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Abstract

Aiming to predict new materials for magnetic refrigeration from high-throughput calculations asks for an accurate,
transferable, and resource-wise balanced approach. Here, we analyze the influence of various approximations on the
calculation of key properties of magnetocaloric materials, while revisiting the well-known FeRh system for benchmarking
our approach. We focus on the entropy change and its contributions from the electronic, lattice, and magnetic degrees
of freedom. All approximations considered are based on first-principles methods and have been tested, and compared
for FeRh. In particular, we find that in this context, the Debye approximation for the lattice entropy fails, due to the
presence of soft phonon modes in the AFM phase. This approximation is frequently used in the literature as a simple
alternative to full phonon calculations, but since soft modes are likely to occur also among promising magnetocaloric
materials where structural transformations are common. Therefore, the use of the Debye approximation should be
discarded for these systems treatment. This leaves the calculations of the lattice contribution the most demanding
task from the computational point of view, while the remaining contributions can be approximated using more efficient
approaches. The entropy change ∆S shows a peak around 370 K, for which the total entropy change is given by 24.8
JK−1kg−1 (∆Sele = 7.38, ∆Slat = 7.05, ∆Smag = 10.36 JK−1kg−1) in good agreement with previous theoretical and
experimental findings.

Keywords: FeRh, Magnetocalorics, Entropy, Phase transition, DFT

1. Introduction

The idea of replacing convectional room temperature
cooling devices by solid-state magnetic devices, which have
the potential for better energy efficiency without produc-
ing harmful greenhouse gases, has promoted the interest
in magnetocaloric materials. The search for new materials
with a more attractive performance/cost ratio or tuning of
known compounds is crucial in order to use such devices
in mass production and everyday applications [1–5].

First principles high-throughput calculations can be a
powerful approach to identify suitable candidates with de-
sired properties by screening a large body of data. To be
able to do that, large databases and screening parameters
which are carefully selected to achieve a balance between
the accuracy and the cost of the computation are required
[6, 7].

The performance of materials used in a magnetocaloric
cycle can be characterized by the refrigerant capacity,
RC = ∆Siso∆Tadi, where ∆Siso is the isothermal en-
tropy variation and ∆Tadi is the adiabatic temperature
change. None of these parameters can be easily estimated
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from first principles electronic structure calculations, in-
stead, a more tailored approach is necessary to take into
account the finite temperature effects. Analogous to Ref.
[8], we propose the use of the entropy variation between
the involved magnetic phases (∆S) as an approximation of
∆Siso. In this way, the transition itself and the field con-
tribution are not included on the description, simplifying
considerably the calculation. The magnetocaloric effect is
in general small unless it is operated at temperatures in
the vicinity of a phase transition, whereas it is strongly
enhanced by the entropy variation of a transition, which
justifies our approach [2, 9].

In a simplified model, entropy can be described by the
sum of three independent contributions: the electronic
entropy, the magnetic entropy and the lattice entropy:
S = Sele +Smag +Slat. This is a simplification of the real
processes, since most of the magnetocaloric materials show
magnetostructural or magnetoelastic transitions indicat-
ing strong coupling between lattice and magnetic degrees
of freedom. A consequence of neglecting these coupling
terms (or taking them as constants) is that, their con-
tribution are ”double-counted” when summing the three
contributions. However, as shown here, the simplified ap-
proach still provides a reliable estimation for ∆S without
overburdening the calculations [1, 10].

By using ∆S as a screening parameter, we are likely
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limiting our search to materials with first order transi-
tions, since they have enhanced entropy variation [2, 4, 10].
These materials show better magnetocaloric performance
but can also be more challenging to operate in practice,
due to hysteresis losses. As pointed out in Ref. [4], first
order transitions have hysteresis that can reduce drasti-
cally the performance in multi-cycle processes and thus
make the materials less attractive for real cooling devices
applications. However, even with the above-mentioned
limitations in mind, ∆S is a natural choice for screen-
ing potential magnetocaloric materials, when attempting
high-throughput approaches.

In order to be used in high-throughput calculations we
need to explore the degree of complexity needed to get re-
liable estimations for the different contributions for ∆S.
Therefore, FeRh, a well-known magnetocaloric system, is
used as a test case keeping in mind that the approach
should be as general as possible in order to be transferable
to other systems. Starting from simple models, the dif-
ferent conventional approaches are compared relatively to
their performance and applicability for high-throughput
calculations. We would like to stress that the focus of
our study is on the methodology used for first-principles
entropy estimations and not on the test material, FeRh,
itself that was chosen by thorough studies available in the
literature [8, 11–22].

Over the years, the unusual metamagnetic first-order
transition of ordered FeRh alloys with CsCl structure has
caught huge attention, which is reflected, in a larger num-
ber of experimental and theoretical studies [11–13, 18, 23–
31]. An isostructural transition from a low-temperature
antiferromagnetic (AFM) phase to a high-temperature fer-
romagnetic (FM) phase occurs near room temperature
(around 340K), accompanied by a volume increase of
about 1%. The transition is also characterized by the con-
siderable gain of the magnetic moment of the Rh atoms (≈
1 µB) from a nonmagnetic state in the AFM phase (type
G), which stabilizes the FM phase [13].

Early attempts to determine the origin of the transi-
tion e.g. using the exchange-inversion model of Kittel
[32, 33] were incompatible with the large entropy variation
observed in FeRh. Based on the measured electronic con-
tribution to the entropy variation Tu et al. proposed that
the transition might be driven by changes in the electronic
structure [23], however this explanation did not compare
to previous results for Ir doped FeRh [34]. Later, it was
proposed by Gruner et al. that the transition is driven by
magnetic fluctuations [13], and the same conclusion was
obtained by Gu et al. [18] and Staunton et al. [16] using
different approaches.

Nowadays, there is a renewed interest in these com-
pounds due to their magneto- and barocaloric properties.
Examples of such studies are e.g. the performance of the
magnetocaloric effect (MCE) under cyclic conditions [29]
and the variation of the magnetocaloric response between
FeRh based ternary compounds [35]. Very recently, the
existence of an orthorhombic low-temperature phase of

FeRh has been predicted from first-principles calculations
[12, 14, 36] as well as a martensitic transformation under
strain [14, 15, 37].

The existence of such broad knowledge and detailed
information in the literature together with the complex
metamagnetic behavior that demands a careful treatment
makes FeRh an ideal test system for our purpose to iden-
tify a method that can be applied in a high-throughput
study for finding new magnetocaloric materials.

