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Let K 〈X〉 be a finite generated free associative algebra over a field
K of characteristic zero and let f , g ∈ K 〈X〉 generate their central-
izer respectively. Assume that the f and g are algebraically inde-
pendent, the leading homogeneous components of f and g are al-
gebraically dependent and deg( f ) � deg(g), deg(g) � deg( f ). In this
article, we construct a counterexample to a conjecture of Jie-Tai
Yu that deg([ f , g]) > min{deg( f ),deg(g)}, which is closely related
to the study of the structure of the automorphism group of K 〈X〉.
We also obtain a counterexample to another related conjecture of
Makar-Limanov and Jie-Tai Yu stated in terms of Malcev–Neumann
formal power series. In view of the counterexamples we formulate
two open problems concerning degree estimate for commutators
in view of the study of the structure of the automorphism group
of K 〈X〉.
The counterexamples in this article are constructed by applying
the description of the free algebra K 〈X〉 considered as a bimod-
ule of K [u] where u is a monomial which is not a power of
another monomial and the solution the equation [um, s] = [un, r]
with unknowns r, s ∈ K 〈X〉. The newly discovered description and
the solution of the equation in this article are closely related to
the combinatorial and computational aspects of free associative al-
gebras, hence have their own independent interests.
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0. Introduction

Let K be a field of characteristic zero and let X = {x1, . . . , xd} be a finite set of indeterminates.
Let K [X] and K 〈X〉 be, respectively, the polynomial algebra and the free associative algebra generated
by X over K . Let f and g be two polynomials in K [X] or K 〈X〉, we want to estimate the minimal
degree of the nonconstant elements of the subalgebra generated by f and g . This problem is closely
related to the study of structure of the automorphism group of K [X] and K 〈X〉, and related topics.
See [DY,GY1,GY2,MLRSY,MLY,SU1,SU2,SY,U1,U2,UY,Y1,Y2].

If f and g are algebraically dependent in K [X], then the theorem of Zaks [Z] gives that the integral
closure of K [ f , g] in K [X] is a subalgebra K [h] of K [X] (see also Eakin [E] for a simple proof and
generalizations). If f and g are algebraically dependent in K 〈X〉, then they commute, see Cohn [C],
and the theorem of Bergman [B1] gives that the centralizer of f (as well as the centralizer of g) is
also a subalgebra K [h] of K 〈X〉. In the both cases not much is known for the minimal degree of the
elements of the subalgebra generated by f and g in terms of f and g , except that the minimal degree
is bounded by deg(h) from the lower side. For example, the famous Abhyankar–Moh–Suzuki theorem
(see [AM,Su]) gives that if f , g ∈ K [x] generate the whole algebra K [x], then deg( f ) divides deg(g) or
deg(g) divides deg( f ).

Let ϕ = ( f , g) be an automorphism of K [x, y] or K 〈x, y〉 (that is, ϕ(x) = f , ϕ(y) = g , and
K [ f , g] = K [x, y] or K 〈 f , g〉 = K 〈x, y〉 respectively). Then it is well known that f and g may be
of arbitrary high degrees, and one of the degrees deg( f ) and deg(g) divides the other and one of the
leading homogeneous components of f and g is a power of the other up to a nonzero constant factor
in K ∗ . See, for instance, Cohn [C].

The above examples show that there is no good estimate for the minimal degree of the noncon-
stant elements in the subalgebra generated by f and g if f and g are algebraically dependent; or if f
and g are algebraically independent, but one of the highest homogeneous components of f and g is a
power of another up to a nonzero constant factor in K ∗ . More over, in case f and g are algebraically
independent, it is obvious the problem of degree estimate becomes trivial if the highest homogeneous
components of f and g are also algebraically independent. In view of that, the natural formulation of
the problem should be the following

Problem 0.1. Let f and g be algebraically independent polynomials in K [X] or K 〈X〉 such that the
homogeneous components of maximal degree of f and g are algebraically dependent. Suppose that
deg( f ) � deg(g), deg(g) � deg( f ). Find a good estimate of the minimal degree of the nonconstant
elements of the subalgebra generated by f and g .

