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We introduce level modules and show that these form a natural class of modules
over a polynomial ring. We prove that there exist compressed level modules, i.e.,
level modules with the expected maximal Hilbert function, given socle type and the
number of generators. We also show how to use the theory of level modules to
compute minimal free resolutions of the coordinate ring of points from the back,
which reveals new examples where random sets of points fail to satisfy the minimal
resolution conjecture. © 2000 Academic Press

Key Words: graded algebra; graded module; level ring; level algebra; Gorenstein
algebra; Cohen–Macaulay ring; compressed algebra; Hilbert function; Betti num-
bers; unimodality; minimal resolution conjecture; canonical module; Matlis duality.

1. INTRODUCTION

The concept of level algebras—algebras whose socle is in one degree—
was introduced by Stanley [10] and it turns out that many of the graded
algebras encountered in algebraic geometry and in combinatorics are level
algebras.

We will introduce level modules that generalize level algebras. A level
module over a polynomial ring is a graded module whose set of genera-
tors and whose socle are concentrated in single degrees. The theory thus
obtained is full of symmetries not enjoyed by level algebras and the class
of level modules is closed under several transformations, such as duality
and extension. For example, the canonical module of a level algebra is not
a level algebra but a level module. Moreover, we show that many of the
good properties of level algebras carry over to level modules.
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One interesting consequence of the theory of level modules is that the
canonical module ωA of an artin level algebra A is a level module. Hence
we have that the submodule defining ωA as a quotient of a free module is
determined by its forms of highest degree. This fact can be used to compute
resolutions from the back. In many cases this is computationally much more
efficient (see Section 5 for examples). By these methods we have found five
new examples—in addition to the four known before—where the minimal
resolution conjecture of Lorenzini [7] does not hold for random points.

In the class of level modules there is a subclass consisting of level mod-
ules with extremal Hilbert functions—called compressed level modules. We
prove that a level module is compressed if and only if its graded Betti num-
bers are concentrated in two degrees.

In [6] Iarrobino defined compressed modules as those modules which
have maximal Hilbert series among all modules of given type in analogy
with the definition of compressed algebras. Iarrobino proves the existence
of compressed modules using the ring of partial differential operators acting
on the ring of formal power series and the Matlis duality between them. In
his Ph.D. thesis [8] Miri continues the study of compressed modules and
is in [9] focusing on compressed modules of type one, i.e., with socle of
dimension one.

In our presentation of compressed level modules, influenced by Fröberg
and Laksov [5], we do not need to use partial differential operators, but we
can work directly in the modules. Moreover, we will be able to prove the
existence of compressed level modules over any field, not only over infinite
fields. These methods can also be adopted to compressed graded modules
in general but here we will only do the case of level modules.

2. NOTATIONS AND BASIC RESULTS ON ARTIN
LEVEL MODULES

Setup. Let R = k�x1; x2; : : : ; xr� be the polynomial ring in the r vari-
ables x1; x2; : : : ; xr over a field k and let Í be the graded maximal ideal
R1 ⊕ R2 ⊕ · · · of R. Let M be the set of monomials in R. Moreover, let
M =M0 ⊕M1 ⊕ · · · be a graded R-module. We will always assume that M
is finitely generated. For any k-subspace V ⊆ Mc and every integer d we
write

�V x R�d =
{
m ∈Md

∣∣∣∣ am ∈ V for all a ∈ Rc−d
}
: (1)

We then have that �V x R�d is a sub-vector space of Md and
⊕∞

d=0�V x R�d
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is a graded submodule of M . Moreover, we have that �V x R�c = V and
�V x R�d =Md for d > c.

Definition 2.1. LetM be a graded R-module. The socle ofM is defined
by

SocM = �m ∈M � am = 0 for all a ∈ Í� = HomR�k;M�: (2)

Definition 2.2. The graded Artin R-module M is said to be level if it
is generated by M0 as an R-module and SocM =Mc for some integer c.

If M is a Cohen–Macaulay R-module we say that M is a level module if
its artinian reductions are level.