The discussion in the present work is divided in two
parts. In the first part, we discuss thoroughly the sin-
gle entropy contribution in terms of electronic, lattice and
magnetic components. This is done for FeRh using dif-
ferent approximations, albeit without considering thermal
effects on the structure. In the second part, we include vol-
ume expansion/contraction from thermal effects and com-
pare with the previous results, using the approximations
we found to be adequate to describe the system. From this
we are able to conclude which is the most viable approach
to be applied in high-throughput calculations.

2. Computational details

The structural properties as well as structure relaxations
were performed using the VASP (PAW) code [38–40] with
PAW potentials [41, 42] while the PHONOPY [43] code
was used to obtain the vibrational density of states and
the phonon spectra. Magnetic and electronic properties
needed for entropy calculations were derived from a full-
potential linear muffin-tin orbital method (FP-LMTO) us-
ing the RSPt code [44], and respective temperature de-
pendent quantities such as the adiabatic magnon density
of states or the Curie temperature were computed using
the UppASD code [45]. In all the DFT calculations, the
functional GGA-PBE [46] was used, since it shows in gen-
eral a good performance in transition metals and com-
pounds, which represents the substantial part of the future
database to screen.

Both FM and AFM phases were relaxed on cubic cells
of 16 atoms (8 f.u.) taking 4s, 4p, and 3d for Fe as well
as 5s, 5p and 4d orbitals for Rh as valence states. A
kinetic energy cutoff of 500 eV, roughly 2 times bigger
than the default value, was used. For sampling the Bril-
louin zone we used a k-mesh 12× 12× 12 generated with
the Monkhorst-pack scheme in combination with a smear-
ing of 0.05 eV according to the Methfessel-Paxton scheme
(2nd order). Tests with the inclusion of the Fe 3p and Rh
4p semi-core states in the valence as well the usage of a
higher cutoff energy (750 eV) revealed that the calcula-
tions are converged with respect to these parameters. The
relaxed lattice parameters of 2.99 Å (AFM) and 3.01 Å
(FM) are in good agreement with previous calculations,
e.g. 2.99 (3.01)Å[12], 3.00 (3.01)Å[8] for the AFM (FM)
phase. They are also in good agreement with experimen-
tal measurements, 3.00 Å [47], and 2.98 (3.00) [48] for the
AFM (FM) phase. For these volumes, the magnetic mo-
ments obtained from these calculations are mFe = 3.21
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µB and mRh = 1.05 µB in the FM phase, and mFe =
3.12 µB and mRh = 0.0 µB in the AFM phase. These
results are close to the experimentally measured values
of an alloy with 48% Rh in the FM phase, mFe = 3.2
µB and mRh = 0.9 µB [49, 50], as well as to the mea-
surements for the AFM phase of a stoichiometric com-
pound, mFe = 3.3µB [50]. The obtained results are also
in close agreement with previous calculations: e.g. mFe =
3.18µB , [12], 3.15µB [11] and mRh = 1.06µB [12], 1.02µB

[11] for the FM phase and mFe = 3.12µB [12], 2.98µB [11]
in the AFM phase. At T=0K, the AFM phase is lower
with 26.9 meV/atom (VASP calculation 1) compared to
the metastable FM phase.

The phonon calculations were performed within the har-
monic approximation employing the finite displacement
method in a similar setup as used on the structural re-
laxation. We typically used displacements of 0.01Å for
these calculations. A 2× 2× 2 supercell from the relaxed
structures with 128 atoms (64 f.u.) was employed. For
this supercell we used a coarser k-mesh 6× 6× 6. No im-
provement was observed by increasing the cutoff energy
to 750 eV and neither a significant change of the phonon
spectrum with the inclusion of 3p (Fe) and 4p (Rh) or-
bitals in convergence tests performed for cells of 16 atoms.
To make it easier to compare results with previous calcu-
lations [8, 12], we employed also a similar setup as used
previously, with a cutoff of 500 eV and the inclusion of the
semi-core states in all phonon calculations.

For calculations performed with the RSPt code, we used
fcc-like structures of 4 atoms (2 f.u.), with the previously
relaxed lattice parameter on a 36 × 36 × 36 k-mesh with
related integrated quantities broadened by Fermi smearing
of 1 mRy. The exchange parameters Jij were calculated
using the Liechtenstein method [51, 52], implemented in
the RSPt code, as described in Ref. [53]. The Curie tem-
perature (TC) calculated via mean field theory according
to the obtained values of Jij for the FM phase is of 804
K which is comparable the experimentally measured value
of 675 K [33, 47]. This agreement is good, given the fact
that mean-field theory tends to overestimate TC with ∼
20 % (as discussed e.g. in Ref. [45]). For analysis of the
long range behaviour with distance, the exchange param-
eters were calculated on a denser k-mesh of 64 × 64 × 64
to assure convergence of the results.

3. Results

As initial approach, anharmonic effects raised by ther-
mal expansion were neglected and we consider only the
DFT ground-state volumes for both magnetic phases. We
extend the use of this terminology for elastic/structural
properties for this approach to distinguish clearly that the
volumes were fixed. The assumption of purely harmonic

129.6 meV in the analogous RSPt calculation

forces between atoms is insufficient to describe the ther-
mal expansion or contraction of a material, and it may
be important to consider anharmonic effects, for accurate
calculations of phase stability and entropy estimates. To
compare improvements obtained by this description, rela-
tively to the previous ”Harmonic” approach, we used the
quasiharmonic approximation (QHA) to include the effects
of thermal expansion on the entropy estimates (see more
details further) [54].

3.1. Electronic structure, and its contribution to the en-
tropy

The density of states (DOS) of FeRh is shown in Fig.
1a, for the FM and AFM configuration. Note that for
the AFM configuration we show the spin-polarized DOS
of only one Fe atom.

