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In [Invent. Math. 58 (1980), 201–210], Curtis et al. construct a variation of the
Tits building. The Curtis–Lehrer–Tits building �(G, k) of a connected reductive
k-group G has the important feature that it is a functor from the category of reduc-
tive groups defined over a field k and monomorphisms to the category of topolog-
ical spaces and inclusions. An important consequence derived by Curtis et al. from
the functorial nature of the Curtis–Lehrer–Tits building �(G, k) is that if s is a
semisimple element of the group G�k� of k-rational points, and G′ is the connected
component group of the centralizer of s, then the fixed point set �(G, k�s of s in
�(G, k) is the Curtis–Lehrer–Tits building �(G′� k). We generalize this result to
arbitrary involutions of Autk(G), and we also prove an analogue in the context of
affine buildings. © 2001 Academic Press
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1. INTRODUCTION

1.1.

Let k be a field and G a connected reductive group defined over k.
The Tits or spherical combinatorial building �(G, k) of G with respect
to k is the simplicial complex whose simplices are the proper parabolic
k-subgroups of G, reverse ordered by inclusions. A parabolic k-subgroup P
is an r-simplex if and only if there are �r + 1� distinct P0�P1� � � � �Pr maxi-
mal parabolic k-subgroups of G so that P = P0 ∩ P1 ∩ · · · ∩ Pr . The group
� �= G�k� of k-rational points of G operates simplicially on ��G� k�. In
[CLT], Curtis et al. construct a variation of the Tits building. The Curtis–
Lehrer–Tits building ��G� k� of G has the important feature that it is a
functor from the category of connected reductive groups defined over k
and monomorphisms to the category of topological spaces and inclusions.
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That is, given a monomorphism f � G → H of reductive groups defined
over k, Curtis et al. naturally associate an embedding of topological spaces
��f �� ��G� k� → ��H� k�. An important consequence derived by Curtis
et al. from the functorial nature of the Curtis–Lehrer–Tits building ��G� k�
is the following: Suppose s is a semisimple element of �. Let G′� = �Gs�◦
denote the connected centralizer of s in G. Then, the fixed point set
��G� k�s of s in ��G� k� is the Curtis–Lehrer–Tits building ��G′� k�. One
of our main goals (Theorem 3.3.1) is to establish, when char�k� �= 2, a
generalization of the Curtis et al. result to arbitrary involutions in Autk�G�.

1.2.

Suppose k is a nonarchimedean local field, and G is a connected
semisimple k-group. Suppose further that τ is a k-automorphism of G so
that the k-group G′ �= �Gτ�◦ is semisimple. Let ��G� k� and ��G′� k�
denote the Bruhat–Tits affine buildings of G and G′, respectively. It is nat-
ural to ask what is the relation between ��G� k�τ and ��G′� k�. Under the
assumption that the residual characteristic of k is odd, G is a special lin-
ear group and τ ∈ Autk�G� is an involution defining a classical group, we
show (Theorem 6.7.3) that ��G� k�τ can be identified with ��G′� k�. This
type of result is related to the question of when Bruhat–Tits buildings are
functorial [L].

The authors thank Anne-Marie Aubert and the referee for some useful
comments. The authors were supported in part by the National Science
Foundation Grants DMS-9970454 and DMS-9801264.

2. PRELIMINARIES ON THE CURTIS–LEHRER–TITS BUILDING

2.1.

Let G be a connected reductive group defined over a field k and let �
denote the group of k-rational points G�k�. We review the construction of
the Curtis–Lehrer–Tits (spherical) building ��G� k� of G in [CLT]. Let S
be a maximal k-split torus of G and let 	�S�G� be the k-roots of G with
respect to S. Denote the k-cocharacters Homk (GL(1), S) of S as X∗�S� k�.
The space ��S� k� is defined as the sphere whose points represent rays in
the real vector space X∗�S� k� ⊗� �. To any point b ∈ ��S� k�, i.e., a ray in
X∗�S� k� ⊗� �, we associate the parabolic k-subgroup P�b� defined as the
largest closed subgroup of G containing S and whose Lie algebra contains
the roots ψ ∈ 	�S�G� whose inner product with b is non-negative.
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2.2.

Denote as �1 the disjoint union of the spheres ��S� k� as S runs over all
the maximal k-split tori of G. The group Autk�G� of k-automorphisms of G
obviously acts on �1. In particular, � acts on �1 by inner automorphisms.
We define an equivalence on points in �1 as follows. Given b ∈ ��S� k� and
b′ ∈ ��S′� k�, we define b ∼ b′ if P�b� = P�b′� and there is a g ∈ P�b� con-
jugating S to S′ so that b′ = Ad�g��b�. The Curtis–Lehrer–Tits �spherical�
building ��G� k� of G with respect to k is defined as the quotient of �1
by the equivalence relation ∼. It is immediate from (2.1) that b ∈ ��G� k�
determines unambiguously a parabolic k-subgroup P�b� of G. The building
��G� k� inherits an action by Autk�G�; in particular an action of �.

For our purposes, the field k is fixed. Therefore, in order to simplify
notation, we shall often use X∗�S����S�, and ��G� to denote X∗�S� k�,
��S� k�, and ��G� k�, respectively.
Lemma 2.2.1 ([CLT], Lemma 2.2). (i) The stabilizer of a point b ∈

��G� in � is P�b��k�.
(ii) Let S be a maximal k-split torus in G. The canonical projection

�1 → ��G� restricts to an injection of ��S� into ��G�.
The image of ��S� in ��G� is called the (spherical) apartment associated

with S in ��G�. For convenience, we identify ��S� with its corresponding
apartment. A point b lies in an apartment ��S� precisely when S ⊂ P�b�.
Lemma 2.2.2 ([CLT], Statements (2.3) and (2.4)). (i) Any two points

of ��G� belong to an apartment.

(ii) If S and S′ are two maximal k-split tori, there is an element g ∈ �
conjugating S to S′ (hence g takes ��S� to ��S′�), which fixes all points in
��S� ∩��S′�.

2.3.

Let S′ be any k-split torus and let S be a maximal k-split torus con-
taining S′. The canonical injection X∗�S′� → X∗�S� induces an injection
��S′� → ��S� and hence an injection of ��S′� into ��G�. As a map into
��G�, this injection is independent of the torus S. In particular, any point
b ∈ ��S� determines a parabolic k-subgroup P�b� ⊂ G.