Remark 2.1. Since there is a natural isomorphism Soc �M� →
TorRr �M;k� of degree r, we note that Soc �M� =Mc means that TorRr �M;k�
is concentrated in degree r + c.

Furthermore, a level algebra A is a level module with one generator of
degree 0, i.e., with A0 = k.

As in the case of level algebras, we have that the complete presentation
of an Artin level module is determined by its forms in the degree of the
socle. This fact turns out to be very useful in the study of level algebras and
level modules.

Proposition 2.1. Let M be a graded R-module generated by M0 and let
N ⊆M be a homogeneous submodule such that M/N is Artin. Then M/N is
level if and only if N =⊕∞d=0�V x R�d for some linear subspace V ⊆Mc .

In particular, any graded Artin level module with socle in degree c and with
t generators in degree 0 is a quotient of a free module Rt = ⊕t

i=1R by a
submodule

⊕∞
d=0�V x R�d for some subspace V in Rtc .

Proof. Suppose that M/N is an Artin level module with socle in degree
c and let V = Nc . Then we have that Nd ⊆ �V x R�d for all integers d.
Moreover we have that Nc = �V x R�c . We shall show that Nd = �V x R�d
by descending induction on d starting in d = c. Assume, by induction, that
Nd+1 = �V x R�d+1 for some d < c. Let m ∈ �V x R�d. Then am ∈ V for
all a ∈ Rc−d and consequently aa′m ∈ V for all a ∈ R1 and a′ ∈ Rc−d−1.
Hence we have that am ∈ �V x R�d+1 = Nd+1 for all a ∈ R1. It follows that
the class of m is in Soc �M/N� and since Soc �M/N� = �M/N�c we must
have that m ∈ Nd. We have proved that Nd ⊇ �V x R�d and hence that
N =⊕∞d=0�V x R�d.

Conversely, let N = ⊕∞
d=0�V x R�d for some linear subspace V ⊆ Mc .

Suppose that the class of m ∈ Md is in Soc �M/N� for some d < c. Then
am ∈ N for all a ∈ Í and in particular am ∈ N for all a ∈ Rc−d. Hence
m ∈ N and Soc �M/N� = �M/N�c .
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2.1. The Dual Module of a Level Module

In the study of level modules we will see that the dual module plays an
important role.

Definition 2.3. Let M be an Artin graded R-module. Then the dual
module M∨ is defined by M∨ = Homk�M;k�, with the natural grading
given by M∨d = Homk�M−d; k�, for all d ∈ Z. The module structure if M∨

is given by xφ�y� = φ�xy�, for all x ∈ R, φ ∈M∨ and y ∈M .

Recall the following fact (cf. Bruns and Herzog [4, Theorem 3.6.19]).

Proposition 2.2. Let M be a graded artinian R-module. Then we have
that M∨ ∼= ExtrR�M;ωR�, and for any minimal free resolution F• of M , F∗• is
a minimal free resolution of M∨, which implies that we have isomorphisms

TorRi �M;k�d → TorRr−i�M∨; k�r−d; (3)

for i = 0; 1; : : : ; r, and d ∈ Z.

Proposition 2.3. Assume that M is a graded Artin level R-module with
socle in degree c. Then the graded R-module M∨�−c� is Artin level with socle
in degree c.

Proof. Combining the fact that Soc �M��−r� = TorRr �M;k�, for any
module M , with Proposition 2.2 yields that M is generated by M0 if and
only if Soc �M∨� = M∨0 . Conversely, Soc �M� = Mc if and only if M∨ is
generated by M∨−c .

2.2. Constructions of Artin Level Modules

One of the interesting features of the concept of level modules is that
we can do a lot of transformations of a level module and still have a level
module. In the previous section we have seen that the dual of an Artin
level module is an Artin level module. Now we will give two other ways to
obtain level modules from level modules.

