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Abstract

We give a generalization of Weyl’s denominator formulas for the classical groups. We consider the ma-
trices whose constituents are the characters of the respective classical groups in the restricted variables for
each column of the matrices and show that the determinants of the matrices are equal to the powers of the
fundamental alternating polynomials (the original denominators of Weyl’s denominator formulas).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we give a generalization of Weyl’s denominator formulas [3,4,7] for the classical
groups. We consider the matrices whose constituents are the characters of the respective classical
groups in the restricted variables for each column of the matrices and show that the determinants
of the matrices are equal to the powers of the fundamental alternating polynomials (the original
denominators of Weyl’s denominator formulas). From now on, we consider all the (Laurent)
polynomials in the variables {x1, x2, . . . , xn} over the rational field Q. These formulas play a
crucial role in the paper [1]. For another generalization of Weyl’s denominator formulas, which
is different from the one presented here, see [2].
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2. Formulas for the general linear groups

For the general linear groups GL(n) and a positive integer k less than n, let Mk be a ma-
trix of size

(
n
k

)
with rows indexed by all the Young diagrams λ’s included in the rectangular

Young diagram (n − k)k and with columns indexed by all the size k subsets {i1, i2, . . . , ik} of the
integer set [n] = {1,2, . . . , n}, whose λ × {i1, i2, . . . , ik} entry is given by sλ(xi1, xi2, . . . , xik ),
where sλ(xi1, xi2, . . . , xik ) denotes the Schur function (the character of GL(n)) in the k variables
{xi1, xi2, . . . , xik }. We note that the number of the Young diagrams λ’s included in the rectangular
Young diagram (n − k)k is

(
n
k

)
.

We introduce the reverse lexicographic order > in the partitions, namely for partitions
λ = (λ1, λ2, . . . , λn) and μ = (μ1,μ2, . . . ,μn), we define the order λ > μ if λ1 = μ1, λ2 = μ2,
. . . , λj−1 = μj−1 and λj > μj for some j . We arrange the rows of Mk in the decreasing
order. Also we introduce the reverse lexicographic order into the monomials in the variables
{x1, x2, . . . , xn} and x

p1
1 x

p2
2 · · ·xpn

n > x
q1
1 x

q2
2 · · ·xqn

n if p1 = q1, p2 = q2, . . . , pj−1 = qj−1 and
pj > qj for some j .

We arrange the columns of the matrix Mk in the decreasing order of the corresponding mono-
mials xi1xi2 · · ·xik .

For example, if n = 4 and k = 2, M2 is given by

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s2,2(x1, x2) s2,2(x1, x3) s2,2(x1, x4) s2,2(x2, x3) s2,2(x2, x4) s2,2(x3, x4)

s2,1(x1, x2) s2,2(x1, x3) s2,1(x1, x4) s2,1(x2, x3) s2,1(x2, x4) s2,1(x3, x4)

s2(x1, x2) s2(x1, x3) s2(x1, x4) s2(x2, x3) s2(x2, x4) s2(x3, x4)

s1,1(x1, x2) s1,1(x1, x3) s1,1(x1, x4) s1,1(x2, x3) s1,1(x2, x4) s1,1(x3, x4)

s1(x1, x2) s1(x1, x3) s1(x1, x4) s1(x2, x3) s1(x2, x4) s1(x3, x4)

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Our theorem for the general linear groups is as follows.

Theorem 1.

det(Mk) =
( ∏

1�i<j�n

(xi − xj )

)(n−2
k−1)

.

Remark 2. For k = 1, since st (xi) = xt
i , the above formula reduces to the well-known Vander-

monde formula.

