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Processing–structure relationships are at the heart of materials science, and predictive tools are essential
for modern technological industries insofar as structure dictates properties. Point defects can have a
profound effect on structure and consequently properties, but their effect on crystal chemistry is still
not generally known or understood. None of the very few theoretical models which exist for perovskites
are suited to the doped and defective ceramics most commonly used in commercial devices; therefore, a
new empirical approach is presented here. A predictive model for the effective size of anions as well as
cation vacancies and ultimately the pseudocubic lattice constant of such perovskites, based solely on
published ionic radii data, has been developed here. The model can also be used to derive ionic radii
of cations in twelvefold coordination. Vacancies have an effective size due to both bond relaxation and
mutual repulsion of coordinating anions, and as expected this size scales with the host cation radius,
but not in a straightforward way. The model is able to predict pseudocubic lattice constants, calculate
the effective size of anions and cation vacancies, and identify the effects of both cation ordering and
second-order Jahn Teller distortions. A lower limit on the tolerance factor of stable oxide perovskites is
proposed.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The mineral perovskite is CaTiO3; however, the term is more
generally applied to any ABX3 compound which shares its
structure, the key feature of which is corner-sharing of anion
octahedra, each containing a single B-site cation, with larger
A-site cations residing in cuboctahedral sites between the
octahedra. Perovskites are ubiquitous in modern devices because
their wide compositional range and structural variability gives
rise to useful properties like ferroelectricity, superconductivity,
colossal magnetoresistance, and spin-dependent transport. The
design of materials with these properties is aided by an under-
standing of the relationship between chemical composition and
crystal structure. In particular, the prediction of the cubic or pseu-
docubic lattice constant of perovskite materials is of importance
partially for their use as substrates or buffer layers for compound
semiconductor epitaxy [1,2] or as strain layers in ceramic superlat-
tice structures [3–7]. An example of the latter is BaTiO3/SrTiO3
superlattices in which the tensile and compressive properties of
each alternating layer of ferroelectric BaTiO3 induces ferroelectric
properties in the SrTiO3, and the SrTiO3 layers compensate for
the relaxation of the strain in BaTiO3 with film thickness, making
it possible to grow thicker ferroelectric films and enabling the tun-
ing of properties by varying the thickness of each layer.

The conventional perovskite tolerance factor is defined as:

t� ¼
rAðidÞ þ rXðidÞffiffiffi
2
p
ðrB þ rXðidÞÞ

ð1Þ

where rA(id), rB, and rX(id) are the effective ionic radii of A, B, and X
ions, respectively, as reported by Shannon [8]. Where sites are occu-
pied by more than one species, the effective ionic size is calculated
as a weighted average. If stoichiometric vacancies are present, their
size is assumed to be 0.

In 2007 Ubic [9] published a revised method of calculating
pseudocubic lattice constants, apc, of stoichiometric perovskites
based on 132 compositions found in the literature. That model
(Eq. (2)) used effective ionic radii assuming sixfold coordination
for all ionic species because, even though that coordination is
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incorrect for A and X ions, those values resulted in the best fit for
apc (average relative error = 0.60%).

apc ¼ 0:06741þ 0:49052ðrVI
AðidÞ þ rVI

XðidÞÞ þ 1:29212ðrB þ rVI
X Þ ð2Þ

where rVI
AðidÞ, rB, and rVI

XðidÞ are the effective ionic radii of A, B, and X
ions in sixfold coordination.

Although this model has proven extremely accurate in predict-
ing cubic/pseudocubic lattice constants (and hence ABX3 unit vol-
ume) in stoichiometric perovskites, in order to quantitatively study
the effect of defects on crystal structure, a model which involves
the actual sizes of ions (in their correct coordinations) is required.
Towards that end, the same linear regression method and revised
lattice constants reported in that work can be used to derive a
new equation in which A, B, and X ions are assumed in XII, VI,
and II coordinations, respectively. As it happens, this new model
(Eq. (3)) yields results only slightly less accurate than the original
(average relative error = 0.77%):

apc ¼ 0:01173þ 0:50977ðrAðidÞ þ rXðidÞÞ þ 1:26954ðrB þ rXðidÞÞ ð3Þ

where rAðidÞ and rXðidÞ are the effective ionic radii of A and X ionic
species in XII and II coordination, respectively.

Eq. (3) can be solved for t according to Eq. (1) above:

t1 ¼
apc � 0:011730139

0:7209203ðrB þ rXðidÞÞ
� 1:760998 ð4Þ

Ideally t1 = t⁄. Eq. (4) is similar to that reported previously
[10,11] but, as it was derived from corrected lattice-constant data,
is slightly more accurate than the earlier version. Significantly, Eq.
(4) removes the necessity of calculating effective or average A-site
ionic radii for compositions for which this value is ambiguous to
define (e.g., compositions with mixed occupancies or A-site vacan-
cies). The required apc value in this expression can either be calcu-
lated via Eq. (2) (in the case of stoichiometric perovskites) or
experimentally measured. Lafaso and Woodward [12] introduced
the concept of a bond-valence based tolerance factor, tBV, which
relies on bond-valence data and thus does not support polyatomic
ions, some cation species, or compositions with stoichiometric
vacancies. As it happens, Eq. (4) yields results similar to tBV in most
cases. Eq. (4) is also more accurate than Eq. (1) in predicting struc-
ture and can be used to show that, for example, the t⁄ = 0.9729 cal-
culated for CaTiO3 via Eq. (1) and corresponding to a structure with
anti-phase tilting of octahedra [13] would become t1 = 0.9552
according to Eq. (4), indicating the presence of both in-phase and
anti-phase tilting [13], in agreement with the established structure
[14]. In the case of Ba(Sm½Sb½)O3, Eq. (1) yields t⁄ = 0.9831, corre-
sponding to a structure with slight antiphase octahedral tilting;
whereas Eq. (4) would yield t1 = 0.9886, corresponding to the cor-
rect untilted structure. An even more extreme example is that of
MgSiO3, for which uncertainty in the size of Mg2+ results in a t⁄ of
1.0436, suggesting an untilted structure. In this case Eq. (4) unam-
biguously predicts a tolerance factor of t1 = 0.9546, again in keeping
with the tilted Pbnm structure reported experimentally [15].

By re-writing Eq. (4), apc can now be expressed as a function of t1:

apc ¼ 0:7209203 t1 þ 1:760998ð ÞðrB þ rXðidÞÞ þ 0:011730139 ð5Þ

Ideally, the cubic/pseudocubic lattice constant can be defined in
terms of either the B–X bond length or the A–X bond length:

a0pc ¼
ffiffiffi
2
p
ðrAðidÞ þ rXðidÞÞ ð6Þ

a00pc ¼ 2ðrB þ rXðidÞÞ ð7Þ

Because of the various influences on ionic radii, both definitions
are approximations and only in the case that t⁄ = 1 does a0pc = a00pc.
This phenomenon was noted previously [9,11], but its cause was
never investigated. In fact, the reason for the anomaly is based
on the fact that ionic radii are affected by four factors. Valence
and coordination are the two most commonly cited influences on
ionic radii and are the only factors considered by Shannon [8];
however, covalency and the cation/anion radius ratio are also
important. As this ratio approaches the critical value for anion–an-
ion contact, the repulsion between anions will increase, effectively
distending the structure and increasing the apparent radii of the
component ions [16]. Although commonly neglected, this effect
is by no means always negligible. In the case of compounds like
perovskites, there are two cation/anion ratios, both of which can
be neatly expressed by the tolerance factor.

Although an untilted cubic phase in Pm�3m was reported for
Sr1�3xLa2xTiO3 (x 6 0.1) by Howard et al. [17] and x 6 0.2 by
Battle et al. [18], Ubic et al. [19] found antiphase octahedral tilting
consistent with the R�3c space group for Sr1�3xCe2xTiO3 (0 < x < 0.2)
via a mixture of electron diffraction and neutron diffraction.
Antiphase octahedral tilting consistent with the R�3c space group
is almost undetectable via XRD in low-x compositions of
Sr1�3xLn2xTiO3, which is why refinements were conducted in space
group Pm�3m in previous work [11]; however, Ubic et al. [10] has
shown that such tilting may begin at infinitesimally small x values.
Space group R�3c is not adequate to describe compositions for
which x P 0.2, and a better fit can be achieved in C2/c [20] pro-
vided that a subtle, probably short-range doubling of the c axis is
neglected. A short-range tetragonal distortion has been observed
for 0.15 6 x < 0.25 via X-ray and neutron diffraction by Howard
et al. [17] and via high-resolution TEM by Battle et al. [18], who
also observed vacancy pairing at these compositions. At still higher
x values, long-range cation/vacancy ordering reportedly occurs and
an orthorhombic form has been reported in Pban (x = 0.25) by
Battle et al. [18]; although not all reflections in electron diffraction
patterns could be accounted for in this structure. Howard et al. [17]
reported an orthorhombic structure in Cmmm for x = 0.275. Abe &
Uchino [21] reported a very slightly oxygen-deficient form of the
x ¼ 1=3 end-member (La2/3TiO3) with charge compensation con-

ferred by Ti4+ reduction, La2
3
Ti4þ

1�2kTi3þ
2k O3�k (0.007 6 k 6 0.079), but

they conducted their synthesis under reduced oxygen partial pres-
sure using a mixture of CO2 and H2 gases. Under these conditions,
such reduction and oxygen loss is to be expected. Although a sche-
matic of the structure is shown in their paper, no crystallographic
model (e.g., space group, atomic coordinates, etc.) was ever pub-
lished. The XRD pattern of the resultant product (PDF 26-827) is
markedly different from that reported by Gönen et al. [22], who
used a wet chemical route in air to synthesize La2/3TiO3 from either
HLa2Ti3O9 or KLa2La3O9 and found the resultant composition in
very good agreement with the ideal stoichiometry. Their structural
model (ICSD collection code 240300) in space group I4/mmm con-
sists of shifted (La2Ti3O9.5)1� slabs with 5% oxygen vacancies, yield-
ing a La2/3TiO3 compound with a layered structure in which
successive planes are either La- or vacancy-rich This model gave
superior Rietveld fits to XRD data and is ‘‘consistent with expecta-
tions based on the K2O elimination in the formation of KLa2Ti3O9.5

and the fact that La2Ti3O9 readily reacts with KNO3 to re-form the
K2La2Ti3O10 starting material.’’ As this model is the only one listed
in the ICSD for a La-deficient titanate perovskite, it was the one
used in this work.