Proposition 2.4. Let M =M0⊕M1⊕ · · · ⊕Mc be an Artin level module
with socle in degree c and let i; j be integers with 0 ≤ i ≤ j ≤ c. Then M ′ =
Mi ⊕Mi+1 ⊕ · · · ⊕Mj is an Artin level module.

Proof. It is clear that the location of the socle does not change if we go
from M0 ⊕M1 ⊕ · · · ⊕Mc to Mi ⊕Mi+1 ⊕ · · · ⊕Mc . Hence Mi ⊕Mi+1 ⊕
· · · ⊕Mc is a level module.

On the other hand, we can apply the same argument to the dual module
M∨�−c� to see that M0 ⊕M1 ⊕ · · ·Mj is a level module.

If we apply the first argument on the module M0 ⊕M1 ⊕ · · ·Mj the as-
sertion of the proposition follows.



artin level modules 365

Moreover, the class of Artin level modules with socle in degree c is closed
under extension.

Proposition 2.5. Let 0 → M ′ → M → M ′′ → 0 be a short exact se-
quence of Artin modules. If M ′ and M ′′ are level modules with socle in degree
c then M is level with socle in degree c.

Proof. It is immediate that M is generated in degree 0 if M ′ and M ′′

are. We then use the exactness of M 7→M∨ (cf. [4, Proposition 3.6.16]) to
see that M∨ is generated in degree −c if �M ′�∨ and �M ′′�∨ are.

3. COMPRESSED LEVEL MODULES

In this section we will generalize to level modules the theory of com-
pressed level algebras (cf. Iarrobino [6], Fröberg and Laksov [5]). The gen-
eralization reveals the beautiful symmetries in the theory. Especially the
symmetry between a level module and its dual module will be examined.
The existence of compressed modules of course implies the existence of
compressed algebras and all previous proofs of this existence have assumed
that the field k is infinite. Here we will give a proof valid also in the case
of a finite field. This is interesting also in the computational aspect, since
computer algebra systems, such as Macaulay, work over finite fields.

Setup. Let Rs be a free graded R-module with basis elements
e1; e2; : : : ; es of degree 0.

Proposition 3.1. Let V be a codimension s′ subspace of Rsc . Given el-
ements λ�j

′;j�
m in k for j′ = 1; 2; : : : ; s′, j = 1; 2; : : : ; s and m ∈ Mc such

that

V =


s∑
j=1
m∈Mc

ξ
�j�
m mej

∣∣∣∣∣ s∑
j=1
m∈Mc

λ
�j′;j�
m ξ

�j�
m = 0; for j′ = 1; 2; : : : ; s′

 : (4)

Then we have that �V x R�d is given by
s∑
j=1
m∈Md

ξ
�j�
m mej

∣∣∣∣∣ s∑
j=1
m∈Md

λ
�j′;j�
m′m ξ

�j�
m = 0;

for 1 ≤ j′ ≤ s′
and m′ ∈ Mc−d

 ; (5)

for d = 0; 1; : : : ; c.



366 mats boij

Proof. Since Md is a basis for Rd, we have that{
mej

∣∣ m ∈ Md; and j = 1; 2; : : : ; s
}

(6)

form a basis for Rsd. Moreover, Mc−d is a basis for Rc−d. Hence we have
that (5) is a reformulation of (1), which proves the proposition.

Definition 3.1. An Artin level module M is said to be determined by
the elements λ�j

′;j�
m if we have the situation described in Proposition 3.1.

Definition 3.2. Let η�j
′;j�

m be independent variables over k, for m ∈ Mc ,
j′ = 1; 2; : : : ; s′, and j = 1; 2; : : : ; s. We define s′ dimk Rc−d × s dimk Rd-
matrices 4d, for d = 0; 1; : : : ; c by

4d =


4
�1;1�
d · · · 4

�1;s�
d

:::
: : :

:::

4
�s′;1�
d · · · 4

�s′;s�
d

 ; (7)

where �4�j′;j�d �m′;m = η�j
′;j�

m′m , for j′ = 1; 2; : : : ; s′, j = 1; 2; : : : ; s, m′ ∈ Mc−d,
and m ∈ Md. That is, 4d is a matrix with entries η�j

′;j�
m′m where m′ and j′ are

row indices and m and j are column indices.
Let λ�j

′;j�
m be elements of k and let 3d be the matrix obtained from 4d

by specializing the coordinates η�j
′;j�

m to λ�j
′;j�

m , for d = 0; 1; : : : ; c.