The figure shows the atom with more spin-down elec-
trons occupied, representing a Fe atom with a negative
atomic moment. The Fe atom with positive moment
has exactly the same DOS, although with opposite spin-
projection to that shown in Fig. 1. In agreement with
previous findings in the literature, a strong hybridization
between iron and rhodium orbitals is observed [17]. In
particular, a strong hybridization between Fe t2g and Rh
eg orbitals near the Fermi energy (EF −E ¡ 2 meV) occurs
in the AFM phase, where it also can be assumed some
hybridization between Fe eg and Rh t2g orbitals in the
peak around EF − E = 2 meV, see Fig. 1a. For the FM
state the hybridization seems to weaken, and be confined
on the minority spin channel, mainly observed between t2g
orbitals of Fe and Rh near the Fermi energy. This observa-
tion may emphasize the picture of quenched Rh magnetic
moments due to the competing influence of neighbouring
iron atoms on the AFM phase. The hybridization that
is diminished between Fe-Rh on the FM phase can be di-
rectly ascribed to the lifting of the anti-parallel alignment
of the surrounding iron atoms. On the other hand, it can
also be related to the increased volume, which can reduce
orbital superposition or a combination of both effects.

In the FM phase (Fig. 1b), it is possible to distinguish
a significant difference between t2g and eg orbitals of Fe at
Fermi level which can be an indication of different mag-
netic behaviour of these orbitals similar as observed for
bcc-Fe in Ref. [55]. There it was found that t2g orbitals,
with likewise bigger contribution for the electronic density
of states DOS(εF ), were related to the long-range Rud-
erman–Kittel–Kasuya–Yosida (RKKY) interactions while
the eg were associated with direct exchange with nearest
neighbours. The similarities, observed in the projected Fe
DOS, might hint for the existence of some similarities be-
tween magnetic behaviour of Fe atoms of both compounds.

The contribution of electronic excitations to the entropy
is given by the mixing entropy of occupied and unoccupied
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Figure 1: Electronic DOS for FeRh in the AFM (a) and FM (b)
phase. The DOS is projected onto Fe 3d states, with eg and t2g
symmetry, and Rh 4d states, with eg and t2g symmetry. The density
of the minority states is displayed on the negative axis. Colours
available on the online version.

states:

Sele =− kB
∫
D(ε) ([1− f(ε, T )] ln (1− f(ε, T ))

+f(ε, T )ln(f(ε, T ))) dε, (1)

where D(ε) is the density of states and f =

[exp((ε− µ)/(kBT )) + 1]
−1

is the Fermi-Dirac distribu-
tion. Furthermore, kB is the Boltzmann constant and
µ is the temperature dependent chemical potential. For
temperatures considerably below the Fermi temperature,
it is reasonable to approximate µ with the Fermi energy,
EF . Then the electronic entropy can be estimated from
the Sommerfeld approximation, [56]

Sele =
π2

3
k2
BTD(εF ). (2)

In Figure 2, the results obtained from both models are
compared, showing a good agreement for temperatures till

 0

 2

 4

 6

 8

 10

 12

 0  100  200  300  400  500

Δ
S

el
e 

(J
/K

/k
g)

Temperature (K)

Sommerfeld

Harmonic

QHA

Figure 2: Electronic contribution to the entropy variation ∆S =
SFM − SAFM according the Sommerfeld approximation (black dot-
ted line) and the mixing entropy in the harmonic (blue solid line) and
the quasi-harmonic (red dashed line) approaches. Colours available
on the online version.

300K. Outside this range the results differ, resulting in
a small deviation observed for temperatures close to the
transition temperature for the transition from antiferro-
magnetism to ferromagnetism. The deviations arise from
the AFM phase and can be explained by the absence of
peak structures in DOS at the Fermi energy (Figure 1)
as the Sommerfeld approximation assumes. Nevertheless,
the deviation between the discussed models for Sele es-
timation, in the range of the transition, is small being
the obtained difference of 1.84 J K−1 kg−1 for ∆Sele, and
26 K for the transition temperature (discussed in further
sections). Although there is not significant loss of accu-
racy estimating Sele using Eq. 2, using the definition of
mixing entropy does not imply extra computational effort.
Thus to avoid eventual inaccuracies that may arise by us-
ing Sommerfeld approximation, we use the definition in
Eq.1 as the standard method for calculating the electronic
entropy.

3.2. Magnetic contribution to the entropy

For materials with order-disorder magnetic transitions,
the maximum magnetic entropy variation between phases
can be roughly estimated from ∆Smag = NkBln[2S + 1]
(in a quantum description) with N being the number of
magnetic atoms [24]. This comes about since very few mi-
crostates are available for highly ordered states, and the
entropy of this configuration can be neglected in the lim-
iting case T→ 0 . In contrast, for the disordered configu-
ration we have (2S+ 1)N arrangements for the spins for T
→ ∞, whichresultsintheentropychangeacrosstheorder −
disordertransitionasdescribedabove.

According to the analysis above, it is expected that
order-order transitions at finite temperature have a con-
siderably smaller entropy change from the magnetic sub-
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system.

Based on this and the argument that considering the
itinerant nature of magnetism of FeRh, the magnetic con-
tribution to ∆S is already included in the electronic en-
tropy computed from the DOS, some reports argue that
the magnetic contribution of the entropy does not need to
be considered separately [8]. To some extent, it is possi-
ble that some magnetic contribution is captured by ∆Sele,
since some coupling between the degrees of freedom is ex-
pected. However, taking into consideration the increase of
the Rh magnetic moment from 0 (AFM) to ≈ 1µB (FM),
it seems that the magnetic entropy for this transition must
be considered specifically. A good reason for that are the
new two-site interactions between Fe and Rh atoms of
the ferromagnetic phase, described e.g. by the Heisenberg
Hamiltonian, which should be considered for a proper sys-
tem description (see Figure 3a). Interestingly, Figure 3a
shows that the close range of the Fe-Fe exchange is quite
similar for the AFM and FM configurations. The nearest
neighbour interaction is anti-ferromagnetic in both phases,
although the strength is larger for the AFM configuration.
In addition, the general trend of the Fe-Fe interaction is
quite similar for both configurations. The interaction that
stabilizes the FM phase is hence not found in the Fe-Fe
Heisenberg exchange. Instead, as Figure 3a shows, the
strong ferromagnetic Fe-Rh interaction is what makes the
FM configuration stable at all. This represents an inter-
esting boot-strapping effect, when the FM configuration
is what allows for a sizeable Rh moment, and the size-
able Rh moment is what ensures a large Fe-Rh exchange
interaction that makes the FM (meta-) stable [13].

