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0. INTRODUCTION

ŽThe notion of a semiring i.e., a universal algebra with two associative
.binary operations, where one of them distributes over the other was

� �introduced by Vandiver 33 in 1934. Needless to say, semirings found their
Žfull place in mathematics long before that year e.g., the semirings of

. Žpositive elements in ordered rings and even more so after e.g., various
.applications in theoretical computer science and algorithm theory . How-

� �ever, the reader is referred to 11, 12, 16, and 17 for background, basic,
and more advanced properties of, and comments, historical remarks, and
further references on semirings.

ŽCongruence-simple algebras i.e., those possessing just two congruence
.relations serve a basic construction material for any algebraic structure.

In spite of the fact and in contrast to the enormous and opulent supply of
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information on worldwide popular simple groups and rings, not much is
known on congruence-simple semigroups and almost nothing on such
semirings. We mention only that the study of congruence-simple commuta-

� � Ž � �.tive semirings with unit was initiated in 26 see also 12 and that some
� �results on congruence-simple semifields was achieved in 21 .

The aim of the present paper is to classify the congruence-simple
Žcommutative semirings and to relate them with better known concepts for

.instance, ordered rings with order units . To that purpose, the paper is
divided into 14 parts and the promised classification is summarized in the
10th section. Additionally, for a better understanding, some basic informa-
tion on ideal-simple commutative semirings is included.

1. PRELIMINARIES

A commutative semiring is a non-empty set equipped with two associa-
Žtive and commutative binary operations usually denoted as addition and

.multiplication such that the multiplication is distributive over the addi-
Žtion. Note that the existence of any neutral and�or absorbing element is

.not assumed a priori. In the following we shall be handling commutative
semirings only, and hence the word semiring will always mean a commuta-
ti�e semiring.

Ž .Let S be a semiring. A binary relation r � S � S is a congruence of S
Ž . Ž . Ž .if r is an equivalence and a � c, b � c � r, ac, bc � r for all a, b � r

and c � S. A non-empty subset I of S is an ideal or bi-ideal of S if SI � I
and I � I � I or S � I � I, respectively. The semiring S will be called

Ž .congruence-simple or cg-simple, for short if S is non-trivial and id , S � SS
Ž .are the only congruences of S; and ideal-simple id-simple for short , or

bi-ideal-simple if S is non-trivial and I � S whenever I is an ideal or
bi-ideal of S such that I contains at least two elements, respectively. If I is

Ž .a bi-ideal of S, then I � I 	 id is a congruence of S and consequentlyS

S is bi-ideal-simple provided that S is cg-simple or id-simple. Note that a
Ž . Žnon-trivial commutative ring is congruence�ideal-simple as a semiring

.or a ring if and only if it is a field or a zero multiplication ring of finite
prime order. Note also that every two-element semiring is both congru-

Ž .ence- and ideal-simple and that there exist up to isomorphism just eight
Ž .two-element semirings see the next section .

Ž .A semiring S is said to be additi�ely resp., multiplicati�ely idempotent�
Ž . Ž .cancellati�e if so is the additive resp., multiplicative semigroup S �

Ž Ž .. Žresp., S � . These semirings will also be called ai�ac-semirings or
.mi�mc-semirings .
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2. TWO-ELEMENT COMMUTATIVE SEMIRINGS

Z Z1 2
� 0 1 � 0 1 � 0 1 � 0 1

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 1

Z Z3 4
� 0 1 � 0 1 � 0 1 � 0 1

0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 1 0 0 1 0 1 1 1 1

Z Z5 6
� 0 1 � 0 1 � 0 1 � 0 1

0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 1 1 1 1 0 1 1 0 1

Z Z7 8
� 0 1 � 0 1 � 0 1 � 0 1

0 0 1 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 1 1 0 1 0 1

3. CONGRUENCE-SIMPLE COMMUTATIVE
SEMIRINGS�BASIC CLASSIFICATION

3.1. THEOREM. Let S be a congruence-simple semiring. Then just one of
the following three cases takes place:

Ž .1 S is a two-element semiring isomorphic either to Z or Z ,1 2

Ž .2 S is additi�ely idempotent.
Ž .3 S is additi�ely cancellati�e.

Ž .Proof. First, define a relation r on S by x, y � r if and only if
2 x � 2 y. Then r is a congruence of the semiring S and we have either
r � id or r � S � S.S

Let r � id . The mapping x � 2 x is an injective transformation of SS
Ž .and we shall define a relation s on S by x, y � s if and only if there exist

� 4 ia non-negative integer i and elements u, � � S 	 0 such that 2 x � y � u
i Ž .and 2 y � x � � . Again, s is a congruence of S and x, 2 x � s for every

Ž .s � S. Consequently, if s � id , then S � is idempotent and hence weS
shall assume that s � S � S and a � b � a � c for some a, b, c � S.

� 4 iThere exist i 
 0 and w � S 	 0 such that 2 b � a � w and we have
b � 2 ib � b � a � w � c � a � w � c � 2 ib. Then 2b � b � c for i � 0

Ž i�1 . Ž i�1 . i�b i�1and, if i 
 1, then 2 b � 2 b � 2 c � 2 b , b � 2 � c � 2 b,
and 2b � b � c by induction. Quite similarly, b � c � 2c, and so 2b � 2c

Ž .and, finally, b � c. We have proved that S � is cancellative.
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Now let r � S � S. Then there is an o � S such that 2 x � o for every
Ž .x � S. Similarly as above, define a congruence t of S by x, y � t if and

only if 3 x � 3 y. If t � id and a � b � a � c, then x � 3 x is injectiveS
and the equalities 3b � b � o � b � a � a � c � a � a � c � o � 3c

Ž Ž . .imply b � c hence S � is cancellative . Therefore, assuming that t �
S � S, i.e., x � o � o for every x � S. We have to consider the following
four cases:

Let S � S � S and SS � o. Then there are a, b, c, d � S such that
Ž .a � b � c and cd � o. Since xo � x o � o � xo � xo � o for every x �

S, we know that all the elements a, b, c, d are different from o. Put
� � 44I � x; x � cu � � , u � S, � � S 	 0 . Then I is a bi-ideal of S and

o, cd � I. Thus I � S and, in particular, a � cu � � and b � cu � �1 1 2 2
� 4 Ž .for suitable u , u � S and � , � � S 	 0 . But then a � a � b u � �1 2 1 2 1 1

Ž .� au � � � � u � cu u , b � a � b u � � � bu � � � � u �1 1 2 1 2 1 2 2 2 2 1 2
cu u , and o � c � a � b � au � � � � u � bu � � � � u �1 2 1 1 2 1 2 2 1 2
2cu u � o, since 2cu u � o, a contradiction.1 2 1 2

Let S � S � o � SS. We have a � b � c � o for some a, b, c � S and
Ž .the relation p defined on S by x, y � p if and only if a � x � a � y is a
Ž . Ž .congruence of S. Of course, a, o � p, p � id , p � S � S, b, o � p,S

and o � c � a � b � a � o � o, a contradiction.
� 4Let S � S � o � SS. Put J � x � S; xS � o . Then J � S and, since J

� 4 � 4is a bi-ideal of S, we must have J � o . Put T � S� o , and, for every
Ž .a � T , define a relation h on S by x, y � h if and only if ax � ay.a a

Ž .Then h is a congruence of S, b, o � h , for at least one b � T anda a
Ž .consequently h � id . Thus TT � T and the relation q � T � T 	 ida S T S

Ž .is a congruence of S. Since q � S � S, we have q � id , card T � 1,T T S
and S 
 Z .2

Let S � S � o � SS. Then every equivalence defined on S is a congru-
� �ence of S, and therefore S � 2 and S 
 Z .1

Ž � �. Ž3.2. EXAMPLE cf. 26, 4.1 . Let G be an abelian group denoted
. Ž . � 4multiplicatively , o � G, and V G � G 	 o . Put x � y � o, x � x � x,

Ž . Ž . Žand xo � o � ox for all x, y � V G , x � y. The V G becomes a com-
. Ž . Žmutative ai-semiring possessing a unit and o is a smallest alias absorb-

. Ž .Ž .ing element of the semilattice V G � . Moreover, it is easy to see that
Ž . Ž .V G is both congruence- and ideal-simple. Note also that V G is a

finitely generated semiring if and only if the group G is finitely generated
Ž . Ž .and that V G 
 V G if and only if G 
 G .1 2 1 2

Ž � �.3.3. THEOREM cf. 26, 4.7 . Let S be a congruence-simple additi�ely
idempotent semiring. Then just one of the following three cases takes place:

Ž .� S is isomorphic to one of the two-element semirings Z , Z , Z .3 4 5

Ž . Ž . Ž� The additi�e semilattice S � possesses a smallest element o i.e.,
. � 4 Ž .x � o � o for e�ery x � S , So � o, G � S� o is an abelian subgroup of



SIMPLE COMMUTATIVE SEMIRINGS 281

Ž . Ž .the multiplicati�e semigroup S � , and the semiring S is isomorphic to the
Ž . Ž .semiring V G see 3.2 .

Ž .� The semiring S is multiplicati�ely cancellati�e.

� Ž . 4Proof. Put A � x � S; card Sx � 1 . If a � S� A and if r is de-a
Ž .fined by x, y � r if and only if ax � ay, then r is a congruence of S,a a

r � S � S, r � id , and the map x � ax is an injective transformation ofa a S
Ž .S. Now, if A � �, then � is true, hence assume that A � �.