Compositions in the system Ca1�3xLa2xTiO3 have been reported
in space group Pnma by Vashook et al. [23] for x 6 0.067 and by
Zhang et al. [24] for x = 0.1. The Pb1�3xLa2xTiO3 analogues have
been reported in space group P4mm (0 6 x 6 0.125) [25–26] and
Pm3m (x P 0.15). [26] Undoped Pb1�3xLa2x(Zr0.6Ti0.4)O3 reportedly
[27,28] crystallizes in space group R3c and transforms to a tetrag-
onal form [29–31] in P4mm for 0.03 < x < 0.05 and finally Pm3m at
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x > 0.06. [30,31] While it has been reported previously [32,33] that
La3+ substitution for Ba2+ in BaTiO3 is charge-compensated by Ti4+

reduction at low concentrations (60.5 mol% La or x 6 0.0025) and
via Ti4+ vacancies at higher dopant levels, a more recent study
[34] reportedly showed compensation via Ba2+ vacancy formation.
The compound Sr(Mg1/3Nb2/3)O3 was reported [35] in space group
P�3m1, whilst (Na,K)(1�3x)/2La(1+x)/2(Mg½W½)O3 was reported [36] in
P21/m.
Fig. 1. Non-ideality of the effective A- and X-site sizes calculated for the 132
compositions reported in Ref. [9].
2. Experimental details

A total of 11 compositions in the system Sr1�3xLn2xTiO3 (Ln = La, Nd) corre-
sponding to 0 < x 6 0.25 were prepared via the conventional mixed-oxide route as
described elsewhere [11]. This formulation is convenient in that x is equal to the
concentration of A-site vacancies, [V]. In addition, 13 compositions in the system
Ca1�3xLn2xTiO3 (Ln = La, Nd, Y), two compositions in the system Pb1�3xLa2xTiO3, four
compositions in the system Ba1�3xLa2xTiO3, six compositions in the system
Pb1�3xLa2x(Zr0.6Ti0.4)O3 (PLZT), five compositions in the system
[(Ca0.252Sr0.748)1�3xLa2x]TiO3, and Sr0.97La0.02(Mg1/3Nb2/3)O3 were all produced in a
similar manner. Raw materials included SrCO3 (99.99%, Alfa-Aesar), CaCO3 (99.5%,
Fisher Scientific), PbO (99.9%, Fisher Scientific), BaCO3 (99.95%, Alfa-Aesar), La2O3

(99.9%, Alfa-Aesar), Nd2O3 (99.9%, Meldform Rare Earths), TiO2 (99.5%, Fisher
Scientific), Y2O3 (99.9%, Alfa-Aesar), and ZrO2 (99.5%, Alpha Aesar). A further 11
PLZT compositions (0 6 x 6 0.03) were processed via attrition milling according to
the method previously described by Tolman et al. [37].

Powder samples were prepared for X-ray diffraction from post-calcined batches
or, in the case of the 11 attrition-milled PLZT samples, pulverized pellets. For
Sr1�3xLn2xTiO3 samples, synchrotron X-ray data were acquired on the
high-resolution beamline 11-BM at the Advanced Photon Source, Argonne
National Laboratory. Le Bail fits to these data were conducted using the General
Structure Analysis System (GSAS) [38,39]. For all other compositions, diffraction
was conducted using a Miniflex 600 (Rigaku, Woodlands, TX) in Bragg–Brentano
theta-2 theta geometry (106 cps on Si standard (111) peak), and refinements con-
ducted using DiffracPLUS TOPAS 4.2 (Bruker AXS Inc., Madison, WI). In addition to
the cubic/pseudocubic lattice constants and average crystallite size, non-structural
parameters, including background, peak shape, zero-point, and instrument line pro-
file were also refined. The instrument line profile was characterized as the convolu-
tion of both equatorial and axial profiles. Equatorial divergence was refined using
the receiving-slit width and the fixed-divergence slit angle parameters, while axial
divergence was modeled using the Finger et al. [40] asymmetry correction.
Background was fitted with a fourth-order Chebychev polynomial and a 1/x function
to fit the rise in the background at low angles caused by scatter from the direct beam.

Refinements in the system Sr1�3xLn2xTiO3 were conducted in either R�3c
(0 < x < 0.2) or C2/c (0.2 6 x 6 0.25), while refinements in the system
Ca1�3xLn2xTiO3 (x < 0.2) were all conducted in space group Pnma. Analogues in
the Pb1�3xLa2xTiO3 system were refined in either P4mm (x < 0.15) or Pm�3m
(x = 0.15). The Pb1�3xLa2x(Zr0.6Ti0.4)O3 compositions were refined in R3c

(0 6 x 6 0.025), P4mm (0.03 6 x 6 0.05), or Pm3m (0.06 6 x 6 0.1). The system
Sr1�3xLa2x(Mg1/3Nb2/3)O3 was refined in space group P�3m1, whilst
(Na,K)(1�3x)/2La(1+x)/2(Mg½W½)O3 was refined in P21/m.

Calcined powders of Ba1�3xLa2xTiO3 were pelletized as described elsewhere [11]
and sintered at 1315 �C in flowing oxygen for six hours. Pellets were then polished,
thermally etched at 1250 �C for 10 min, and finally coated with a thin conductive
layer using a carbon evaporator (K950X, Quorum Technologies, Ashford, UK) in
preparation for analysis via SEM (S-3400-II, Hitachi High Technology, USA).

Samples for transmission electron microscopy (TEM) were first pressed into
cylindrical pellets as described elsewhere [11] and sintered in flowing oxygen at
1525 �C for four hours. TEM specimens were then prepared by thinning pellets to
electron transparency using conventional ceramographic techniques followed by
ion thinning (Model 600, Gatan, Pleasanton, CA) to electron transparency for obser-
vation in the TEM (JEM-2100HR, JEOL, Tokyo, Japan).
Fig. 2. Non-ideality of the effective anion size as a function of t1 (Eq. (4)) calculated
for the 132 compositions reported in Ref. [9].
3. Theory, results, and discussion

3.1. Perovskites generally

In order to develop a workable model for the effect of A-site
vacancies in perovskites, one must first start by assuming that rB

remains unaffected by A-site doping (a reasonable approximation),
then the effective value of rX can be calculated from a pseudocubic
lattice constant (derived from refined real lattice constants) as:

rX ¼
apc

2
� rB ð8Þ
With this definition of rX, the effective rA can now be calculated
as:

rA ¼
apcffiffiffi

2
p � rX ¼

ffiffiffi
2
p
� 1

2

 !
apc þ rB ð9Þ

The ratio of rX (from Eq. (8)) to rX(id) as well as the difference
between this rA (from Eq. (9)) and rA(id) can be quantified using
the same data set used by Ubic [9] as shown graphically in Fig. 1.

The equations which describe this behavior are:

rX

rXðidÞ
¼ 0:43269þ 0:56393t� ðR2 ¼ 0:80439Þ ð10Þ

rA � rAðidÞ ¼ 7:4801� 12:3139t� þ 4:8257t2
�

ðR2 ¼ 0:97079Þ ð11Þ

The values of R2 indicate the goodness of fit. As Fig. 2 and Eq. (12)
show, the fit for rX/rX(id) can be improved significantly by using t1

(Eq. (4)) rather than t* (Eq. (1)), but as t1 requires a foreknowledge
of apc, it cannot be used as an input for a predictive model.

The equation which describes this behavior is:

rX

rXðidÞ
¼ 0:42983þ 0:56696t1 ðR2 ¼ 0:99548Þ ð12Þ

For compositions without stoichiometric vacancies, tBV � t1, so
it would be possible in theory to use bond-valence parameters
instead of t1 to refine rX and ultimately apc in the cases where
bond-valence parameters are known. Unfortunately, using this
method as a predictive model is complicated by the fact that, in



Table 1
Ca1�3xLn2xTiO3 refinement results.

Composition SG a (Å) b (Å) c (Å) Z apc(exptl) (Å)

CaTiO3
a Pnma 5.4425 7.6410 5.3805 4 3.8245

Ca0.97La0.02TiO3 Pnma 5.4447 7.6536 5.3911 4 3.8296
Ca0.94La0.04TiO3 Pnma 5.4434 7.6500 5.3891 4 3.8282
Ca0.91La0.06TiO3 Pnma 5.4454 7.6577 5.3960 4 3.8316
Ca0.7La0.2TiO3 Pnma 5.4454 7.6784 5.4242 4 3.8417
Ca0.55La0.3TiO3 Pnma 5.4462 7.6968 5.4449 4 3.8499
Ca0.4La0.4TiO3 Pnma 5.4887 7.7279 5.4666 4 3.8702
La2/3TiO3

b I4/mmm 3.8565 3.8565 24.645 6 3.9384
Ca0.97Nd0.02TiO3 Pnma 5.4469 7.6529 5.3899 4 3.8297
Ca0.94Nd0.04TiO3 Pnma 5.4459 7.6541 5.3908 4 3.8299
Ca0.91Nd0.06TiO3 Pnma 5.4459 7.6548 5.3937 4 3.8307
Ca0.85Nd0.1TiO3 Pnma 5.4510 7.6632 5.40145 4 3.8351
Ca0.97Y0.02TiO3 Pnma 5.4422 7.6421 5.3814 4 3.8248
Ca0.94Y0.04TiO3 Pnma 5.4466 7.6490 5.3859 4 3.8280
Ca0.85Y0.1TiO3 Pnma 5.4457 7.6381 5.3734 4 3.8230

a Ref. [14].
b Ref. [22].
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the cases where bond-valence parameters are known, multiple r0

values have been reported, making predications ambiguous at best.
Where such predictions are possible for the data points shown in
Figs. 1 and 2, the average relative error is >1% – not as good as that
achieved with Eq. (2).

In the unique case for which t⁄ = 1, rA = rA(id) so the difference
rA � rA(id) = 0; and rX = rX(id) so the ratio rX/rX(id) = 1. In the cases
where t⁄ < 1, A–X bonds are stretched whilst B–X bonds are com-
pressed, resulting in underestimations in a0pc (Eq. (6)) but overesti-
mations in a00pc (Eq. (7)). This effect can be interpreted for the
purposes of this model as a large increase in rA and a simultaneous
smaller decrease in rX. Conversely, when t⁄ > 1, it is A–X bonds
which are compressed and B–X bonds which are stretched, an
effect interpreted in this model as an increase in rX and a simulta-
neous larger decrease in rA (Fig. 1).