Proposition 3.2. Let M be an Artin level module determined by the ele-
ments λ�j

′;j�
m , for j′ = 1; 2; : : : ; s′, j = 1; 2; : : : ; s, and m ∈ Mc . Then we have

that

dimk Md = rank3d; for d = 0; 1; : : : ; c. (8)

Proof. We have that dimk Md = codimk��V x R�d;Rsd� = dimk R
s
d −

�dimk R
s
d − rank3d� = rank3d, since by Proposition 3.1 we have that �V x

R�d is given by the null space of the matrix 3d.

From Proposition 3.2 it follows that for any Artin level module with socle
in degree c, we have inequalities HM�d� ≤ min�s dimk Rd; s

′ dimk Rc−d�,
for d = 0; 1; : : : ; c . As in the case of level algebras it is natural to consider
the level modules of maximal Hilbert function (cf. Miri [9]).

Definition 3.3. An Artin level module M with socle in degree c is
compressed if there are integers s and s′ such that

HM�d� = dimk Md = min �s dimk Rd; s
′ dimk Rc−d� ; (9)

for d = 0; 1; : : : ; c.
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Hence the Hilbert function of a compressed Artin level module is in-
creasing up to a certain point after which it is decreasing. The initial degree
of a compressed level module with Hilbert function given by (9) is given by
the least integer t such that s′ dimk Rt < s dimk Rc−t .

Proposition 3.3. Let M be an Artin level module. Then M is compressed
if and only if M∨�−c� is compressed.

Proof. The result follows immediately from Proposition 2.3 and the fact
that the Hilbert function of M∨�−c� is equal to the Hilbert function of M
read backwards (cf. Definition 3.3).

To prove that compressed level algebras exist over any field k, we need
the following result.

Proposition 3.4. There exist specializations λ�j
′;j�

m of the variables η�j
′;j�

m

such that the matrices 3d have maximal rank for all d = 0; 1; : : : ; c.

Proof. We order the rows and the columns of the matrices 4d in the
following way. The monomials are ordered lexicographically, and we order
the rows and columns after the monomial index. If the monomial indices
are equal we order after the superscripts.

These matrices 4d all have the following property: in every submatrix
the variable in the lower right corner does not appear elsewhere in the
submatrix, since its monomial index is the product of the greatest row and
column indices.

Let A be any matrix with variable entries having this property. We will
now prove by induction on the size of A that we can specialize the variables
so that all upper left minors of A are non-zero. Without loss of generality
we can assume that A is an N × N-matrix. We can obviously choose the
element of a 1 × 1 matrix so that the determinant is non-zero. Assume
that we have specialized all variables in the upper left �N − 1� × �N − 1�-
submatrix of A in the proper way. Let x be the variable in the lower right
corner of A, i.e., at position �N;N�. We now specialize all variables of A
not yet specialized, except x. Then the determinant of A is a linear function
in x. The coefficient of x is the upper left �N − 1� × �N − 1�-minor of A
which is non-zero by the assumption. Hence we can specialize x so that the
determinant is non-zero. The claim now follows by induction.

Note that we can specialize all the variables not on the main diagonal of
A to zero, and that the rest of the variables can be specialized to one or
zero.

We now apply the above argument to see that we can obtain maximal
rank for all matrices 3d separately. It remains to show that we can do it
simultaneously. To do this we use the way we have ordered the rows and
columns of the matrices. In fact, we will now show that we have ordered
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the rows and columns in such a way that the upper left submatrices of the
matrices 3d are all the same.