To estimate the magnetic entropy variation we started
by using a simple approximation analogous to the one
used in Ref. [57] for LaFe13−xSix alloys. From the fun-
damental thermodynamic relation dU = TdS − PdV one
can, for isochoric processes, approximate the entropy as
∆S = ∆U/T . Although crude, this approximation should
give an acceptable estimate for the entropy variation in
first-order transitions where the entropy varies discontin-
uously at the transition temperature. Using this and de-
scribing the magnetic energy of the system by the classic
Heisenberg Hamiltonian:

H =
∑
i<j

Jij ~Si. ~Sj (3)

a good starting point for ∆Smag estimation can, in prin-
ciple, be obtained, since energy differences between dif-
ferent magnetic configurations are available from Eq.3.
For FeRh this results in ∆Smag = −26.78 JK−1kg−1 (at
T=340 K), which has the wrong sign from what is ex-
pected, a consequence of the use of a simplified Heisen-
berg Hamiltonian, for which the FM phase is obtained as
the ground-state configuration. However, it was shown in
Ref. [13, 25, 58, 59] that an extension of the Heisenberg
exchange model can be made, using e.g. higher-order in-
teractions, to obtain a proper magnetic description of the
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Figure 3: Calculated exchange parameters (Jij) calculated for FeRh,
decomposed according the involved atoms type a), and crystal field
symmetry b). In b) are only plotted the exchange interactions be-
tween iron atoms along the ¡001¿ direction. Colours available on the
online version.

system with very satisfactory results on Monte Carlo sim-
ulations. Here we took a different route to avoid the use
of a tailored model and evaluated the magnetic entropy
from spin-wave fluctuations, similar to the work in Ref.
[18]. This approach is possible since the AFM-FM tran-
sition happens at considerable lower temperatures (≈ 340
K) than the Curie temperature of the FM phase and the
spin fluctuations can still be considered to be relatively
small [12]. It is also necessary to guarantee, in order to
use this approach that Stoner excitations are not domi-
nating, as was shown in Refs.[17, 18]. For this reason,
we calculated the magnon density of states (MDOS) from
the adiabatic magnon spectrum. This calculation relied
on Heisenberg exchange parameters, Jij , estimated from
DFT calculations. Due to the bosonic nature, the entropy
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imation (blue solid line) at fixed volume and the quasi-harmonic ap-
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of the magnons is given by:

Smag = kB

∫ ∞
0

g(ε)
[(

1 + n(ε, T )
)
ln
(

1 + n(ε, T )
)

− n(ε, T )ln
(
n(ε, T )

)]
dε, (4)

where g(ε) is the MDOS and n = [exp(ε/[kBT ])− 1]
−1

is
the Bose-Einstein distribution. For these calculations a
perfectly aligned configuration was assumed for the spin
moments when calculating the magnon dispersion (~m ‖
~mz). Analogous calculations performed for a thermally
relaxed (at 300K) magnetic configuration do not deviate
significantly from these results.

In contrast to the observation of the electronic en-
tropy contribution, a magnetic entropy maximum (10.92
JK−1kg−1) is obtained at around 315 K, as can be seen
in Figure 4. This peak is of major importance since it
hints to the existence of the phase transition. At least it
shows that the magnetic entropy will favour the ferromag-
netic phase. Also, the lack of similar peaked behaviour
around the transition temperature in the other entropy
contributions (see discussion of lattice contributions, be-
low) suggests that the transition is triggered by the mag-
netic features of the system. Thus, based on the applied
magnetic model (spin-wave fluctuations) and the obtained
MDOS for the AFM phase, we suggest that at low temper-
atures the Rh atoms are magnetically suppressed by the
anti-parallel alignment of the surrounding Fe atoms config-
uration. This generates a vanishing local Weiss field on the
Rh atom, that at the transition temperature has its sym-
metry broken by the spin fluctuations, which allow Rh to
become magnetically polarized and thus stabilizes the FM
configuration. A similar picture of a transition driven by
small magnetic fluctuations, as the one described above, is

 270
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Figure 5: Variation of the magnetic entropy peak parameters for the
”Harmonic” approach with the cutoff radii for included exchange
interactions in the FM phase. At the right axis, the estimated values
for the magnetic entropy variation peak (red triangles) are plotted,
while the left axis denotes the temperature at which the entropy
variation peak occurs (blue circles). Results calculated for the FM
(AFM) phase with a = 3.014Å (a = 2.998Å). Colours available on
the online version.

concluded in other works, both with similar methods [18]
as well as from different approaches [13, 16, 18, 58].

It was already pointed out in the previous section, that
iron atoms in FeRh might possess some features that are
similar to the features they have in elemental form (bcc
Fe). For instance, the existence of oscillating long-range
interactions, must be taken into consideration when cal-
culating the MDOS and thermodynamic properties from
it. In Figure 5, it is shown how the entropy peak varies
with the range of magnetic couplings Jij included in the
calculation of the MDOS 2. ∆Smag and the peak temper-
ature show a significant dependence on the cutoff radius
for the Jij such that a considerable long range of interac-
tions must be included to a fairly converged estimation.
This is a consequence of long-range magnetic interactions
of JFe−Fe, visible on Figure 3b) that oscillate significantly
till a range of 10 primitive cells approximately. Based on
these observations we included interactions up to 12 lattice
parameters in our calculations.

The fact that the sensitivity with respect to the range of
the interactions, is mainly due to interactions in the FM
phase, reflect that long-range oscillating interactions are
stronger on this phase (see Figure 3b), and more signifi-
cant on t2g orbitals, underpins the similarity between bcc
Fe and the FM phase of FeRh (see results for bcc Fe in
Ref. [55]), when it comes to understanding the Heisenberg
exchange. We point out that the sensitivity on the cut-
off of the Heisenberg interactions is important for many
prospective magnetocaloric materials, since many of them

2More details on the MDOS variation can be found on the Sup-
plementary materials.

6

Jo
urn

al 
Pre-

pro
of



This work References
(Tpeak) [18] [13] [58] [16]

∆Smag 10.9 15.4 5.2 15a(8.2)b 13c
[J K−1 kg−1]

Ttr 316 353 268 300 495
[K]

a Result obtained from specific heat analysis, at presented Ttr.
b Result obtained by ∆E(T )/T at T=350K.
c Result under a 2T magnetic field.

Table 1: Comparison of calculated/measured magnetic contributions
for the entropy variation (∆Smag) and respective transition temper-
ature (Ttr). For our results the temperature for the entropy peak is
used for comparison since it hints for the magnetic transition.

are metallic and have Fe as a key element, and the long-
range magnetic interaction between Fe atoms seems to be
of particular importance.