Because of this stretching/compressing, it is not strictly possible
to use only ideal values for effective ionic radii to calculate apc in
most perovskites; however, because Eq. (4) is explicitly a function
of apc, t1 accounts for the effective ionic size variation as well as the
effects of any non-stoichiometry, which is why it is more accurate
than Eq. (1) at predicting structure.

It is now possible to revise Eq. (3) to account for the general
non-ideal nature of both the A site and anion size. In fact, as apc

is much more sensitive to the B–X bond length than to the A–X
bond length, it is only necessary to combine Eqs. (7) and (10) to
yield a model with an average relative error of 0.74%:

a00pc ¼ 2½rB þ rXðidÞð0:43269þ 0:56393t�Þ� ðR2 ¼ 0:99354Þ ð13Þ

The results are shown in Fig. 3.
Eq. (13) can also be re-arranged as:

t2 ¼
a00pc=2� rB

0:56393rXðidÞ
� 0:76728 ð14Þ

which yields results very similar to those of Eq. (4). Like t1 (Eq. (4)),
t2 (Eq. (14)) is explicitly a function of apc so accounts for both the
effective ionic size variation (Fig. 1) as well as the effects of any
non-stoichiometry; however, also like Eq. (4), it requires the fore-
knowledge of apc and so cannot be used in a predictive model.

3.2. Application to A2þ
1�3xA3þ

2x B4þX2�
3 perovskites

All of the compositions processed were verified to be
single-phase via X-ray diffraction. The results of Le Bail refine-
ments of all the compositions produced in this work are shown
in Tables 1–6 supplemented with additional data from open liter-
ature. In all cases involving non-cubic crystal systems, pseudocubic
lattice constants were calculated as:
Fig. 3. Calculated values of a00pc (Eq. (13)) vs experimental values.
apcðexptlÞ ¼
V
Z

� �1=3

ð15Þ

where V is the unit cell volume and Z is the number of ABX3 formula
units per unit cell.

In agreement with previous work on Sr1�3xCe2xTiO3 [19], super-
lattice reflections consistent with an a-a-a- tilt system in R�3c were
observed here for Sr1�3xNd2xTiO3 (Fig. 4), and using the curve
derived elsewhere [10], the tilt angle about the pseudocubic
[111] can be estimated at just 0.2� for x = 0.01, reaching 2.6� by
x = 0.2.

As with all systems studied, doped BaTiO3 compositions were
formulated assuming compensation by A-site vacancies according
to the stoichiometry Ba1�3xLa2xTiO3, and no secondary phases were
observed (Fig. 5). If compensation had been via either Ti reduction
or Ti vacancies, La3+ doping would have left an appreciable amount
of unreacted TiO2 secondary phase according to:

Ba1�3xLa2xTiO3 ! ð1� xÞ Ba1�3x
1�x

La 2x
1�x

� �
Ti4þ

1�3x
1�x

Ti3þ
2x

1�x

� �
O3

h i
þ xTiO2

or

Ba1�3xLa2xTiO3 ! ð1� xÞ
�

Ba1�3x
1�x

La 2x
1�x

�
Ti1

2 3� 1
1�xð ÞO3

� �
þ 3x

2
TiO2

At x = 0.04 these reactions would yield 2–3 vol% TiO2, a quantity
easily detectable via XRD especially given the likely intensity of the
TiO2 (110) peak and the very large X-ray flux achieved in the
Miniflex. Similarly, if the Ba6�3yLa8+2yTi18O54 solid-solution phase
had formed (e.g., BaLa2Ti4O12), it would also result in a multiphase
microstructure according to either

Ba1�3xLa2xTiO3 ! xðBaLa2Ti4O12Þ þ ð1� 4xÞBaTiO3

where x 6 0.25, or, assuming that the perovskite phase would be
Ti-deficient (e.g., Ba0.95La0.05Ti0.9875O3):

Ba1�3xLa2xTiO3 !
12:3x� 0:3

11:1
ðBaLa2Ti4O12Þ þ

2� 8x
1:85

�ðBa0:95La0:05ÞTi0:9875O3 þ ð0:04053

� 0:1621xÞTiO2

where 0.02439 6 x 6 0.25. In the former scenario, all of the La3+ is
accommodated in the ternary phase; therefore, no change in lattice
constants would have been detectable in the perovskite phase. In
the latter scenario, the La3+ dopant is assumed to cause Ti vacancies
in the perovskite but simultaneously requires the presence of both
the Ba1�3yLa2yTi18O54 phase and excess TiO2. Experimental results
to the contrary showing the absence of both Ba6�3yLa8+2yTi18O54

and TiO2 (Fig. 5) as well as the perovskite lattice constants changing



Table 2
Sr1�3xLn2xTiO3 refinement results.

Composition SG a (Å) b (Å) c (Å) b (�) Z apc(exptl) (Å)

SrTiO3
a Pm�3m 3.9050 3.9050 3.9050 90 1 3.9050

Sr0.97La0.02TiO3 R�3c 5.5255 5.5255 13.5388 90 6 3.9075
Sr0.85La0.1TiO3 R�3c 5.5201 5.5201 13.5248 90 6 3.9036
Sr0.7La0.2TiO3 R�3c 5.5124 5.5124 13.5085 90 6 3.8984
Sr0.55La0.3TiO3 R�3c 5.5078 5.5078 13.4886 90 6 3.8943
Sr0.5La0.33TiO3 R�3c 5.5062 5.5062 13.4834 90 6 3.8931
Sr0.4La0.4TiO3 C2/c 9.5340 5.5005 5.5007 125.26 4 3.8905
Sr0.33La0.44TiO3 C2/c 9.5261 5.4995 5.5036 125.29 4 3.8894
Sr0.25La0.5TiO3 C2/c 9.5214 5.4969 5.4993 125.28 4 3.8872
La2/3TiO3

b I4/mmm 3.8565 3.8565 24.645 90 6 3.9384
Sr0.97Nd0.02TiO3 R�3c 5.5247 5.5247 13.5340 90 6 3.9067
Sr0.94Nd0.04TiO3 R�3c 5.5202 5.5202 13.5218 90 6 3.9034
Sr0.91Nd0.06TiO3 R�3c 5.5196 5.5196 13.5192 90 6 3.9028
Sr0.8Ce0.13TiO3

c R�3c 5.5091 5.5091 13.5071 90 6 3.8967
Sr0.75Ce0.17TiO3

c R�3c 5.5062 5.5062 13.4989 90 6 3.8946
Sr0.63Ce0.25TiO3

c R�3c 5.5005 5.5005 13.4797 90 6 3.8900
Sr0.4Ce0.4TiO3

d C2/c 9.5228 5.4869 5.4818 125.22 4 3.8819

a Ref. [41].
b Ref. [22].
c Ref. [19].
d Ref. [20].

Table 3
Pb1�3xLa2xTiO3 refinement results.

Composition SG a (Å) b (Å) c (Å) Z apc(exptl) (Å)

PbTiO3
a P4mm 3.9039 3.9039 4.1348 1 3.9794

Pb0.93La0.05TiO3
b P4mm 3.9099 3.9099 4.0712 1 3.9629

Pb0.85La0.1TiO3
b P4mm 3.9139 3.9139 4.0337 1 3.9534

Pb0.82La0.12TiO3 P4mm 3.9174 3.9174 4.0194 1 3.9511
Pb0.78La0.15TiO3

b P4mm 3.9207 3.9207 4.0007 1 3.9472
Pb0.7La0.2TiO3

b P4mm 3.9185 3.9185 3.9647 1 3.9338
Pb0.63La0.25TiO3

b P4mm 3.9279 3.9279 3.947 1 3.9343
Pb0.55La0.3TiO3

b Pm�3m 3.9283 3.9283 3.9283 1 3.9283
La2/3TiO3

c I4/mmm 3.8565 3.8565 24.645 6 3.9384

a Ref. [25].
b Ref. [42].
c Ref. [22].

Table 4
Ba1�3xLa2xTiO3 refinement results.

Composition SG a (Å) b (Å) c (Å) Z apc(exptl) (Å)

BaTiO3
a P4mm 3.994 3.994 4.038 1 4.0086

Ba0.97La0.02TiO3 P4mm 3.9993 3.9993 4.0276 1 4.0087
Ba0.94La0.04TiO3 P4mm 3.9996 3.9996 4.0278 1 4.0090
Ba0.91La0.06TiO3 P4mm 3.9995 3.9995 3.9996 1 3.9995
Ba0.88La0.08TiO3 P4mm 4.0171 4.0171 3.9996 1 4.0058
La2/3TiO3

b I4/mmm 3.8565 3.8565 24.645 6 3.9384

a Ref. [43].
b Ref. [22].
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with x (Table 4) verify that a small amount of La2O3 solubility in
BaTiO3 is possible without causing Ti reduction or vacancy forma-
tion on calcining in air. It is suggested that, while the large size of
Ba2+ (and consequently Ba2+ vacancies) energetically inhibits the
formation/stabilization of these vacancies, it is still possible to engi-
neer them into the structure extrinsically such that their concentra-
tion slightly exceeds that which would be thermodynamically
expected intrinsically.

In order to apply either Eqs. (6) or (7) to perovskites of the form

A2þ
1�3xA3þ

2x B4þX2�
3 which contain stoichiometric extrinsic vacancy

concentrations, it is still necessary to first assume that rB remains
identical to the Shannon radius and then to determine appropriate
values for rA and rX, neither of which will retain their ideal values
[11]. In the case of rA, the effective size contains four distinct
components: the ideal (Shannon) size of the A-site cation(s), the
bond deformation caused when t – 1, partial covalency, and the
effective size of A-site vacancies. The bond deformation (i.e.,
stretching/compression) and covalency effect can be calculated as
a single parameter from Eq. (11); however, the effective size of
vacancies requires additional data.