The lexicographical order of the monomials has the property that the
smallest monomials in M� are xd−d

′
1 Md′ , for all d′ ≤ d. Let t be the inte-

ger maximizing min�s dimk Rt; s
′ dimk Rc−t�. Then we will show that any

upper left submatrix of any matrix 3d is a submatrix of 3t . By symmetry we
can assume that d ≤ t. The number of columns of 3d is s dimk Rd which
is smaller than s dimk Rt and s′ dimk Rc−t , by the choice of t. Therefore
any maximal upper left submatrix of 3d will be a submatrix of the matrix
with elements λ�j

′;j�
xt−d1 m′m, where m′ ∈ Mc−t and m ∈ Md, which is a submatrix

of 3t .
The conclusion is that since we can specialize the variables so that all

upper left minors of 3t are non-zero, we have that all upper left minors of
all matrices 3d are non-zero.

Remark 3.1. In fact, the proof of Proposition 3.4 gives an algorithm for
determining specializations yielding maximal rank and we need only to use
the values 0 and 1.

We can now prove that there is a non-empty open set of level modules
which are compressed, corresponding to the results on compressed algebras
by Iarrobino [6] and Fröberg and Laksov [5].

Proposition 3.5. Let V be a codimension s′ subspace in general position
in Rsc , and let N = ⊕d≥0�V x R�d. Then M = Rs/N is a compressed level
module.

Proof. It follows from Proposition 2.1 that M is level. Moreover, it fol-
lows from Proposition 3.1 that M is compressed if and only if the matrices
3d defined by (7) all have maximal rank. This shows that the condition that
M is compressed is an open condition on the coefficients in 41;42; : : : ; 4c ,
since it depends on the non-vanishing of the minors of 31; 32; : : : ; 3c . Ob-
serve that the open set in the affine space with coordinate functions η�i;j�m

where all the minors are non-zero is mapped onto an open set in the Grass-
mannian parametrizing all codimension s′ subspaces of Rsc .

It remains to show that this open set is non-empty, but this follows im-
mediately from Proposition 3.4.

3.1. Presentation of the Dual Module

In this section, we show how to find a presentation of the dual module
M∨, given a presentation of M , for any Artin level module M .

As a consequence of Proposition 3.3 we get that if A is an Artin level
algebra with socle in degree c its dual module A∨ is a level module with
socle in degree c, at least after a suitable twist. By Proposition 2.2 we have
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that A∨ is isomorphic to the canonical module ωA = ExtrR�A;R�. Now it
follows from Proposition 2.3 that it suffices to know a presentation of ωA in
degree c to recover the complete presentation of ωA. Proposition 3.6, below,
tells us how to find this presentation of ωA in terms of a presentation of A.
We will apply this approach in Section 5 to compute the resolution of a set
of random points in Pr from the back.

Proposition 3.6. Let M be an Artin level module with socle in degree c
determined by the matrices 3d, for d = 0; 1; : : : ; c. Then M∨�−c� is deter-
mined by the matrices 3∨d , for d = 0; 1; : : : ; c, where 3∨d is the transpose of
3c−d.

Proof. Let f1; f2; : : : ; fs′ be free basis elements of degree 0 in Rs
′
. Since

M∨�−c� is level, by Proposition 2.3, it suffices to verify that the degree c
part of the kernel of the map Rs

′ →M∨�−c� is given by
s′∑
j′=1
m∈Mc

ξ
�j′�
m mfj′

∣∣∣∣∣ s′∑
j′=1
m∈Mc

ξ�j
′�λ�j

′;j�
m = 0; for j = 1; 2; : : : ; s

 : (10)

For all j′ = 1; 2; : : : ; s′ we can define a homomorphism φj′ :Rs
′
c → k by

φj′ �mej� = λ�j
′;j�

m , for all m ∈ Mc and j = 1; 2; : : : ; s. Since V , from (4), is
defined by the vanishing of all φj′ , we have that V = ⋂j′ ker�φj′ � and there
is an exact sequence

0→ V → Rsc →Mc → 0: (11)

Hence φj′ defines a homomorphism ψj′ :Mc → k, for all j′ = 1; 2; : : : ; s′,
and we can define a surjective map Rs