Proof. The weight decomposition formula tells us that sλ(xi1, xi2, . . . , xik ) = ∑
λ�μ Kλμ ×

mμ(xi1 , xi2, . . . , xik ). Here Kλμ denotes the Kostka number (the weight multiplicity) of
the weight μ in the irreducible representation of GL(k) with the highest weight λ and
mμ(xi1 , xi2, . . . , xik ) denotes the monomial symmetric function. We note that Kλλ = 1. (For
the exact definitions, see [6].) Therefore applying row elementary transformations to det(Mk)

successively, we can replace the sλ(xi1, xi2, . . . , xik )’s in the determinant by the mλ(xi1 , xi2,

. . . , xik )’s simultaneously. Namely we have the equality det([sλ(xi1, xi2, . . . , xik )]λ,{i1,i2,...,ik}) =
det([mλ(xi1, xi2, . . . , xik )]λ,{i1,i2,...,ik}). So we consider the determinant of M̄k = [mλ(xi1 , xi2,

. . . , xik )]λ,{i1,i2,...,ik} instead of Mk .
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Lemma 3. For any pair of integers (i, j) with 1 � i < j � n, (xi − xj )
(n−2
k−1) divides det(M̄k).

Proof. For any subset of integers {�1, �2, . . . , �k−1} of [n] such that i, j /∈ {�1, �2, . . . , �k−1},
we consider the columns indexed by {i, �1, �2, . . . , �k−1} and {j, �1, �2, . . . , �k−1}. If we take
difference of the above columns (elementary transformation of columns), the difference of λ ×
{i, �1, �2, . . . , �k−1}th entry and λ × {j, �1, �2, . . . , �k−1}th entry is given by

mλ(xi, x�1, . . . , x�k−1) − mλ(xj , x�1, . . . , x�k−1) =
∑
ps�1

(
xs
i − xs

j

)
mλ−s(x�1, . . . , x�k−1).

Here ps denotes the multiplicity of the integer s in the partition λ, namely λ = 1p12p2 · · ·upu

and λ − s = 1p1 2p2 · · · sps−1 · · ·upu in terms of the exponential description of the partitions.
Hence the factor (xi − xj ) occurs once for each subset of integers {�1, �2, . . . , �k−1} of [n]

such that i, j /∈ {�1, �2, . . . , �k−1}. The number of choices of such sets is
(
n−2
k−1

)
, so we have the

lemma. �
Lemma 4.

det(M̄k) = c

( ∏
1�i<j�n

(xi − xj )

)(n−2
k−1)

.

Here c is a constant.

From Lemma 3, (
∏

1�i<j�n(xi − xj ))
(n−2
k−1) divides the determinant det(M̄k). So in order to

prove the lemma, it is only enough to show that the degrees of both sides coincide. The degree
of the right-hand side is

(
n
2

) × (
n−2
k−1

)
. So we calculate the degree of the left-hand side. Since all

the entries in the row of det(M̄k) corresponding to Young diagram λ have homogeneous degree
|λ| = λ1 + λ2 + · · · + λn (the size of λ), the proof of the lemma reduces to the following.

Lemma 5. ∑
λ⊆(n−k)k

|λ| =
(

n

2

)
×

(
n − 2

k − 1

)
.

Proof. We start with the following formula:

1

(1 − qt)(1 − q2t) · · · (1 − qn−kt)
=

∑
λ1�n−k

q |λ|t�(λ). (1)

Here in the right-hand side, the sum runs over all the Young diagrams with their parts less than
or equal to n − k and �(λ) denotes the length of λ, i.e., the number of non-zero parts in λ.

Let us differentiate both sides in the variable q and put q = 1. Then the right-hand side of
Eq. (1) is ∑

λ1�n−k

|λ|t�(λ),

and what we want here is the sum of the coefficients of t i for 1 � i � k.
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On the other hand, the left-hand side is given by

t + 2t + · · · + (n − k)t

(1 − t)n−k+1
=

(
n − k + 1

2

)
t

(1 − t)n−k+1
.

The generalized binomial coefficient theorem tells us that

t (1 − t)−n+k−1

= t

(
1 −

(−n + k − 1

1

)
t +

(−n + k − 1

2

)
t2 + · · · + (−1)k−1

(−n + k − 1

k − 1

)
tk−1

+ higher terms in t

)
.

So the sum of the coefficients of t i for 1 � i � k in the above is given by the sum

(
n + 1 − k

0

)
+

(
n + 1 − k

1

)
+

(
n + 2 − k

2

)
+ · · · +

(
n − 1

k − 1

)
.