In Fig. 6, rA � rA(id) represents the sum of bond deformation,
covalency, and effective vacancy size. In all cases data for
La2/3TiO3 and all of the x = 0 compositions were obtained from
the open literature [14,22,25,41,43]. The result is clearly linear
for each system, and each line can be generally defined in terms
of t0 (the tolerance factor for that system corresponding to x = 0,
calculated via Eq. (1)):
rA � rAðidÞ ¼ ð2:4866� 8:8433t0 þ 7:8922t2
0Þx� 10:249

þ 22:492t0 � 12:223t2
0 ð16Þ

It should be noted here that, while a single parameter can con-
veniently capture both covalency and bond deformation, covalency
alone cannot explain the trends observed in Fig. 6. According to
Pauling’s formula [44] and electronegativity values as revised by
Allred, [45] the percent covalency of A–O bonds in CaTiO3,
SrTiO3, PbTiO3, and BaTiO3 is 23%, 21%, 73%, and 20%, respectively
– clearly inconsistent with the trend illustrated in Fig. 6.

It is also interesting to note that data points corresponding to
different trivalent dopants fall on the same line in each system,
suggesting that rA � rA(id) is independent of dopant species; there-
fore, it is not necessary to normalize by rA(id) as was done in previ-
ous work [11]. It is also possible to define these linear trends by
using Eq. (11) to define their intercepts (which correspond to the
combined effect of bond deformation and covalency) and the com-
mon data point at x = 1/3 (which corresponds to the composition
La2/3TiO3), in which case the following expression is obtained:
rA � rAðidÞ ¼ ð�20:8983þ 36:9417t0 � 14:4771t2
0Þx

þ ð7:4801� 12:3139t0 þ 4:8257t2
0Þ ð17Þ

The first term on the right-hand side of Eq. (17) corresponds to
the vacancy-size effect whilst the second term is recognizable from



Table 5
Pb1�3xLa2x(Zr0.6Ti0.4)O3 refinement results.

Compositiona SG a (Å) b (Å) c (Å) Z apc(exptl) (Å)

PbZr0.6Ti0.4O3 R3c 5.7587 5.7587 14.2390 6 4.0848
Pb0.997La0.002Zr0.6Ti0.4O3 R3c 5.7533 5.7533 14.2298 6 4.0814
Pb0.9955La0.003Zr0.6Ti0.4O3 R3c 5.7539 5.7539 14.2225 6 4.0809
Pb0.9925La0.005Zr0.6Ti0.4O3 R3c 5.7525 5.7525 14.2224 6 4.0803
Pb0.9895La0.007Zr0.6Ti0.4O3 R3c 5.7525 5.7525 14.2244 6 4.0805
Pb0.985La0.01Zr0.6Ti0.4O3 R3c 5.7531 5.7531 14.2184 6 4.0802
Pb0.97La0.02Zr0.6Ti0.4O3 R3c 5.7514 5.7514 14.2021 6 4.0778
Pb0.955La0.03Zr0.6Ti0.4O3 R3c 5.7504 5.7504 14.1890 6 4.0761
Pb0.94La0.04Zr0.6Ti0.4O3 R3c 5.7514 5.7514 14.1807 6 4.0758
Pb0.925La0.05Zr0.6Ti0.4O3 R3c 5.7757 5.7757 14.0706 6 4.0766
Pb0.91La0.06Zr0.6Ti0.4O3 P4mm 4.0629 4.0629 4.0942 1 4.0733
Pb0.88La0.08Zr0.6Ti0.4O3 P4mm 4.0594 4.0594 4.0943 1 4.0710
Pb0.85La0.1Zr0.6Ti0.4O3 P4mm 4.0580 4.0580 4.0910 1 4.0689
Pb0.82La0.12Zr0.6Ti0.4O3 Pm�3m 4.0677 4.0677 4.0677 1 4.0677
Pb0.79La0.14Zr0.6Ti0.4O3 Pm�3m 4.0630 4.0630 4.0630 1 4.0630
Pb0.76La0.16Zr0.6Ti0.4O3 Pm�3m 4.0641 4.0641 4.0641 1 4.0641
Pb0.7La0.2Zr0.6Ti0.4O3 Pm�3m 4.0588 4.0588 4.0588 1 4.0588

a Nominal compositions are shown. Compositions refined via wavelength-dispersive spectroscopy (WDS) are given in Ref. [37].

Table 6
Refinement results.

Composition SG a (Å) b (Å) c (Å) b Z apc(exptl) (Å)

SrMg0.3333Nb0.6667O3
a P�3m1 5.66 5.66 6.98 90 3 4.0114

Sr0.97La0.02Mg0.3333Nb0.6667O3 P�3m1 5.6467 5.6467 6.9344 90 3 3.9964

Na0.5La0.5(Mg0.5W0.5)O3
b P21/m 5.529 5.532 7.91 90.11 4 3.9254

Na0.3333La0.5556(Mg0.5W0.5)O3
b P21/m 5.539 5.535 7.912 90.08 4 3.9288

Na0.1667La0.6111(Mg0.5W0.5)O3
b P21/m 5.533 5.532 7.906 90.05 4 3.9257

K0.5La0.5(Mg0.5W0.5)O3
b P21/m 5.57 5.571 7.962 90.02 4 3.9529

K0.3333La0.5556(Mg0.5W0.5)O3
b P21/m 5.565 5.562 7.955 89.99 4 3.9484

K0.1667La0.6111(Mg0.5W0.5)O3
b P21/m 5.551 5.553 7.937 89.93 4 3.9400

a Ref. [35].
b Ref. [36].

Fig. 4. Selected-area electron-diffraction pattern of Sr0.97Nd0.02TiO3 parallel to the
pseudocubic [110] showing a superlattice reflections consistent with an a-a-a- tilt
system in space group R�3c.
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Eq. (11) as the bond deformation/covalency component. The coef-
ficient of x is the effective vacancy size, rV, which can be written as:

rV ¼ �20:8796þ 36:9049t0 � 14:4590t2
0 ð18Þ

and illustrated in Fig. 7.
In most cases studied here, rV > rA2þ . The exceptions include

CaTiO3, in which case rA2þ � rV, and Sr(Mg1/3Nb2/3)O3, in which rV

is slightly smaller than rA2þ . Eq. (18) uniquely defines rV for any

A2þ
1�3xLn3þ

2x BO3 perovskite, including complex perovskites.
As shown by Eqs. (11) and (18), both the bond deformation/

covalency and vacancy size for a given system are approximated
as functions of t0 only and do not vary with x in this model. A com-
parison of rA(id) and rV in the various systems (A = Ca, Sr, Pb, Ba) is
shown in Fig. 8a; and Fig. 8b shows the same effect but accounting
for the bond deformation (BD). As can be seen, all curves in Fig. 8b
tend towards convergence at [V] = 0 with a value of �1.4 Å, which
corresponds well with the ideal size of Sr2+ in this coordination
(1.44 Å). [8] As SrTiO3 has a tolerance factor extremely close to
unity (t⁄ = 1.0091), it seems clear that the effect of bond deforma-
tion in undoped samples is to bring the effective tolerance factors
as close to unity as possible.

As Fig. 8b demonstrates, in the case of (Ca1�3xLn2x)TiO3, the
stretching of A–X bonds means that A-site vacancies allow a very
slight pull on coordinating anions for x 6 0.05, as can be demon-
strated by their effective size (1.3396 Å) being not only slightly
smaller than the Shannon effective ionic radius of Ca2+ (1.34 Å)
but also smaller than the effective radius of Ca2+ including bond
deformation/covalency effects (1.3971 Å in CaTiO3). On the other
hand, the A–X bonds in (A1�3xLa2x)TiO3 (A = Sr, Pb, Ba) are rather
compressed, resulting in A-site vacancies which always push
against coordinating anions, as demonstrated by their effective size
(1.6379 Å, 1.7729 Å, 2.0581 Å, respectively) being larger than
either Shannon effective ionic radii (1.44 Å, 1.49 Å, 1.61 Å, respec-
tively) or effective radii of A2+ ions including bond deformation/
covalency effects (1.408 Å, 1.4130 Å, 1.4380 Å, respectively). The
larger the rA2þ the larger the push.

The effective size of rA is now the sum of the three terms:

rA ¼ rAðidÞ þ ð7:4801� 12:3139t0 þ 4:8257t2
0Þ � ð20:8983

� 36:9417t0 þ 14:4771t2
0Þx ð19Þ



Fig. 5. X-ray diffraction traces of Ba1�3xLa2xTiO3 (0.01 6 x 6 0.04) showing the
absence of TiO2 (solid lines) and BaLa2Ti4O12 (dashed line). For simplicity, lines are
only shown for some major TiO2/BaLa2Ti4O12 peaks. (b) Back-scattered electron
image of the x = 0.04 composition showing phase-purity.

Fig. 6. Divergence of effective A-site size from ideal.

Fig. 7. Effective vacancy size vs tolerance factor. Data includes (A1�3xLn2x)TiO3

(A = Ca, Sr, Pb, Ba), (Pb1�3xLa2x)(Zr0.6Ti0.4)O3, and (Sr1�3xLa2x)(Mg1/3Nb2/3)O3.

Fig. 8. (a) The effect of [V] on rA(id) with effective vacancy sizes overlaid. (b) The
effect of [V] on rA(id) accounting for bond deformation (BD) with effective vacancy
sizes overlaid. The convergence at [V] = 0 is at �1.4 Å, which corresponds well with
the ideal size of Sr2+ and t⁄ � 1.
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In order to calculate the appropriate values of rX to use in Eqs.
(6) and (7) for defective perovskites, Eq. (10) can be used; however,
it then becomes necessary to define an appropriate expression for
t. Using t⁄ for defective perovskites results in large errors. As it hap-
pens, using either t1 (Eq. (4)) or t2 (Eq. (14)) works very well
because both incorporate the effects of bond deformation/cova-
lency and vacancies, but both also require pre-knowledge of apc.
What is required is a way to relate t1 (or t2) to t⁄. Such a relation-
ship can be defined as shown in Fig. 9.