One sees easily that there exists an element w � S such that SA � w �
Sw and the set S � w is a bi-ideal of S. If S � w � S, then w � 0 is a

Ž . Ž .neutral element of S � , T � T 	 id is a congruence of S, whereS
� 4 � � � �T � S� 0 , and we have T � 1, S � 2, an either S 
 Z or S 
 Z .4 5

Ž .Hence, assume that S � w � w and w � o is a smallest element of S � .
Ž . �Now, define a relation s on S by x, y � s if and only if z � S;1

4 � 4ax � z � o � z � S; ay � z � o for every a � S. Then s is a congru-1 2 2
Ž .ence of S and we consider first the case s � S � S. We have x, o � s for

every x � S and it follows that u� � z � o for all u, � , z � S. In particular,
� 4u� � u� � u� � o, i.e., SS � o and A � S. If a � S� o , then S � a is a

bi-ideal of S, a, o � S � a, hence S � a � S, a is a neutral element of
Ž . � � 4 �S � , S� o � 1 and S 
 Z .3
Next, assume that s � id . Then A � S and, if z � S� A and � � A,S

� 4then z� � o � zo implies � � o. This means that A � o and that G �
� 4 Ž .S� o is a subsemigroup of S � . Clearly, G is a cancellative semigroup.

Now, let a, b � S, a � b. We are going to show that a � b � o. Pro-
ceeding by contradiction, assume that a � b � c � o. Since a � b, we may

Ž .also assume that c � a. Then a, c � s � id and there exist d, e � SS
such that dc � e � o � da � e; we have d � o and dc � o. Further,

� 4denote by B the set of x � S such that x � �dc � x for some � � S 	 1 .
Then o, dc � B, B is a bi-ideal of S, B � S, da � B, and, finally, da �

� 4 Žwdc � da for some w � S 	 1 in fact, da � dc � dc � da, and so
. Ž . � 4w � S . Quite similarly, da � u da � e � da for some u � S 	 1 . Now

we have
da � uda � da � u da � e � udaŽ .

� da � uda � ue � da � u da � e � da,Ž .
da � wudc � da � uda � uwdc � da � u da � wdcŽ .

� da � uda � da,
wdc � wda � wda � wdb � wda � wda � wdb � wdc,
wda � wda � wuda � wue,

da � wue � du � wdc � wue � wue � da � wdc � wda
� wue � da � wdc � wda � wuda � wue
� da � wdc � w da � uda � ueŽ .
� da � wdc � wda � da � wdc � da.
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Finally,

o � da � da � da � da � wudc � da � wue � da � wu dc � eŽ .
� da � wuo � da � o � o ,

a contradiction.
We have proved that a � b � o for all a, b � S, a � b. From this, it

follows easily that Sa is a bi-ideal of S for every a � S. If a � G, then
� � Ž .Sa 
 2, and therefore Sa � S. Now, it is easy to conclude that G � is a

Ž .group and S 
 V G .

3.4. THEOREM. Let S be a congruence-simple additi�ely cancellati�e
semiring. Then just one of the following three cases takes place:

Ž .� S is a zero-multiplication ring of finite prime order;
Ž .� S is a field;
Ž .� The semiring S is multiplicati�ely cancellati�e and the additi�e

Ž .semigroup S � possesses no neutral element.

Proof. First, assume that there exists a neutral element 0 � S for the
Ž .additive semigroup S � , denote by M the set of invertible elements of

Ž . Ž .S � , and define a relation r on S by x, y � r if and only if y � x � u
Ž .for some u � M. Since S � is cancellative, we have S0 � 0, SM � M,

and it follows easily that r is a congruence of S. If r � S � S, then M � S,
Ž . Ž .S is a ring, S is ideal-simple, and it is clear that either � or � is true.

ŽŽ � 4. Ž � 4..Now, let r � id . Then M � 0 and we put q � S� 0 � S� 0 	 id .S S
Ž .For every a � S, the relation r defined by x, y � r if and only ifa a

Ž � 4.ax � ay is a congruence of S, Sa � 0 if r � S � S, and S� 0 a � 0 ifa
r � id . Using these observations, we deduce easily that q is a congru-a S

� �ence of S. But then q � id , S � 2, and either S 
 Z or S 
 Z .S 7 8
� � � 4Now, assume that 0 � S and put A � x � S; Sx � 1 . Proceeding in a

Ž .manner similar to the proof of 3.3, we show that A � � and that S � is
cancellative.

4. ADDITIVELY�MULTIPLICATIVELY CANCELLATIVE
COMMUTATIVE SEMIRINGS�BASIC OBSERVATIONS

The results of this section are of auxiliary character; all are fairly basic
and some of them may be considered more or less folklore. We shall not
attribute them to any particular source.

Ž .By a parasemifield we will mean a non-trivial commutative semiring S
Ž . Ž .such that the multiplicative semigroup S � is an abelian group.
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Ž .4.1. PROPOSITION The Parasemifield of Fractions . Let S be a non-tri�-
Ž Ž ..ial mc-semiring. The there exists a parasemifield P � P S such that the

following conditions are satisfied:

Ž . � �1 4i S is a subsemiring of P and P � ab ; a, b � S .
Ž .ii P is additi�ely cancellati�e if and only if S is.
Ž .iii P is additi�ely idempotent if and only if S is.
Ž .iv If S is congruence-simple, then P is.
Ž . Ž .v P is ideal-simple in fact, P does not possess any proper ideal .

Proof. The proof is standard and easy.

Ž .4.2. PROPOSITION The Ring of Differences . Let S be a non-tri�ial
Ž . Ž Ž ..ac-semiring. Then there exists a commutati�e ring R � R S such that the

following conditions are satisfied:

Ž . � 4i S is a subsemiring of R and R � a � b; a, b � S .
Ž .ii R is a ring without zero di�isors if and only if ac � bd � ad � bc

for all a, b, c, d � S; a � b; c � d.
Ž .iii R possesses a unit if and only if there exist a, b � S such that

ax � by � y � ay � bx � x for all x, y � S.
Ž .iv If S possesses a unit, then R does also.
Ž .v R is a field if and only if for all a, b, c, d � S; a � b; there exist

x, y � S such that ax � by � c � ay � bx � d.

Proof. The proof is standard and easy.

A non-trivial additively cancellative semiring satisfying the equivalent
Ž .conditions of 4.2 v will be called conical.

4.3. PROPOSITION. Let S be a non-tri�ial ac-semiring.

Ž .i If 0 � S and S is conical, then S is multiplicati�ely cancellati�e
Ž . Ž .and P S see 4.1 is also conical.
Ž .ii If S is a parasemifield, then S is conical if and only if for e�ery

a � S, a � 1, there exist x, y � S such that a � x � 1 � ax � y.
Ž .iii If S is congruence-simple then either S is conical or S is a

zero-multiplication ring of prime order.

Ž . Ž . Ž .Proof. The proof of both i and ii is easy. To prove iii , let I be an
Ž . Ž .ideal of the ring R � R S see 4.2 and define a relation r on S by

Ž .x, y � r if and only if x � y � I. Then r is a congruence of S, I � 0 if
r � id , and I � R if r � S � S. Thus R is ideal simple and the rest isS
clear.
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4.4. LEMMA. Let S be a non-tri�ial ac-semiring such that 0 � S, and let
Ž . 2 � � 4w � R � R S be such that w � S. Put S � a � bw; a, b � S 	 0 ,1

4 � � 4 4a � b � 0 and S � a � bw; a, b � S 	 0 , a � b � 0 . Then:2

Ž .i Both S and S are subsemirings of R and S � S � S .1 2 1 2

Ž .ii If 0 � S � S , then cw � 0 for at least one c � S.1 2

Ž .iii If S is an mc-semiring, then either 0 � S or 0 � S .1 2

Proof. If a � b w � 0 � a � b w for some a , a , b , b � S then1 1 2 2 1 2 1 2
�b b w2 � S and b b w2 � S, a contradiction with 0 � S. Furthermore,1 2 1 2

Ž .if w � e � f , e, f � S, and cw � 0, c � S, then e � f since w � 0 and
ce � cf.

In the remaining part of this section, let S be a non-trivial amc-semiring.
Ž . Ž .Then S � contains no neutral element since otherwise S0 � 0 and the

relation � defined on S by x � y if and only if y � x � z for someS S
� 4z � S 	 0 is an ordering; this ordering is compatible with respect to both

the addition and the multiplication of S. Moreover, � can be extendedS
Ž . Ž . Žto an ordering denote it also by � of the difference ring R � R S seeS

. � 44.2 ; we have x � y in R if and only if y � x � S 	 0 . The followingS
lemma is obvious:

Ž . Ž .4.5. LEMMA. i S is upward-cofinal in R � .S

Ž .ii The following conditions are equi�alent:
Ž .ii1 � is linear on R.S

Ž .ii2 � is linear on S.S

Ž .ii3 For e�ery u � R, u � 0, either u � S or �u � S.
Ž . Žii4 S is semisubtracti�e. That is, for all a, b � S, a � b, there

.exists x � S such that either a � x � b or b � x � a.

4.6. LEMMA. Let S be an ac-parasemifield. If a, b � S are such that
b2 � a2, then b � a.S S

2 2 � 4 Ž .Proof. We have a � b � z for some z � S 	 0 , and then a a � b
2 2 Ž . Ž Ž .�1 .Ž .� a � ab � b � z � ab � b a � b � z � b � z a � b a � b .