Lemma 2.3.1 ([CLT], Lemma 1.2). Let S be a k-split torus in G.

(i) For b ∈ ��S�, we have P�b� ⊃ CG�S�.
(ii) For b ∈ ��S�, let S′ be the intersection of S with the radical of P�b�.

Then b ∈ ��S′�.
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2.4.

Suppose G′ is a connected reductive k-group and f � G′ → G is a
k-monomorphism. Let � ′

1 be the disjoint union of all ��S′� with S′

a maximal k-split torus of G′. The map f � G′ → G induces a mapping
� ′

1 → ��G�. It is shown in [CLT, Sect. 4] that two points b� b′ ∈ � ′
1 are

equivalent under the equivalence relation ∼G′ described by G′ if and
only if they have the same image in ��G�. Thus, the map f � G′ → G
induces an injective map ��f � � ��G′� → ��G�; or equivalently the
Curtis–Lehrer–Tits building is a functor from the category of connected
reductive k-groups with k-monomorphisms into the category of sets with
injections.

2.5.

As mentioned in the Introduction, an important consequence of the func-
torial nature of the Curtis–Lehrer–Tits building is the following proposition.

Proposition 2.5.1 ([CLT], Proposition 5.1). Let s be a k-rational semi-
simple element of a connected reductive k-group G and denote the connected
component group of the centralizer of s as G′ = CG�s�◦. Then, ��G′� k� is the
fixed point set ��G� k�s of s acting on ��G� k�.

3. INVOLUTIONS AND SPHERICAL BUILDINGS

3.1.

Suppose τ ∈ Autk�G� is an involution, i.e., of order 2. From now on,
we assume char�k� �= 2. Under this assumption, the induced action of τ
on Lie�G� is semisimple, and therefore Lie�Gτ� and Gτ are reductive. For
notational ease, we let G′ denote the connected component group �Gτ�◦.
Our main goal in this section is to prove

��G� k�τ = ��G′� k��

3.2.

We begin with a preliminary lemma.

Lemma 3.2.1. (i) If S is a maximal k-split torus in a linear algebraic
k-group Q, then the intersection S′ = S ∩R�Q� of S with the radical R�Q� of
Q is a maximal k-split torus in R�Q�.

(ii) In the situation of (i), any two maximal k-split tori in R�Q� are
conjugate by an element u ∈ Ru�Q��k�, where Ru�Q� is the unipotent radi-
cal of Q.
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(iii) Suppose � is a positive integer relatively prime to char�k�. If U is
a unipotent k-group and u ∈ U�k�, then there is a unique v ∈ U�k� satisfying
u = v�.

Proof. To prove (i), let T′ be a maximal split k-torus in R�Q� and T′ ⊂ T
a maximal split k-torus in Q. There exists g ∈ Q�k� such that gTg−1 = S.
Thus, S′ = S ∩ R�Q� = gTg−1 ∩ R�Q� = g�T ∩ R�Q��g−1 = gT′g−1 must
be a maximal split k-torus in R�Q�. Statement (ii) is [B1, 11.23]. To prove
statement (iii), we recall the descending central series of U is defined as
U0 �= U�U1 � · · · �Ur−1 �Ur = �0�, where for i ≥ 1, the group Ui �=
�U�Ui−1� is generated by the commutators of elements in U with those
in Ui−1. We note that U�k�/Ui�k� = �U/Ui��k�. Set �i �= Ui�k�. We per-
form an induction on the length r of the central series. If r = 1, then � is
a vector space over k and assertion (iii) is obvious. For r > 1, the group
U/Ur−1 has length r − 1. By induction, there is a unique v̄ ∈ �/�r−1 satisfy-
ing u�r−1 = v̄� in �/�r−1. Pick a representative w of v̄. Then w−�u ∈ �r−1.
Since �r−1 is a vector space over k, there is a unique y ∈ �r−1 such that
w−�u = y�. Set v = wy. But, �r−1 is contained in the center of �; so
v� = �wy�� = w�y� = u. This establishes existence. A trivial modification of
the argument proves uniqueness as well.

3.3.

We now prove this section’s main result.

Theorem 3.3.1. Suppose char�k� �= 2�G is a connected reductive
k-group, τ ∈ Autk�G� is an involution and G′ = �Gτ�◦. Then

��G� k�τ = ��G′� k��

Proof. Let S be a maximal k-split torus. Suppose b ∈ ��S� ⊂ ��G�. Let
P�b��k� be the parabolic subgroup which fixes b. By Lemma 3.2.1 (i), the
split k-torus S′ = S ∩ R�P�b�� is a maximal split k-torus in R�P�b��, and
by Lemma 2.3.1 (ii), we have b ∈ ��S′�. Of course, τ�S′� is a maximal split
k-torus in R�τ�P�b��� and τ�b� ∈ ��τ�S′��. If b is fixed by τ, then P�b� is
τ invariant and therefore S′ and τ�S′� are maximal k-split tori in R�P�b��.
By Lemma 3.2.1 (ii), there is a u ∈ Ru�P�b���k� so that τ�S′� = uS′u−1.
If we apply τ to this last equality, we obtain S′ = τ�u�τ�S′�τ�u−1� =
τ�u�uS′u−1τ�u−1�. Clearly Ru�P�b�� is τ-invariant, so τ�u�u ∈ Ru�P�b��
and τ�u�u normalizes S′. Since S′ is a maximal split k-torus in R�P�b��,
we conclude τ�u�u = 1. By Lemma 3.2.1 (iii), there is a unique element
v ∈ Ru�P�b���k� so that u = v2. Therefore v2 = u = τ�u−1� = τ�v−1�2;
i.e., v and τ�v−1� are square roots of u in Ru�P�b���k�, and therefore by
uniqueness of square roots, τ�v−1� = v. Consider the maximal split k-torus
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in R�P�b�� which is T = vS′v−1. Then

τ�T� = τ�v�τ�S′�τ�v−1� = v−1uS′u−1v = vS′v−1 = T�

That is, T is a τ-stable torus. Clearly b ∈ ��T�. So, b is a ray in X∗�T� ⊗� �
which is τ invariant. This means b is a ray in �X∗�T� ⊗� ��τ = X∗�Tτ� ⊗� �.
A ray in X∗�Tτ� ⊗� � is precisely a point in ��Tτ� ⊂ ��G′� k�. Thus,
��G� k�τ = ��G′� k�.