Each curve in Fig. 9 can be described as a quadratic equation of
the form
t1 ¼ Aþ Bt� þ Ct2
� ð20Þ

The coefficients A, B, and C can be defined in terms of rA(id) for the
x = 0 compositions ðrAðidÞ0Þ, as shown in Fig. 10. The equations which
describe these curves are:

A ¼ �50:978þ 84:274rAðidÞ0 � 32:411r2
AðidÞ0 ð21Þ

B ¼ 130:35� 205:44rAðidÞ0 þ 77:539r2
AðidÞ0 ð22Þ

C ¼ �81:294þ 124:73rAðidÞ0 � 46:185r2
AðidÞ0 ð23Þ



Fig. 9. Relationship between t1 (Eq. (4)) and t⁄ (Eq. (1)) in A1�3xLa2xTiO3 (A = Ca, Sr,
Pb, Ba).

Fig. 10. Coefficients of the formula t1 ¼ Aþ Bt� þ Ct2
� . Data points on each curve

correspond to (from left to right) A = Ca, Sr, Pb, and Ba.

Fig. 11. Comparison of apc calculated via Eq. (5) and experimental apc values. The
average relative errors for each series are all <0.59%.
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According to Eq. (18), when t0 = 1, rV = 1.5663 Å; and rV = 0 only
if t0 = 0.8465 (or unrealistically 1.7059). As oxide perovskites with
t0 < �0.85 have only rarely, if ever, been reported, the value of
t0 = 0.8465 may represent the theoretical lower limit for their sta-
bility. Compounds with lower values of t0 would presumably crys-
tallize in the ilmenite system. It is noteworthy again that t⁄ is a less
reliable indicator of structure than is t1, as the case of geikielite
(MgTiO3) demonstrates. Geikielite takes the ilmenite structure
[46], but using Shannon ionic radii data, including an extrapolation
for the twelvefold radius of Mg2+ (�1.23 Å), the t⁄ for this com-
pound would be 0.9341 – well within the tilted perovskite range.
Solving Eqs. (1), (9) and (11) simultaneously, a similar value
(1.17 Å) can be derived, corresponding to t⁄ = 0.9115, again within
the tilted perovskite range. Interestingly, using Eqs. (4), (6) and
(12), and the unit cell reported by Dobson and Jacobsen [15] for
MgSiO3 (the equations are not valid for the ilmenite structure of
MgTiO3), a more realistic ionic radius for Mg2+ in twelvefold coor-
dination can be derived (1.12 Å). A very similar value (1.11 Å) can
simply be calculated from Eq. (9) using the MgTiO3 unit cell
reported by Wechsler and von Dreele [46]. Using either of these
values, t⁄ = 0.8934 for MgTiO3, still corresponding to a tilted per-
ovskite. Meanwhile, the t1 value (Eq. (4)) of MgTiO3 based on the
model of Wechsler and von Dreele [46] is just 0.8673, better
explaining its ilmenite structure.

With Eqs. (21)–(23) the correct t1 vs t⁄ curve can be calculated
and appropriate values of t1 inserted into Eq. (12) in order to
calculate the effective anion size, which can in-turn be used in
Eqs. (5), (6), and/or (7) to calculate apc values. For example,
Fig. 11 illustrates the results when Eq. (5) is used to calculate apc

for A1�3xLn2xTiO3 (A = Ca, Sr, Pb, Ba) and PLZT. Values of BD (Eq.
(11)), which includes covalency effects, for A1�3xLn2xTiO3 (A = Ca,
Sr, Pb, Ba) and PLZT are 0.0675 Å, �0.0320 Å, �0.0770 Å, and
�0.17203 Å, and 0.0135 Å, respectively. Positive values signify A–
X stretching while negative values signify A–X compression. The
corresponding values of rV (Eq. (18)) are 1.3396 Å, 1.6379 Å,
1.7729 Å, 2.0581 Å, and 1.5014 Å, respectively. The average relative
errors in apc for each series are all <0.59% despite the fact that the
PLZT end member is not La2/3TiO3 and so Eqs. (17)–(23) are not
exactly applicable.
3.3. Second-order Jahn Teller distortions

These results seem very straightforward, and Eq. (5) seems ade-
quate in all cases to calculate pseudocubic lattice constants. As
Tables 7–9 show, for the A1�3xLn2xTiO3 (A = Ca, Sr, Ba) cases, there
is little to gain by invoking either Eq. (6) for a0pc or Eq. (7) for a00pc;
however, in other cases the ability to calculate lattice constants
as either a function of A–X bond length (a0pc; Eq. (6)) or B–X bond
length ða00pc, Eq. (7)) independently can yield further structural
information.

Table 10 shows the results of Eqs. (5)–(7) in the Pb1�3xLa2xTiO3

system. The absolute relative errors in both a0pc and a00pc are both
very low, but while the errors in a00pc are all positive, like those in
apc, those in a0pc are almost all negative. As this anomaly occurs only
in a0pc, the discrepancy is likely due to an underestimation of rA

rather than rO or rB. The calculated values of rA include components
from rA(id), bond deformation/covalency, and vacancies. As the last
two terms are functions of t⁄, all three terms are clearly affected by
the value of rPb2þ

ðidÞ
. An antiferrodistortive instability is unlikely to be

the cause of the discrepancy, as it would give rise to octahedral tilt-
ing which is forbidden in the P4mm form of bulk PbTiO3 and which
is vanishingly weak in the R3c form of Pb(Zr0.6Ti0.4)O3. In any event,
such tilting is present in most of the examples in Tables 7–9 and
does not cause anomalies in lattice-constant errors. On the other
hand, the ferroelectric distortion in PbTiO3 is much stronger than
in, for example, BaTiO3. In BaTiO3, the stretching of octahedra
caused by the large size of Ba2+ stabilizes the second-order Jahn–
Teller (SOJT) distortion of Ti4+ (due to its d0 electronic configuration
and octahedral coordination) resulting in a fairly small (�0.06 Å)
antiparallel h001i displacement of the cations with respect to the



Table 7
Model values for Ca1�3xLn2xTiO3.

Composition apc(exptl) (Å) rO (Å) apc (Å) Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

CaTiO3
a 3.8245 1.3110 3.8393 0.39 3.8444 0.52 3.8320 0.20

Ca0.97La0.02TiO3 3.8296 1.3112 3.8396 0.26 3.8453 0.41 3.8323 0.07
Ca0.94La0.04TiO3 3.8282 1.3115 3.8402 0.31 3.8462 0.47 3.8329 0.12
Ca0.91La0.06TiO3 3.8316 1.3118 3.8409 0.24 3.8474 0.41 3.8337 0.05
Ca0.7La0.2TiO3 3.8417 1.3173 3.8510 0.24 3.8590 0.45 3.8446 0.07
Ca0.55La0.3TiO3 3.8499 1.3241 3.8636 0.36 3.8715 0.56 3.8583 0.22
Ca0.4La0.4TiO3 3.8702 1.3334 3.8808 0.28 3.8874 0.45 3.8769 0.17
La2/3TiO3

b 3.9384 1.3702 3.9489 0.27 3.9469 0.22 3.9504 0.30
Ca0.97Nd0.02TiO3 3.8297 1.3112 3.8397 0.26 3.8428 0.34 3.8324 0.07
Ca0.94Nd0.04TiO3 3.8299 1.3116 3.8404 0.27 3.8413 0.30 3.8331 0.08
Ca0.91Nd0.06TiO3 3.8307 1.3120 3.8412 0.28 3.8400 0.24 3.8341 0.09
Ca0.85Nd0.1TiO3 3.8351 1.3134 3.8437 0.22 3.8379 0.07 3.8368 0.04
Ca0.97Y0.02TiO3 3.8248 1.3112 3.8397 0.39 3.8423 0.46 3.8324 0.20
Ca0.94Y0.04TiO3 3.8280 1.3116 3.8404 0.32 3.8403 0.32 3.8332 0.13
Ca0.85Y0.1TiO3 3.8230 1.3135 3.8439 0.55 3.8354 0.32 3.8370 0.36

Average relative absolute error 0.31 0.37 0.15

a Ref. [14].
b Ref. [22].

Table 8
Model values for Sr1�3xLn2xTiO3.

Composition apc(exptl) (Å) rO (Å) apc (Å) Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

SrTiO3
a 3.9050 1.3623 3.9344 0.75 3.9179 0.33 3.9347 0.75

Sr0.97La0.02TiO3 3.9075 1.3604 3.9309 0.60 3.9157 0.21 3.9309 0.60
Sr0.85La0.1TiO3 3.9036 1.3542 3.9193 0.40 3.9090 0.14 3.9184 0.38
Sr0.7La0.2TiO3 3.8984 1.3493 3.9102 0.30 3.9048 0.16 3.9086 0.26
Sr0.55La0.3TiO3 3.8943 1.3476 3.9071 0.33 3.9051 0.28 3.9053 0.28
Sr0.5La0.33TiO3 3.8931 1.3478 3.9075 0.37 3.9063 0.34 3.9056 0.32
Sr0.4La0.4TiO3 3.8905 1.3492 3.9101 0.50 3.9101 0.50 3.9085 0.46
Sr0.33La0.44TiO3 3.8894 1.3510 3.9133 0.62 3.9137 0.63 3.9120 0.58
Sr0.25La0.5TiO3 3.8872 1.3541 3.9191 0.82 3.9196 0.83 3.9181 0.80
La2/3TiO3

b 3.9384 1.3694 3.9474 0.23 3.9457 0.18 3.9487 0.26
Sr0.97Nd0.02TiO3 3.9067 1.3602 3.9305 0.61 3.9129 0.16 3.9305 0.61
Sr0.94Nd0.04TiO3 3.9034 1.3583 3.9269 0.60 3.9082 0.12 3.9266 0.59
Sr0.91Nd0.06TiO3 3.9028 1.3565 3.9236 0.53 3.9036 0.02 3.9231 0.52
Sr0.8Ce0.13TiO3 3.8967 1.3522 3.9156 0.48 3.9071 0.27 3.9144 0.45
Sr0.75Ce0.17TiO3 3.8946 1.3506 3.9126 0.46 3.9057 0.28 3.9111 0.42
Sr0.63Ce0.25TiO3 3.8900 1.3481 3.9079 0.46 3.9044 0.37 3.9061 0.41
Sr0.4Ce0.4TiO3 3.8819 1.3492 3.9101 0.73 3.9101 0.73 3.9085 0.68

Average relative absolute error 0.52 0.33 0.49

a Ref. [41].
b Ref. [22].

Table 9
Model values for Ba1�3xLa2xTiO3.