It is easy to see that this sum is equal to
(

n
k−1

)
by the successive use of the well-known equality(

n
i−1

) + (
n
i

) = (
n+1

i

)
. Since

(
n−k+1

2

) × (
n

k−1

) = (
n
2

) × (
n−2
k−1

)
, we have the lemma. �

Finally we show that the coefficient c in Lemma 4 is 1. Let us prepare some notations.
For any polynomial P(x1, x2, . . . , xn), we define the dominant monomial of P by the maxi-

mum monomial in the order defined before among the monomials with the non-zero coefficients
in P and denote it by d[P ] and define the dominant coefficient of P by the coefficient of the
dominant monomial in P and denote it by cd[P ]. It is easy to see that for any product of two
polynomials P and Q, d[PQ] = d[P ]d[Q] and cd[PQ] = cd[P ]cd[Q].

Since the dominant monomial of (
∏

1�i<j�n(xi − xj ))
(n−2
k−1) is (xn−1

1 xn−2
2 · · ·xn−1)

(n−2
k−1) and

its coefficient is one, if we prove the same for the polynomial det(M̄k), we can conclude that
c = 1.

Let us prove that the dominant monomial of det(M̄k) is (xn−1
1 xn−2

2 · · ·xn−1)
(n−2
k−1) and its co-

efficient is one.

Claim 6. Only the diagonal components of M̄k contribute to the dominant monomial of det(M̄k)

and the dominant monomial of the determinant is given by d[det(M̄k)]= (xn−1
1 xn−2

2 · · ·xn−1)
(n−2
k−1)

and its coefficient in det(M̄k) is one.

We prove this claim by induction on n (the number of the variables). The dominant monomials
of the entries occurred in the first

(
n−1
k−1

)
rows in M̄k are of the form xn−k

i1
x

p2
i2

· · ·xpk

ik
, where

i1 < i2 < · · · < ik and t � p2 � · · · � pk .
From the definition of the order in the monomials, the dominant monomial in all the minors

of the first
(
n−1
k−1

)
rows of size

(
n−1
k−1

) × (
n−1
k−1

)
must be taken from the first

(
n−1
k−1

)
columns, in other

words, i1 must be one and at that time the highest power of x1 in the monomials of det(M̄k) is
(n − k) × (

n−1).

k−1
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So let us consider the minor consisting of the first
(
n−1
k−1

)
rows and the first

(
n−1
k−1

)
columns

of M̄k . From the above, in order to obtain the dominant monomial of that minor, we can simul-
taneously replace each of its entries by the partial sum of the monomials containing xn−k

1 . After
we put out the powers of x1 from each column of that minor, the induction hypothesis can apply
to that minor with n − 1 variables {x2, x3, . . . , xn} since its rows are indexed by the Young dia-
grams included in the rectangular (n− k)k−1 and its columns are indexed by the k − 1 subsets of
{x2, x3, . . . , xn}. The dominant monomial of that minor comes from the product of the diagonal

components and is given by (xn−2
2 · · ·xn−1)

(n−3
k−2) and its coefficient is one. We consider the mi-

nor of the remaining rows and columns of M̄k . This minor consists of the columns indexed only
by the variables {x2, . . . , xn} and of the rows indexed only by the Young diagrams included in
(n−k −1)k . So we can apply the induction hypothesis to that minor and the dominant monomial

is (xn−2
2 · · ·xn−1)

(n−3
k−1).

Therefore the dominant monomial of det(M̄k) is x
(n−k)(n−1

k−1)
1 × (xn−2

2 · · ·xn−1)
(n−3
k−2) ×

(xn−2
2 · · ·xn−1)

(n−3
k−1) and its coefficient is one. It is easy to see that this monomial is equal to

(xn−1
1 xn−2

2 · · ·xn−1)
(n−2
k−1) and the claim, therefore the theorem is proved. �

Remark 7. We can skip the degree argument (Lemma 5) since the above claim holds without the

degree argument and we already know that (
∏

1�i<j�n(xi − xj ))
(n−2
k−1) divides det(M̄k).