3.4.

The next result shall be used when we discuss involutions and affine
buildings. Geometrically, it implies that when k is a finite field of odd order
and τ is a nontrivial involution of G, then any point b ∈ ��G� k�τ lies in a
τ-invariant apartment of ��G� k�.
Proposition 3.4.1. Suppose k is a finite field of odd order q, G is a con-

nected reductive k-group, τ ∈ Autk�G� is an involution, and G′ = �Gτ�◦. If T
is a k-split torus in G′, then there exists a maximal k-split torus S in G which
contains T and is τ-invariant.

Proof. Let M = CG�T�, a Levi k-subgroup of G. We make three trivial
observations.

(i) The group M is τ-invariant.

(ii) Any maximal k-split torus in M must contain the torus T.

(iii) The reductive k-rank of M and G are equal. In particular, a
maximal split k-torus in M is also a maximal split k-torus in G. Denote the
rank by r.

Let B (resp. U) be a Borel k-subgroup of M (resp. the unipotent radical
of B). Then, the number of maximal split k-tori in B is equal to the order of
the group U�k�. The k-subgroup τ�B� is obviously also a Borel subgroup
of M. Let � denote the set of maximal split k-tori in B ∩ τ�B�. Obviously,
since B ∩ τ�B� is a τ-invariant group, the set � is a τ-invariant set. The
intersection of any two minimal parabolic k-subgroups must contain a min-
imal Levi k-subgroup. Thus, the intersection B ∩ τ�B� contains a minimal
Levi k-subgroup and so a k-torus of dimension r; i.e., � is nonempty. Any
two elements in � are conjugate in B ∩ τ�B�. We conclude � has order a
power of q = �k�, in particular has odd order. Thus, there must be a τ-fixed
point S in �. The torus S is our desired torus.

Remark 3.4.2. The referee pointed out that if k is algebraically closed,
then Proposition 3.4.1 follows from 7.2, 7.3, and 7.5 in [St].



curtis–lehrer–tits building 501

4. SIMPLE ALGEBRAS, INVOLUTIONS, AND
CLASSICAL GROUPS

4.1.

In the previous section, under the assumption that k is a field of odd
characteristic, G is connected reductive k-group, τ ∈ Autk�G� is an invo-
lution, and G′ �= �Gτ�◦, we showed ��G� k�τ = ��G′� k�. In this section,
we recall the relationship between the simple classical groups and simple
algebras with involutions.

Let k be a field and suppose A is a finite dimensional simple algebra
over k. A fundamental result of Weddeburn asserts that A is isomorphic
as a k-algebra to a matrix algebra Mn�D� of a finite dimensional division
algebra D over k. Furthermore, if D1 and D2 are two finite dimensional
algebras over k and Mn1

�D1� and Mn2
�D2� are isomorphic as k-algebras,

then n1 = n2 and D1 and D2 are isomorphic k-algebras.

4.2.

A k-involution of a k-algebra A is an invertible k-linear map J � A → A
satisfying

J2 = I (Identity)� and J�ab� = J�b�J�a�� (4.2.1)

An element a ∈ A is J-symmetric if J�a� = a and J-skew if J�a� = −a. The
sets of J-symmetric and J-skew elements are trivially k-linear subspaces
of A. If the characteristic of k is not 2, then A is the additive direct sum
of these two linear subspaces.

4.3.

Involutions fall into two distinct types. Suppose J is a k-involution of A.
Since J is surjective, it must preserve the center C of the algebra A. Since
we are assuming A is a simple algebra, the center C must be a finite dimen-
sional field extension of k. The involution J is said to be of the first or
second kind depending on whether C lies in the symmetrical elements of J.
That is, J is of the first kind if the center C is elementwise fixed by J, and
J is of the second kind if there are elements in the center C which are not
J symmetric. When J is an involution of the second kind, the symmetric
elements CJ in the center C is a finite extension of k so that �C � CJ� = 2.

Let C be the center of a simple finite dimensional k-algebra A and
suppose S is a k-subfield of C. We call a k-involution J of A an involution
over S of A if the J-symmetric elements in C are precisely S. We remark
that C is either equal to S or to a quadratic extension of S.
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Theorem 4.3.1 ([A], Theorem 11, p. 154). Let C be the center of a sim-
ple finite dimensional k-algebra A. Suppose S is a k-subfield of C and J
is an involution of A over S. Then, a k-anti-isomorphism T � A → A is a
k-involution over S if and only if there exists a J-symmetric or J-skew invertible
element y ∈ A, i.e., J�y� = ±y, such that

T �a� = y−1J�a�y a ∈ A�

4.3.2.

Let D be a finite dimensional division algebra over k and let A = Mn�D�.
Denote the identity matrix in A as I. We identify d ∈ D with the matrix
dI ∈ A. The center C of D becomes the center of A. For 1 ≤ i� j ≤ n, let
ei� j be the matrix whose r� s entry is δi� rδj� s (Kronecker delta).

Theorem 4.3.3 ([A], Theorem 12, p. 156). Let D be a finite dimensional
division algebra over k and set A = Mn�D�. Let C be the center of D and S
a k-subfield of C. Then, A has a k-involution over S if and only if there exists
a k-involution of D over S. In this case, A has a k-involution J over S such
that J�D� = D and J�ei� j� = ej� i.

4.4.

SupposeD is a finite dimensional division algebra over k. For a ∈ Mn�D�,
denote by at the transpose of a. Also, if J is a k-anti-isomorphism of D, and
a = �ai� j� ∈ A, set J�a� �= �J�ai� j��. As a consequence of Theorems 4.3.1
and 4.3.3, we conclude that any k-involution T of A = Mn�D� over S ⊂ C
has the form

T �a� = y−1J�at�y a ∈ A� (4.4.1)

where J is a k-involution of D over S and y ∈ A× satisfies J�yt� = ±y.
Let T be an involution of A = Mn�D�. Write T as in (4.4.1). Set � �=

A× = GLn�D� and define τ � � → � by

τ�a� �= T �a−1�� (4.4.2)

Set

�τ �= �a ∈ � � τ�a� = a�� (4.4.3)

Let V �= Dn be the �A�D�-bimodule of size n column vectors with
entries in D. We use the element y, which is either J-symmetric or J-skew,
to define a form � � � on V

�v�w� �= J�wt�yv� (4.4.4)
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In particular, if d1� d2 ∈ D, we have