′ → M∨�−c� by fj′ 7→ ψj′ , for
j′ = 1; 2; : : : ; s′. We are now interested in what is generated by ψj′ in
M∨�−c�c . But M∨�−c�c = Homk�M0; k� and we have assumed that s =
dimk M0 = dimk R

s
0. Hence the relations defining M∨�−c�c as a quotient

of Rs
′
c are exactly those obtained from linear combinations

∑
ξ
�j′�
m mfj′ that

are mapped to the zero homomorphism from M0 to k. This is the same set
of relations which is described by (10) which finishes the proof.

4. BETTI NUMBERS OF COMPRESSED LEVEL MODULES

We now give a homological criterion for an Artin level module to be
compressed. It is known that the graded Betti numbers of compressed al-
gebras are concentrated in two degrees (cf. Fröberg and Laksov [5, Propo-
sition 16]). We now prove that the converse is also true, and we generalize
this result to level modules.
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Proposition 4.1. Let M be an Artin level module with socle of dimension
s′ in degree c and let t be the initial degree of the kernel of Rs → M . Then
we have that TorRi �M;k� is concentrated in degrees t − 1 + i and t + i, for
i = 1; 2; : : : ; r − 1 if and only if M is compressed.

Furthermore, if M is compressed, then we have that

dimk TorRi �M;k�i+t−1 − dimk TorRi−1�M;k�i+t−1

= s (t−1+i−1
i−1

)(
t−1+r
r−i

)− s′ (c−t+r−i
r−i

)(
c−t+r
i−1

)
;

(12)

for i = 1; 2; : : : ; r.

Proof. Since M is compressed the initial degree t of the kernel of
Rs → M is the smallest integer such that s dimk Rt > s′ dimk Rc−t . We
have that TorR1 �M;k�d = 0 for d < t. Because of the relation between the
Hilbert function of M and the Hilbert function of M∨�−c� we see that
the initial degree of the kernel of Rs

′ → M∨�−c� is at least c − t + 1.
Hence we have that TorR1 �M∨�−c�; k�d = 0 for d < c − t + 1. We have that
TorRi �M;k�d = 0, for d < t + i − 1 and i = 1; 2; : : : ; r − 1. Similarly, we
have that TorRi �M∨�−c�; k�d = 0 for d < c − t + i and i = 1; : : : ; r − 1.
By Proposition 2.2 we have that TorRi �M;k�d = TorRr−i�M∨�−c�; k�r+c−d,
which is zero for r + c − d < c − t + r − i, i.e., for d > t + i. Hence we
have that TorRi �M;k� is concentrated in degrees t + i − 1 and t + i, for
i = 1; 2; : : : ; r − 1.

In the case where t = c + 1, we have that M is compressed with Hilbert
function HM�d� = s dimk Rd, for d = 0; 1; 2 : : : ; c. We will have that
TorRi �M;k� is concentrated in degree c + i, for i = 1; 2; : : : ; r. Hence we
can assume that t ≤ c.

We will use the identity

�1− z�r
l∑

d=0

(
r − 1+ d
r − 1

)
zd = 1+

r∑
j=1

�−1�j
(
l + j − 1
j − 1

)(
l + r
r − j

)
zl+j; (13)

which can be easily, but tediously, checked.
Using the additivity of the k-dimension on a minimal free resolution of

M we get

�1− z�rHilbM�z� =
r∑
i=0

bi∑
j=1

�−1�iznj;i =
r∑
i=0

∞∑
d=0

�−1�i dimk TorRi �M;k�dzd:
(14)

From the first assertion we have that the last sum is taken from d = i+ t − 1
to d = i+ t.