3. Formulas for the symplectic groups

Let λSp(2n)(x1, x2, . . . , xn) denote the irreducible character of type Cn with the dominant in-
tegral weight λ. λSp(2n)(x1, x2, . . . , xn) is by definition, the Laurent polynomial (i.e., the element
in Q[x1, x

−1
1 , . . . , xn, x

−1
n ]) and invariant under the action of the Weyl group W(Cn). From now

on, we assume n � 2.
For a positive integer k less than n, let M

Sp
k be a matrix of size

(
n
k

)
with rows indexed by all

the Young diagrams λ’s included in the rectangular Young diagram (n − k)k and with columns
indexed by all the size k subsets {i1, i2, . . . , ik} of the integer set [n], whose λ × {i1, i2, . . . , ik}
entry is given by λSp(2k)(xi1, xi2, . . . , xik ).

The rows and columns of M
Sp
k are arranged in the same way as in the case of An.

Our theorem for the type Cn is as follows.

Theorem 8.

det
(
M

Sp
k

) =
( ∏

1�i<j�n

(xi − xj )
(
1 − x−1

i x−1
j

))(n−2
k−1)

.

Remark 9. In the above, if k = 1, we have (t)Sp(2)(xi) = xt
i +xt−2

i +· · ·+x−t+2
i +x−t

i . So up to
the factor

∏n
i=1(xi − x−1

i ), the above formula gives us the original Weyl’s denominator formula
for the type Cn.

Proof. Actually the proof goes in the same way as in the case of An literally. Since λSp(2k)(xi1,

xi2, . . . , xik ) = ∑
λ�μ K

Sp(2k)
m

Sp(2k)
μ (xi1, xi2, . . . , xik ) and K

Sp(2k) = 1, where K
Sp(2k) denotes
λμ λλ λμ
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the weight multiplicity of the weight μ in the irreducible representation λSp(2k) and m
Sp(2k)
μ (xi1,

xi2, . . . , xik ) denotes the orbit sum of the monomial x
μ1
i1

x
μ2
i2

· · ·xμk

ik
under the action of the Weyl

group W(Ck). Therefore applying row elementary transformations to det(MSp
k ) successively, we

can replace the λSp(2k)(xi1, xi2, . . . , xik )’s in the determinant by the m
Sp(2k)
λ (xi1, xi2, . . . , xik )’s si-

multaneously. So if we put M̄Sp(2k)

k = [mSp(2k)
λ (xi1, xi2, . . . , xik )]λ,{i1,i2,...,ik}, we have det(MSp

k ) =
det(M̄Sp

k ).

Lemma 10. For any pair of integers (i, j) with 1 � i < j � n, ((xi − xj )(1 − x−1
i x−1

j ))(
n−2
k−1)

divides det(M̄Sp
k ) in the algebra Q[x1, x

−1
1 , . . . , xn, x

−1
n ].

Proof. For any subset of integers {�1, �2, . . . , �k−1} of [n] such that i, j /∈ {�1, �2, . . . , �k−1},
we consider the columns indexed by {i, �1, �2, . . . , �k−1} and {j, �1, �2, . . . , �k−1}. If we take
difference of the above columns (elementary transformation of columns), the difference λ ×
{i, �1, �2, . . . , �k−1}th entry and λ × {j, �1, �2, . . . , �k−1}th entry is given by

m
Sp(2k)
λ (xi, x�1, . . . , x�k−1) − m

Sp(2k)
λ (xj , x�1, . . . , x�k−1)

=
∑
ps�1

(
xs
i + x−s

i − xs
j − x−s

j

)
m

Sp(2k)
λ−s (x�1, . . . , x�k−1).

Since (xi − xj )(1 − x−1
i x−1

j ) divides (xs
i + x−s

i − xs
j − x−s

j ), we have the lemma. �
From the lemma, if we put the quotient

Q(x1, x2, . . . , xn) = det(M̄Sp
k )

(
∏

1�i<j�n(xi − xj )(1 − x−1
i x−1

j ))(
n−2
k−1)

,

Q is a Laurent polynomial. For any integer i with 1 � i � n, Q is invariant under the action
xi → x−1

i and xj → xj for j �= i since (xi − xj )(1 − x−1
i x−1

j ) and the characters are invariant
under this action.