�vd1� wd2� = J�d2��v�w�d1�

Define ε ∈ �±1� by J�yt� = εy. The form � � � is ε-hermitian; i.e.,

J��v�w�� = ε�w� v�� (4.4.5)

In terms of the form � � �, the group �τ has the description

�τ = {
a ∈ � � τ�a� = a

}

= {
a ∈ � � �av� aw� = �v�w� ∀ v�w ∈ V

}
� (4.4.6)

The two groups � and �τ are the k-rational points of two reductive
k-groups , and ,τ. Their explicit description as functors is the following:
if K is an extension field of k then

,�K� = �A⊗k K�× (4.4.7)

and

,τ�K� = {
g ∈ ,�K� � τ�g� = g

}
� (4.4.8)

The k-group , (resp. ,τ) is of course a general linear (resp. classical) group.
Recall the reduced norm is a k-group homomorphism

ND/k � , → GL�1��
Define G �= ker�ND/k� and Gτ �= ker�ND/k�,τ�. Then,

G�K� = {
g ∈ ,�K� � ND/k�g� = 1

}
(4.4.9)

and

Gτ�K� = G�K� ∩ ,τ�K�� (4.4.10)

5. INVOLUTIONS AND AFFINE BUILDINGS I

5.1.

Our goal in this and the next section is to prove an analogue of
Theorem 3.3.1 for affine buildings. Let k be a nonarchimedean local field
with ring of integers � and residue field � of odd characteristic. Suppose
G is a connected semisimple group defined over k. Set � = G�k� and let
� = ��G� k� denote the Bruhat–Tits building of G with respect to k.

We set some notation. Let r denote the k-rank of G. A face E of a
(closed) chamber C of � is the closure of a �r − 1�-facet of C. If x ∈ �,
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denote by Gx the reductive �-group which is the reduction modulo 	
(the prime ideal of �) of the �-group scheme associated to the parahoric
subgroup fixing the point x. Let Star�x� denote the union of the (closed)
chambers of � containing the point x. If S is a maximal k-split torus, let
A�S� k� denote the apartment of S. Like our previous situation for the
Curtis–Lehrer–Tits building, we will often drop k in our notation. Thus,
we shorten ��G� k� to ��G� and A�S� k� to A�S�. Suppose A�S� is an
apartment containing the point x. Then S determines a �-scheme whose
reduction modulo 	 is a maximal �-split torus Sx in Gx. Every maximal
�-split torus in Gx is obtained as an Sx. If S and S′ are two maximal
k-split tori with x ∈ A�S� and x ∈ A�S′�, then Sx = S′

x precisely when
A�S� ∩ Star�x� = A�S′� ∩ Star�x�.

5.2.

Let ��x� denote the set of geodesic rays in Star�x� which begin at
the point x. This set can be identified with the Curtis–Lehrer–Tits build-
ing of Gx as follows. Given l ∈ ��x�, let S be a maximal k-torus with
l ⊂ A�S�. The ray l determines a unique ray in Homk�GL�1��S� ⊗� � ∼=
Hom��GL�1��Sx� ⊗� �, i.e., a point θSx

�l� in ��Sx� �� ⊂ ��Gx� ��. If S′

is another k-torus with l ⊂ A�S′�, there exists g ∈ �x fixing l so that
gSg−1 = S′. That g fixes l means the image of g in Gx��� lies in P�l�
and conjugates Sx to S′

x. So, θSx
�l� = θS′

x
�l�. We drop the subscript and

merely write θ � ��x� → ��Gx� ��. We leave it to the reader to show that
θ is a bijection (see [T], Sect. 3.5.4).

5.3.

Suppose τ ∈ Autk�G� is a nontrivial involution. The associated action of τ
on � is a polysimplicial isometry. It is elementary that �τ is nonempty. The
set �τ is also obviously convex and so it has a well-defined dimension. Let
m denote its dimension. Suppose x ∈ �τ. The following are elementary:

(i) τ acts on Star�x� and ��x�.
(ii) The parahoric subgroup fixing x is stable under τ.

(iii) τ induces an involution of the �-group Gx. For ease of notation,
we also denote this induced involution by τ.

(iv) θ ◦ τ = τ ◦ θ.
Let rk���Gx�τ� denote the (reductive) �-rank of �Gx�τ. The dimension
of ��Gx� ��τ equals rk���Gx�τ� − 1. Since we have seen that ��Gx� ��τ
can be identified with the rays in Star�x�τ starting from x, we also have
dim���Gx� ��τ� equals m− 1, and thus m = rk���Gx�τ�.
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Propositon 5.4. Suppose x ∈ �τ. Then, there exists a τ-invariant maxi-
mal k-split torus S ⊂ G so that

(i) x ∈ A�S�τ.
(ii) dim�A�S�τ� = m.

5.5. Preliminary Remarks on the Proof of Proposition 5.4.

We begin by outlining our proof. By Proposition 3.4.1, there exists a
τ-invariant maximal �-split torus T0 in Gx, so that Tτ0 is a maximal �-split
torus in �Gx�τ. In particular, dim��Tτ0� = m. Let T be a maximal k-split torus
so that x ∈ A�T� and T0 = Tx. The torus T is not necessarily τ-invariant.
However, the τ-invariance of T0 implies that A�T� ∩ Star�x� is τ-invariant.
Furthermore, dim�A�T� ∩ Star�x��τ = m.

If 
 is an apartment containing A�T� k� ∩ Star�x�, set

τ �= �x ∈ 
 � τ�x� ∈ 
��

It is elementary that 
τ is τ-invariant, convex, and a union of (closed)
chambers of 
. To prove Proposition 5.4, our goal is to begin with the
apartment 
0 �= A�T� and show that there is a sequence of apartments 
i

containing A�T� ∩ Star�x� with the property that the sets �
i�τ increase and
converge to a τ-invariant apartment A. The k-torus S corresponding to A
satisfies the conclusions (i) and (ii) of Proposition 5.4.

If A is an apartment and E ⊂ A is a face of a chamber, let HE denote the
affine root hyperplane in A which contains E. Suppose E′ is another (pos-
sibly the same) face of HE . The intersection of all apartments containing
the two faces E and E′ is a convex �r − 1�-dimensional set which we denote
by ��E�E′�. Obviously, ��E�E′� is contained in HE . Define � �= ��E�E′�
to be the collection of the sets � satisfying the following properties:

(i) � contains ��E�E′�,
(ii) � is convex and a union of chambers,
(iii) � is minimal (under inclusion) among all sets satisfying (i)

and (ii).