Shestakov and Umirbaev [SU1] obtained such an estimate for the commutative case by means of
Poisson brackets. The estimate played essential role in Shestakov and Umirbaev [SU2], where they dis-
covered an algorithm determining whether any given automorphism of K [x, y, z] is tame and proved
the famous Nagata Conjecture [N] that the Nagata automorphism is wild. As a by-product, Shestakov
and Umirbaev obtained a new proof of the Jung–van der Kulk theorem [J,K] that the automorphisms
of K [x, y] are tame. The estimate was also used by Umirbaev and J.-T. Yu [UY], to prove the Strong
Nagata Conjecture that there exist wild coordinates of K [x, y, z].

Based on the Lemma on radicals for the Malcev–Neumann power series, recently Makar-Limanov
and J.-T. Yu [MLY] have obtained a sharp lower degree estimate for the nonconstant elements of the
subalgebra generated by f , g in K 〈X〉: If f and g are as in Problem 0.1 and p(x, y) ∈ K 〈x, y〉, then

deg
(

p( f , g)
)
� D( f , g)wdeg( f ),deg(g)(p),

where

D( f , g) = deg([ f , g])

deg( f g)
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and wdeg( f ),deg(g)(p) is the weighted degree of p(x, y), defined by

wdeg( f ),deg(g)(x) = deg( f ), wdeg( f ),deg(g)(y) = deg(g).

Similarly, by applying the Lemma on radicals in the commutative case they obtain the lower degree
estimate for subalgebras K [ f , g] of polynomial algebras K [X]

deg
(

p( f , g)
)
� D( f , g)wdeg( f ),deg(g)(p),

where p(x, y) ∈ K [x, y],

D( f , g) =
[

1 − (deg( f ),deg(g))(deg( f g) − deg(df ∧ dg))

deg( f )deg(g)

]
,

(m,n) is the greatest common divisor of m,n and

df ∧ dg =
∑(

∂ f

∂xi

∂ g

∂x j
− ∂ f

∂x j

∂ g

∂xi

)
(dxi ∧ dx j)

is the corresponding differential 2-form.
It is not hard to see that under the nontrivial condition that p has outer rank two, (that is, no au-

tomorphism of K 〈x, y〉 or K [x, y] can take p(x, y) into K [x]), we must have deg(p( f , g)) � deg([ f , g])
for free associative algebras and deg(p( f , g)) � deg( J ( f , g)) + 2 for polynomial algebras, where
deg( J ( f , g)) = max1�i< j�d{deg( J xi ,x j ( f , g))}. See, for instance, S.-J. Gong and J.-T. Yu [GY2].

These estimates have been used by J.-T. Yu [Y1], and S.-J. Gong and J.-T. Yu [GY1,GY2], to clas-
sify retracts, test elements and automorphic orbits of K [x, y] and K 〈x, y〉, as well as to give a new
proof of the theorem of Czerniakiewicz and Makar-Limanov (see [Cz,ML]) for the tameness of the
automorphisms of K 〈x, y〉.

Umirbaev described the structure of the group of tame automorphisms of K [x, y, z] in terms of
generators and defining relations in [U1]. Based on that, he affirmatively solved the famous Anick
conjecture (see, for instance, Cohn [C]) that the Anick automorphism of K 〈x, y, z〉 is wild in [U2].
Based on the methodology and results in [U1,U2,UY], Drensky and J.-T. Yu [DY] proved the strong
Anick conjecture that there exist wild coordinates of K 〈x, y, z〉. But to our best knowledge, there
is no algorithm determining whether any given automorphism of K 〈x, y, z〉 is tame, as obtained by
Shestakov and Umirbaev [SU2] in commutative case. Here a serious and essential obstacle is that
there is no good estimate for deg([ f , g]) for any given f , g ∈ K 〈X〉 in terms of deg( f ) and deg(g).
For details, see [Y2], where J.-T. Yu raised the following

Conjecture 0.2 (J.-T. Yu). Let f and g be algebraically independent polynomials in K 〈X〉 such that the homo-
geneous components of maximal degree of f and g are algebraically dependent. Let f and g generate their
own centralizers in K 〈X〉 respectively. Suppose that deg( f ) � deg(g), deg(g) � deg(g). Then

deg
([ f , g]) > min

{
deg( f ),deg(g)

}
.

