1(s) +
2−s
1−s A′

2(s) −
2(1−s)

s2 A1(s) +
2s

(1−s)2 A2(s) = 0. (3.14)

The first two equations in (3.3) can be solved for B′(s)
B(s) giving us

s
1−s

A′
1(s)

A1(s) =
1−s

s
A′

2(s)
A2(s) . (3.15)

So our new system of two ODE’s is
1+s

s A′

1(s) +
2−s
1−s A′

2(s) −
2(1−s)

s2 A1(s) +
2s

(1−s)2 A2(s) = 0, (3.16)

s
1−s

A′
1(s)

A1(s) =
1−s

s
A′

2(s)
A2(s) (3.17)

for s ∈ I2.
It is not hard to notice from (3.13) that A1 and A2 have double zeros at 0 and 1, respectively.

So let

C1(s) =
A1(s)

s2 , C2(s) =
A2(s)

(1 − s)2 .

Then our system (3.3) becomes:⎛⎝−s B(s) 0 (1 − s)C1(s)
0 −(1 − s)B(s) sC2(s)
s

(1−s)
1−s

s −B(s)

⎞⎠⎛⎝ C ′

1(s)
C ′

2(s)
−B ′(s)

⎞⎠ =

⎛⎝ 2B(s)C1(s)
−2B(s)C2(s)

−
2

1−s C1(s) +
2
s C2(s)

⎞⎠
(3.18)

Using B(s)2
= C1(s) + C2(s), we can eliminate B:

(1 + s)sC ′

1(s) + 4sC1(s) + (2 − s)(1 − s)C ′

2(s) − 4(1 − s)C2(s) = 0, (3.19)
s2C ′

1(s)
C1(s) + 2s =

(1−s)2C ′
2(s)

C2(s) − 2(1 − s). (3.20)

Finally, let us deal with the boundary conditions for all of our functions.
Since our system {µ j }

2
j=1 is from a multiple Nevai class, we also have that µ1 and

µ2 are in the (scalar) Nevai class N (A1(1), B1(1)) and N (A2(0), B2(0)), respectively. Since
supp(µ j ) = [α j , β j ], Weyl’s theorem (see Section 1.1) gives us:

A1(1) =

(
β1 − α1

4

)2

, B1(1) =
α1 + β1

2
, (3.21)

A2(0) =

(
β2 − α2

4

)2

, B2(0) =
α2 + β2

2
. (3.22)

The marginal conditions (1.11) give us

A1(0) = 0, A2(1) = 0.
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We also need the other two boundary conditions

B1(0) =
1
2

(
α1 +

α2 + β2

2
−
√

(α2 − α1)(β2 − α1)
)

,

B2(1) =
1
2

(
β2 +

α1 + β1

2
+
√

(β2 − β1)(β2 − α1)
)

,

which can be obtained from Section 4.
This means that B has boundary values

B(0) =
1
2

(
−α1 +

α2 + β2

2
+
√

(α2 − α1)(β2 − α1)
)

,

B(1) =
1
2

(
β2 −

α1 + β1

2
+
√

(β2 − β1)(β2 − α1)
)

.

Finally, to get the boundary values for C1(t) and C2(t), we recall that on the region I2 where
B ̸= 0, we have

B(s)2
=

1
s2 A1(s) +

1
(1−s)2 A2(s) (3.23)

Taking s → 0, we therefore get A1(0) = A′

1(0) = 0 and

B(0)2
=

1
2 A′′

1(0) + A2(0),

which implies A′′

1(0) = 2B(0)2
− 2A2(0). Similarly, s → 1 gives us A2(1) = A′

2(1) = 0 and

B(1)2
= A1(1) +

1
2 A′′

2(1),

which implies A′′

2(1) = 2B(1)2
−2A1(1). Then C1(0) =

1
2 A′′

1(0), C2(0) = A2(0), C1(1) = A1(1),
C2(1) =

1
2 A′′

2(1) which result in our boundary conditions (3.6)–(3.7). Part (2) of the theorem
is now proved.