Lemma 5.5.1. Suppose Hψ is an affine root hyperplane in an apartment
A and E�E′ are two faces in Hψ.

(i) If D is a chamber with E as a face, then there exists � ∈ ��E�E′�
such that D ⊂ �.

(ii) If �1��2 ∈ ��E�E′� share a chamber D, then �1 = �2.

Proof. We first consider the situation where ��E�E′� and D all belong
to the apartment A. The existence of an � ∈ � reduces to the existence of a
union of chambers in A which contains ��E�E′�, is convex, and is minimal
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under inclusion. In the latter situation, if we take � to be the intersection
of all half apartments in A which contain D and ��E�E′�, then clearly
� is minimal under inclusion. This implies existence. Uniqueness of � is a
consequence of the property that � must contain the union of all chambers
(in A) whose interiors meet any geodesic segment with one endpoint in the
interior of the chamber D and the other endpoint in ��E�E′�. To treat the
general situation, we observe that the affine root group �ψ acts on the set
�. Indeed, the �ψ action on the chambers containing E has two orbits
(one for each of the two chambers in A containing E). Parts (i) and (ii)
follow.

Corollary 5.5.2. Let p = char�k� �= 2. Then, ��� has the form 1+ pt .

Proof. Let C1 and C2 denote the two chambers of A containing the
face E and let ��C1� and ��C2� be the elements of � which contain C1
and C2, respectively. As stated in the proof of Lemma 5.5.1, the affine root
group �ψ acts on � with two orbits—the orbits of ��C1� and ��C2�. It is
clear ��C1� is a singleton orbit and the size of the �ψ-orbit of ��C2� is a
power of p. The corollary follows.

5.6. Completion of the Proof of Proposition 5.4.

We define the sequence 
i inductively. If at any stage �
i�τ = 
i, i.e., the
apartment 
i is τ-invariant, we take A to be 
i and we are done. Therefore,
we shall always suppose �
i�τ �= 
i. We can choose two chambers C�D ⊂ 
i

so that:

(i) F = C ∩D is a face of C (hence D).

(ii) C ⊂ �
i�τ�D� �
i�τ.
We descriptively refer to the face F as a boundary face of �
i�τ. We can and
do assume (for the purpose of causing convergence in the compact open
topology) that the distance of the boundary face F to the point x is minimal
for all boundary faces of �
i�τ. Denote as HF the affine root hyperplane
in 
i determined by F . Let J denote the half apartment of 
i\HF contain-
ing C. Our proof divides into the following two cases: Case (i) HF �= Hτ�F�.
Case (ii) HF = Hτ�F�.

Case (i) HF �= Hτ�F�. Let J ′ denote (open) half apartment of 
i\Hτ�F�
containing τ�C�. The set �
i�τ is contained in J ∩ J ′. Let ψ denote affine
root with the property Hτ�F� = Hψ and the property that the affine root
group �ψ fixes τ�C�. The group �ψ fixes the half apartment J ′ and per-
mutes the chambers in the interior of Star�τ�F��\τ�C� transitively. Choose
u ∈ �ψ so that τ�D� ⊂ u
i. Our hypothesis that HF �= Hτ�F� implies D
and C, hence D and �
i�τ, lie on the same side of Hτ�F�. We conclude
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from this that u fixes D and �
i�τ. Set 
i+1 �= u
i. Then �
i�τ ∪D ⊂ 
i+1
and indeed �
i�τ ∪D ⊂ �
i+1�τ.

Case (ii) HF = Hτ�F�. Since J contains �
i�τ ⊃ C and �
i�τ is
τ-invariant, we have τ�C� ⊂ J. The two sets ��F� τ�F�� and ��F� τ�F��
are τ-invariant. Since we are assuming the residual characteristic of k
is odd, we conclude from Corollary 5.5.2 that ���F� τ�F��� is even. The
unique element of ��F� τ�F�� containing C is obviously τ-invariant; hence
there must also exist � ∈ ��F� τ�F�� which is τ-invariant and does not
contain C. Choose u ∈ �ψ so that uD ⊂ � and set 
i+1 = u
i. Then,
�
i+1�τ ⊃ �
i�τ ∪�. This completes our induction step.

As already mentioned, in our construction of the sequence 
i, at each
stage, if there exist boundary faces on �
i�τ we choose a boundary face F
whose distance to x is minimal among boundary faces. Then, F ⊂ �
i+1�τ
and is no longer a boundary face. It follows that the sequence of apart-
ments 
i converge in the compact open topology to an apartment A which
is τ-invariant. Hence the maximal k-split torus S associated to A is τ-
invariant, and clearly (i) x ∈ A and (ii) dim�Aτ� = m.

Corollary 5.7. (i) Suppose G is a reductive k-group, τ ∈ Autk�G�
is an involution and T is a τ-invariant k-split torus. Then, there exists a
τ-invariant maximal k-split torus S containing T.

(ii) Suppose G is a semisimple k-group, τ ∈ Autk�G� is an involution
and G′ �= �Gτ�◦. Then, dim��τ� = rkk�G′�.

Proof. To prove (i), let L �= L�T� denote the Levi k-subgroup which is
the centralizer of T, and let Z �= Z�L� denote the center of L. The quo-
tient M �= L/Z is a (semisimple) k-group and τ induces a k-involution
in Autk�M�, which we shall for ease of notation also denote by τ. By
Proposition 5.4, there is a τ-invariant, maximal k-split torus "S in M. Let C
denote the preimage in L of "S. We can take S to be the maximal k-split
torus of C.

To prove (ii), suppose T is a maximal k-split torus of Gτ. By (i), there
exists a τ-invariant maximal k-split torus S of G containing T. We have

dim��τ� ≥ dim�A�S�τ� ≥ dim�T� = rkk�G′��

Also, by Proposition 5.4, there exists a τ-invariant maximal k-split torus V
so that

dim��τ� = dimA�V�τ = dimk�Vτ� ≤ rkk�G′�

So dim��τ� = rkk�G′�.
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6. INVOLUTIONS AND AFFINE BUILDINGS II

6.1.