The condition that the degrees of f and g do not divide each other is essential. It does not hold
when ϕ = ( f , g) is an automorphism of K 〈x, y〉 when the commutator test of Dicks [D] gives that
[ f , g] = c[x, y], c ∈ K ∗ . The condition that f and g generate their own centralizers respectively is also
necessary. For example, if

f = y + (
x + yk)m

, g = (
x + yk)n

, m > n, k > 2,
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then [ f , g] = [y, (x + yk)n]. The homogeneous component of maximal degree of [ f , g] is equal to

[
y, xyk(n−1) + y2xyk(n−2) + · · · + yk(n−1)x

]
,

deg
([ f , g]) = k(n − 1) + 2 < kn = deg(g) < km = deg( f ).

If Conjecture 0.2 were true, it would give a nice description of the group of tame automorphisms of
K 〈x, y, z〉 algorithmically, much better than the description of the group of tame automorphisms of
K [x, y, z] (see J.-T. Yu [Y2]). Makar-Limanov and J.-T. Yu [MLY] have been working in the Malcev–
Neumann algebra A(X) (as a natural extension K -algebra of K 〈X〉) of formal power series with
monomials from the free group generated by X , allowing infinite sums of homogeneous components
of negative degree and only finite number of homogeneous components of positive degree. See Sec-
tion 4 of this article. It is not hard to see that Conjecture 0.2 would follow from the next conjecture
formulated by Makar-Limanov and J.-T. Yu.

Conjecture 0.3 (Makar-Limanov and J.-T. Yu). Let g ∈ K 〈X〉 generate its own centralizer and let the homo-
geneous component of maximal degree of g is an n-th power of an element of K 〈X〉. Then, for every m > n
which is not divisible by n, the formal power series gm/n ∈ A(X) has a monomial of positive degree containing
a negative power of an indeterminate in X.

The analogue of Conjecture 0.2 for polynomial algebras is: if f and g are algebraically independent
polynomials in K [X] such that the homogeneous components of maximal degree of f and g are algebraically
dependent, f and g generate their own integral closures in K [X] respectively, and neither of the degrees of f
and g divides the other, then

deg(df ∧ dg) > min
{

deg( f ),deg(g)
}
.

Note that in the case of K [x, y],

deg(df ∧ dg) = deg
(

J ( f , g)
) + 2 = deg

(
∂ f

∂x

∂ g

∂ y
− ∂ f

∂ y

∂ g

∂x

)
+ 2.

Recently, Makar-Limanov has constructed an example (see Example 1.1 in this article) of f , g ∈
K [x, y] such that f and g may be of arbitrarily high degree but

deg(df ∧ dg) = 3,

which serves as a counterexample of the analogue of Conjecture 0.2 for polynomial algebras.
It is also not hard to see that the analogue of Conjecture 0.3 is not true in the commutative case.
In this article we construct counterexamples to Conjectures 0.2 and 0.3. The degrees of the poly-

nomials f and g in the counter example to Conjecture 0.2 are 3(2k + 1) and 2(2k + 1) respectively,
where k � 2, and deg([ f , g]) = 2k + 5 < deg(g) < deg( f ). The same polynomial g is also a coun-
terexample to Conjecture 0.3. Comparing with the example of Makar-Limanov, we see that in the
commutative case the fraction

deg(df ∧ dg)

min{deg( f ),deg(g)}
can be made as close to 0 as possible. In our example, the fraction

deg([ f , g])
min{deg( f ),deg(g)} >

1

2

and can be made as close to 1/2 as possible.
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Problem 0.4. Let f and g be algebraically independent polynomials in K 〈X〉 such that the homoge-
neous components of maximal degree of f and g are algebraically dependent. Let f and g generate
their own centralizers in K 〈X〉 respectively. Suppose that deg( f ) � deg(g) and deg(g) � deg( f ). Does
then there exist a fixed positive number c � 1/2 such that deg([ f , g]) > c min{deg( f ),deg(g)} for all
such pair ( f , g)?