Since the dominant monomial argument goes well in this case, we have d[det(M̄Sp
k )] =

d[(∏1�i<j�n(xi − xj )(1 − x−1
i x−1

j ))(
n−2
k−1)] = (xn−1

1 xn−2
2 · · ·xn−1)

(n−2
k−1) and its coefficients in

both polynomials coincide and are one.
If Q is not a constant, Q contains some monomials x

p1
1 x

p2
2 · · ·xpn

n with non-negative expo-
nents and some pi > 0, since Q is invariant under the action xi → x−1

i . This contradicts the fact

that d[Q]d[(∏1�i<j�n(xi − xj )(1 − x−1
i x−1

j ))(
n−2
k−1)] must be equal to d[det(M̄Sp

k )]. So Q must
be constant and must be one. �
4. Formulas for the orthogonal groups and the pin groups

Finally the formula for the type Bn is almost the same for the type Cn. We also assume n � 2.
For the type Bn, the dominant integral weights are given by

P + = {λ1e1 + λ2e2 + · · · + λnen; λ1 � λ2 � · · · � λn � 0}.
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Here {e1, e2, . . . , en} denotes the standard basis of Rn and all the λi ’s are integers or half-integers
(namely 1/2 + Z) simultaneously.

So the formulas in this case are as follows.
When all λi ’s are integers, namely λ is a partition, then the irreducible representation with the

highest weight λ comes from the group SO(2n + 1), so we denote the irreducible character of
type Bn by λSO(2n+1)(x1, x2, . . . , xn). Also for the dominant integral weight (1/2 + δ1,1/2 + δ2,

. . . ,1/2 + δn), where δ = (δ1, δ2, . . . , δn) is a partition, we denote this irreducible character by
[Δ,δ]Spin(2n+1).

λSp(2n)(x1, x2, . . . , xn) is an element in Q[x1, x
−1
1 , . . . , xn, x

−1
n ] and [Δ,δ]Spin(2n+1) is an el-

ement in Q[x1/2
1 , x

−1/2
1 , . . . , x

1/2
n , x

−1/2
n ]. Both polynomials are invariant under the action of the

Weyl group W(Bn) = W(Cn).
For a positive integer k less than n, let M

SO,odd
k be a matrix of size

(
n
k

)
with rows indexed by

all the Young diagrams λ’s included in the rectangular Young diagram (n−k)k and with columns
indexed by all the size k subsets {i1, i2, . . . , ik} of the integer set [n], whose λ × {i1, i2, . . . , ik}
entry is given by λSO(2k+1)(xi1 , xi2, . . . , xik ).

The rows and columns of M
SO,odd
k are arranged in the same way as in the case of An. The

proof of the next theorem is the same as in the type Cn.

Theorem 11.

det
(
M

SO,odd
k

) =
( ∏

1�i<j�n

(xi − xj )
(
1 − x−1

i x−1
j

))(n−2
k−1)

.

Remark 12. In the above, if k = 1, we have (t)SO(3)(xi) = xt
i + xt−1

i + · · ·+ x−t+1
i + x−t

i . So up

to the factor
∏n

i=1(xi
1/2 − x

−1/2
i ), the above formula gives us the original Weyl’s denominator

formula for the type Bn.

For a positive integer k less than n, let M
Spin,odd
k be a matrix of size

(
n
k

)
with rows indexed by

all the Young diagrams δ’s included in the rectangular Young diagram (n−k)k and with columns
indexed by all the size k subsets {i1, i2, . . . , ik} of the integer set [n], whose δ × {i1, i2, . . . , ik}
entry is given by [Δ,δ]Spin(2k+1)(xi1, xi2, . . . , xik ).

The rows and columns of M
Spin,odd
k are arranged in the same way as in the case of An. Then

our theorem is as follows.

Theorem 13.

det
(
M

Spin,odd
k

) =
(

n∏
i=1

(
xi

1/2 + xi
−1/2))(n−1

k−1)( ∏
1�i<j�n

(xi − xj )
(
1 − x−1

i x−1
j

))(n−2
k−1)

.