Composition apc(exptl) (Å) rO (Å) apc (Å) Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

BaTiO3
a 4.0086 1.4130 4.0281 0.49 4.0318 0.58 4.0359 0.68

Ba0.97La0.02TiO3 4.0087 1.4120 4.0263 0.44 4.0297 0.52 4.0340 0.63
Ba0.94La0.04TiO3 4.0090 1.4110 4.0245 0.39 4.0276 0.46 4.0320 0.58
Ba0.91La0.06TiO3 3.9995 1.4100 4.0227 0.58 4.0255 0.65 4.0301 0.76
Ba0.88La0.08TiO3 4.0058 1.4090 4.0208 0.37 4.0233 0.44 4.0280 0.55
La2/3TiO3

b 3.9384 1.3717 3.9518 0.34 3.9491 0.27 3.9535 0.38

Average relative absolute error 0.43 0.49 0.60

a Ref. [43].
b Ref. [22].
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O2� sublattice; however, such ferroelectric displacements do not
seem to affect the accuracy of the model or give rise to any anoma-
lies in the errors. In PbTiO3, Pb2+ also has a SOJT instability which
turns its 6s2 valence electrons into a stereoactive lone pair, distort-
ing the ion and consequently the unit cell such that the net dis-
placement of Pb2+ and Ti4+ with respect to the O2� sublattice is
�0.47 Å and �0.35 Å, respectively. The larger distortion is observ-
able in the fact that the tetragonality of PbTiO3 (c/a = 1.0592) is
larger than that of BaTiO3 (c/a = 1.0046); however, as the ionic dis-
placements do not seem to adversely affect apc or a00pc in either case,
it is the distortion of the Pb2+ ion itself which may explain the neg-
ative errors observed in a0pc.

With Eq. (6) it is possible to semiquantify the distortion effect
for various structures/ions. In the case of Pb1�3xLa2xTiO3, an
increase of 0.34% in the radius of Pb2+ (�0.0051 Å) in h110i direc-
tions (r110) combined with a simultaneous 0.34% decrease in the



Table 10
Model values for Pb1�3xLa2xTiO3.

Composition apc(exptl) (Å) rO (Å) apc (Å) Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

PbTiO3
a 3.9794 1.3871 3.9803 0.02 3.9601 �0.49 3.9843 0.12

Pb0.93La0.05TiO3 3.9629 1.3811 3.9691 0.15 3.9523 �0.27 3.9722 0.23
Pb0.85La0.1TiO3 3.9534 1.3758 3.9593 0.15 3.9456 �0.20 3.9616 0.21
Pb0.82La0.12TiO3 3.9511 1.3739 3.9557 0.12 3.9432 �0.20 3.9578 0.17
Pb0.78La0.15TiO3 3.9472 1.3713 3.9509 0.09 3.9400 �0.18 3.9525 0.14
Pb0.7La0.2TiO3 3.9338 1.3675 3.9439 0.26 3.9355 0.04 3.9450 0.28
Pb0.63La0.25TiO3 3.9343 1.3645 3.9384 0.11 3.9321 �0.05 3.9390 0.12
Pb0.55La0.3TiO3 3.9283 1.3623 3.9343 0.15 3.9298 0.04 3.9346 0.16
La2/3TiO3

b 3.9384 1.3696 3.9477 0.24 3.9460 0.19 3.9491 0.27

Average relative absolute error 0.14 0.18 0.19

a Ref. [25].
b Ref. [22].
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isotropic radius (riso) of Pb2+ is sufficient to significantly improve
the errors on apc, a0pc, and a00pc, as shown in Table 11, with just over
half of the errors in a0pc remaining negative. A similar phenomenon
can be observed for Pb1�3xLa2x(Zr0.6Ti0.4)O3 in Table 12. In this case
BD = 0.0135 Å and rV = 1.5014 Å. While the absolute relative errors
in both apc and a00pc are all positive, those in a0pc are all negative.
Whereas a symmetrical increase in rA alone results in improve-
ments in a0pc, it also significantly increases errors in both apc and
a00pc (>0.8%); however, a 1.21% increase in r110 (�0.018 Å) combined
with a simultaneous 1.28% decrease in riso is sufficient to signifi-
cantly improve the errors on apc, a0pc, and a00pc, as shown in
Table 11
Model values for Pb1�3xLa2xTiO3 including SOJT distortion.

Composition apc(exptl) (Å) rO (Å) apc (Å) Er

PbTiO3
a 3.9794 1.3856 3.9774 �0

Pb0.93La0.05TiO3 3.9629 1.3795 3.9661 0
Pb0.85La0.1TiO3 3.9534 1.3742 3.9563 0
Pb0.82La0.12TiO3 3.9511 1.3723 3.9528 0
Pb0.78La0.15TiO3 3.9472 1.3697 3.9480 0
Pb0.7La0.2TiO3 3.9338 1.3660 3.9411 0
Pb0.63La0.25TiO3 3.9343 1.3630 3.9357 0
Pb0.55La0.3TiO3 3.9283 1.3609 3.9317 0
La2/3TiO3

b 3.9384 1.3695 3.9477 0

Average relative absolute error 0

a Ref. [25].
b Ref. [22].

Table 12
Model values for Pba1�3xLa2x(Zr0.6Ti0.4)O3.

Composition apc(exptl) (Å) rO (Å) apc (Å)

PbZr0.6Ti0.4O3 4.0848 1.3747 4.0973
Pb0.997La0.002Zr0.6Ti0.4O3 4.0814 1.3748 4.0932
Pb0.9955La0.003Zr0.6Ti0.4O3 4.0809 1.3749 4.0918
Pb0.9925La0.005Zr0.6Ti0.4O3 4.0803 1.3742 4.0993
Pb0.9895La0.007Zr0.6Ti0.4O3 4.0805 1.3746 4.0909
Pb0.985La0.01Zr0.6Ti0.4O3 4.0802 1.3745 4.0883
Pb0.97La0.02Zr0.6Ti0.4O3 4.0778 1.3734 4.0860
Pb0.955La0.03Zr0.6Ti0.4O3 4.0761 1.3723 4.0934
Pb0.94La0.04Zr0.6Ti0.4O3 4.0758 1.3717 4.0843
Pb0.925La0.05Zr0.6Ti0.4O3 4.0766 1.3710 4.0867
Pb0.91La0.06Zr0.6Ti0.4O3 4.0733 1.3701 4.0844
Pb0.88La0.08Zr0.6Ti0.4O3 4.0710 1.3685 4.0874
Pb0.85La0.1Zr0.6Ti0.4O3 4.0689 1.3673 4.0822
Pb0.82La0.12Zr0.6Ti0.4O3 4.0677 1.3664 4.0786
Pb0.79La0.14Zr0.6Ti0.4O3 4.0630 1.3642 4.0758
Pb0.76La0.16Zr0.6Ti0.4O3 4.0641 1.3644 4.0754
Pb0.7La0.2Zr0.6Ti0.4O3 4.0588 1.3629 4.0721

Average relative absolute error
Table 13, with fewer than half of the errors in a0pc remaining
negative.

The coordinations of Pb2+ ions in both PbTiO3 and
Pb(Zr0.6Ti0.4)O3 are essentially the same (CN = 12), but their site
symmetries are quite different. Whereas Pb2+ in PbTiO3 has 4mm
point symmetry at the 1a position in space group P4mm, [24] in
Pb(Zr0.6Ti0.4)O3 it has point symmetry 3, residing in the 6a position
of space group R3c [27]; therefore, it is likely that the difference in
point symmetry contributes to the different SOJT distortions of
Pb2+ in these two cases. The chemistry of the B site also probably
plays a part, as both Pb1�3xLa2xTiO3 and Pb1�3xLa2x(Zr0.6Ti0.4)O3
ror (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

.05 3.9651 �0.36 3.9812 0.04

.08 3.9573 �0.14 3.9690 0.15

.07 3.9506 �0.07 3.9584 0.13

.04 3.9482 �0.07 3.9546 0.09

.02 3.9450 �0.06 3.9494 0.05

.18 3.9405 0.17 3.9419 0.21

.04 3.9372 0.08 3.9361 0.05

.09 3.9350 0.17 3.9318 0.09

.23 3.9531 0.37 3.9490 0.27

.09 0.17 0.12

Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

0.31 4.0704 �0.35 4.0982 0.33
0.29 4.0695 �0.29 4.0942 0.31
0.27 4.0710 �0.24 4.0928 0.29
0.47 4.0716 �0.21 4.1002 0.49
0.26 4.0699 �0.26 4.0918 0.28
0.20 4.0697 �0.26 4.0893 0.22
0.20 4.0636 �0.35 4.0869 0.22
0.43 4.0650 �0.27 4.0941 0.44
0.21 4.0581 �0.43 4.0850 0.23
0.25 4.0604 �0.40 4.0873 0.26
0.27 4.0552 �0.45 4.0849 0.28
0.40 4.0539 �0.42 4.0877 0.41
0.33 4.0477 �0.52 4.0825 0.33
0.27 4.0471 �0.51 4.0788 0.27
0.31 4.0159 �1.16 4.0758 0.31
0.28 4.0420 �0.55 4.0755 0.28
0.33 4.0420 �0.41 4.0720 0.33

0.30 0.42 0.31



Table 13
Model values for Pba1�3xLa2x(Zr0.6Ti0.4)O3 including SOJT distortion.