4. Determination of the limits by means of parametrization of R t⃗

In this section we employ an algebraically-geometric approach in order to determine the
limits of the NNRR’s coefficients. We restrict the consideration to the case of Angelesco system
with two orthogonality measures (we allow the supports to have a common endpoint). Thus in
this setting we set

d = 2, t⃗ = (t1, t2), |t⃗ | = t1 + t2 = 1, s⃗ = s = t1 ∈ (0, 1).

Our input is the supports of measures of orthogonality (1.12)

[αi , βi ], i = 1, 2, with α1 < β1 ⩽ α2 < β2. (4.1)

Note that using the linear map y(x) = (x − β1)/(β2 − β1), these segments can be transformed
into

[−α, 0], [β, 1], α > 0, β ∈ [0, 1), (4.2)

where y(α1) = −α and y(α2) = β. Thus, without loss of generality, we can use (4.2) as the
input.

Our goal is to construct the following procedure: based on Theorem 2, find the limits (2.2),
(2.3) via computing the residues of Υi , i = 1, 2.
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In order to reach this goal we have to solve two problems:
Problem 1. For each s ∈ (0, 1), find the segments [αs,i , βs,i ], i = 1, 2, of the support of

the extremal vector-measure ω⃗ = (ω1, ω2), minimizing the energy functional (1.15).
Problem 2. Using the endpoints {αs,i , βs,i }

2
i=1 as the branch points of the Riemann

surface Rs (which is defined in Section 1.3), find the limits {As,i , Bs,i }
2
i=1 by computing the

residues of the meromorphic on Rs functions Υi , i = 1, 2.

4.1. Parametrization of Rs and solution to problem 2

To solve both problems we use (introduced in [5] and developed in [12,13]) parametrization
of the three-sheeted Riemann surfaces with four branch points.

We fix s ∈ (0, 1) and start with parametrization of R(α, β) := Rs , where we take (4.2) for
the intervals [αs,i , βs,i ], i = 1, 2. We define

U(u) :=
u(2 − u)3

(2u − 1)3 , u ∈ (1, 2), Ru(τ ) :=
τ 2(τ + u − 2)
(2u − 1)τ − u

, τ ∈ C. (4.3)

It is not difficult to check that for α, β given in (4.2) there exists a unique solution of the
equation

∃ ! uα,β ∈ (1, 2) : U(uα,β) =
β(1 + α)
α + β

. (4.4)

We have the following

Theorem 5 ([5,12,13]). Riemann surface R(α, β) can be defined by means of the conformal
map of the Riemann sphere C ∋ w ↦→ z(w) ∈ R(α, β) given by

z(w) := π (z(w)) =
αRuαβ

(w)

1 + α − Ruαβ
(w)

, (4.5)

where π : R(α, β) → C is the natural projection.

Let τ0, τ1, τ2 be z−1(∞(0)), z−1(∞(1)), z−1(∞(2)), respectively. Substituting Ru from (4.3)
into (4.5), we obtain

z(w) = −
αw2(w − γ )

(w − τ0)(w − τ1)(w − τ2)
, γ = 2 − uαβ, (4.6)

where τ0 ≡ ταβ satisfies

∃ ! ταβ > 1 : 1 + α = Ruαβ
(ταβ) (4.7)

and τ1, τ2 are roots of the quadratic equation

τ1 + τ2 = −(uαβ + τ0 − 2), τ1τ2 = −
uαβτ0(uαβ + τ0 − 2)
2uαβτ0 − uαβ − τ0

, τ1 < τ2 < τ0. (4.8)

Solution of Problem 2 is given by the following corollary of Theorem 5.