We continue with the assumptions of Section 5: k is a nonarchimedean
local field with ring of integers � and residue field � of odd characteristic,
G is a connected semisimple group defined over k, and τ ∈ Autk�G� is a
nontrivial involution. Let G′ denote the connected reductive group �Gτ�◦
and set �′ �= G′�k� ⊂ � = G�k�. If 
 is a subgroup of �, let ���
� and
���
� denote the centralizer and normalizer of 
 , respectively. We use
similar notation for subgroups of �τ and �′.

The main result in this section is Theorem 6.7.3. It states under the
assumption that G and τ ∈ Autk�G� are as in Section 4 and G′ �= �Gτ�◦
is semisimple that �′ �= ��G′� k� = ��G′� identifies naturally with ��G�τ.
We outline our plan to accomplish this.

(i) Suppose T is a maximal k-split torus of G′. Set � �= T�k�. Let
A�T�G′� denote the apartment in ��G′� associated to T. We find a canon-
ical affine subspace A�T�G� of �τ which we eventually identify with the
apartment A�T�G′�.

(ii) We show that the restriction of the action of � on � to the
group ��′ �� � ⊂ � yields an action on the affine subspace A�T�G� which is
equivalent to the action of ��′ �� � on A�T�G′� coming from the action of
�′ on �′.

(iii) Suppose x ∈ A�T�G� and S is a τ-stable maximal k-split torus
of G containing T. Set � �= S�k�. Let �x (resp. �x) denote the subgroup
generated by the affine � -root groups (resp. affine � -root groups) of �′

(resp. �) fixing the point x. We show �x ⊂ �x ∩ �′.

We then identify �τ with �′ so that the restriction action of �′ ⊂ � on �τ

is equivalent to its action on �′.

6.2.

Although we shall eventually assume that G and τ ∈ Autk�G� are as
in Section 4, our preliminary results (Proposition 6.2.1 and 6.3.1) hold in
the generality of G an arbitrary semisimple k-group and τ ∈ Autk�G� an
arbitrary involution.

Proposition 6.2.1. Suppose T is a maximal k-split torus of G′.

(i) There exists a τ-invariant maximal k-split torus S of G containing T.
(ii) If S1 and S2 are two τ-invariant maximal k-split tori of G contain-

ing T, then

A�S1�τ = A�S2�τ�
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Proof. Assertion (i) is Corollary 5.7 (i). To prove assertion (ii), we have
by Corollary 5.7 (ii) that dim���G�τ� = rkk�G′� = dim�A�Si�τ�. Let L
denote the Levi k-subgroup CG�T�. Set

�L �= union of the apartments A�S� ⊂ ��G� with S containing T�
(6.2.2)

It is obvious that �L is convex, τ-stable. The dimension of the convex set
��L�τ satisfies

dim���G�τ� ≥ dim���L�τ� ≥ rkk�G′� = dim���G�τ��

so dim���L�τ� = rkk�G′�. The vector space V �T� �= X∗�T� ⊗� � acts natu-
rally on ��L�τ. Let ��L�τ/V �T� denote the quotient space. We have

dim���L�τ� = rkk�T� + dim���L�τ/V �T���

So, dim���L�τ/V �T�� = 0 and therefore the convex set ��L�τ/V �T� must
be a singleton point. This in particular means �A�S1��τ = �A�S2��τ.

As a consequence of this proposition, any maximal k-split torus T of G′

determines a canonical affine subspace of ��G�τ of dimension rkk�G′�. We
denote this set as A�T�G�.

6.3.

The maximal k-split tori of Gτ and G′ �= �Gτ�◦ obviously coincide. Sup-
pose T is such a maximal k-split torus of G′ and � �= T�k�. Let ���� �
(resp. ���� �� denote the normalizer (resp. centralizer) of � in �. All
these groups are τ-stable. The group ���� � acts on the space �L of (6.2.2);
thus ���� �τ = ��τ�� � acts on A�T�G�. The groups ��τ�� � = ���� �τ and
��′ �� � ⊂ ��τ�� � are compact modulo � and so they have unique maximal
bounded subgroups ���τ�� ��b and ���′ �� ��b, respectively.

Proposition 6.3.1. Suppose T is a maximal k-split torus of G′. The max-
imal bounded subgroup ����� �τ�b acts trivially on A�T�G�.

Proof. The compact group ����� �τ�b acts isometrically on the
Euclidean space A�T�G�; hence there is a fixed point x ∈ A�T�G�.
Any s ∈ � = ���� �τ normalizes ����� �τ�b and hence ����� �τ�b must
fix sx. This means ����� �τ�b must fix all the points � x and in particular
all the points � x. But � acts on A�T�G� cocompactly, so we conclude
����� �τ�b must act trivially on the points of a cocompact lattice of A�T�G�
and thus ����� �τ�b must fix A�T�G�.
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6.4.

It follows immediately from Proposition 6.3.1 that the action of ���� �τ
on A�T�G� factors to an action of ���� �τ/����� �τ�b on A�T�G�. Our next
step is to establish the compatibility of the action of ���� �τ on A�T�G�
with the action of ��′ �� � on A�T�G′�. Due to present limitations in our
proof, we shall only be able to accomplish this when G is a special linear
group and τ ∈ Autk�G� is an involution as in Section 4.

As a first step in this direction, we consider the action of ��′ �� �
on the affine spaces A�T�G′� and A�T�G�. Define the homomorphism
ν � ��′ �� � → X∗�T� ⊗� � ⊂ X∗�S� ⊗� � as in ([SS], Sect. 1.1). Then, the
action of an element v ∈ � on both A�T�G′� and A�T�G� ⊂ A�S�G� is a
translation

tx = x+ ν�v��

6.4.1.

Suppose now that ,�G and τ ∈ Autk�,� are as defined in Section 4, more
specifically by (4.4.8) and (4.4.2). Recall also G = ,�k� = GLD�V �, where
V = Dn. Let � � � be the form (4.4.4). Set G′ �= �Gτ�◦.