�1 �1Ž . Ž . � 4Consequently, a � b � z a � b , z a � b � S 	 0 , and b � a.S

4.7. LEMMA. Let S be an ac-parasemifield. Then 2 � 1 � a � a�1 �S S
Ž .�1n � 1 for e�ery a � S and e�ery positi�e integer n.S

Ž . m Ž .Proof. For positive integers m, n put f m � 2 and b � 2n � 1 1 �n S
Ž .�1 Ž .n � 1 � S. Now, if n 
 1, then using standard methods we can findS
m 
 1 such that

f mŽ .Ž .f m2n � 1 �n � .Ž .Ž . ž /f m � 1Ž .



SIMPLE COMMUTATIVE SEMIRINGS 285

Ž �1 . f Žm.On the other hand, using the binomial formula for a � a , we also
find that

f mŽ . Ž .f m�1� 1 � a � a .Ž .S Sž /f m � 1Ž .
f Žm. Ž �1 . f Žm. �1Consequently, b � a � a and, by 4.6, we have b � a � a .n S n S

The semiring S is said to be archimedean if for all a, b � S there exists
Ža positive integer n such that b � na equivalently, for all a, b � S, thereS

.exist c � S and a positive integer m such that b � c � ma . Note that if
this is true, then for all x � R and a � S there exists n 
 1 with x � na.S

4.8. LEMMA. Let S be an archimedean conical ac-parasemifield. Then

Ž . �1i 2 � 1 � a � a for e�ery a � S.S S

Ž . 2 2ii 2 ab � a � b for all a, b � S.S

Ž .Proof. By 4.2 v , there exists a field F such that S is a subsemiring of F
� 4and F � a � b; a, b � S . Clearly, the characteristic of F is zero and

Ž .hence we can assume that � the field of rationals is the prime subfield
of F.

Let n be a positive integer and a � S, a � 1. By 4.7, a � a�1 �
Ž . �12n � 1 �n � c for some c � S. Put � � a � a � 2 � F, � � 0, sincen n
a � 1. Then � � 1�n � c , n� � 1 � nc � S. Further, ���1 � F andn n
���1 � d � e, d, e � S, e � d � ��1. Since S is archimedean, we have
d � m for a suitable positive integer m, m � d � f , f � S. Now, ��1 �S

�1 Ž .m � � � d � f � e � f � S, 1 � �m � � e � f . As we have already
Ž .Ž .�1 �1proved, 1 � �m � S, and so � � 1 � �m e � f � S. Thus a � a �

� � 2 and 2 � a � a�1.S
Finally, let a, b � S, a � b, w � a � b � F. Then w2a�1 b�1 � ba�1 �

2 � S by the preceding part of the proof.

5. CONGRUENCE-SIMPLE MULTIPLICATIVELY
CANCELLATIVE ADDITIVELY IDEMPOTENT

COMMUTATIVE SEMIRINGS

5.1. EXAMPLE. Let A be a non-zero subsemigroup of the additive
Ž . Žgroup � � of real numbers. We shall consider the following commuta-

. Ž . Ž . Ž .tive mcai-semiring W � W A � W �, � : W � A, a � b � min a, b ,
and a� b � a � b for all a, b � A.

5.1.1. LEMMA. W is congruence-simple if and only if A � ��� � �
A � ��.



BASHIR ET AL.286

Proof. First, assume that W is congruence-simple. If A � ��� �,
Ž .0 � a � A, and if a relation r is defined on W by x, y � r if and only if

Ž .either x � y or 2 a � min x, y , then r is a non-trivial congruence of W,
a contradiction. We proceed similarly if A � ��� �.

Now, assume that A � ��� � � A � �� and let r � id be a con-W
gruence of W. Take a, b � W ; a � b; and c � A � ��. Since r � id andW

� Ž .A � � � �, there are e, f � W such that e, f � r, e � f � a, and
c � b � a � f � e. Let n be the greatest non-negative integer such that

Ž . Ž .e � nc � a. Then n � 1 c � e � b � a � f � nc, 0 � n � 1 c � e � a
Ž . Ž .� f � nc � b, b � f � nc. Of course, e � nc, f � nc � r, e � nc � a

Ž . Ž . Ž .� e � nc, f � nc � a � a, e � nc, a � r. Quite similarly, e � nc, b
Ž .� r and a, b � r. Thus r � W � W.

Ž . Ž .5.1.2. LEMMA. i W is ideal-simple if and only if A is a subgroup of � �
Ž .i.e., W is a parasemifield .

Ž . Ž .ii W is finitely generated if and only if so is the semigroup A � .

Ž . Ž .5.1.3. LEMMA. i W � possesses a neutral element if and only if
� Ž .A � � � � and sup A � A.

Ž . Ž . �ii W � possesses an absorbing element if and only if A � � � �
Ž .and inf A � A.

Ž . Ž .iii W � possesses a neutral element if and only if 0 � A.
Ž . Ž .iv W � does not possess an absorbing element.

Ž . �5.1.4. LEMMA. If A and B are subsemigroups of � � such that A � �
� � � Ž . Ž .� � � B � � and A � � � � � B � � , then W A 
 W B if and

only if B � qA for some q � ��.

5.2. PROPOSITION. Let S be a cg-simple ai-parasemifield. Then the semi-
Ž . � 4lattice S � is a chain, i.e., a � b � a, b for all a, b � S.

Proof. The relation � defined on S by x � y if and only if x � y � x
Ž .is an ordering compatible with addition and multiplication and we have

Ž .to show that this ordering is linear. Anyway, note first that since S � is a
Ž . Ž .group, S � contains no smallest i.e., absorbing element and also no
Ž . �greatest i.e., neutral element. Now, take w � S and put T � a � S;

4aw � w . Then 1 � T and T is a subsemiring of S. Moreover, Tx � Ty �
Ž .T x � y for all x, y � S.

Ž .�1 Ž .�1Indeed, if a, b � T and ax � by � � , then � x � y w � wx x � y ,
Ž .�1 Ž .�1 Ž .�1 Ž .Ž .�1� x � y w � wy x � y , � x � y w � w x � y x � y � w, � �
Ž .�1Ž . Ž . Ž . �1� x � y x � y � T x � y . Conversely, if c � T , then c x � y x w

�1 Ž . Ž .� cw � cyx w � w, c x � y � Tx, and, similarly, c x � y � Ty.
Ž .Now, defining a relation r on S by x, y � r if and only if Tx � Ty, we

get a congruence of the semiring S. If r � S � S, then T � S, aw � w for
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every a � S, and w is a greatest element of S, a contradiction. Thus
r � id and x � Tx is an injective mapping.S

Let x, y � S. If x � y and a � S, then y�1 � x�1, axy�1 w � axx�1 w �
aw � w, axy�1 � T , and we see that Tx � Ty. Conversely, if Tx � Ty, then

Ž .Tx � Tx � Ty � T x � y , and hence x � x � y, x � y. Then x � y if and
� 4only if Tx � Ty and our aim is to show that the set Tx; x � S is linearly

ordered by inclusion. As one may see easily, this is true if and only if
T 	 T�1 � S and now, proceeding by contradiction, we shall assume that

Ž �1 .a � S� T 	 T .
n Ž n.For every n 
 0, let P � T � Ta � ��� � Ta � T 1 � a � ��� �an

and, for x � S, let Q denote the set of u � S such that P � Txu for atx m
Ž .least on m 
 0. Then s is a congruence of S, where x, y � s if anda a

only if Q � Q , and we shall first assume that s � id .x y a S
Clearly, Q � Q . Conversely, if P � Tu, then P � P a � Tau,1�a 1 m m�1 m

Ž .P � P � Tu, P � Tau � Tu � T 1 � a u, and u � Q . Thus,m� 1 m m�1 1�a
Ž . Ž .1 � a, 1 � s and consequently 1 � a � 1. However, then T � T 1 � aa
� T � Ta � Ta and a � T�1, a contradiction.

Ž .We have proved that s � S � S, and therefore x, 1 � s for everya a
Žx � S and there exists m 
 0 such that P � Tx. Proceeding similarly i.e.,m

�1 .replacing a by a , we can show that R � Tx for some n 
 0, R � T �n n
�1 �n Ž �1 �n. �1Ta � ��� � Ta � T 1 � a � ��� �a . In particular, P � Ta fork

some k 
 0 and we have P a � T � P a � P � P , P � P a�1, and,k k k�1 k k k
by induction, P � P a�i � Ta�i for every i 
 0. Consequently, P � Tx,k k k
i.e., Tb � Tx, b � 1 � a � ��� �ak, for every x � S. In this way, we have
shown that b is a smallest element of S and this is the needed final
contradiction.

5.3. THEOREM. Let S be a congruence-simple multiplicati�ely cancellati�e
Ž .additi�ely idempotent semiring see 3.3 . The there exists a subsemigroup A of

Ž . � �the additi�e group � � of real numbers such that A � � � � � A � �
Ž . Ž .and the semirings S and W A are isomorphic see Example 5.1 .

Proof. First, assume that S is a parasemifield. By Proposition 5.2, the
Ž . Žsemilattice S � is a chain possessing no smallest and no greatest

. Ž . Ž . Želement , and so S � is a linearly ordered abelian group x � y if and
.only if x � y � x . We are going to make it clear that this order is

archimedean.
Ž .Let w � S, 1 � w. Define a relation t on S by x, y � t if and only ifw

either x � y or �w m � x � �w n and �w m � y � �w n for an element � � S
and some positive integers m, n, m � n. Then t is a congruence of S andw
we have t � S � S. In particular, given x � S, we have �w m � x � �w n,w
�w m � w � �w n, � � w1�m and x � w1�n�m.