Composition apc(exptl) (Å) rO (Å) apc (Å) Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

PbZr0.6Ti0.4O3 4.0848 1.3684 4.0853 0.01 4.0871 0.06 4.0857 0.02
Pb0.997La0.002Zr0.6Ti0.4O3 4.0814 1.3685 4.0813 0.00 4.0861 0.12 4.0817 0.01
Pb0.9955La0.003Zr0.6Ti0.4O3 4.0809 1.3687 4.0798 �0.03 4.0876 0.16 4.0803 �0.02
Pb0.9925La0.005Zr0.6Ti0.4O3 4.0803 1.3680 4.0873 0.17 4.0882 0.19 4.0877 0.18
Pb0.9895La0.007Zr0.6Ti0.4O3 4.0805 1.3683 4.0789 �0.04 4.0865 0.15 4.0793 �0.03
Pb0.985La0.01Zr0.6Ti0.4O3 4.0802 1.3683 4.0764 �0.09 4.0864 0.15 4.0768 �0.08
Pb0.97La0.02Zr0.6Ti0.4O3 4.0778 1.3672 4.0741 �0.09 4.0802 0.06 4.0744 �0.08
Pb0.955La0.03Zr0.6Ti0.4O3 4.0761 1.3660 4.0815 0.13 4.0816 0.14 4.0817 0.14
Pb0.94La0.04Zr0.6Ti0.4O3 4.0758 1.3655 4.0724 �0.08 4.0748 �0.03 4.0726 �0.08
Pb0.925La0.05Zr0.6Ti0.4O3 4.0766 1.3648 4.0748 �0.04 4.0772 0.01 4.0749 �0.04
Pb0.91La0.06Zr0.6Ti0.4O3 4.0733 1.3639 4.0726 �0.02 4.0719 �0.03 4.0726 �0.02
Pb0.88La0.08Zr0.6Ti0.4O3 4.0710 1.3625 4.0757 0.12 4.0708 0.00 4.0756 0.11
Pb0.85La0.1Zr0.6Ti0.4O3 4.0689 1.3613 4.0707 0.04 4.0647 �0.10 4.0705 0.04
Pb0.82La0.12Zr0.6Ti0.4O3 4.0677 1.3604 4.0673 �0.01 4.0642 �0.09 4.0670 �0.02
Pb0.79La0.14Zr0.6Ti0.4O3 4.0630 1.3585 4.0649 0.05 4.0333 �0.73 4.0644 0.03
Pb0.76La0.16Zr0.6Ti0.4O3 4.0641 1.3586 4.0645 0.01 4.0593 �0.12 4.0641 0.00
Pb0.7La0.2Zr0.6Ti0.4O3 4.0588 1.3574 4.0616 0.07 4.0597 0.02 4.0610 0.06

Average relative absolute error 0.06 0.13 0.06
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share the same tetragonal or cubic structures for parts of their
compositional ranges. While Eq. (6) cannot be used to predict this
distortion, it can potentially be used to identify and even semi-
quantify it; and the effect is small enough not to result in large
errors anyway, as Tables 10 and 12 demonstrate.
3.4. Effect of B-site ordering

This model depends on randomness both in the distribution of
vacancies as well as cations. Any kind of chemical ordering (e.g.,
of vacancies on the A site or cations on the B site) will affect the
effective size of the relevant site and so require a new parameter
in the model. The effect of chemical ordering on the B-site can be
inferred from differences in a0pc and a00pc as well as large errors in
apc. Table 14 shows the results for three sets of ordered double per-
ovskites. In all cases, large positive errors in a00pc are indicative of an
overestimation of rB, causing a consequent overestimation of rO and
hence a00pc. It is well known that ordered structures pack more effi-
ciently than disordered ones, so it follows that an ordered arrange-
ment of cations on the B-site should result in an overall shrinkage
which, in terms of this model, is translated into reduced ionic radii
for these cations. In the case of (Sr1�3xLa2x)(Mg1/3Nb2/3)O3

(BD = 0.0521 Å, rV = 1.3858 Å), simply using the weighted average
of the size of B-site cations (0.6667 Å) for rB results in an average
errors of 0.92%, 0.46%, 0.90% for apc, a0pc, and a00pc; as shown in
Table 14; however, by reducing the value of rB by just 3.5% to
0.6432 Å, the average errors change to just 0.15%, 0.58%, and
Table 14
Model values.

Composition apc(exptl) (Å) rO (Å) apc (Å)

SrMg0.3333Nb0.6667O3 4.0114 1.3538 4.0418
Sr0.97La0.02Mg0.3333Nb0.6667O3 3.9964 1.3526 4.0396
Average relative absolute error

Na0.5La0.5(Mg0.5W0.5)O3
a 3.9254 1.3320 3.9871

Na0.3333La0.5556(Mg0.5W0.5)O3
a 3.9288 1.3361 3.9948

Na0.1667La0.6111(Mg0.5W0.5)O3
a 3.9257 1.3532 4.0274

Average relative absolute error

K0.5La0.5(Mg0.5W0.5)O3
a 3.9529 1.4065 4.1288

K0.3333La0.5556(Mg0.5W0.5)O3
a 3.9484 1.3998 4.1160

K0.1667La0.6111(Mg0.5W0.5)O3
a 3.9400 1.3860 4.0898

Average relative absolute error

a Ref. [36].
0.15% for apc, a0pc, and a00pc, respectively. The effective rO values simul-
taneously increase slightly. This 3.5% decrease in the effective rB

value is a measure of the ordering on the B site. Assuming this value
corresponds to a fully ordered structure, smaller percent reductions
would correspond to smaller degrees of order. This effect could the-
oretically be calibrated and quantified as an easy means of estimat-
ing cation order from lattice constants alone.

A similar analysis is possible in the (Na,K)(1�3x)/2La(1+x)/2

(Mg½W½)O3 systems reported by Arillo et al. [36]. Without
accounting for rB shrinkage average errors are quite large for both
Na and K analogues, as shown in Table 14. By shrinking rB by 4.6%
(to 0.6295 Å) in the case of Na(1�3x)/2La(1+x)/2(Mg½W½)O3

(BD = 0.1103 Å, rV = 1.2112 Å) and 13.7% (to 0.5694 Å) in the case
of K(1�3x)/2La(1+x)/2(Mg½W½)O3 (BD = �0.0150 Å, rV = 1.5871 Å),
average errors are drastically reduced, as shown in Table 15. It is
unclear why different amounts of shrinkage are required in these
two analogous systems with the same B-site composition unless
they are indeed ordered to different degrees, which seems unlikely
given the size and charge differences involved. A potential compli-
cating factor in these cases is that Na½La½(Mg½W½)O3 is typically
reported [47,48] with cation ordering on both A and B sublattices.
It is unclear how the effect of A-site order influences the model,
but it may have the same shrinkage effects as B-site ordering.
Because of the dependence of both a0pc and a00pc on rO, which itself
is a function of t1 and so ultimately both rA(id) and rB, it is not
possible to independently solve for the effects of order on both
sublattices simultaneously. Although the model proposed can be
used in this way to explain and even semiquantify B-site ordering,
Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

0.76 4.0246 0.33 4.0409 0.74
1.08 4.0199 0.59 4.0385 1.06
0.92 0.46 0.90

1.57 3.9843 1.50 3.9841 1.50
1.68 3.9596 0.78 3.9922 1.61
2.59 3.9533 0.70 4.0265 2.57
1.95 1.00 1.89

4.45 4.0892 3.45 4.1330 4.56
4.24 4.0494 2.56 4.1196 4.33
3.80 3.9996 1.51 4.0920 3.86
4.16 2.50 4.25



Table 15
Model values accounting for the effect of B-site ordering.

Composition apc(exptl) (Å) rO (Å) apc (Å) Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

SrMg0.3333Nb0.6667O3 4.0114 1.3565 3.9999 �0.29 3.9825 �0.72 3.9993 �0.30
Sr0.97La0.02Mg0.3333Nb0.6667O3 3.9964 1.3551 3.9972 0.02 3.9788 �0.44 3.9964 0.00
Average relative absolute error 0.15 0.58 0.15

Na0.5La0.5(Mg0.5W0.5)O3
a 3.9254 1.3332 3.9289 0.09 3.9234 �0.05 3.9254 0.00

Na0.3333La0.5556(Mg0.5W0.5)O3
a 3.9288 1.3338 3.9301 0.03 3.9147 �0.36 3.9267 �0.05

Na0.1667La0.6111(Mg0.5W0.5)O3
a 3.9257 1.3480 3.9566 0.79 3.9251 �0.02 3.9549 0.75

Average relative absolute error 0.30 0.14 0.27

K0.5La0.5(Mg0.5W0.5)O3
a 3.9529 1.4071 3.9442 �0.22 3.9287 �0.61 3.9529 0.00

K0.3333La0.5556(Mg0.5W0.5)O3
a 3.9484 1.4049 3.9402 �0.21 3.9490 0.02 3.9485 0.00

K0.1667La0.6111(Mg0.5W0.5)O3
a 3.9400 1.3949 3.9222 �0.45 3.9584 0.47 3.9287 �0.29

Average relative absolute error 0.29 0.36 0.10

a Ref. [36].
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it cannot yet be used to predict the effect of such ordering on apc or
structure.

3.5. Anomalies

This same model can be used successfully to analyze the
vacancy behavior of other systems previously reported in the liter-
ature as well. For example, Ruiz et al. [49] reported that the cell
volume of Na(1�3x)/2La(1+x)/2TiO3 (Table 16) seemed to increase
slightly as the number of vacancies increased from 5.3% to 17.3%
whilst the degree of tilt simultaneously decreased. Eq. (18) shows
that in either case rV = 1.6379 Å, which is larger than either the
weighted average of Shannon radii or the effective radius including
bond distortion/covalency, suggesting that vacancies push against
anions. The bond deformation (Eq. (11)) in this system is
�0.0320 Å. The unit-cell expansion was previously explained
[10,11] by an increased effective rV; however, it can now be under-
stood more completely as an increase in xrV (i.e., the contribution
of vacancies to rA). With a constant rV = 1.6379 Å, xrV increases
from 0.0868 Å (x = 0.053) to 0.2834 Å (x = 0.173). It was also previ-
ously reported [10,11] that �rO simultaneously decreased slightly;
however, it can now be shown that �rO actually increases slightly
from 1.3348 Å to 1.3446 Å, further contributing to the increase in
lattice constant. The effective increase in rA also explains why the
tolerance factor (t1) is higher for x = 0.173 (t1 = 0.9800) than for
x = 0.053 (t1 = 0.9784), thus further explaining why the degree of
tilt was seen to decrease with increasing vacancy concentration.
Pseudocubic lattice constants calculated with this model are accu-
rate to an average absolute relative error of 0.24% (apc) and 0.14%
(a00pc).

What can also be seen in Table 16 are fairly large relative errors
in a0pc which are not only all negative but which decrease (i.e.,
become less negative) as x increases. A large error in a0pc without
a correspondingly large error in a00pc might be attributable to an
underestimation of rA, but the cause of such an underestimation
is unclear. The effective rA of (Na,K)(1�3x)/2La(1+x)/2(Mg½W½)O3
Table 16
Model values for Na(1�3x)/2La(1+x)/2TiO3.