Since M is compressed we have that

dimk Md = min
{
s

(
r − 1+ d
r − 1

)
; s′
(
r − 1+ c − d

r − 1

)}
; (15)
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which yields that

�1− z�rHilbM�z�
= �1− z�r

t−1∑
d=0

s
(
r−1+d
r−1

)
zd + s′ �1− z�r

c−t∑
d=0

(
r−1+d
r−1

)
zc−d: (16)

Since t ≤ c it follows from (13) and (16) that

�1− z�rHilbM�z� = s + s
r∑
i=1

�−1�i(t−1+i−1
i−1

)(
t−1+r
r−i

)
zt−1+i

+ s′ �−1�rzr+c + s′ �−1�r zr+c
r∑
i=1

�−1�i(c−t+i−1
i−1

)(
c−t+r
r−i

)
zt−c−i

= s + s′ �−1�rzr+c +
r∑
i=1

�−1�i
(
s
(
t−1+i−1
i−1

)(
t−1+r
r−i

)
− s′ (c−t+r−i

r−i
)(
c−t+r
i−1

))
zi+t−1:

(17)

From (14) we have that

�1− z�rHilbM�z� = s +
r−1∑
i=1

�−1�i dimk TorRi �M;k�i+t−1z
i+t−1

+
r−1∑
i=1

�−1�i dimk TorRi �M;k�i+tzi+t + s′�−1�r+czr+c:
(18)

The second statement of the proposition now follows from equating the
coefficients of zi+t−1 in Eq. (18) with the same coefficient in the final ex-
pression of (17).

5. COUNTEREXAMPLES TO THE MINIMAL
RESOLUTION CONJECTURE

We will now show how to compute the Betti numbers of a generic set
of points in projective space, under the hypothesis that there are some
quadrics through the points. We will also in this way be able to find nine
examples where the minimal resolution conjecture of Lorenzini [7] does
not hold for a random set of points. It is worth remarking that these coun-
terexamples do not give counterexamples to the corresponding conjecture
for artinian algebras, not necessarily coming from points [3]. Moreover,
there is a systematic behavior of the counterexamples, which is very inter-
esting if we want to guess what the Betti numbers should be.
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Setup. Let Pr be the projective space over k with homogeneous co-
ordinate ring S = k�x0; x1; : : : ; xr�. We consider a set X of n points
given by coordinates �a�i�0 ; a

�i�
1 ; : : : ; a

�i�
r �, for i = 1; 2; : : : ; n. By a projec-

tive transformation we can move r + 1 points to the points �1; 0; : : : ; 0�,
�1;−1; 0; : : : ; 0�, : : : ,�1; 0; : : : ; 0; ;−1�. We are interested in the homoge-
neous ideal I�X� in R generated by all forms vanishing on X. A priori
we get a one-dimensional coordinate ring k�x0; x1; : : : ; xr�/I�X�, but if we
assume that no points of X lie on the hypersurface x0 = 0, we have that
x0 is not a zero-divisor in S/I�X�. Hence we can look at the artinian re-
duction S/�I�X� ⊕ �x0��. We are therefore interested in finding the image
of the ideal I�X� in R = k�x1; x2; : : : ; xr� = S/�x0�. We concentrate on
the case when the ideal I�X� is generated by quadrics. Then we have that
r + 1 < n < �r + 1��r + 2�/2.

We can write equations for the generators of the ideal I�X� as{ ∑
0≤i≤j≤r

ξi;jxixj
∣∣ ∑

0≤i≤j≤r
ξi;ja

�l�
i a
�l�
j = 0; for l = 1; 2; : : : ; n

}
: (19)

Since we have chosen the last r + 1 points to be special points, we can
write the equations for ξi;j as

ξ0;0 = 0

ξ0;0 − ξ0;j + ξj;j = 0; for j = 1; 2; : : : ; r∑
0≤i≤j≤r

ξi;ja
�l�
i a
�l�
j = 0; for l = 1; 2; : : : ; s,

where s = n − 1 − r. Hence we can eliminate the variables ξ0;i, for i =
0; 1; : : : ; r and get that the image, I, of I�X� in the ring R = S/�x0� is
given by{ ∑