Ž . Ž .We have proved that S �, � is an archimedean linearly ordered abelian
Ž .group. According to the well-known Holder �Baer�Cartan�Loonstra¨
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Ž� � �.Theorem 19; see also 2, 4, 24 , there exists an injective homomorphism
Ž . Ž . Ž .� of S � into the additive group � � such that x � y in S � implies

Ž . Ž . Ž . Ž Ž .� x � � y in � � . If, among the positive elements of S �, � , there
Ž .exists a smallest one, say w, then S � is an infinite cyclic group generated

Ž n.by w and we put � w � n. In the opposite case, we choose any w � 1
Ž . �and, for every x � S, we put � x � sup m�n; m, n � �, n � 0,

m n4 Ž Ž Ž ...w � x . Consequently, S 
 W � S � .
The general case now follows from an easy combination of Proposition

4.1, the preceding part of the proof, and Example 5.1.

6. A FEW CONSEQUENCES

Ž � �.6.1. COROLLARY cf. 26, 3.2 . Let S be a congruence-simple semiring
Ž .such that the additi�e semigroup S � possesses a neutral element. Then just

one of the following three cases takes place:

Ž .1 S is isomorphic to one of the two-element semirings Z , Z , Z ,3 4 5
and Z ;6

Ž .2 S is a zero-multiplication ring of finite prime order;
Ž .3 S is a field.

Proof. Combine 3.1, 3.3, 5.3, 5.1.3, and 3.4.

Ž � �.6.2. COROLLARY cf. 26, 4.7 . Let S be a congruence-simple semiring
Ž .such that the multiplicati�e semigroup S � possesses an absorbing element.

Then just one of the following two cases takes place:

Ž .1 S is isomorphic to one of the two-element semirings Z , Z , Z , Z ,1 2 3 4
and Z .5

Ž .2 There exists an abelian group G such that S is isomorphic to the
Ž . Ž .semiring V G see 3.2 .

Proof. Combine 3.1, 3.3, 5.3, and 5.1.3.

6.3. COROLLARY. Let S be a congruence-simple semiring such that the
Ž .multiplicati�e semigroup S � possesses an absorbing element. Then just one of

the following four cases takes place:

Ž .1 S is isomorphic to one of the two-element semirings Z , Z , Z , Z ,1 2 3 4
and Z .5

Ž .2 There exists an abelian group G such that S is isomorphic to the
Ž . Ž .semiring V G see 3.2 .

Ž .3 S is a zero-multiplication ring of finite prime order.
Ž .4 S is a field.

Proof. Combine 3.1, 3.3, 5.3, 5.1.3, and 3.4.
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Ž .6.4. Remark. Let S be a congruence-simple semiring such that S �
Ž . Ž . Žcontains a neutral resp. absorbing element 0 resp. o . Then S0 � 0 resp.

.So � o in all cases with the exception of the two-element semirings Z ,3
Ž .Z resp. Z , Z .6 4 5

7. SEMIRINGS OF POSITIVE REAL NUMBERS

The results of this section are of auxiliary character and to some extent
are folklore. Anyway, for the benefit of the reader, full details are given.

Ž .7.1 Let F be a field containing as a prime subfield the field � of
rationals and let � denote the set of subsemirings S of F such that 0 � S;

� Ž .we have � � � and � is ordered by inclusion. Further, let � resp. �
Ž � .denote the set of S � � such that 1 � S resp. � � S , and for every

Ž �.a � S, let there be a positive integer n resp., positive integers p, q � �
Ž .such that a � n resp., p � a � q . Finally, let � denote the set ofS S S

� 4S � � such that F � a � b; a, b � S .

Ž .7.1.1. LEMMA. i E�ery S � � is archimedean.

Ž . Ž .ii If S � � and S � is a group, then S is archimedean and S � �.
Ž .iii E�ery S � � is conical.

Ž . �Proof. i If a, b � S, then p � a and b � q for some p, q � �S S
and we get b � qp�1a.S

Ž . �1ii If a, b � S, then ba � n and b � na.S S

Ž .iii This is obvious.

7.1.2. LEMMA. Let S � � and T � � be such that S � T. Then:

Ž .i T � �.
Ž .ii If S � � , then T � �.
Ž . � Ž .iii If S � � and � � S, then T � � in particular, S � � .

Ž .Proof. i This is obvious.

Ž .ii If u � T , then u � a � b; a, b � S; a � n; and u � a � b �S T
n.

Ž . �1iii Let w � F; w � 0; w � a � b; a, b � S; a � n; n � a � c,S
c � S. Now, for d � b � c � S, we have w�1 � d � n; n�1 w�1 � n�1d �
1; n�1 � n�1 dw � w; n�1d � S; and hence n�1 � w, provided thatT
w � T.

� � � 47.1.3. LEMMA. Let S � � and T � pa � q; p, q � � 	 0 , p � q �
4 �0, a � S . Then T is a subsemiring of F; S 	 � � T ; and T � �. More-

Ž . Ž .o�er, if S � � resp., � , � , then T � � resp., � , � .
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Proof. If pa � q � 0 for p � q � 0, then p � 0 � q and there is a
Ž .2 2 Ž .positive integer n such that �n � S. Now, �n � n � S and n. �n �

2�n � S, a contradiction. The rest is clear.
2 �7.1.4. LEMMA. Let S � � , w � F, w � S, and T � a � bw; a, b �

� 4 4S 	 0 , a � b � 0 . Then:

Ž . Ž .i T is a subsemiring of F and S � T if 1 � S, then w � T .
Ž . �1ii If 0 � T , then �w � ab for some a, b � S.
Ž . Ž .iii If S � is a group and �w � S, then T � �.

2 �7.1.5. LEMMA. Let S � �; w � F; w � S; T � a � bw; a, b � S 	1
� 4 4 � � 4 40 , a � b � 0 ; and T � a � bw; a, b � S 	 0 , a � b � 0 . Then both2
T and T are subsemirings of F, S � T � T and either T � � or T � �.1 2 1 2 1 2

Proof. See the proof of Lemma 4.4.

7.1.6. LEMMA. Let S � � be such that 1 � S, and let u � S. Denote by
T the set of all elements from F of the form a � a u�1 � ��� �a u�n, where0 1 n

� 4 Ž .n 
 0, a � S 	 0 , and a � Ýa � 0 then a � S . Then T is a subsemiringi i
� �14of F, S 	 u � T , and T � �. Moreo�er, if S � � , then T � �.

Proof. If a � a u�1 � ��� �a u�n � 0, then a un � a un�1 �0 1 n 0 1
��� �a u � a � 0, a contradiction with 0 � S. Thus T � � and, more-n�1 n

�1 �1 �1over, if p � u � q then q � � u � p , and the rest is clear.S S T T

� �1 47.1.7. LEMMA. Let S � � and T � ab ; a, b � S . Then T � � and
Ž . Ž .T � is a group i.e., T is a parasemifield . Moreo�er, if S is archimedean,

then T is archimedean and T � �.

Proof. The proof is easy.

7.1.8. PROPOSITION. Let S � � � � be maximal in � � �. Then:

Ž . Ž .i S � is a group and S is an archimedean conical parasemifield.
Ž . 2ii For e�ery w � F, w � 0, we ha�e w � S and either w � F or

�w � F.
Ž . Ž .iii � is linear both on S and F .S

� Ž .Proof. By Lemma 7.1.3, � � S and, by 7.1.2 iii , S � �. Further, by
Ž .7.1.6., S � is a group and by 7.1.1, S is both archimedean and conical.

2 Ž .Now, w � S by 4.8 ii and we shall consider the semirings T , T defined1 2
� � 4 4in 7.1.5. We can assume that 0 � T � a � bw; a, b � S 	 0 , a � b � 0 ,1

the other case being similar. Then T � � , S � T , and w � T. Finally, by
Ž .7.1.2 iii , T � � � � and, due to the maximality of S, we must have

T � S and w � S.

7.2. Let F be a field and let S be a subsemiring of F such that
Ž .S � � � �; then char F � 0 and we may assume that � is a subfield of
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F. Now, let T � � � � be such that S � T and T is maximal in � � �.
By 7.1.8 the ordering � corresponding to T is an archimedean linearT

Ž� �order on the field F. Now, by the Holder Theorem 19 ; see the proof of¨
. Ž . Ž .5.3 there exists an injective homomorphism � : F � � � � such that

Ž . Ž .� x � � y in the usual order of � whenever x, y � F and x � y.T
Ž � � � �. Ž .Further see 1 and 4 , for every a � F there is � a � � such that

Ž . Ž . Ž . Ž . Ž .� ax � � x � a for every x � F; we have � 0 � 0, � a � 0 for a �T
Ž . Ž . Ž .0, and � a � b � � a � � b for all a, b � F. Consequently, we can

Ž . Ž . Ž .find q � �, q � 0, such that � a � � a q for every a � F. Thus � xy
Ž . Ž . Ž . Ž .� � x � y q for all x, y � F, and the mapping � : F � �, � x � � x q

Ž .for every x � F is an injective homomorphism of the field F into the
Ž . Ž .field �; for x � y in F we have � x � � y in �. In particular,T

Ž . Ž . �� S � � T � � .
7.3 Let F be a subfield of the field � of real numbers and let

Ž . � 2 2 4P F � a � ��� �a ; n 
 1, a � F, a � 0 .1 n i i

Ž . Ž .7.3.1. LEMMA. i P F is a conical parasemifield.

Ž . � Ž .4ii F � a � b; a, b � P F .
Ž . � Ž . �iii � � P F � F .