Our results of the magnetic entropy change across the
AFM - FM transition are in agreement with previous cal-
culations, see Table 1. The quite large difference between
our entropy calculation and the results obtained by Gu et
al., who used a similar computational approach [18], are
most likely caused by the shorter range of exchange inter-
actions considered in their work. This might also partly
explain the small deviation between our results and the
ones from the models used in Refs. [13, 58]. Relative to
the transition temperature, the higher result obtained by
Staunton et al. stands out from the remaining values [16].
Such deviation might be related with the method itself -
finite temperature spin density functional theory is imple-
mented in the disordered local moment approach - which
differs significantly from the other approaches. The cal-
culations of Ref.[16] were done from an electronic struc-
ture theory that allows a random distribution of spin-
orientations, and therefore neglects short-range correla-
tions. This approach is well established and is argued [16]
to describe better the electronic structure at finite tem-
peratures.

3.3. Lattice contribution

The calculation of properties related to the crystal lat-
tice can become very demanding regarding computational
resources. In order to calculate such properties in an effi-
cient way, it is imperative to minimize the numeric effort
by using expedient models, without compromising signifi-
cantly the accuracy. To verify which approximation is ap-
propriate to estimate the lattice entropy, we compare the
results of models of various accuracy and complexity. As
contribution for the lattice entropy, only the vibrational
entropy was considered.

3.3.1. Debye Model

In the Debye model the phonon dispersion relation is
treated as linear, ω = vs|k|, where vs is the speed of sound

in the material. Therefore, the vibrational density of states
(VDOS) is given by:

g(ω) =
3ω2

2v3
sπ

2
(5)

up to the cutoff Debye’s frequency. The entropy then be-
comes [54]:

Slat =kB

[
− 3ln(1− exp(−Θ/T ))

+ 12

(
T

Θ

)3 ∫ Θ/T

0

x3

exp(x)− 1
dx

]
(6)

where Θ is the Debye temperature. An important
consequence of this model is that at a fixed temperature
the variation of the Debye temperatures between phases
(∆Θ) has opposite sign to the respective variation of
lattice entropy, ∆Θ/|∆Θ| = −∆Slat/|∆Slat|, this can
be used to understand the nature of the lattice entropy,
i.e., if it is collaborative (has same sign) or detrimental
(opposite sign) relative to all other entropy contribu-
tions. The Debye temperature can be computed as
Θ = h̄(6π2n)1/3v̄s/kB with the atomic density n and
v̄s being the average velocity of sound in the crystal.
For isotropic crystals, the later is approximated as the
average value of the shear and longitudinal sound velocity.
It is generally expressed in terms of the bulk modulus
(B), the density (ρ), and a correction parameter3 ξ, i.e.,
v̄s = ξ

√
B/ρ.

The correction parameter ξ depends on the elastic
properties of the system. However, in Ref. [60] it was
proposed that for a given class of materials ξ might be
universal and can be derived from elastic constants. To
verify if this approximation could be used in calculations
of magnetocaloric materials we extracted the shear and
bulk moduli, from data found in literature [61–65], for
magnetic materials with structural transitions (expected
to be present in an important class of interesting candi-
date materials for magneto caloric applications). Figure
6 shows that any possible linear trend as obtained in
Ref. [60] is not reasonable if compounds with different
structure types are compared. This makes the approach of
Ref. [60] less appropriate for high-throughput calculations
and data-mining algorithms. For FeRh, in particular, this
approach is specially unappealing considering the only
materials with similar structure and properties are alloys
very close to the stoichiometric compound.

We conclude that however inconvenient it is, the elas-
tic properties have to be calculated for each material that
one includes in any data set for high-throughput calcula-
tions, when searching for new magnetocaloric materials.
For FeRh this exercise leads to a very interesting result

3Necessary for expressing v̄s in terms of isotropic elastic parame-
ter B, which can be obtained from a fitting of the equation of state.
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when comparing the two magnetic phases (AFM and FM).
Since the two phases have the same crystal structure, one
might naively assume very similar elastic properties for
both phases. However, this assumption leads to a lattice
entropy contribution of 7.9 JK−1kg−1 at 328 K, which
deviates from a more accurate calculation that takes into
account the difference in elasticity of the two systems (dis-
cussed more in detail below) that yield a value of -30.1
JK−1kg−1 at the same temperature. This later approach
gets closer to the extracted from calorimetric measure-
ments ≈ −33 JK−1kg−1 (328K) using the same model
[66].

In order to describe accurately the difference in elas-
ticity of the two phases of FeRh, we evaluated the elas-
tic constants using the RSPt software, for both phases.
We used the stress-energy response as described in Ref.
[67, 68]. The values of C11 =194.9 (257.1) C12 = 194.9
(165.2) and C44 = 135.3 (115.6) GPa were estimated for
the AFM (FM) phase, with qualitative agreement with
previous calculations [15].

Comparing the Debye temperatures derived by using the
same Poisson ratio (ν) for both phases and from the cal-
culation with the different ratios for the AFM and FM
phase, demonstrates the sensitivity of this model for lat-
tice entropy to small deviations (∆ν = 0.05) of the elastic
properties. Taking into account the differences in the elas-
tic behavior of the AFM and FM phase, the change in
the Debye temperature ∆Θ is in good agreement with the
experimental results, see Table 2.

3.3.2. The Debye-Grüneisen Model

Taking a more sophisticated approach to estimate the
lattice entropy, by use of full phonon calculations [8, 12],

[K] ΘAFM ΘFM ∆Θ
νAFM = νFM 412 401 -11
νAFM 6= νFM 362 401 39
Expt. [66] 340 393 53
Thermal effects a 352 417 65

a High temperature correction considered, g = 2/3, very similar
result is obtained if the low temperature correction is taken. The
volume of the FM (AFM) phase was considered as altered volume
for the AFM (FM) phase.

Table 2: Comparison of different treatments for Debye temperature
estimation and respective difference between phases, ∆Θ = ΘFM −
ΘAFM , with experimental measurements. For the case with equal
elastic properties assumed for both phases, the calculated Poisson
ratio νFM = 0.32 of the FM phase was considered. For the remaining
cases the νAFM = 0.36 was used.

leads different values of ∆Slat, compared to the findings
from the Debye model. This is discussed in detail in the
following subsection. To investigate whether a simplified
approach can be improved, we first extended the Debye
model to the Debye-Grüneisen model, where effects of
volume variation are taken into consideration for the lat-
tice properties. The Grüneisen parameter, needed for this
model, is calculated from

γ = −g +
1

2
(1 +B′), (7)

where B′ is the volume derivative of the bulk modu-
lus. The parameter g is an additive factor, usually taken
as g = 1 for low temperatures and g = 2/3 for high
temperatures[60, 69]. Considering the volume expansion,
VAFM → VFM , an increase is obtained for |∆Θ| which im-
plies an increase in the magnitude of the lattice entropy
variation comparatively to the previous estimate, and does
not lead to theoretical values closer to the observed data.