Corollary. Let (4.2) be supports (1.16) of extremal measures (1.15) for some fixed s ∈ (0, 1)
of Angelesco system (4.1), and let (uαβ, ταβ) be the images of transformations (4.4), (4.7). Then
for limits (1.18) of the corresponding NNRR coefficients we have

A1(s) = −
ατ 2

0 C1 (τ0 − γ )
(τ0 − τ1)2(τ0 − τ2)

, B1(s) =
ατ0 D1

(τ0 − τ1)2(τ0 − τ2)2 , (4.9)
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where parameters τ0 := ταβ, τ1, τ2 are defined in (4.7), (4.8), and

C1 := −
ατ 2

1 (τ1 − γ )
(τ0 − τ1)2(τ1 − τ2)

, D1 := τ 2
0 τ2 + 2τ 2

0 τ1 − 3τ0τ1τ2 − γ τ 2
0 − γ τ1τ0 + 2γ τ1τ2.

(4.10)

Formulas for A2, B2 can be obtained by the swap of indices 1 → 2, 2 → 1.

Proof of this corollary is presented below in Section 4.4.

4.2. Parametrization of supports and ray directions and solution to problem 1

Before we start dealing with Problem 1, let us come back to the parametrization (4.3) and
consider (u, τ ) on the half-strip

⨆
:= (1, 2) × (1, ∞). If we invert map (4.4), (4.7), then we

get a smooth diffeomorphism (A,B) :
⨆

∋ (u, τ ) ↦→ (α, β) ∈ (0, +∞) × (0, 1):

A(u, τ ) := Ru(τ ) − 1, B(u, τ ) :=
A(u, τ )U(u)

1 + A(u, τ ) − U(u)
, (4.11)

which by means of coordinates (u, τ ) parametrize the branch points {−α, β} of the Rie-
mann surface R(α, β), i.e., the left endpoints of segments (4.2) of supports of the extremal
vector-measure ω⃗.

In [13] there was introduced a parametrization of the direction (t1, t2), see (1.13), that cor-
responds to the masses for the extremal measures (ω1, ω2) which have supports [−α, 0], [β, 1]
when the vector equilibrium problem is formulated on [−α, 0], [0, 1]. It is given by the function

Θ :

⨆
∋ (u, τ ) ↦→ θ ∈ (−1, 1), t1 = s =

1 + θ

2
, t2 =

1 − θ

2
,

Θ(u, τ ) := (τ − u)
(

2 + 2uτ − u − τ

(2uτ − u − τ )(u + τ )(u + τ − 2)

)1/2

. (4.12)

Now we can deal with Problem 1. Without loss of generality (we make it clear below in
Section 4.3), it is enough to consider the Angelesco system on touching intervals (β = 0):

[−α, 0], [0, 1]; α > 0. (4.13)

Problem 1 can be decomposed into two parts:
Problem 1.1. Given α, find sα ∈ (0, 1) such that segments (4.13) are supports of the extremal

measure of problem (1.15).
Problem 1.2. For fixed s ∈ (sα, 1) find the value of βs so that:

supp ω1 = [−α, 0], supp ω2 = [βs, 1]. (4.14)

Solution of these problems is given in the following theorem.

Theorem 6 (For Proof See [13]). Given α in (4.13):
(1) Excluding variable τ from the system of equations{

A(2, τ ) = α

Θ(2, τ ) = θ

we get the value of θ (α) =: θα . Then the answer to Problem 1.1 is sα =
1 + θα

2
.
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(2) For each s ∈ (sα, 1), let θ = 2s − 1 ∈ (θα, 1). Then the system{
A(ũ, τ̃ ) = α

Θ(ũ, τ̃ ) = θ

has a unique solution (ũ, τ̃ ), and βs := B(ũ, τ̃ ) is the answer to Problem 1.2.