2 2 �1 Ž �1 .2 Ž �1 .2Proof. If a � a � ��� �a , then a � a a � ��� � a a �1 n 1 n
2 2Ž . Ž . Ž .P F . Further, x � x�2 � 1 � x�2 � 1 for every x � F.

� � 47.3.2. LEMMA. F � a � F; a � 0 is an archimedean and conical
parasemifield.

Ž . �7.3.3. LEMMA. Let S be a subsemiring of F such that P F � S � F .
Then S is a conical parasemifield.

�1 �2Proof. We have a � a.a � S for every a � S.

Ž . �7.3.4. LEMMA. Let S, T be subsemirings of F such that P F � S � F
Ž . �and P F � T � F . Then:

Ž .i S and T are conical.
Ž .ii If S � T and S is archimedean, then T is also.
Ž .iii If S, T are archimedean, then S � T is also.

7.3.5. LEMMA. Let S be a subsemiring of F such that 0 � S and 1 � S.
Ž .Denote by A S the set of a � S such that n � a � S for some positi�e integer

Ž . Ž .n. Then A S is a subsemiring of S, 1 � A S , and there is a positi�e integer m
Ž .with m � a � A S .

� 47.3.6. EXAMPLE. Let F � � and S � q � F; q 
 1 . Then S is a
subsemiring of F, S is both archimedean and conical, and S � S � S.
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�' 'Ž . Ž . Ž7.3.7. EXAMPLE. Let F � � 2 . Then P F � F �1 � 2 �
� Ž .. Ž . ŽŽF � P F and P F is an archimedean and conical parasemifield a �

2 2 2 2' '. Ž . .b 2 � a � b 2 � 2 a � 4b and Lemma 7.3.5 applies .

7.3.8. EXAMPLE. Let � � �� be a transcendental number and F �
Ž . Ž . Ž .� � . Then P F is a conical parasemifield but P F is not archimedean

Ž �2 Ž .we have n � � � P F for every positive integer n; to show this, just
2Ž . �2 Ž . � �watch the behavior of f r g r , where f , g � � x , f � 0 � g, and

. Ž .r � �, r � 0 . Further, for every a � P F , choose a positive integer ma
such that m � a � F� and let S be the subsemiring of F� generated bya
Ž . � Ž .4P F 	 m � a; a � P F . Then S is both archimedean and conical.a

7.3.9. EXAMPLE. If F � �, � or if F is the field of algebraic real
Ž . �numbers, then P F � F .

7.3.10. EXAMPLE. Let � � �� be a transcendental number, 0 � � � 1,
Ž . Ž . Ž .F � � � , and let � : � x � F be the isomorphism such that � x � �
� Ž .and � � � id. Now, denote by T the set of f � � x such that there exist

�1 Ž .m, n � � with n � f u � m for every u � �, 0 � u � 1. Then S �
Ž . �� T is a subsemiring of F and S is an archimedean parasemifield. On

Ž .the other hand, S is not conical and P F � S.

7.4. LEMMA. Let S, T be subsemirings of � such that S � T , S is conical,
and e�ery element of T is algebraic o�er the difference field F � S � S
Ž Ž ..� R S . Then T is conical.

Proof. Put R � T � T and take 0 � r � R. Then r � a � b, a, b � T ,
� � �1 Ž .and there is a polynomial f � F x, y such that r � f a, b . Since

F � S � S, we conclude easily that r�1 � R. Thus R is a field and T is
conical.

7.5. LEMMA. Let S and T be subsemirings of �� such that both S and T
Ž . � Ž .are semisubtracti�e see 4.5 , � � S � T , and there exists a semiring

isomorphism � : S � T. Then S � T and � � id.

Ž .Proof. Assume, on the contrary, that � a � a for some a � S. Now,
� Ž . Ž .take q � � such that � a � q � a. Then a � q � S and 0 � � a � q

Ž .� � a � q � 0, a contradiction.

Ž . � 2 27.6. Remark. Let F be a field such that 0 � P F � a � ��� �a ;1 n
4 Ž Ž . Ž .n 
 1, 0 � a � F P F is a conical parasemifield and F � P F �i

Ž ..P F , and let � denote the set of subsemirings S of F such that
Ž .P F � S and 0 � S. Again, every S � � is a conical parasemifield and S

is maximal in � if and only if S � � , where � is the set of semisubtrac-
tive parasemifields from �.
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�Take S � � and w � F such that w � S and �w � S. Then S � a �1
� 4 4bw; a, b � S 	 0 , a � b � 0 � �; S � S ; �w � S ; and S � T , where1 1 1

T is maximal in �; we have T � � and w � T. Now, it follows easily that
� 4S � �� , where � � T � �; S � T .S S

8. CONGRUENCE-SIMPLE MULTIPLICATIVELY
AND ADDITIVELY CANCELLATIVE

COMMUTATIVE SEMIRINGS

8.1. LEMMA. Let S be a cg-simple amc-semiring. Then S is archimedean.

Ž .Proof. Define a relation r on S by a, b � r if and only if there exist
c, d � S and m, n � � such that a � c � mb and b � d � na. It is easy to

Ž .check that r is a congruence of S such that a, 2 a � r for every a � S.
Since a � 2 a, we have r � S � S.

8.2. THEOREM. Let S be a non-tri�ial amc-semiring. Then S is congru-
ence-simple if and only if S satisfies the following three conditions:

Ž .1 For all a, b � S there exist c � S and a positi�e integer n such that
Ž .b � c � na i.e., S is archimedean .

Ž .2 For all a, b, c, d � S, a � b, there exist e, f � S such that ae � bf
Ž .� c � af � be � d i.e., S is conical .

Ž . Ž3 For all a, b � S there exist c, d � S such that bc � d � a i.e., S is
.bi-ideal-simple .

Ž . Ž . Ž .Proof. If S is cg-simple, then 1 is satisfied by 8.1, 2 by 4.3 iii , and
Ž . Ž .4.2 v , and 3 follows from the easy fact that Sb � S is a bi-ideal of S.

Ž . Ž . Ž .Now, conversely, assume that the conditions 1 , 2 , and 3 are satisfied.
The rest of the proof is divided into four parts:

Ž .i Let r � id be a congruence of S such that the correspondingS
factor-semiring T � S�r is additively cancellative. The difference ring

Ž . Ž Ž . Ž .. �R � R S of S is a field by ii and 4.2 v and the set I � a � b;
Ž . 4a, b � r is a non-zero ideal of R. Consequently, I � R and for all

Ž .x, y � S there are a, b � S such that a, b � r and x � y � a � b. Now,
Ž .x � b � y � a and x, y � r, since T is an ac-semiring. We have proved

that r � S � S.
Ž . Ž . Ž .ii Let T be a non-trivial semiring satisfying the conditions 1 , 3

Ž Ž ..and 2 and let w � T be such that w � w � w. We claim that T is a
Ž .ring field .

Ž .First, according to 1 , for every x � T there exists y � T such that
x � y � w. In particular, if x � x � x, then w � x � x � y � x � x � y �
w. On the other hand, replacing w by x, we get x � w � x. Thus x � w is
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Ž .the only idempotent of the additive semigroup T � and it follows easily
Ž .that Tw � w and, by 3 , w � T � T. Consequently, w � 0 is a neutral

Ž . Ž . Ž .element of T � and we conclude that T � is an abelian group and T
Ž .is a ring. Finally, if T satisfies 2 , a � T , a � 0, and c � T , then

Ž .ae � c � ae � 0 f � c � af � 0e � 0 � af and c � a e � f for some e, f
� T. Thus T is a field.

Ž . Ž .iii Let r be a congruence of S such that w, 2w � r for at least
one w � S. We claim that r � S � S.

Ž .Assume on the contrary, that r � S � S and put T � S�r. By ii , T is a
Ž .ring, and hence r � id by i , a contradiction, since S is not a ring.S

Ž .iv Let s be a congruence of S, s � S � S, and let w � S be
Ž . Ž .arbitrary. By iii , w, 2w � s and we can consider a congruence r of S

Ž . Ž .maximal with respect to s � r and w, 2w � r. Now, again by iii , r is a
maximal congruence of S and T � S�r is a cg-simple semiring such that
Ž .T � has no idempotent. Using 3.1 we see that T is an ac-semiring, and so

Ž .r � s � id by i . Thus S is cg-simple.S

8.3. COROLLARY. Let S be an ac-parasemifield. Then S is cg-simple if and
only if the following two conditions are satisfied:

Ž .1 For e�ery a � S there exist b � S and a positi�e integer n such that
Ž .a � b � n1 i.e., S is archimedean .S

Ž .2 For e�ery a � S, a � 1 , there exist b, c � S such that a � b �S
Ž .1 � ab � c i.e., S is conical .S

8.4. Remark. Let S be a non-trivial amc-semiring such that 1 � S.S
Then S is cg-simple if and only if S is both archimedean and conical and,

Ž .moreover, S � S � S i.e., 1 � a � b for some a, b � S .S
To show this, we can proceed similarly as in the proof of 8.2. Note that

Ž .1 , 2 � r for every congruence r � S � S and, if r is maximal withS S
Ž .respect to 1 , 2 � r, then r is a maximal congruence of S.S S

8.5. THEOREM. Let S be a congruence-simple additi�ely and multiplica-
Ž . Ž .ti�ely cancellati�e semiring and let F � R S see 4.2 . Then F is a field and

Ž .there exists an injecti�e homomorphism � of the field F into the field � of
Ž . �real numbers such that � S � � . Moreo�er, if S is a parasemifield, then

Ž . � 2 2 4P F � a � ��� �a ; 0 � a � F, n 
 1 � S.1 n i

Proof. In view of 4.1, we may assume that S is a parasemifield. By
Proposition 4.3, S is conical, and hence F is a field. Further, by Lem-
ma 8.1, S is archimedean and the rest is clear from 4.8 and 7.2.