The Debye model is known to be accurate in the limits
T << Θ and T >> Θ 4. Outside this temperature
interval it is less reliable. It is for such temperatures that
the magnetic transition for FeRh happens, which partly
explains the difference obtained for Slat using full phonon
calculations. As the discussion in the next section shows,
the existence of soft vibration modes has a major role in
explaining these contradictory results between the simple
Debye model and the results from full phonon calculations.

3.3.3. Entropy from full phonon calculations

The presence of soft phonon modes, reaching imaginary
frequency, leads to a structural transition, which leads to
enhancement of ∆Slat. Even if these soft phonon modes
do not reach imaginary frequency (indicating structural in-
stability) they may provide a hint for possible transition.

4If anharmonic effects are relatively small and the equipartion of
energy is a good approximation. The high temperature limit of De-
bye model predicts the specific heat consistently with the empirical
Dulong-Petit rule [54].
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Figure 7: Calculated phonon dispersion (projected on the simple
cubic lattice, left) and respective density of states (VDOS, right) for
the AFM (dashed red line) and FM (solid blue line) phases. Colours
available on the online version.

It is reasonable to expect that a fair amount of magne-
tocaloric candidates will show this behavior. Soft modes
of the acoustic branch can give raise to energy peak struc-
tures in the vibrational density of states at low energies
that are not captured by the Debye model and lead to
inaccuracies even at low temperatures. Since the Debye
model fails to describe the thermodynamic properties of
such materials, full phonon calculations must at least be
tried in order to compare with more approximate meth-
ods, and to assess if more efficient avenues exist for the
calculation of the lattice entropy.

The calculated phonon dispersion, displayed in Figure 7,
shows that for most of the reciprocal space, the acoustic
modes of FeRh behave quite similarly in both the FM and
AFM phase. However, the AFM phase has conspicuous
soft modes that even become imaginary as in previous cal-
culations [8, 12] which also showed imaginary frequencies
around the M point. Such behaviour points to a dynami-
cal instability [8, 12].

This result was thoroughly discussed for FeRh in Ref.
[12] and a competing low temperature monoclinic struc-
ture was proposed. Nevertheless, near the experimental
transition temperature between the AFM and FM phase,
the structure is known to be cubic, possibly caused by an
entropy driven stabilization of the cubic phase, e.g. as dis-
cussed in Ref. [70]. Since the part of reciprocal space that
contains imaginary frequencies is very small, as observed
by their minor contributions to the VDOS in Figure 7, its
influence on thermodynamic properties is expected to be
negligible [12]. We therefore neglected this contribution,
to the estimation of thermal properties to avoid numerical
complications.

The entropy variation derived from the VDOS (using
the same expression as Eq. 4 but with g(ε) as the VDOS)
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Figure 8: Comparison of the lattice entropy variation between FM
and AFM phases using different approaches: Debye model (black
dotted line), harmonic phonon calculations (blue solid line) and
quasi-harmonic approximation (red dashed line). Colours available
on the online version. For details of calculations, see text.

is shown in Figure 8. It has the same sign and order of
magnitude as the electronic contribution. To be precise
the difference in calculated lattice entropy is 7.05 J K−1

kg−1 at T= 373 K 5.
Comparing the estimates in Figure 8 it is interesting

to note that the trends for ∆Smag between Debye model
and the full-phonon calculations start to differ around 40
K, when the result for the later approach displays a small
entropy peak. Tracing this to Figure 7 we can relate it to
the flattening of the phonon spectra around 0.8 THz for
the AFM phase, which explains the small entropy peak
obtained for the full-phonons approach as the excitation of
the soft phonon branches [12]. The indicated observation
also underlines the role of the presence of the soft mode to
the failure of the Debye model application in this material.

The difference between entropy results for phonon calcu-
lations and for Debye model in this material is as remark-
able as surprising, especially when considering that it is
an isostructural transition we consider. A priori there are
no indications pointing to the need of a more complex ap-
proach, and it is clear from the calculations discussed here
for the lattice entropy, that the applicability of any simpli-
fied method, such as the Debye model, should be carefully
verified for lattice contributions of the entropy variation.
This shortcoming of simplified models, should be taken
into consideration when estimating entropy variations of
any material.

3.4. Total entropy variation

The sum of all hitherto discussed contributions to the
entropy, defines the total entropy variation between FM

5Temperature for which the entropy peak happens to be in
∆Smag
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and AFM phases, according to our model. In Figure 9
(solid line) it is clear that the total entropy difference be-
tween the FM and AFM phase has a pronounced temper-
ature dependence. In addition, the figure shows a major,
broader peak around ∼ 370 K with maximum entropy dif-
ference, ∆Smax, of 24.8 J K−1 kg−1.

In Table 3 we list all calculated contributions to the
entropy change between the FM and AF phase, at T =
350K. It may be seen from the table that all contributions
are collaborative and comparable in magnitude [12].

In the here taken approach, both the type of phase tran-
sition and stoichiometry of the compound are described
without the existence of losses, associated to the transi-
tion (e.g. coexistence of phases) and without defects of
the material, and with this in mind, it is not unexpected
that theory overestimates somewhat the entropy contribu-
tions and therefore, in this case, the total entropy change.
Besides, it is important to note that experimentally is very
difficult to achieve the equiatomic concentration and very
close alloys are measured instead, for which the entropy
variation varies slightly [35]. Nevertheless, the comparison
between the here calculated value of ∆S and experimental
results is quite satisfactory [26, 29, 34, 48, 66, 71–73] being
of the same sign and order of magnitude. Thus, if one has
the ambition to make theoretical screening approaches in
combination with first principles high-throughput calcula-
tions, the level of approximation employed here seems to
be the simplest way that is capable of a fairly accurate
prediction while maintaining computational efficiency.