Summarizing, we have for d = 2 the following Procedure for finding limits (2.2), (2.3) of
NNRR coefficients

A j (s) = lim
N

an⃗, j , B j (s) = lim
N

bn⃗, j , j = 1, 2

for the Angelesco systems of MOPs (1.3), (1.12) defined on intervals (4.13).
1. Solve Problem 1.1: find θα, sα = (1+θα)/2. To do this, evaluate functions A(2, τ ),Θ(2, τ )

by (4.11), (4.12), which determines the value and θα according to Theorem 6(1).
2. For each s ∈ (sα, 1) solve Problem 1.2: find βs from (4.14). To do this, solve the system

from Theorem 6(2) for θ := 2s − 1 and substitute its solution (ũ, τ̃ ) into the function B to
find βs .

3. For each s ∈ (sα, 1) find A j (s), B j (s), j = 1, 2. To do this, apply Corollary of
Theorem 5 with the supports of the extremal measure being [−α, 0] and [βs, 1], i.e., solve
equations (4.4), (4.7), (4.8) and substitute the resulting uαβ, ταβ, τ1, τ2 into the formulas (4.9)
for A j (s), B j (s), j = 1, 2.

To find limits (2.2), (2.3) for s ∈ (0, sα), we do the following:
4. We make reflection with respect to 0 and scaling (by k = 1/α) to get the system of

intervals to the form (4.13). As a result, the new intervals are [−α̂, 0], [0, 1] with α̂ = 1/α.
5. We apply the above steps 1, 2, 3 of the Procedure to this new system of intervals to get

the limits Â j (s), B̂ j (s), j = 1, 2 for s ∈ (̂sα̂, 1) (note that ŝα̂ = 1 − sα).
6. Then A j (s) = Â(1 − s)/k2 and B j (s) = −B̂(1 − s)/k for j = 1, 2 and s ∈ (0, sα).

Indeed, scaling by k stretches all the bn⃗, j -coefficients by k and all the an⃗, j -coefficients by k2.
Reflection multiplies the bn⃗, j -coefficients by −1, keeps an⃗, j ’s intact and flips s to 1 − s.

4.3. Remark on problem 1 for the measures with non-touching supports

At first we provide an equivalent characterization of the extremal vector-measure ω⃗ =

(ω1, ω2) of the functional (1.15). We have (see [10]):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2V ω1 (z) + V ω2 (z)

{
⩾ γ1, z ∈ [α1, β1]
= γ1, z ∈ supp ω1 ⊆ [α1, β1], |ω1| = s =

1 + θ

2
,

V ω1 (z) + 2V ω2 (z)
{
⩾ γ2, z ∈ [α2, β2]
= γ2, z ∈ supp ω2 ⊆ [α2, β2], |ω2| = 1 − s,

(4.15)

where V ν(z) = −
∫

log |z − x | dν(x) is log-potential of measure ν.
If we consider the vector potential

−→
W =

(
W1
W2

)
:= A

(
V ω1

V ω2

)
, A :=

(
1 2
2 1

)
,
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where A is called the Angelesco matrix of interaction, then from (4.15) we can see that
components of

−→
W possess the equilibrium property⎧⎨⎩W1 ≡ γ1 on supp ω1 ⊆ [α1, β1],

W2 ≡ γ2 on supp ω2 ⊆ [α2, β2].

Thus the extremal measure ω⃗ is also called the equilibrium measure.
Many properties of the equilibrium measure follow from equilibrium relations (4.15) and

from the fact that log-potential is a convex function outside of the measure support. For
example, for d = 2 the strict inclusion supp ωi ⊊ [αi , βi ] may happen only for one component
i = 1 or i = 2. As another example, if we have for fixed s in (4.15)

supp ω1 = [α1, β1], supp ω2 ⊊ [α2, β2],

then supp ω2 = [α∗

2 , β2] with α2 < α∗

2 , and for this s the extremal measure ω⃗ is the same as
for all Angelesco systems with supports

[α1, β1], [α̃2, β2], where α̃2 ∈ [β1, α
∗

2 ].