� �8.6. THEOREM 21, 6.9; 10, Satz 16 . Let E be a subfield of � and S be a
subsemiring of � such that S is a parasemifield, E�� S, and e�ery element
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Žfrom S is algebraic o�er E. Then S is congruence-simple i.e., S is archimedean
.and conical .

� �8.7. COROLLARY 23, Satz 2 . Let S be a subsemiring of � such that S is
a parasemifield and e�ery element from S is algebraic o�er �. Then S is
congruence-simple.

Ž .8.8. COROLLARY cf. 7.3.8 . Let F be a subfield of � such that F is
Ž . � 2 2 4algebraic o�er �. Then P F � a � ��� �a ; 0 � a � F is a congruence-1 n i

Ž Ž . .simple parasemifield in particular, P F is achimedean .

8.9. Remark. Let E, F be subfields of � such that E � F and the
Ž .linear dimension dim F is finite. Denote by � the set of subsemirings SE

of F such that F � S � S, S is a parasemifield, and E�� S.

Ž . Ž . � Ž .i We have F � E w for some w � F and we denote by w �
Ž .w , w , . . . , w , n 
 1, all pair-wise different real roots of the minimal1 2 n

polynomial of w over E. Now, there exist exactly n different homomor-
�phisms � , . . . , � : F � � such that � E � id and we may assume that1 n

Ž . �1Ž �. �1Ž Ž .�.� � id and � w � w . Let T � � � � � E w . Clearly, T are1 i i i i i i i
semisubtractive parasemifields, T � F�, T � � , T are maximal in � ,1 i i

Ž .and P F � T .i
Ž .ii Let T designate the intersection � T for every non-emptyM i� M i

� 4 � �subset M of N � 1, 2, . . . , n . By 10, Satz 16 , T � T for M � MM M 1 21 2
� 4 nand � � T ; � � M � N . Consequently, � contains just 2 � 1M

elements and T � T � ��� �T is a smallest element of �. Clearly,N 1 n
Ž . � 2 2 �4P F � T � a b � ��� �a b ; m 
 1, 0 � a � F, b � E . Note alsoN 1 1 m m i i

that if S is a subsemiring of F such that T � S and 0 � S, then S is aN
parasemifield and S � � , so that S � T for some � � M � N. Simi-M
larly, if S is a subsemiring of F such that T � S and 0 � S, then eitherN

� 4S � T 	 0 or S � F.M

Ž . � Ž . Ž . Ž .iii If E � P F e.g., E � � , then T � P F and � is the set ofN
Ž Ž ..subsemirings S of F such that F � S � S � R S and S is a parasemi-

field.
Ž . Ž .iv cf. 7.5 . Let M and M be non-empty parts of N such that1 2

there exists an isomorphism � : T :� T of the parasemifields withM M1 2
� �� E � id. Then � extends to an E-automorphism of F, and therefore

�there is k � N such that w � F and � � � T . Further, there is ak k M1�1 Ž .permutation p of N such that � � � � and � T T for everyi k pŽ i. k i pŽ i.
� 4 � Ž . Ž . Ž .4i � N. Now, if M � i , i , . . . , i , then M � p i , p i , . . . , p i ; in1 1 2 m 2 1 2 m

particular, the sets M and M have the same number of elements.1 2

8.10. Remark. Let E, F be subfields of � such that E � F and F be
algebraic over E. Denote by � the set of subsemirings of F such that
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F � S � S, S is a parasemifield, and E�� S, and denote by 	 the set of
� �1Ž �.homomorphisms � : F � � such that � E � id. Let T � � � for�

every � � 	. Clearly, T are subsemisubtractive parasemifields, T � F�,� id
Ž .T � � , T are maximal in � , and P F � T .� � �

Let T designate the intersection � T for every non-empty subsetM � � M �

Ž .M of 	. Clearly, T � � and P F � T . Now, we show that � �M M
� 4T ; � � M � 	 .M

Ž �1 . �Let S � � , a, b � S, and F � E a b , S � S � F . Then E � S1 1 1 1
� � �1and S is archimedean by 10, Satz 16 . In particular, n � a b � S and1 1

na � b � S for some n � �. We have shown that S is archimedean, and
Ž . Ž Ž ..therefore P F � S 4.8 ii . Now, it follows from 4.5 that S � T forM

some � � M � 	.

Ž .8.11. THEOREM cf. 9.7 . Let S be an archimedean and conical amc-semi-
Ž .�1ring such that S has a unit element 1 and n1 � S for e�ery n � �.S S

Then S is a parasemifield.

Proof. We make use of a variation on the well-known Goodearl�
Ž � � .Handelman method see 13 for details and further references , the

Ž� � � �backgrounds of which go back to Holder and Hilbert 19 and 18 ; but see¨
� �.also 1�9, 15, 22, 24, 29�31 .

Since S is conical, there exists a field F such that S is a subsemiring of
Ž Ž ..F � S � S see 4.2 i, v and, since S is archimedean, we have S � A,

where A denotes the set of a � F such that for every x � F there is
Ž . Ž .n � � with na � x � S. Now, an additive homomorphism f : F � �

Ž . Ž . Ž .� � will be called normative if f 1 � 1 and f a � 0 for every a � S.F
The set NN of normative homomorphisms is a compact convex set and we
denote by EE the set of extremal points of NN. Now, one can show that every

� � Žf � EE is a ring homomorphism; see e.g. 14 in fact, no topological
arguments are necessary and a rather easy and purely algebraic proof of
the mentioned fact is available�the kind reader may wish to make it up as

.a stimulating exercise .
The rest of the present proof is divided into two parts:

Ž . Ž .i First, we check that a � A if and only if f a � 0 for every
normative ring homomorphism f : F � �.

Indeed, if a � A, then na � 1 � S for some n � � and we haveF
Ž . �1 �f a 
 n � 0. To show the converse implication, put r � sup n�m;

� 44n � �, m � �, ma � n1 � S 	 0 . Then there exists f � EE such thatF
Ž . � 4f a � r, and therefore f � 0 and ma � n1 � S 	 0 for some m, n � �.F

Now, it follows easily that a � A.

Ž . Ž . Ž . Ž .ii Now, according to i , A � is a subgroup of F � , and A is a
parasemifield, and it remains to show that A � S. But, if a � A, then

�1na � S for some n � � and consequently a � n � na � S.
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8.12. COROLLARY. Let S be a congruence-simple amc-semiring such that
Ž .�11 � S. Then S is a parasemifield if and only if n1 � S for e�ery n � �.S S

8.13. COROLLARY. Let S be a congruence-simple amc-semiring such that
1 � S. Then for e�ery a � S there exist b � S and n � � such that ab � n1 .S S

8.14. EXAMPLE. Let � � �� be a transcendental number and F �
Ž . Ž . Ž .� � . There exists an isomorphism � : � x � F such that � x � � and

� � � � id. Now, we denote by S the set of a � F such that a � �� and
Ž . � Ž . ŽŽ �1Ž ..�. Ž Ž . �� a � � , where � a � � � a here, for f � � x , f is the

. �derivative of f . Clearly, S is a subsemiring of F , S is both archimedean
and conical, and ��S � S. Moreover, given a, b � S, we find q � ��

2 Ž 2 . Ž . Ž .small enough such that qa � b and q
 a � 
 b . That is, b � qa a � S
and we see that S is bi-ideal-simple. But 8.2, S is a congruence-simple
amc-semiring. Finally, note that S � � � �; in particular, S is not a
parasemifield.

9. SUBSEMIRINGS OF ��

9.1. LEMMA. A subsemiring S of �� is archimedean and conical if and
only if for e�ery n � � there exists m � � such that k�n � S for e�ery
k 
 m.

Proof. Assume first that S is both archimedean and conical. For
Ž . ŽŽ .n � �, we can find r, s � S � � such that rn � 1 �n � S and rn � 1 s

. Ž . ŽŽ . . Ž .2� 1 � rn � 1 � S. Now, put a � n rn � 1 s � 1 and b � rn � 1 .
Ž . �Then gcd a, b � 1, and hence there is m � � such that m, m � 1, m �

4 � 4 Ž . Ž .2, . . . � ua � �b; u, � � � . Since a�n rn � 1 � S and b�n rn � 1 �
Ž .S, we have k�n rn � 1 � S for every k � m. Consequently, k�n � S.

Now, assume that the condition of the lemma is satisfied and let
a, b, r, s � �, a�b � S. Then there is m such that k�bs � S for every
k 
 m. Taking l � � such that las � br 
 m, we get l � a�b � r�s � S.

9.2. PROPOSITION. Let S be a subsemiring of �� such that S is
archimedean and conical and 1�r � S for some r � �, r 
 2. Then S � ��.

l Ž .Proof. If n � �, then r �n � S for some l � � by 9.1 , and therefore
l lŽ .Ž .1�n � 1�r r �n � S.