Lemma 6.4.2. In the notation of (6.4.1), suppose T is a maximal k-split
torus in G′ and suppose S̃ is a τ-stable maximal k-split torus in , containing T.
Let S̃ be S̃�k�. Then

(
�Gτ�� � ∩ �G�S̃�

)
�Gτ�� �b = �Gτ�� �� (6.4.3)

Proof. Let T and S̃ be as in the lemma. Let m be the Witt index
of � � � and m0 = n − 2m. By the Witt basis theorem, we have a basis
�ei� fj � i = ±1� � � � �±m� j = 1� � � � �m0� which consists of eigenspaces
of � with �ei� e−j� = δij = ε�e−j� ei� for i > 0� �ei� fj� = 0, and �fi� fj� = 0
for i �= j. Let Vs be a subspace of V generated by �ei � i = ±1� � � � �±m�
over D and let V0 be generated by �fj � j = 1� � � � �m0�. Then V = Vs ⊕ V0
is an orthogonal decomposition with respect to � � �. We can nat-
urally identify GLD�Vs��GLD�V0�, and GLD�Vs� × GL�V0� as sub-
groups of G = GLD�V �. Let G�Vs� = Gτ ∩ GLD�Vs� and G�V0� =
Gτ ∩ GLD�V0�. Then we have a natural embedding of G�Vs� × G�V0�
into Gτ and of GLD�Vs� × GLD�V0� into G. Via these embeddings, we
have � ⊂ G�Vs� × G�V0� and S̃ ⊂ GLD�Vs� ×GLD�V0�. Moreover, �Gτ�� �
can be decomposed into a product �Gτ�� � ∩ G�Vs� and G�V0�. In (6.4.3),
⊂ is obvious. Since ��Gτ�� � ∩ �G�S̃�� ⊃ ��Gτ�� � ∩ G�Vs�� and �Gτ�� �b ⊃
G�V0��⊃ also follows.
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Since ��′ �� �b is not contained in ���� �b in general, it is not obvi-
ous that there is a well-defined monomorphism ��′ �� �/��′ �� �b −→
���� �/���� �b. In the following corollary, we define such a map by
Lemma 6.4.2. Note that there are four different groups �′���Gτ, and G
involved in the proof.

Corollary 6.4.4. We keep the notation from (6.4.1) and (6.4.2). Let
S = S̃ ∩G. If n��′ �� �b is a coset of ��′ �� �b in ��′ �� �, let n′ ∈ n��′ �� �b ∩
���� �. The element n′ is unique modulo the subgroup ���� �b and the map

φ � ��′ �� �/��′ �� �b −→ ���� �/���� �b

φ
(
nC�′ �� �b) = n′C��� �b

is a monomorphism of ��′ �� �/��′ �� �b into ���� �/���� �b.
Proof. Observe that �G�� � = �G�S̃� and that there are natural

monomorphisms

φ1 � ��′ �� �/��′ �� �b −→ �Gτ�� �/�Gτ�� �b�
φ2 � ���� �/���� �b −→ �G�S̃�/�G�S̃�b�

By the above lemma, we can also define a monomorphism

φ3 � �Gτ�� �/�Gτ�� �b −→ �G�S̃�/�G�S̃�b

such that for m�Gτ�� �b, a coset of �Gτ�� �b in �Gτ�� � and m′ ∈ m�Gτ�� �b ∩
�G�S̃�� φ3�m�Gτ�� �b� = m′�G�S̃�b. Then the image of φ3 ◦φ1 factors
through ���� �/���� �b; that is, we have φ3 ◦ φ1 = φ2 ◦ φ and the corol-
lary is proved.

6.5.

We introduce some notation. Suppose T is a maximal k-split torus in G′.
If Y is a subset of the apartment A�T�G′�, and w ∈ X∗�T� ⊗� �, set

Y +w �= �x+w � x ∈ Y�
Y �w� �= �x+ tw � x ∈ Y and t ≥ 0��

If ψ is a nonconstant affine root on A�T�G′� with gradient α ∈ 	�G′�T�
and Hψ is the vanishing hyperplane of ψ, then Hψ�α� is a half space in
A�T�G′�. We use similar notation for G.

Suppose α ∈ 	�G′�T� and u is a nonidentity element of the α root
group �α ⊂ �′. The unique element in �−αu�−α ∩ ��′ �� � is expressible
([BT], Sect. 4.1.5.2) as m�u� = vuv, where v ∈ �−α. The element m�u�
acts on A�T�G′� as a reflection across a hyperplane H = Hu. The ele-
ments v and u, as elements in �′, fix the half-spaces H�−α� and H�α�



512 kim and moy

of A�T�G′�, respectively. We compare this to the situation where we
view v and u as elements of � acting on ��G�. It follows from the Witt
basis in Lemma 6.4.2 and Corollary 6.4.4, that m�u� is reflection across
a hyperplane hu in A�T�G�. We intend to identify A�T�G� and A�T�G′�
so that the hyperplane hu is identified with the hyperplane H = Hu. As a
step toward this goal, we now show that in A�T�G� the elements v and u
fix the affine half-space hu�−α� and hu�α�, respectively.

Choose a τ-invariant maximal k-split torus S in G containing T. When
viewed as an element in �� u is a product of elements in affine root
groups �φ (of G with respect to S) satisfying

grad
(
φ�A�T�G�

)
is a multiple of α� (6.5.1)

Suppose φ satisfies (6.5.1). Then, the affine root group �φ fixes the half-
space Hφ�α� and so fixes the affine half-subspace hu�α� + Rα provided
R ≥ 0 is sufficiently large. Since u lies in a product of affine root groups
satisfying (6.5.1), it follows that there exists an Ru ≥ 0 so that u fixes the
affine half-subspace hu�α� + Ruα. This in combination with convexity of
the u-fixed points A�T�G�u implies either A�T�G�u equals A�T�G� or is a
half-space. We shall see soon that A�T�G�u is a half-space.

In a similar fashion, there is an Rv ≥ 0 so that v fixes the affine half-
subspaces hu�−α� − Rvα, and the fixed point set is either a half-space or
all of A�T�G�. Suppose either A�T�G�u or A�T�G�v is all of A�T�G�. From
m�u� = vuv, we conclude that m�u� must fix a half-space of A�T�G�. This
is clearly a contradiction to the action of m�u� being a reflection across
the hyperplane hu. Hence u and v fix half-spaces in A�T�G�. Let b�u�
and b�v� denote the boundary hyperplanes of the two half-spaces A�T�G�u
and A�T�G�v. Heuristically, the action of u on A�T�G� is that it fixes point-
wise the half-space A�T�G�u and “folds along the hyperplane b�u�” the clo-
sure of the complementary half-space “away” from A�T�G�. The situation
for v is similar.