Experimentally it is not straight forward (or accurate
[8]) to disentangle the entropy contributions. In Table
3 the entropy contributions of the present calculations
are listed, together with the ones extracted from calori-
metric measurements of Ref. [66]. Cooke et al. [66]
extracted the lattice entropy by naively fitting the low-
temperature data to the Debye model. This approach
fails for FeRh, as discussed above, and consequently, the
estimated huge magnetic entropy contribution, calculated
from Smag = Stot − Sele − Slat, is not seen as a realistic
contribution. Both the extracted ∆Slat and ∆Smag are
unusually high in magnitude, compared to the usual to-
tal entropy values [4]. These values are also unexpectedly
high, given the isostructural nature of the volume expan-
sion and the order-order nature of the magnetic transition.
Taking into account these considerations, it is more plau-
sible that the high magnetic entropy variation listed as an
experimental values in Table 3, is really due a collaborative
sum of all entropy contributions [10].

To associate with certain the peak entropy of Figure 9
to the AFM→ FM phase transition, we compared the free
energies of both phases. However, we did not obtain an
intersection of the free energies, at least not in the consid-
ered range of temperatures (0-500K). This is in agreement
with results of Ref. [12], but in disagreement with the
data of Ref. [18]. Theoretically, our results imply that
no phase transition can be associated to the discussed en-
tropy peak, making it as pertinent and interesting as the

minor entropy dip around 40K. To our knowledge, the lat-
ter does not indicate any known transition and most likely
reflects the soft phonons of the AFM phase. A compari-
son between our results and calculations in Ref. [8, 12] as
well as [18] reveal that the later reference achieves a sig-
nificantly smaller energy difference between FM and AFM
states, around 2.80 meV/atom in comparison to our value;
27 meV/atom. This energy is 35.4 meV/atom in Ref.
[12] and 29.1 meV/atom in Ref. [8] for similar calcula-
tions. When compared to experiments, the value of Ref.
[18] is clearly closer to experimental estimates, which lie
around 2.7 meV/atom [26, 66]. This estimation improve-
ment of the energy difference between magnetic phases
seems to be due to the unique exchange and correlation
functional used in Ref. [18]. The authors of this work em-
ployed the Langreth-Mehl-Hu functional [74, 75], which
appears to have as a feature the reduction of energy be-
tween phases [76], and suppression of the magnetic mo-
ment [77]. Although this functional provides reasonable
results for FeRh, it is a less tested functional for general
investigations that involve a large group of compounds. In
absence of a firm test, this functional is difficult to ap-
ply in a predictive study. Another possibility for the too
large energy difference between the AFM and FM phase
could be due to dynamical correlations of the electronic
structure.

If the estimated ∆E0 from DFT is used to estimate
the entropy variation as ∆S = ∆U/T (as attempted for
∆Smag) we obtain a value of 0.10 JK−1kg−1. This strong
disagreement with experimental measurements also under-
lines that ∆E0 is not properly estimated by DFT.

An important point from this discussion is the difficulty
to predict with certainty the temperature for the AFM →
FM phase transition. Instead of comparing the free en-
ergies of the phases, it is of interest to take a simpler ap-
proach and consider the transition to be caused by thermal
energy from T = ∆E0/kB . Using this approach, an esti-
mate of 346 K was obtained in Ref. [8] and 350 K in Ref.
[58]. Although this value is within the experimental value,
applying the same approach using data from the total en-
ergy calculations presented here, or from other calculations
[11–13], reveals that this simplified method is very sensi-
tive to the details of the calculations, meaning that its use
introduces a non-negligible degree of uncertainty while not
describing necessarily the physical picture.

3.5. Quasiharmonic approximation

To account for anharmonic interactions we use the
QHA, which minimizes at each temperature the volume-
dependent Gibbs free energy:

G(V, T ) = min
V

[F (V, T ) + PV ] . (8)

In our approach we consider magnetic, electronic and lat-
tice contributions to the free energy F (T, V ) = E0(V ) +
Fmag(V, T ) + Flat(V, T ) + Fele(V, T ). Contributions to
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the lattice and magnetic energy were obtained at con-
stant volume via a calculation of the respective density of
states (g(ε)mag/lat) and Bose-Einstein distribution func-
tion (n(ε, T )):

Fmag/lat =

∫
ε g(ε)mag/latn(ε, T )dε − TSmag/lat. (9)

Note that we added the entropy contribution also to this
term. These contributions were evaluated, following the
same procedure as before, for a series of volumes, and then
fitted by cubic splines. For each phase, 9 volumes were con-
sidered, including the relaxed volume, ranging the lattice
parameter between 2.98 Å (3.00Å) and 3.00 Å (3.03 Å)
for the AFM (FM) phase. Fele(V, T ) was calculated simi-
larly, using instead the Fermi-Dirac distribution function,
which includes the temperature dependence of the energy.
Fele(V, 0) was used as reference level for the electronic free
energy since the DFT ground state energies are already
included in E0(V). The later energies were fitted by the
Murnaghan equation of state [78] for the internal energy.

The linear thermal expansion (LTE) obtained from the
QHA is shown in Figure 10. It may be noticed that there
is decent agreement with experimental measurements [47]
and theory. Similar to the experimental data, there is in
our calculations a jump in the LTE at the magnetic phase
transition.

We found that contrary to the electronic and lattice con-
tributions, the magnetic contribution to the free energy
opposes the volume expansion. Nevertheless, the lattice
is the dominant contribution in the considered temper-
ature range and dictates the thermal expansion, and the
observed behaviour arises dominantly from the vibrational
properties.

The LTE coefficient αl, can be estimated from a linear
fit (∆l/l = αT ) in the same temperature range as for the
experimental data. From the theory, we obtain a slope
of the ∆l/l curve that for both the FM and AFM phase
is similar to the experimental data. The main difference
between theory and experiment is the size of the volume
expansion at the magnetic phase transition that is smaller
in theory compared to the experimental values [47]. This
disagreement is not surprising given the simplicity of the
model used and how similar are the values between the
magnetic phases.

The volume and temperature dependent free energies of
the AFM and FM phases allow for the most accurate esti-
mate of the phase stability and entropy, among the calcu-
lations presented in the paper. We compare the QHA and
Harmonic results in Table 3, together with previously re-
ported data. It may be seen that the total entropy change
of the AFM→ FM phase transition is almost insensitive to
the level of approximation, while for the individual contri-
butions there is a more significant difference between the
QHA and Harmonic approximations.