Ž .9.3. LEMMA. Let a, b, c � � be such that a � b, c � b and gcd a, c � 1.
Then 1�b � S, where S denotes the subsemiring of �� generated by a�b and
c�b.

n 4Ž . Ž .Ž .Proof. Let n � � be such that n 
 2 and 
 n � 1 b � 1 . We2

will construct a sequence r , . . . , r of integers such that 0 � r � c for0 n i
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Ž n�1 .every 0 � i � n. First, since gcd a , c � 1, there is 0 � r � c such that0
n n�1Ž . Ž n . Ž n n�1.b � r a mod c . Quite similarly, gcd a , c � 1, b � r a �c �0 0

n Ž . n Ž n�1 n . Ž 2 .r a mod c for some 0 � r � c, and b � r a � r a c mod c .1 1 0 1
Proceeding by induction, we find the remaining numbers r , . . . , r such2 n
that

bn � r an�1 � r anc � ��� �r an�1�ic i mod ci�1Ž .Ž .0 1 i

for every 0 � i � n. Now, put s � Ýn r an�1�ic i. Since a � b and c � b,i�0 i
n Ž .Ž .n�1�iŽ . i Ž .Ž .n�2we have s � Ý b � 1 b � 1 b � 1 � n � 1 b � 1 �i�0

n n�2 n n nŽ .Ž . Ž .b � 1 � b � 1 � 1 � b , and therefore t � b � s 
 0. On the2

other hand, t � r cn�1 and bn � s � r cn�1. Finally, it is clear fromn�1 n�1
Ž n�1. n�1the definition of s that s � r c �b � S and we have proved thatn�1

1�b � S.

Ž .9.4. LEMMA. Let a, b, c, d � � be such that a � b, c � d and gcd a, b
Ž . Ž . Ž .� gcd c, d � gcd a, c � 1. Then 1�scm b, d � S, where S denotes the

subsemiring of �� generated by a�b and c�d.

Ž .Proof. We have a�b � e�g, c�d � f�g, and gcd e, f � 1, where g �
Ž .scm b, d . It remains to use 9.3.

9.5. THEOREM. Let S be a congruence-simple subsemiring of �� such
that 1 � S. Then S � ��.

Proof. By 8.2, S is both archimedean and conical and there exist
Ž .a, b, c,d � � such that a�b � S, c�d � S, a�b � c�d � 1, and gcd a, b

Ž .� 1 � gcd c, d . It remains to apply Lemma 9.4 and Proposition 9.2.

Ž .9.6. EXAMPLE. Every positive rational number q can uniquely be
dŽq. �1 Ž . Ž .written as q � 2 � rs , where d q � �, r, s � �, and gcd r, s �

Ž . Ž . Ž . Ž Ž . Ž .. Ž .gcd r, 2 � gcd s, 2 � 1. Clearly, d p � q 
 min d p , d q , d pq �
Ž . Ž . � � � �d Žq. Ž .d p � d q for all p, q � � , and we put q � 2 the dyadic norm .2

� � � � 4 Ž . �Now, the set S � q � � ; q � q � 0 is a proper subsemiring of �2
Ž .e.g., 2, 3, 4, ��� � S, 2�3 � S, 1 � S, 1�2 � S and, for every t � �, one
finds easily n � � such that n � t � S. Thus S is both archimedean and

� � �conical. Furthermore, if p, q � S and w � p � p , then w � � and we2
Ž . Ž .take t � S such that tq � w and d p � d tq . Now, p � tq � S and we

see that S is bi-ideal simple. By Theorem 8.2, S is a congruence-simple
Ž � .amc-semiring � � S and S is not a parasemifield .

9.7. Remark. Using Proposition 9.2, we can improve Theorem 8.11 as
follows:

Ž .�1Let S be an archimedean and conical amc-semiring such that n1 �S
S for at least one n � �, n 
 2. We claim that S is a parasemifield.

Ž .Indeed, with respect to 7.2 see also the proof of 8.11 we may assume
that S is a subsemiring of ��. Now, F � S � S is a subfield of � and we
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put S � S � ��. Then 1 � S , 1�n � S , and S is an archimedean and1 1 1 1
conical subsemiring of ��. By Proposition 9.2, S � ��, and S is a1
parasemifield.

10. CONGRUENCE-SIMPLE COMMUTATIVE
SEMIRINGS�SUMMARY

Ž .10.1. THEOREM. A commutati�e semiring S is congruence-simple if and
Ž .only if S is isomorphic to one of the following semirings:

Ž . Ž .1 the two-element semirings Z , Z , Z , Z , and Z see Section 2 .1 2 3 4 5

Ž . Ž . Ž .2 the semirings V G for any abelian group G see 3.2 ;
Ž . Ž .3 the semirings W A for any subsemigroup A of the additi�e group

Ž . � � Ž .� � of real numbers such that A � � � � � A � � see Example 5.1 ;
Ž .4 fields;
Ž .5 zero-multiplication rings of finite prime order;
Ž . �6 the subsemirings S of the semiring � of positi�e real numbers such

that the following three conditions are satisfied:
Ž .6a for all a, b � S there exist c � S and a positi�e integer n such

that b � c � na;
Ž .6b for all a, b, c, d � S, a � b, there exist e, f � S such that

ae � bf � c � af � be � d;
Ž .6c for all a, b � S there exist c, d � S such that bc � d � a.

Proof. Combine 3.1, 3.2, 3.4, 5.3, 8.3, and 8.6.

Ž .10.2. Remark. i The two-element semirings Z , . . . , Z are pair-wise1 5
non-isomorphic.

Ž . Ž . Ž . Ž .ii V G 
 V G if and only if G 
 G see 3.2 .1 2 1 2

Ž . Ž . Ž . � Žiii W A 
 W A if and only if A � qA for some q � � see1 2 2 1
.5.1.4 .

Ž .10.3. Remark. The congruence-simple semirings of type 10.1 6 are not
Žyet fully classified up to isomorphism see 8.9 and 8.10 for some special

. Ž �cases . In particular, the following problem originally formulated in 26,
�.5.7 remains open: Does there exist a congruence-simple amc-semiring S

such that 1 � S and S is not a parasemifield? According to 9.5 and 9.7 weS
� Ž .�1know that if S were such a semiring, then S � � and n1 � S forS

every n � �, n 
 2. Examples of cg-simple amc-semirings without unit are
given in 8.14 and 9.6.
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11. IDEAL-SIMPLE COMMUTATIVE SEMIRINGS�
BASIC CLASSIFICATION

Ideal-simple semirings are better known than the congruence-simple
� �ones�see e.g. 10�12, 16, 17, 20, 21, 23, 27, 28, 32, 34�41 . Anyway, for the

sake of completeness and the full comfort of the reader, we include some
Ž .basic information on ideal-simple commutative semirings. The reader is

urged to compare the results on the congruence-simple semirings with
those on the ideal-simple ones.

Ž .A non-trivial commutative semiring S is said to be a semifield if there
Ž .exists an element w � S such that Sw � w and T is a subgroup of S � ,

� 4where T � S� w . If, moreover, S is not a field, then one says that S is a
proper semifield.

Ž .11.1. PROPOSITION. i E�ery semifield is ideal-simple.

Ž .ii E�ery parasemifield is ideal-simple.

11.2. THEOREM. Let S be an ideal-simple semiring. Then just one of the
following fi�e cases takes place:

Ž .1 S is isomorphic to one of the two-element semirings Z , Z , and Z ;1 3 4

Ž .2 S is a zero-multiplication ring of finite prime order;
Ž .3 S is a field;
Ž .4 S is a proper semifield;
Ž .5 S is a parasemifield.

Proof. Suppose that S contains at least three elements and put A �
� � � 4a � S; Sa � 1 . If b � S� A, then Sb � S, and hence S is a parasemi-
field, provided that A � �. Assume therefore that A � �; then there is

� 4an element w � S such that SA � w , w � w � w, and we see that A is
� 4an ideal of S. Consequently, either A � w or A � S.

ŽFirst, let A � S and S � w � w i.e., w � o is an absorbing element of
Ž .. Ž .S � . Then SS � o and, if P is a subsemigroup of S � such that o � S,

� 4then P is an ideal of S, and hence either P � o or P � S. If a � S,
� 4 Ž . � 4a � a � a, then a, o is a subsemigroup of S � , a, o � S, and therefore

Ž .a � o. We have proved that w is the only idempotent element of S � .
� 4 � 4Now, take a � S, a � o, and put P � na; n 
 1 . Then P 	 o � S,

Ž . Ž .P � contains no proper subsemigroup, P � is a finite cyclic semigroup,
� 4o � P, and there is b � P such that b � o and b � b � o. But then b, o

Ž . � �is a subsemigroup of S � , a contradiction with S 
 3.
Ž .Next, let A � S and S � w � w. Then S � w � S, since S � w is a bi-

Ž .ideal of S, and it follows that w � 0 is a neutral element of S � . Further,
proceeding similarly as in the preceding part of the proof, we can show
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Ž .that 0 is only the only idempotent of S � and that every cyclic subsemi-
Ž . Ž .group of S � is finite. Consequently, S � is a group and S is a ring.
Ž . Ž .Thus either 2 or 3 takes place.

� 4 � 4Further, let A � w and S � w � w, w � o. For every a � T � S� o ,
� 4the set I � b � S; ab � o is an ideal of S, I � S, and so I � o. Wea a a

Ž .have checked that T is a subsemigroup of S � and, since Ta � T for every
Ž .a � T , T � is a group.

� 4Finally, let A � w and S � w � w. Then S � w � S, w � 0 is a
Ž .neutral element of S � , and, proceeding similarly as in the preceding

� 4 Ž .part, we show that T � S� 0 is a subgroup of S � .

12. SEMIFIELDS

12.1. PROPOSITION. Let S be a semifield and let w � S be such that
Ž � 4 Ž ..Sw � w and T � S� w is a subgroup of S � . Then just one of the

following four cases takes place:

Ž . Ž1 S is isomorphic to the two-element semiring Z and then w � o is2
Ž . Ž ..an absorbing element of both S � and S � ;

Ž . Ž . Ž .2 w � o is an absorbing element of both S � and S � , and S � a
� o for e�ery a � T ;

Ž . Ž Ž ..3 S is a field and then w � 0 is a neutral element of S � ;
Ž . Ž . Ž4 w � 0 is a neutral element of S � and S is a proper semifield i.e.,

Ž . .S � is not a group .