Composition apc(exptl) (Å) rO (Å) apc (Å)

Na0.5La0.5TiO3
a 3.8742 1.3348 3.8835

Na0.42La0.5267TiO3
b 3.8727 1.3320 3.8783

Na0.24La0.5867TiO3
b 3.8749 1.3374 3.8882

Na0.1625La0.6125TiO3
b 3.8753 1.3446 3.9016

Average relative absolute error

a Ref. [50].
b Ref. [49].
was calculated from Shannon data and used with accuracy in
Table 15, so the difference in the case of La(1+x)/2Na(1�3x)/2TiO3 pre-
sumably lies in a structural difference between these two systems
rather than a purely chemical one. Ordering is the natural hypoth-
esis, especially given that the errors in a0pc decrease (become less
negative) as the stoichiometry moves away from the 1:1 ratio of
La:Na, where the order would be expected to break down; how-
ever, that explanation requires a volume increase upon ordering,
which does not agree with conventional wisdom. Nevertheless,
by increasing the total rA by 0.0498 Å (�3.6%) at x = 0, a minimum
in the absolute error occurs with the relative error just �0.30%.
Smaller increases in rA of 0.0494 Å, 0.0207 Å, and 0.0002 Å as x
increases to 0.0533, 0.1733, and 0.225, respectively, are required
to yield errors of 0.00%. The physical explanation for these seem-
ingly anomalous observations is still unclear.
3.6. Crystal chemistry of vacancies

It might be noted that the compound La2/3TiO3 appears in
Tables 7–10 but with slightly different values of apc, a0pc, and a00pc.
This compound corresponds to the end member x = 1/3 so can be
attributed to any (Ca,Sr,Pb,Ba)1�3xLa2xTiO3 system, each with its
own effective bond deformations and rV values. All such composi-
tional families converge here. As there is no divalent species in this
unique case, it no longer makes sense to interpret bond deforma-
tion values as A2+–O bond deformation or covalency, as there is
no A2+ present; and rV values become notional.

For all ATiO3 (A = Ca, Sr, Pb, Ba) perovskites, the effective
vacancy size scales not only with A cation size but also with A
cation bond valence sum (2.08, 2.11, 2.12, 2.74 for A = Ca, Sr, Pb,
Ba, respectively). Vacancies obviously decrease the bond valence
of coordinating anions, so the push can help restore their bond
valence sum (BV) by reducing the other bond lengths. These results
are somewhat counterintuitive, as the difference in cationic sizes
would mean that coordinating anions in CaTiO3 would be much
closer to the A site than those in BaTiO3. As a consequence,
Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

0.24 3.7871 �2.25 3.8797 0.14
0.14 3.8007 �1.86 3.8741 0.04
0.34 3.8478 �0.70 3.8848 0.25
0.68 3.8750 �0.01 3.8993 0.62

0.24 1.28 0.14
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A-site vacancies might be expected to push anions away in CaTiO3

due to Coloumbic repulsion (rV > rA) but allow overbonded anions
to relax towards the vacant site (rV < rA) in BaTiO3. Instead, it
seems that vacancies in SrTiO3, PbTiO3, and BaTiO3 push
anions while vacancies in CaTiO3 (x 6 0.05), Pb(Zr0.6Ti0.4)O3, and
Sr(Mg1/3Nb2/3)O3 pull on them.

A more useful way of demonstrating the effect of vacancies on
structure might be to examine the effect of vacancy concentration
on rA � rA(id), which includes contributions from bond deformation,
covalency, and vacancies. It is convenient to artificially incorporate
all of these contributions into a single virtual size parameter, S,
such that:

S ¼
ðrA � rAðidÞÞ

x
ð24Þ

When S is normalized by rA(id), the effect of vacancies on bond
valence can be demonstrated (Fig. 12). In this case, all values above
unity should represent cases where the effective A-site size is
greater than the ideal A-site size (i.e., that derived from Shannon
radii alone). Such compositions would correspond to underbond-
ing of the A-site species, whereas values below unity would corre-
spond to overbonding. This prediction is borne out in the cases of
A1�3xLn2xTiO3 (A = Sr, Pb, Ba). For example, based on published
[19] Rietveld refinements of Sr1�3xCe2xTiO3, the A site is slightly
overbonded for x = 0.0833 (BV = 2.0118, S/rA(id) = 0.9598) but
underbonded for x = 0.125 (BV = 1.9745, S/rA(id) = 1.1146).
Similarly, according to published structural data [42] the A site in
Pb1�3xLa2xTiO3 is overbonded at x = 0.125 (BV = 2.0778,
S/rA(id) = 0.9103) but underbonded at x = 0.15 (BV = 1.9836,
S/rA(id) = 1.0263). Insufficient structural data exists to make a
definitive argument either way in the case of Ba1�3xLn2xTiO3; how-
ever, published data [22,43] do show for the end members that
Ba2+ is overbonded in BaTiO3 (BV = 2.74) whilst La3+ is under-
bonded in La2/3TiO3 (BV = 2.6723). The case of Ca1�3xLn2xTiO3 is dif-
ferent in that, according to published structural data [23,24], the
Fig. 12. The effect of vacancies on A-site bond valence in A1�3xLn2xTiO3 (A = Ca, Sr,
Pb, Ba; B = La, Ce, Nd, Y).

Table 17
Model values for [(Ca0.252Sr0.748)1-3xLa2x]TiO3, where t0 = 1.

Composition apc (Å) rO (Å) apc (Å)

Sr0.748Ca0.252TiO3 3.8914 1.3489 3.9096
Sr0.7042Ca0.2658La0.02TiO3 3.8927 1.3473 3.9066
Sr0.5082Ca0.1918La0.2TiO3 3.8918 1.3403 3.8936
Sr0.2904Ca0.1096La0.4TiO3 3.9020 1.3444 3.9012
Sr0.0726Ca0.0274La0.6TiO3 3.8830 1.3611 3.9320

Average relative absolute error
Ca2+ in CaTiO3 is slightly overbonded (BV = 2.08) despite having
an S/rA(id) ratio� 1. This apparent anomaly might be explained
by octahedral tilting.

The octahedra in CaTiO3 are tilted both in-phase and anti-phase
[22,23]. Using the average Ca–O nearest-neighbor bond length, the
bond valence sum for Ca would be 1.5446, showing Ca2+ to be
severely underbonded, in agreement with the prediction above;
however, the effect of the tilts is to slightly lengthen four of the
Ca–O nearest-neighbor bonds but shorten the remaining eight
such that the overall bond valence sum increases to the point that
Ca2+ becomes slightly overbonded.

In the case of SrTiO3, the cubic structure allows no tilting or dis-
tortion of octahedra; but antiphase tilting is triggered for x values
at least as low as 0.01 (Fig. 4), in which case some Sr–O bond
lengths begin to lengthen until eventually Sr2+ becomes under-
bonded (0.0833 < x < 0.125). In the cases of tetragonal (P4mm)
BaTiO3 and PbTiO3, the single degree of freedom in each oxygen
position allows only octahedral distortion, not tilting. The extent
of that distortion is significant in PbTiO3 (60.5536 Å) and Pb–O
bond lengths are such that Pb2+ is overbonded. As x increases in
(Pb1�3xLa2x)TiO3, the Pb–O bond lengths gradually increase (the
degree of distortion decreases) until, at x = 0.15, the structure
becomes cubic and Pb2+ becomes slightly underbonded.

Although insufficient structural data exists for Ba1�3xLn2xTiO3 to
be sure, a similar phenomenon would probably be active in that
system. The octahedral distortion in BaTiO3 is already extremely
small (<0.0643 Å) and Ba2+ very overbonded (BV = 2.74), so as x
increases (0 6 x 6 �0.2) that distortion would likely increase in
order to reduce the BV.

The system Pb1�3xLa2x(Zr0.6Ti0.4)O3 also seems to obey this
trend. Its curve (not shown in Fig. 12) is similar to that for
Ca1�3xLn2xTiO3, which can be explained by the fact that, unlike in
PbTiO3, the Pb in Pb(Zr0.6Ti0.4)O3 is actually underbonded
(BV = 1.55).

It is interesting to note the apparent effect vacancies have on
the effective size of oxygen ions. From Tables 7–14 it is apparent
that vacancies increase the effective rO2� for small A-site cations
including Ca2+ and Sr2+ (x 6 0.15) but decrease rO2� in systems with
larger A-site species including Sr2+ (x > 0.15), Pb2+, and Ba2+.

Using the Shannon radii data it is possible to define a composi-
tion for which t⁄ = t0 = 1, as in [(Ca0.252Sr0.748)1�3xLa2x]TiO3. The
results are shown in Table 17 and agree very well with the model.
In this case BD is very small (�0.0081 Å). Ideally there should be no
bond distortion/covalency component (i.e., the effects of both bond
distortion and covalency exactly cancel out) so the difference
between the weighted average of Shannon radii (1.4148 Å) and
the effective radius including bond distortion/covalency
(1.4109 Å) should be �0, i.e., rA � rA(id) � 0. The effective vacancy
size (1.5663 Å) in this system is larger than either value, again indi-
cating a push against coordinating anions. Although the model
works well for even the extreme case of x 6 1/3 in Sr1�3xLa2xTiO3,
in this system it begins to break down slightly at x = 0.3
(Sr0.0726Ca0.0274La0.6TiO3), in which case t1 would have to be �0.98,
which is below the minimum possible given Eqs. (20)–(23).
Error (%) a0pc (Å) Error (%) a00pc (Å) Error (%)

0.47 3.8970 0.14 3.9079 0.42
0.35 3.8923 �0.01 3.9046 0.31
0.05 3.8886 �0.08 3.8907 �0.03
�0.02 3.9013 �0.02 3.8989 �0.08

1.26 3.9317 1.25 3.9322 1.27

0.43 0.30 0.42
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The model instead yields t1 = 1.020554 and apc, a0pc , and a00pc values
with errors of 1.26%, 1.25% and 1.27%, respectively.

4. Conclusions

A predictive model for the pseudocubic lattice constant of
A1�3xLn2xBX3 perovskites, based solely on published ionic radii
data, has been developed and applied with great accuracy to many
such perovskite systems. Using this model it is also possible to cal-
culate the effective size of anions and A-site cation vacancies as
well as to semiquantify the effects of both B-site cation ordering
and second-order Jahn Teller distortions. A lower limit for the tol-
erance factor of oxide perovskites is proposed (t = 0.8465).
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