If the answer to this problem is affirmative, it would differentiate the situation in the noncom-
mutative case from the commutative case, in view of the example of Makar-Limanov (Example 1.1).
Moreover, it would still give a nice description of the group of tame automorphisms of K 〈x, y, z〉 al-
gorithmically (see Yu [Y2]). If the answer turns to be negative, it would mean that the ‘Asymptotic
properties’ of the commutator in the noncommutative case are similar to that of the Jacobian in the
commutative case, which could be viewed as another evidence for the truth of the famous Jacobian
conjecture (for polynomial algebras of rank two). See, Dicks [D]. See also Cohn [C], Mikhalev, Shpilrain
and J.-T. Yu [MSY].

In particular, to our best knowledge, there are no examples that deg( f ) > deg(g), deg(g) � deg( f ),
and deg([ f , g]) < 1

2 deg(g) even without a condition that f and g generate their own centralizers
respectively (refer to the example in the Introduction). In view of that and the fact we are not able to
make the constant 1

2 smaller in the counterexample to Conjecture 0.2 (see Section 3 of this article),
we formulate the following

Problem 0.5. Let f and g be algebraically independent polynomials in K 〈X〉 such that the homoge-
neous components of maximal degree of f and g are algebraically dependent. Let deg( f ) > deg(g)

and deg(g) � deg( f ). Can then we conclude that deg([ f , g]) > 1
2 deg(g)?

In order to construct the counterexamples mentioned above, we first study the structure of the
free algebra K 〈X〉 as a bimodule of K [u], where u is a monomial which is not a proper power. It
turns out that K 〈X〉 is a direct sum of three types of bimodules: the polynomial algebra K [u], free
bimodules generated by a single monomial, and two-generated bimodules with a nontrivial defining
relation. By means of the bimodule structure of K 〈X〉, we solve the equation [um, s] = [un, r] with
unknowns r, s ∈ K 〈X〉. Then using the existence of the K [u]-bimodules of the third kind in K 〈X〉 and
by means of Malcev–Neumann power series, we successfully construct the counterexamples.

An essential part of the combinatorial theory of free associative algebras A over a field is based
on the fact that A is a free ideal ring (FIR), that is, every ideal of A is a free left (right respectively)
A-module generated by a free basis in A, and based on the weak (Euclidean) algorithm in A (see
Cohn [C]). The theory of equations in K 〈X〉 may be considered in the framework of the recently
developed universal algebraic geometry, see the survey by Plotkin [P], as in the spirit of algebraic
geometry over groups, see [BMR,MR]. Another aspect for equations in K 〈X〉 is from algorithmic point
of view. For example, Gupta and Umirbaev [GU] proved that, the compatibility problem for any given
system of linear equations over K 〈X〉 (as well as over some other types of relatively free algebras and
Lie algebras), is algorithmically recognizable.

But very little is known about the actual solutions of an explicitly given equation. Recently
Remeslennikov and Stöhr [RS] have studied the equation [x,a] + [y,b] = 0 with unknowns x, y in
the free Lie algebra L(X) where a, b are free generators of L(X). Therefore the description of K 〈X〉 as
a K [u]-bimodule and the solution of the equation [um, s] = [un, r] are closely related to the combina-
torial and algorithmic aspects of free associative algebras, hence have their own independent interests,
besides as the tool to construct the counterexamples.