Using this property we can reduce the solution of Problem 1 for the Angelesco systems with
non-touching supports (4.2) to the case (4.13) considered above. Indeed, for the non-touching
case we start with case (4.13) anyway, i.e., with intervals [−α, 0] and [0, 1] and perform step 1
of the above Procedure: find sα . Then we perform a new step:

1.5. Find sβ
∈ (sα, 1) such that for the Angelesco system supported by (4.13) we have3

supp ω1 = [−α, 0], supp ω2 = [β, 1]. (4.16)

We note, that the obtained sβ is equal c2 from point (2) of Theorem 4:

sβ
= c2.

Then, performing steps 2 and 3 for s ∈ (c2, 1) we obtain A j (s), B j (s), j = 1, 2.
In an analogous way we obtain value of s = c1 < c2 and A j (s), B j (s), j = 1, 2 for

s ∈ (0, c1). At the end we recall that for s ∈ (c1, c2) limits A j (s), B j (s), j = 1, 2 remain
to be the constants.

4.4. Proof of Corollary of Theorem 5

From Theorem 5 we know that the function z : C → Rs := R(α, β) is a conformal map,
where

z(w) = π (z(w)) = −
αw2(w − γ )

(w − τ0)(w − τ1)(w − τ2)
, τ0 := τα,β, γ := 2 − uα,β, (4.17)

see (4.6). Meromorphic on Rs function Υ1 is defined by its divisor and normalization:

Υ1(z) =

⎧⎨⎩O
(

1
z

)
, as z → ∞

(0), (equiv., as w → τ0),

z , as z → ∞
(1), (equiv., as w → τ1).

(4.18)

3 This can be done by executing step 3 of the Procedure for s > sα until (4.16) happens.
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Our goal is to obtain two terms of the power series expansion of Υ1(z) at the point ∞
(0),

namely to find the coefficients A1, B1 in

Υ1(z)
⏐⏐⏐
z→∞(0)

=
A1

z

(
1 +

B1

z
+ · · ·

)
. (4.19)

In coordinates w ∈ C we have

Υ1(z(w)) = C1
w − τ0

w − τ1
, (4.20)

where C1 is determined from the normalization at the point ∞
(1), see (4.18):(

Υ1(z(w))
z(w)

) ⏐⏐⏐
w=τ1

= 1, (4.21)

For the coefficients A1, B1 we have from (4.19)

A1 =

(
z(w)Υ1(z(w))

)⏐⏐⏐
w=τ0

, B1 =

[
z(w)

(
z(w)
A1

Υ1(z(w)) − 1
)] ⏐⏐⏐

w=τ0
. (4.22)

Thus substituting (4.20), (4.17) in (4.21) we obtain C1 in (4.10):

C1 =

(
z(w)

w − τ1

w − τ0

) ⏐⏐⏐
w=τ1

=
−ατ 2

1 (τ1 − γ )
(τ0 − τ1)2(τ1 − τ2)

Analogously, plugging (4.20), (4.17) into (4.22) for A1, we obtain (4.9):

A1 = C1
−ατ 2

0 (τ0 − γ )
(τ0 − τ1)2(τ0 − τ2)

=
α2 τ 2

0 (τ0 − γ ) τ 2
1 (τ1 − γ )

(τ0 − τ1)4(τ0 − τ2)(τ1 − τ2)
. (4.23)

and plugging (4.20), (4.17), (4.23) into (4.22) for B1, we get:

B1 =

−αw2(w − γ )
(

w2(w − γ )
(w − τ1)2(w − τ2)

(τ0 − τ1)2(τ0 − τ2)
τ 2

0 (τ0 − γ )
− 1

)
(w − τ0)(w − τ1)(w − τ2)

⏐⏐⏐
w=τ0

.

Using the notation P(w) :=
w2(w − γ )

(w − τ1)2(w − τ2)
, we continue:

B1 =
−αw2(w − γ )

(w − τ1)(w − τ2)
(τ0 − τ1)2(τ0 − τ2)

τ 2
0 (τ0 − γ )

·
P(w) − P(τ0)

w − τ0

⏐⏐⏐
w=τ0  

=P ′(τ0)

.