Ž .Proof. We have w � w � 1 � 1 w � w and, if 1 � w � w, thenS S S
Ž .w � aw � a 1 � w � a � w for every a � S, and so w � o. On theS

Ž .�1Ž . �1other hand, if 1 � w � w, then 1 � 1 � w 1 � w � 1 � w � w,S S S S
1 � w � 1 � w�1 � w � w � 1 � w�1 � w � 1 , and a � w � a1 �S S S S S

Ž .aw � a 1 � w � a1 � a for every a � S, and so a � 0. The rest isS S
clear.

Ž .12.2. PROPOSITION. Let S be a semifield of type 12.1 2 . Define a relation
Ž . � 4 �� on S by a, b � � if and only if x � S; a � x � o � y � S; b �S S

4y � o . Then

Ž . Ž . � 4i � is a congruence of S and a, o � � for e�ery a � T � S� o .S S

Ž . � Ž . 4 Ž .ii P � a � T ; a, 1 � � is a subgroup of T � and either P � 1S S
Ž .and � � id or P is a parasemifield.S S

Ž . Žiii The factor-semiring R � S�� is isomorphic to the additi�elyS
. Ž . Ž .idempotent semifield V T�P see 3.2 and � � id .R R

Ž . Ž .Proof. The assertions i , ii and the fact that � � id are easy toR R
check. Further, let r be a congruence of the semiring R, r � id . We haveR
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Ž . � Ž . 4x, y � r for some x, y � R, x � y, and we put A � r � R; z, o � R .
Ž . � 4Then A is an ideal of R and, since x, y � � � id , we have A � o .R R

Ž .Thus A � R since R is ideal-simple and r � R � R. We have proved
that R is a cg-simple semiring and the result follows from 3.1, 3.2, and 3.3.

12.3. Remark. Let P be a semiring such that either P is trivial or P is
Ž . Ž .a parasemifield. Suppose further that P � is a subgroup of an abelian

Ž . � 4group T � , put S � T 	 o , and define an addition on S as follows:

Ž .a x � o � o � o � x for every x � S;
Ž . �1b x � y � o for all x, y � T , x y � P;
Ž . Ž �1 . Ž �1 . �1c x�y� 1 �x y x� 1 �y x y for all x, y�T , x y�P.T T

Ž .Then S becomes a semifield of type 12.1 2 and every semifield of that
type may be constructed in the described way.

Ž .12.4. PROPOSITION. Let S be a proper semifield of type 12.1 4 . Then:

Ž . � 4i a � b � 0 for all a, b � T � S� 0 .
Ž . Ž .ii T is a subsemiring of S and either T is tri�ial and then S 
 Z or5

T is a parasemifield.

Ž . � 4Proof. Since S � is not a group, the set T � a � T ; 0 � S � a is1
non-empty. Now, bT � T for every b � T , and so T � T. The rest is1 1 1
clear.

12.5. Remark. Let T be a semiring such that either T is trivial or T is
� 4 Ž .a parasemifield. Then S � T 	 0 is a semifield of type 12.1 4 and every

semifield of this type may be constructed in the described way.

13. PARASEMIFIELDS

� �13.1. PROPOSITION 41 . There exists a one-to-one correspondence between
additi�ely idempotent parasemifields and lattice-ordered non-tri�ial abelian
groups.

Ž .Proof. If S is an ai-parasemifield, then S �, � , � is a lattice-ordered
Ž �1 �1.�1group, where a � b � a � b and a � b � a � b for all a, b � S.

Ž .Conversely, if S �, � , � is a lattice-ordered group and a � b � a � b,
Ž .then S �, � is an ai-parasemifield.

13.2. Remark. Let S be an additively cancellative parasemifield and let
Q� denote the sub-parasemifield of S generated by 1 .S

Ž . � � Ž .i Q 
 � the parasemifield of positive rationals .
Ž . � � � 4 Ž . Ž .ii Q � Q 	 Q 	 0 is a subfield of the ring R � R S see 4.2

and Q 
 �, so that R is an algebra over the field of rationals.
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Ž .iii S is imbeddable into a field if and only if R is a domain and this
is further equivalent to the condition that ab � 1 � a � b for all a, b �S

� 4S� 1 .S

13.3. EXAMPLE. Put S � ��� ��. Then S is an ac-parasemifield, and
ŽS is archimedean but S is not imbeddable into a field in particular, S is

.not conical .

13.4. EXAMPLE. Let S be the set of fractions of the form f�g, where
�� � Ž . Žf , g � � x . Then S is a subsemiring of � x and hence S is imbed-

. Ždable into a field , S is an ac-parasemifield but S is not conical e.g.,
Ž . Ž ..1�x � 1 � R S � � x .

13.5. PROPOSITION. Let S be a parasemifield. Define a relation � on S byS
Ž .a, b � � if and only if there exist a non-negati�e integer m and elementsS

� 4 m mu, � � S 	 0 such that 2 a � b � u and 2 b � a � � . Then

Ž .i � is a congruence of S.S

Ž . Ž .ii S�� is either tri�ial and then S is additi�ely cancellati�e or anS
Ž .ai-parasemifield see 13.1 .

Ž .iii If a, b, c belong to a block of � and b � c, then a � b � a � c.S

Ž . � Ž . 4 Ž .iv P � a � S; a, 1 � � is a subsemiring of S, P � is a subgroupS S
Ž . Ž .of S � , and either P is tri�ial and then S is additi�ely idempotent or P is an

Ž .ac-parasemifield see 13.2 .

Ž . m mProof. Iii Let a � b � a � c. We have a � u � 2 b, b � 2 b � b �
m Ž m� 1 . ma � u � c � a � u � c � 2 b, 2 b � 2 b � b � b � 2 b � b � c �

m m Ž m� 1 . m� 1 m�12 b � c � c � 2 b � 2 c � 2 b , b � 2 b � c � 2 b, . . . , 2b �
b � c. Quite similarly, 2c � b � c, and hence b � c. The rest is clear.

14. FINITE AND FINITELY GENERATED
SIMPLE SEMIRINGS

14.1. THEOREM. The following conditions are equi�alent for a semiring S:

Ž .i S is finite and congruence-simple.
Ž .ii S is finite and ideal-simple.
Ž . Ž .iii S is isomorphic to one of the following semirings:
Ž .iii1 the two-element semirings Z , Z , Z , Z , and Z ;1 2 3 4 5

Ž .iii2 finite fields;
Ž .iii3 zero-multiplication rings of finite prime order;
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Ž . Ž . Ž . Ž .iii4 the semirings semifields V G see 3.2 , G being a finite
abelian group.

Proof. Combine 3.1, 3.2, 3.3, 3.4, 5.3, and 11.2.

14.2. THEOREM. The following conditions are equi�alent for a semiring S:

Ž .i S is finitely generated, congruence-simple, and infinite.
Ž . Ž .ii S is isomorphic to one of the following semirings:
Ž . Ž . Ž . Ž .ii1 the semirings semifields V G see 3.2 , G being an infinite

finitely generated abelian group;
Ž . Ž . Ž .ii2 the semirings W A see 5.1 , A being a finitely generated

Ž . � �subsemigroup of � � such that A � � � � � A � � .

Proof. Combining 3.1, 3.2, 3.3, 3.4, 4.2, 4.3, 5.1, and 5.3, we can restrict
ourselves to the case when S is a finitely generated subsemiring of a field

� 4F such that F � a � b; a, b � S . Then, of course, F is finitely generated
Žas a ring and consequently F is finite this is a rather well-known result

.and the reader may try to prove it as an exercise .

14.3. COROLLARY. Let S be a congruence-simple semiring such that S is
finitely generated but not additi�ely idempotent. Then S is finite.

Ž � �. Ž .14.4. Remark cf. 25 . i Let S be a congruence-simple semiring
� � � 0 Ž .such that S � 2 . Then either S is a field or S 
 V G for an abelian

Ž � � � �.group G G � S . In both cases, S is ideal-simple.

Ž . Ž �. � Ž .ii � is an ideal-simple parasemifield for any cardinal number
� 
 1.

14.5. PROPOSITION. The following conditions are equi�alent for a semi-
ring S:

Ž .i S is finitely generated, ideal-simple, and additi�ely cancellati�e.
Ž .ii S is either a finite-field or a finite zero multiplication ring of prime

order.

Proof. First, let S be an ac-parasemifield. We claim that S is not
Ž .finitely generated as a semiring. Assume the contrary, put R � R S and

Ž .take a maximal ideal I of R. The relation r defined on S by a, b � r if
and only if a � b � I is a congruence of S and T � S�r is again an

Ž .ac-parasemifield. On the other hand, F � R T 
 R�I is a finitely gener-
Ž .ated ring and a field. Then F is finite, and T � is a group, a contradic-

tion with 0 � T.
Now, let S be a finitely generated id-simple ac-semiring. Then S is not a

parasemifield and, in view of 12.1 and 12.4, S is not a proper semifield
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Ž .either. Thus, according to 11.2, S is a finite field or a zero multiplication
ring of prime order.

Ž .14.6. Remark cf. 14.2, 14.3, 14.5 . It seems to be an open problem
whether every infinite finitely generated ideal-simple semiring is additively
idempotent.
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