1. An example of Makar-Limanov

In this section we present an example constructed by Makar-Limanov of two polynomials f , g ∈
K [x, y] such that the degrees of f and g can be arbitrarily high and do not divide each other, and
when the degree of the Jacobian of f and g is equal to 1, that answered the commutative version
of Conjecture 0.3 negatively. It shows that it is unlikely that one may solve the famous Jacobian
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conjecture (for polynomial algebras of rank two) by degree estimate for the Jacobian, as suggested
in [SU1]. The example was communicated by Makar-Limanov to Jie-Tai Yu in August 2007 when they
were trying to attack Conjectures 0.2 and 0.3 in MPIM Bonn.

We are grateful to Leonid Makar-Limanov for kind permission to include the example in this arti-
cle, and for helpful discussion.

Example 1.1. Let a > b be positive integers such that a − b > 1 and a − b divides a + 1. Let

c = a − b, k = a + 1

c
,

f (x, y) = yp
(
xa yb), g(x, y) = xy

(
1 + xa yb),

where p(z) ∈ K [z] is a polynomial of degree k. Then

deg( f ) = (a + b)k + 1 = (a + b)
a + 1

a − b
+ 1 = (a + b + 2)a

a − b
= (a + b + 2)a

c
,

deg(g) = a + b + 2 < (a + b + 2)
a

a − b
= deg( f ).

Clearly, a −b does not divide a because it divides a + 1 and a −b > 1. Also, the degree of f and g can
be made as large as we want. Since f cannot be expressed as p(h) for p(t) ∈ K [t] with deg(p(t)) > 1
and h ∈ K [x, y], f generates its own integral closure in K [x, y], so does g .

Direct computations show that

J ( f , g) = ∂ f

∂x

∂ g

∂ y
− ∂ f

∂ y

∂ g

∂x

= y
[−(

1 + (a + 1)xa yb)p
(
xa yb) + (a − b)xa yb(1 + xa yb)p′(xa yb)],

where p′(z) is the derivative of p(z). We want to choose p(z) in such a way that J ( f , g) = y. This is
equivalent to the condition

−(1 + kcz)p(z) + cz(1 + z)p′(z) = 1.

Let p(z) = −1 + p1z + p2z2 + · · · + pk−1zk−1 + pk zk , pi ∈ K .
Then

1 = −(1 + kcz)p(z) + cz(1 + z)p′(z)

= −(1 + kcz)
(−1 + p1z + p2z2 + · · · + pkzk) + cz(1 + z)

(
p1 + 2p2z + · · · + kpkzk−1)

= 1 − (p1 − kc)z − (p2 + kcp1)z2 − · · · − (pk + kcpk−1)zk − kcpkzk+1 + cp1z

+ c(2p2 + p1)z2 + · · · + c
(
kpk + (k − 1)pk−1

)
zk + kcpk zk+1

= 1 + (
(c − 1)p1 + kc

)
z + (

(2c − 1)p2 + c(1 − k)p1
)
z2

+ (
(3c − 1)p3 + c(2 − k)p2

)
z3 + · · · + (

(kc − 1)pk − cpk−1
)
zk.

Hence

p1 = − kc
, p2 = (k − 1)c

p1, p3 = (k − 2)c
p2, . . . , pk = c

pk−1.
c − 1 2c − 1 3c − 1 kc − 1
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Since p1 �= 0, we get pi �= 0 for all i. Hence the degree of f is equal to the prescribed deg( f ) =
[(a + b + 2)a]/c and deg( J ( f , g)) = deg(y) = 1.

Finally note that f can be obtained as the polynomial part of the Malcev–Neumann power se-
ries ga/c , see Section 4.

2. The free associative algebra K 〈X〉 as a K [u]-bimodule

Let 〈X〉 be the free semigroup generated by X . In this section we fix a monomial u ∈ 〈X〉 of
positive degree which is not a proper power of another monomial. We consider the algebra K 〈X〉 as
a K [u]-bimodule. Equivalently, K 〈X〉 is a K [u1, u2]-module with the actions of u1 and u2 defined by

u1 w = uw, u2 w = wu, w ∈ 〈X〉.
Clearly, K 〈X〉 decomposes as a K [u1, u2]-module as

K [u] ⊕
(∑

K [u1, u2]v
)
,

where the inner sum runs on all v ∈ 〈X〉 which do not commute with u. We want to find the complete
description of the K [u1, u2]-module K 〈X〉. If v1, v2 ∈ 〈X〉, we call v1 a head, respectively a tail of v2
if there exists w ∈ 〈X〉 such that v2 = v1 w , respectively v2 = w v1.