To compute P ′(w) we use

P ′(w)
P(w)

=
2
w

+
1

w − γ
−

2
w − τ1

−
1

w − τ2

=
w2τ2 + 2w2τ1 − 3wτ1τ2 − γw2

− γ τ1w + 2γ τ1τ2

w(−w + γ )(w − τ1)(w − τ2)
,
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Fig. 1. The case supp µ1 = [−2, 0], supp µ2 = [0, 1]: Blue plot: computation via the NNRR coefficients; Orange
plot: computation via differential equations; Red plot: computation via the algebraically-geometric approach of
Section 4. Plots effectively overlap.

This allows us to arrive to (4.9):

B1 = P(τ0)
−α(τ0 − τ1) D1

τ0(−τ0 + γ )(τ0 − τ1)(τ0 − τ2)

=
−τ 2

0 (τ0 − γ )
(τ0 − τ1)2(τ0 − τ2)

α(τ0 − τ1) D1

τ0(−τ0 + γ )(τ0 − τ1)(τ0 − τ2)
.

=
τ0

(τ0 − τ1)2(τ0 − τ2)
α D1

(τ0 − τ2)
.

Corollary of Theorem 5 is proved.

5. Comparing numerics: Angelesco system d = 2

5.1. Numerics: two touching intervals

For the Angelesco systems with two intervals we now have three methods of numerically
estimating the limits A1(s), A2(s), B1(s), B2(s) (0 ≤ s ≤ 1) of the NNRR’s coefficients:

(i) by computing an⃗, j and bn⃗, j recursively (through (1.5)–(1.7), see [9]) for large enough |n⃗|;
(ii) through the system of ODE’s in Section 3 (namely, (3.5));

(iii) through the algebraically-geometric approach of Section 4.

On Fig. 1 we present the numerics in Wolfram Mathematica for the case [α1, β1] = [−2, 0],
[α2, β2] = [0, 1]. In (i) |n⃗| was taken 1500 (blue plot); in (ii) the in-built NDSolve Mathematica
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Fig. 2. The case supp µ1 = [−2, 0], supp µ2 = [0.25, 1]: Blue plot: computation via recurrence coefficients; Purple
plot: computation via differential equations with the boundary conditions at s = 0; Green plot: computation via
differential equations with the boundary conditions at s = 1.

function was used (orange plot); notice that the ODE for B1 in (3.4) has a singular behavior
at s = 0 and the same is true for B2 at s = 1, so one should use

B ′

1(s) =
2C1(s) + sC ′

1(s)
√

C1(s) + C2(s)

(
1 +

C2(s)
C1(s)

)
, B ′

2(s) =
2C2(s) − (1 − s)C ′

2(s)
√

C1(s) + C2(s)

(
1 +

C1(s)
C2(s)

)
,

instead (these follow from (3.4) and (3.15)); in (iii) the interval s ∈ [0, 1] was divided into
3000 subintervals (red plot). The three plots are effectively indistinguishable.

5.2. Numerics: two non-touching intervals

On Fig. 2 we present the limits A1(s), A2(s), B1(s), B2(s) for an Angelesco system with
[α1, β1] = [−2, 0], [α2, β2] = [0.25, 1]. The blue plot corresponds to the computation of
an⃗, j and bn⃗, j recursively (via (1.5)–(1.7)) with |n⃗| = 1500; the purple plot corresponds to the
numerical approximation of the solution to the system of ODE’s (via (3.5)) with the boundary
conditions at s = 0; the green plot corresponds to the numerical approximation of the solution
to the system of ODE’s (via (3.5)) with the boundary conditions at s = 1. Equivalently, the
purple plot corresponds to the coefficients’ limits for the Angelesco system with supports of
µ1 and µ2 being [−2, 0.25] and [0.25, 1], while the green plot corresponds to the supports
[−2, 0] and [0, 1]. See Section 4.3 for the explanation of this phenomenon. This can also be
seen from the fact that (3.6) is independent of β1 and that (3.7) is independent of α2. Again,
the plots effectively overlap (away from the plateau regions).