1≤i≤j≤r
ξi;jxixj

∣∣ ∑
1≤i≤j≤r

ξi;ja
�l�
i a
�l�
j +

∑
1≤j≤r

ξj;ja
�l�
0 a
�l�
j = 0; 1 ≤ l ≤ s

}
:

(20)

We now assume that the points are in general position. Then the Hilbert
series of A = k�x1; x2; : : : ; xr�/I is given by HilbA�z� = 1 + rz + sz2 and
by a result of Trung and Valla [11], we have that the socle of A is contained
in A2, and thus A is a compressed level algebra with socle of dimension
s in degree 2. Hence we can use the methods of Section 3 to obtain the
equations for the dual, or canonical, module A∨ = ωA. It will be suffi-
cient to consider the linear part of the resolution of A∨, since the module
TorRi �A∨�−2�; k� is concentrated in degrees i and i+ 1.
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Let F0 be a free R-module of rank s with basis elements e1; e2; : : : ; es of
degree 0. By Proposition 3.6 and Proposition 3.1, we can find the kernel of
the quotient map F0 → A∨�−2� → 0 as{

r∑
i=1

s∑
l=1

ξi;lxiel
∣∣ r∑
i=1

s∑
l=1

ξi;lλ
�l�
xjxi = 0; for j = 1; 2; : : : ; r

}
; (21)

where the elements λ�l�xixj are given by

λ
�l�
xixj =

 a
�l�
i a
�l�
j if i 6= j

a
�l�
i a
�l�
i + a�l�0 a

�l�
i if i = j

(22)

for l = 1; 2; : : : ; s, and 1 ≤ i ≤ j ≤ r.
This choice of the elements λ�l�xixj is not very general and it is therefore

not so surprising that the Betti numbers of the module defined by them are
not equal to the generic Betti numbers for compressed level modules.

We have by means of Macaulay [1] calculated nine examples where the
MRC does not hold. The Betti numbers of A∨�−2� were determined for
a random set of points and they are presented in Table I. Only the linear
part of the resolution needed to be calculated which corresponds to the
numbers b′i = dimk TorRi �A∨�−2�; k�i.

The second and the third examples in Table I were the first known ex-
amples where the Betti numbers of generic points do not satisfy the MRC.
They were found by F. O. Schreyer. The four first examples were known by
Beck and Kreuzer [2] but the last five examples are new.

The binomial coefficients 1; 4; 10 and 1; 5; 15; 35; 70; 126 appearing as
the failing Betti numbers in Table I suggest some kind of structure. This
was not so easily seen from only the first four examples.

TABLE I
Nine Cases of Betti Numbers of A∨ for Random Points

Not Satisfying the Minimal Resolution Conjecture

Betti numbers MRC Betti numbers

b′0 b′1 b′2 b′3 b′4 b′0 b′1 b′2 b′3 b′4

11 points in P6 4 18 25 1 0 4 18 25 0 0
12 points in P7 4 21 36 4 0 4 21 36 0 0
13 points in P8 4 24 49 10 0 4 24 49 8 0
16 points in P10 5 40 126 160 1 5 40 126 160 0
17 points in P11 5 44 155 231 5 5 44 155 231 0
18 points in P12 5 48 187 320 15 5 48 187 320 0
19 points in P13 5 52 222 429 35 5 52 222 429 0
20 points in P14 5 56 260 560 70 5 56 260 560 0
21 points in P15 5 60 301 715 126 5 60 301 715 105
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To calculate the example of 20 points in P14 Macaulay used 142 Mb of
memory and the complete set of Betti numbers for A is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 100 840 3640 10192 20020 28600 30030 22880 12012 3640 70 0 0 0
0 0 0 0 0 0 0 0 0 0 70 560 260 56 5

To to calculate the last example of 21 points in P15 Macaulay needed 253
Mb of memory. Hence it would be practically impossible to calculate the
resolution from the right side.

Beck and Kreuzer [2] have found a way to compute a presentation of
the canonical module ωA of the coordinate ring A of a set of points using
Gröbner basis techniques. By this method they have been able to find the
four first counterexamples in Table I.
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