Theorem 2.1. As a K [u1, u2]-module, K 〈X〉 is a direct sum of three types of submodules: (i) K [u];
(ii) K [u1, u2]t; (iii) K [u1, u2]t1 + K [u1, u2]t2 , where:

(i) K [u] is generated as a K [u1, u2]-module by 1, and up = up
1 · 1. The defining relation for this submodule

is u1 · 1 = u2 · 1.
(ii) K [u1, u2]t is a free K [u1, u2]-module and u is neither a head nor a tail of t. If t is a head, respectively

a tail of u, and t′ is the tail, respectively the head of u of the same degree as t, then tu �= ut′ , respectively
ut �= t′u.

(iii) t1 and t2 are of the same degree and are, respectively, a proper head and a proper tail of u such that
t1u = ut2 . The defining relation of this submodule is u2t1 = u1t2 . There exist v1, v2 ∈ 〈X〉 with v1 v2 �=
v2 v1 and a positive integer k such that

u = (v1 v2)
k v1, t1 = v1 v2, t2 = v2 v1.

Proof. The statement (i) is obvious so we only concentrate on (ii) and (iii). Each v ∈ 〈X〉 has the form
v = ua v ′ , where u is not a head of v ′ . Similarly, v ′ = tub , where u is not a tail of t . Hence, by the
property that u is not a proper power of another monomial, we conclude that K 〈X〉 is generated as a
K [u1, u2]-module by 1 and monomials t which do not commute with u and u is neither a head nor
a tail of t . Let

p∑
i=1

γiu
ai tiu

bi = 0, 0 �= γi ∈ K , (1)

be a relation between such ti , where the triples (ai,bi, ti) are pairwise different, with possible ti = t j
for some i �= j. We may assume that this relation is homogeneous, i.e., (ai + bi)deg(u) + deg(ti) is
the same for all monomials. For each ti there exists a t j such that uai tiubi = ua j t jub j . Let ua1 t1ub1 =
ua2 t2ub2 . We may assume that a1 � a2. Cancel ua1 and obtain that t1ub1 = uat2ub2 , a = a2 − a1. Simi-
larly, if b1 � b2, then t1 = uat2ub , b = b2 − b1. By the choice of t1, t2, we get t1 = t2, a = b = 0, which
contradicts with (a1,b1, t1) �= (a2,b2, t2). If b1 > b2, then for b = b1 − b2

t1ub = uat2, a,b > 0.
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If deg(t1) � deg(u), then u is a head of t1 which is impossible. Hence t1 is a head of u. Similarly if
deg(t2) � deg(u), then u is a tail of t2 which is also impossible. Hence t2 is a tail of u. In this way,
in the relation (1) all ti are heads or tails of u. Since (1) is homogeneous, the degree of ti is equal
to the residue of the division of the degree of the relation by the degree of u. Hence all ti are of
the same degree smaller than the degree of u. Since the heads and the tails of u are determined by
their degrees, we obtain that in (1) p = 2 and t1 is a head and t2 is a tail of u. Let u = t1 w1 = w2t2,
w1, w2 ∈ 〈X〉. Since deg(t1) = deg(t2) < deg(u),

deg(w1) = deg(u) − deg(t1) = deg(u) − deg(t2) = deg(w2).

Substituting u = t1 w1 = w2t2 in t1ub = uat2, we obtain

t1ub = t1(w2t2) · · · (w2t2) = (t1 w1) · · · (t1 w1)t2 = uat2.

Both sides of this equality start with t1 w2 and t1 w1, respectively. Since w1 and w2 are of the same
degree, this implies that w1 = w2 = w and u = t1 w = wt2. Hence

t1u = t1(wt2) = (t1 w)t2 = ut2.