A.I. Aptekarev and R. Kozhan / Journal of Approximation Theory 255 (2020) 105409 21

CRediT authorship contribution statement

Alexander I. Aptekarev: Conceptualization, Data curation, Formal analysis, Funding acqui-
sition, Investigation, Methodology, Project administration, Resources, Software, Supervision,
Validation, Visualization, Writing - original draft, Writing - review & editing. Rostyslav
Kozhan: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investi-
gation, Methodology, Project administration, Resources, Software, Supervision, Validation,
Visualization, Writing - original draft, Writing - review & editing.

Acknowledgments

The authors are grateful to the anonymous referees for their corrections and careful proof-
reading of the paper. The second author thanks W. Van Assche for the excellent mini-course
on multiple orthogonal polynomials at the Summer School on OPSF at the University of Kent,
which lead to the idea of the current paper. He also thanks the organizers of the Summer School
and W. Van Assche and A. Martı́nez-Finkelshtein for useful discussions.

References
[1] A.I. Aptekarev, Spectral problems of high-order recurrences, Amer. Math. Soc. Transl. 233 (2014) 43–61.
[2] A.I. Aptekarev, S.A. Denisov, M.L. Yattselev, Self-adjoint Jacobi matrices on trees and multiple orthogonal

polynomials, Trans. Amer. Math. Soc. 373 (2) (2020) 875–917.
[3] A.I. Aptekarev, M. Derevyagin, W. Van Assche, Discrete integrable systems generated by Hermite–Pade

approximants, Nonlinearity 29 (5) (2016) 1487–1506.
[4] A.I. Aptekarev, V. Kalyagin, G. Lopez Lagomasino, I.A. Rocha, On the limit behavior of recurrence

coefficients for multiple orthogonal polynomials, J. Approx. Theory 139 (2006) 346–370.
[5] A.I. Aptekarev, V.A. Kalyagin, V.G. Lysov, D.N. Toulyakov, Equilibrium of vector potentials and

uniformization of the algebraic curves of genus 0, J. Comput. Appl. Math. 233 (3) (2009) 602–616.
[6] A.I. Aptekarev, V.A. Kalyagin, E.B. Saff, Higher-order three-term recurrences and asymptotics of multiple

orthogonal polynomials, Constr. Approx. 30 (2) (2009) 175–223.
[7] A.I. Aptekarev, W. Van Assche, M.L. Yattselev, Hermite-Padé approximants for a pair of cauchy transforms

with overlapping symmetric supports, Comm. Pure Appl. Math. 70 (3) (2017) 444–0510.
[8] M. Duits, B. Fahs, R. Kozhan, Global fluctuations for Multiple Orthogonal Polynomial Ensembles, preprint,

arXiv:1912.04599.
[9] G. Filipuk, M. Haneczok, W. Van Assche, Computing recurrence coefficients of multiple orthogonal

polynomials, Numer. Algorithms 70 (3) (2015) 519–543.
[10] A.A. Gonchar, E.A. Rakhmanov, On the convergence of simultaneous Padé approximants for systems of

functions of Markov type, Proc. Steklov Inst. Math. 157 (1983) 31–50.
[11] V.A. Kaliaguine, On operators associated with Angelesco systems, East J. Approx. 1 (2) (1995) 157–170.
[12] V.G. Lysov, D.N. Tulyakov, On a vector potential theory equilibrium problem with the Angelesco matrix of

interaction, Proc. Steklov Inst. Math. 298 (2017) 170–200.
[13] V.G. Lysov, D.N. Tulyakov, On the supports of vector equilibrium measures in the Angelesco problem with

nested intervals, Proc. Steklov Inst. Math. 301 (2018) 180–196, http://dx.doi.org/10.1134/S0081543818040144.
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