If the intersection of the two half-spaces A�T�G�u and A�T�G�v contains
an open neighborhood U , then U must be fixed by the reflection m�u�, an
impossibility. Hence, either the intersection of the two half-spaces is empty
or a hyperplane, which subsequently must be hu. To rule out the intersec-
tion being empty, we argue by contradiction. Assume the intersection is
empty. Choose a point x in the hyperplane b�v�. Then, the empty intersec-
tion hypothesis implies

(i) A�T�G�u is contained in A�T�G� −A�T�G�v,
(ii) the geodesic segment �x� ux� meets A�T�G�v precisely at the

point x,
(iii) there exists y in the open interval �x� ux� so that �x� y� lies in

A�T�G� −A�T�G�v.



curtis–lehrer–tits building 513

Now v�x� ux� = �vx�m�u�x� lies in A�T�G� since its two endpoints lie
in A�T�G�. We conclude that the geodesic interval �x� y� is sent by
v to another geodesic interval inside A�T�G�. But, since �x� y� meets
A�T�G�v in the point x, and v folds the half-space which is the closure of
A�T�G� −A�T�G�u off A�T�G� along the hyperplane b�u�, it is impossi-
ble for v�x� y� to be in A�T�G�. This is a contradiction. We conclude that
v and u must fix a common point in A�T�G�, from which we deduce that
b�u� = b�v� = hu is the common fixed set of u and v in A�T�G�. Thus,
v fixes the affine half-subspace hu�−α�, and u fixes hu�α�.

6.6.

Let ια� A�T�G′� → A�T�G� be any isometry, i.e., a ��′ �� �-equivariant
map, which takes hu to Hu. The map ια is determined up to a translation
by a vector parallel to Hu. Our discussion implies

(i) ια commutes with the actions of m�u� on A�T�G′� and A�T�G�.
(ii) The element v fixes the affine half-subspace Hu�−α� =

ια�hu�−α��, and u fixes Hu�α� = ια�hu�α��.
The above discussion is for a single root α ∈ 	�G′�T�. If we consider all
roots, the assumption that G′ is semisimple, i.e., X∗�T� ⊗� � is spanned
by the simple roots, implies there is a unique ��′ �� �-equivariant map ι �
A�T�G′� → A�T�G� so that

(i) For any root α ∈ 	�G′�T� and u ∈ �α\�1�, the map ι takes hu
to Hu and ι commutes with the actions of m�u� = vuv on A�T�G� and
A�T�G′�.

(ii) The element v fixes the affine half-subspace Hu�−α� =
ι�hu�−α��, while u fixes Hu�α� = ι�hu�α��.

For x ∈ A�T�G′�, set
�x �= subgroup of �′ generated by all the affine root groups

�ψ with respect to � which fix the point x

and

�ι�x� �= subgroup of � generated by all the affine root groups

�φ with respect to � which fix the point ι�x�.
From the above, we see

�x ⊂ �ι�x��
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6.7.

We are now ready to establish the existence of an injective map π �
��G′� → ��G�τ. To do this, we choose a maximal k-split torus T of G′ and
a τ-stable maximal k-split torus S of G which contains T. Recall that any
point z ∈ ��G′� is expressible as z = gx, where x ∈ �′ and x ∈ A�T�G′�.
This expression is not unique, but if z = hy is a second representation
of z, with h ∈ G′ and y ∈ A�T�G′�, then there exists an n ∈ ��′ �� � so that
(i) y = nx, and (ii) g−1hn ∈ �x. Define π � ��G′� → ��G�τ as follows: If
z is expressible as z = gx, set

π�z� = gι�x�� (6.7.1)

Here, ι�x� ∈ A�T�G� and the action of g on ι�x� is by viewing g as being
in �.

Proposition 6.7.2. Let k be a nonarchimedean local field with odd resid-
ual characteristic. Let G be as in (4.4.9) and τ ∈ Autk�G� be as in (4.4.2).
Suppose G′ �= �Gτ�◦ is semisimple. Let π be defined as in (6.7.1).

(i) π is a well-defined map.
(ii) π is an injection.

Proof. To prove (i), suppose z = gx and z = hy are two expressions for
the point z; i.e., g� h ∈ �′ and x� y ∈ A�T�G′�. Choose n′ ∈ ��′ �� � so that
y = n′x, and g−1hn ∈ �x. According to Lemma 6.4.2 and Corollary 6.4.4,
we can choose n ∈ n′��′ �� �b so that ι�y� = nι�x�. Since �x ⊂ �ι�x�, we
have g−1hn ∈ �ι�x�. So, ι�x� = g−1hnι�x�; i.e., gι�x� = hnι�x� = hι�y�.
Hence, π is well defined.

To prove (ii), suppose z1 = gx and z2 = hy map to the same point
under π; i.e., gι�x� = hι�y�. The Bruhat decomposition, �′ = �x��′ �� ��y ,
allows us to express the element g−1h as

g−1h = uxn
−1uy with ux ∈ �x ⊂ �ι�x�� uy ∈ �y ⊂ �ι�y�� and n ∈ ��′ �� ��

Upon substitution, the equality ι�x� = g−1hι�y� becomes ι�x� = uxn
−1×

uyι�y� from which we conclude that y = nx and g−1hn = uxn
−1uyn ∈ �x.

So z1 = gx = hy = z2, and therefore π is injective.

Theorem 6.7.3. Let k be a nonarchimedean local field with odd resid-
ual characteristic. Let G be as in (4.4.9) and τ ∈ Autk�G� be as in (4.4.2).
Suppose G′ �= �Gτ�◦ is semisimple. Then the map π defined by (6.7.1) is a
G′�k�-equivariant isometry of ��G′� onto ��G�τ.

Proof. Normalize distance on A�T�G� so that the map π�A�T�G′� �
A�T�G′� → A�T�G� is an isometry. For g ∈ �′, and z ∈ ���′�, we
have gπ�z� = π�gz�. Given any two points z1� z2 ∈ ���′�, there
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exist points x1� x2 ∈ A�T�G′� and a g ∈ �′ so that zi = gxi; thus
π�zi� = π�gxi� = gπ�xi�. Then, dist�π�z1�� π�z2�� = dist�π�x1�� π�x2�� =
dist�x1� x2� = dist�z1� z2�. So π is an isometry. The final assertion that π
is onto ��G�τ is Proposition 5.4 and Corollary 5.7.

Added in notes. After the submission of this manuscript, we received a
preprint by G. Prasad and J.-K. Yu, whose main results specialize to the
main results in this manuscript.
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