This theorem follows from the formula (see Theorem 10.1(ii) in [5])

[Δ,δ]Spin(2n+1)(x1, x2, . . . , xn) =
(

n∏
i=1

(
xi

1/2 + xi
−1/2))δSp(2n)(x1, x2, . . . , xn)

and Theorem 8.
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Remark 14. In the above, if k = 1, the matrix components in the left-hand side are

[
Δ,(t)

]
Spin(3)

(xi) = (
xi

1/2 + x
−1/2
i

)(
xt
i + xt−2

i + · · · + x−t+2
i + x−t

i

)
.

For the type Dn, the dominant integral weights are given by

P + = {
λ1e1 + λ2e2 + · · · + λnen; λ1 � λ2 � · · · � λn−1 � |λn| � 0

}
.

Here all the λi ’s are integers or half-integers (namely 1/2 + Z) simultaneously. We denote the
corresponding character by λSpin(2n)(x1, x2, . . . , xn). If all the λi ’s are integers, the correspond-
ing irreducible representation comes from that of SO(2n), we also write λSO(2n)(x1, x2, . . . , xn)

instead of λSpin(2n)(x1, x2, . . . , xn).

Definition 15 (Definition of λPin(2n) and λO(2n)).

(1) If λn = 0 for the type Dn, we denote λO(2n) = λSO(2n).
(2) If λn �= 0 for the type Dn and we denote

λPin(2n)(x1, x2, . . . , xn) = (λ1, λ2, . . . , λn)Spin(2n) + (λ1, λ2, . . . ,−λn)Spin(2n)

and furthermore if all the λi ’s are integers in the above, we denote

λO(2n)(x1, x2, . . . , xn) = (λ1, λ2, . . . , λn)SO(2n) + (λ1, λ2, . . . ,−λn)SO(2n).

These characters are obtained by restricting the irreducible characters of Pin(2n,C) to
Spin(2n,C) and O(2n,C) to SO(2n,C), respectively.

For a positive integer k less than n, let M
O,even
k be a matrix of size

(
n
k

)
with rows indexed by

all the Young diagrams λ’s included in the rectangular Young diagram (n−k)k and with columns
indexed by all the size k subsets {i1, i2, . . . , ik} of the integer set [n], whose λ × {i1, i2, . . . , ik}
entry is given by λO(2k)(xi1, xi2, . . . , xik ).

The rows and columns of M
O,even
k are arranged in the same way as in the case of An. The

proof of the next theorem is the same as in the type Cn.

Theorem 16.

det
(
M

O,even
k

) =
( ∏

1�i<j�n

(xi − xj )
(
1 − x−1

i x−1
j

))(n−2
k−1)

.

Remark 17. In the above, if k = 1, the matrix components in the left-hand side are (t)O(2)(xi) =
xt
i + x−t

i . So this is the original Weyl’s denominator formula for type D2n.

For a positive integer k less than n, let M
Pin,even
k be a matrix of size

(
n
k

)
with rows indexed by

all the Young diagrams δ’s included in the rectangular Young diagram (n−k)k and with columns
indexed by all the size k subsets {i1, i2, . . . , ik} of the integer set [n], whose δ × {i1, i2, . . . , ik}
entry is given by (δ +1/2)Pin(2k)(xi1 , xi2, . . . , xik ), where (δ +1/2) denotes the dominant weight
(δ1 + 1/2, δ2 + 1/2, . . . , δn + 1/2).
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The rows and columns of M
Pin,even
k are arranged in the same way as in the case of An. Then

our theorem is as follows.

Theorem 18.

det
(
M

Pin,even
k

) =
(

n∏
i=1

(
xi

1/2 + xi
−1/2))(n−1

k−1)( ∏
1�i<j�n

(xi − xj )
(
1 − x−1

i x−1
j

))(n−2
k−1)

.

This theorem follows from Theorem 11 and the formula

(δ + 1/2)Pin(2k)(x1, x2, . . . , xn)

=
(

n∏
i=1

(
xi

1/2 + xi
−1/2))(−1)|δ|δSO(2n+1)(−x1,−x2, . . . ,−xn).

As for the above formula, see Theorem 10.1(iii) in [5] and there (δ + 1/2)Pin(2k)(x1, x2, . . . , xn)

is denoted by the different notation λ
(+)
Spin(2n)(x1, x2, . . . , xn).
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