We find that there is compensation of ∆Slat and ∆Smag,
which vary similarly but in opposite direction, as can be
seen by comparing the entropy contributions on Table 3.
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Figure 9: Variation of the total entropy change between FM and
AFM configuration, according to the harmonic treatment (without
thermal expansion, blue solid line) and the quasi-harmonic approxi-
mation (red dashed line). Colours available on the online version.

This is caused by variation of |Jij | parameters with vol-
ume, which decreases for bigger volumes. As reported also
in Ref. [19], we also observe that couplings between iron
moments are significantly more sensitive to this variation
than couplings between iron and rhodium magnetic mo-
ments (data not shown).

The predicted volume variation in the AFM is respon-
sible for the loss of the monotonous behaviour of ∆Slat

in the transition range. Since the linear thermal expan-
sion behaves as experimentally measured, and the entropy
peak reassembles more the discontinuity expected for first
order transitions, we consider that there is a qualitative
improvement of the physical description. Besides becom-
ing sharper, the broader entropy peak shifts from 373K to
316K when using the QHA, as seen in Fig. 9.

Our results are close to previous, similar first-principles
calculations, combining the QHA results of Ref. [12] (or
the ones from Ref. [8]) for ∆Sele + ∆Slat with the results
of Ref. [18]. Although there is a small deviation, it is ac-
curate enough to be used in high-throughput calculations,
keeping in mind that a more accurate result would need
a more tailored and computationally expensive method.
Also, we treated entropy contributions as independent,
which is a simplification of the problem.

4. Conclusions

The aim of this paper is to derive a reliable approach
based on first principles calculations to determine the en-
tropy change in materials with first order phase transition
that can be used in high throughput studies. Thus we have
to balance between computational effort and accuracy and

a detailed study, concerning estimates for electronic, lat-
tice and magnetic entropy contributions according to dif-
ferent models, was performed using the well-known MCE
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[JK−1kg−1] Debye model
Harmonic QHA

Other Calc. Expt. a

T = 350K T = 373K T = 350K T = 316K
∆Sele - 7.05 7.38 7.16 6.60

11.7b, 11.9c
8± 1

∆Slat -38.3 6.94 7.05 8.45 9.01 -33 ± 9
∆Smag - 10.70 10.36 7.93 8.81 14.5 (15.4)d 43 ± 9

∆S - 24.69 24.78 23.53 24.42 ≈ 26.3 17 ± 3

a From Ref. [66] at T = 328 K. b From Ref. [12]. Value estimated in a QHA calculation. c From Ref. [8]. d From Ref. [18]. In parentheses
value at estimated transition temperature, T=371 K.

Table 3: Comparison of estimated entropy contributions at T ≈ 350 K for the harmonic and quasi-harmonic approaches with previous
calculations in literature and experimental measurements. It is also indicated for the ”Harmonic” (QHA) approach, estimated values at the
temperature for which the entropy variation has a peak - T =373 (316) K.
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Figure 10: Variation of the linear thermal expansion with tempera-
ture for AFM phase (blue line) and FM phase (orange line) obtained
within the quasi-harmonic approximation along with experimental
measurements (purple circles) [47]. Ttr and T ′tr indicate respectively
the estimated and the measured transition temperature. Colours
available on the online version.

system FeRh as test material. Based on the assumption
that we can treat the entropy as a sum of three indepen-
dent parts, i.e. handle the electronic, lattice, and magnetic
contributions to the entropy separately, we tested different
approximations for each entropy contribution. It turned
out that the entropy, or the entropy change, in our test
case, FeRh, is very sensitive to approximations made, e.g.,
even small alterations on elastic properties between the
two magnetic phases need to be taken into account for a
reliable estimation of the entropy. This means that the
Debye model is not adequate and it should not be con-
sidered for the high-throughput applications. Although
the simplicity of the Debye model is appealing in terms of
computational efficiency, it fails to estimate the vibrational
entropy in the presence of soft phonon modes. We believe
that this sensitivity regarding the vibrational properties is
not exclusive to FeRh. Rather, we expect that many of
the magnetocaloric candidates will show similar behavior,
which means that accurate phonon calculations are neces-
sary for a reliable description of the entropy.

From the results of the magnetic properties, we conclude
that it is necessary to consider an appropriate cutoff for the
exchange interactions when using a spin-wave description
due to the possibility of long-range interactions, which can
have a considerable influence. However, this aspect should
be less relevant in case of order-disorder magnetic transi-
tions where spin-flip like excitations are dominant and the
Heisenberg model can be used in combination with Monte
Carlo simulations to estimate the magnetic entropy.

We observe an entropy peak around the expected transi-
tion temperature raised solely from the magnetic contribu-
tion, which allows us to support the picture of a magnetism
driven transition as discussed in previous works using dif-
ferent approaches [13, 16, 18, 58].

Although a ∆S peak is regularly observed in phase tran-
sitions, it is necessary to compare the free energies of
the phases to associate a ∆S peak to a phase transition.
For FeRh, it was not possible to establish this association
due to the overestimation of the energy difference between
magnetic phases by traditional DFT. Such difficulty raised
our awareness of this limitation in our first-principles ap-
proach. Nevertheless, beyond DFT methods offer tools
for circumventing this problem, and can be used to im-
prove ∆E0 estimation to verify the transition occurrence,
if needed.

Adopting the QHA approach allows for a more complete
description of the systems and a qualitative improvement
of the entropy variation is obtained, by the sharpening
of the ∆S peak as expected for a first-order transition.
Despite this, no quantitative improvement of the entropy
variation is obtained that justifies the significant increase
of computational effort required for this treatment.

Therefore, it can be stated that the ”Harmonic” ap-
proach balances in a very satisfactory way the accu-
racy and the computational effort. The obtained re-
sults ∆Sele = 7.38 JK−1kg−1, ∆Slat = 7.05 JK−1kg−1,
and ∆Smag = 10.36 JK−1kg−1 are in good agreement
with previous calculations and the total entropy variation
∆S = 24.78 JK−1kg−1 is close to the experimental range.
This establishes the cornerstones for a reliable entropy es-
timation at high-throughput scale computations, while al-
lowing for reasonable computational effort that allows to
avoid possible pitfalls of the calculations.
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Highlights 
 

• Search for new magnetocaloric materials using high-throughput calculations. 

� Benchmarking of first-principles methods for entropy variation calculation. 

� Debye model fails in estimating an accurate entropy contribution. 

� Results for test system FeRh agree with experimental measurements. 
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