If t1 = t2, then t1u = ut1 which is impossible because u is not a proper power, and u generates
its own centralizer. Hence t1 �= t2. Using the relation t1u = ut2, we get the elements of K [u1, u2]t1 +
K [u1, u2]t2 as linear combinations of ua

1t1 = uat1 and ub
1uc

2t2 = ubt2uc . It is easy to see that ub1t2uc1 �=
ub2t2uc2 , because t2u �= ut2 and (b1, c1) �= (b2, c2). Similarly uat1 = ubt2uc is also impossible, because
t1 is not a tail of u (hence c = 0) and deg(t1) = deg(t2), t1 �= t2. Hence all relations in the K [u1, u2]-
module generated by t1 and t2 follow from t1u = ut2. Let u = tk

1 v1, where k is the maximum with
this property. Then t1u = ut2 implies that

tk+1
1 v1 = tk

1 v1t2, t1 v1 = v1t2.

Since t1 is not a head of v1 (otherwise u = tk+1
1 v ′

1), we obtain that v1 is a head of t1 and t1 = v1 v2
for some v2 ∈ 〈X〉. Now t1 v1 = v1t2 gives v1 v2 v1 = v1t2 and t2 = v2 v1. Hence

u = (v1 v2)
k v1, t1 = v1 v2, t2 = v2 v1

and v1 v2 �= v2 v1 because u is not a proper power. �
Remark 2.2. For a fixed u ∈ 〈X〉 there may be more than one pair (t1, t2) satisfying the condition (iii)
of Theorem 2.1 but different pairs must have different degrees. For example, if u = (xy)kx, k > 1, then
for any positive � � k the monomials t1� = (xy)� , t2� = (yx)� satisfy t1�u = ut2� .

Now we are going to solve the equation [um, s] = [un, r]. It is more convenient to replace m and n
by �m and �n, respectively, where m and n are relatively prime.

Example 2.3. Let u ∈ 〈X〉 be a monomial of positive degree which is not a power of another polyno-
mial. Let �, m, n be positive integers such that m > n and m,n are relatively prime. We consider the
equation

[
u�m, s

] = [
u�n, r

]
. (2)
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Applying Theorem 2.1, we write r and s in the form

r = r1(u) +
∑

pt +
∑

(p1t1 + p2t2), r1 ∈ K [u], p, p1, p2 ∈ K [u1, u2],

s = s1(u) +
∑

qt +
∑

(q1t1 + q2t2), s1 ∈ K [u], q,q1,q2 ∈ K [u1, u2],

where the sums run, respectively, on all monomials t and t1, t2 described in parts (ii) and (iii) of
Theorem 2.1. Clearly, r1(u) and s1(u) may be arbitrary polynomials and we have to solve the following
systems for each t and t1, t2:

[
u�m,q(u1, u2)t

] = [
u�n, p(u1, u2)t

]
, (3)[

u�m,q1t1 + q2t2
] = [

u�n, p1t1 + p2t2
]
. (4)

We rewrite (3) in the form

(
u�m

1 − u�m
2

)
q(u1, u2) = (

u�n
1 − u�n

2

)
p(u1, u2).

Since m and n are relatively prime, the greatest common divisor of the polynomials u�m
1 − u�m

2 and
u�n

1 − u�n
2 is equal to u�

1 − u�
2 and we obtain that

p(u1, u2) = u�m
1 − u�m

2

u�
1 − u�

2

r2(u1, u2), q(u1, u2) = u�n
1 − u�n

2

u�
1 − u�

2

r2(u1, u2),

where r2(u1, u2) ∈ K [u1, u2] is an arbitrary polynomial.
Now we assume that deg(t1) = deg(t2) < deg(u) and u, t1, t2 satisfy the condition t1u = ut2. Using

this relation we present p1t1 + p2t2 and q1t1 + q2t2 in (4) in the form

p1t1 + p2t2 = p1(u1)t1 + p2(u1, u2)t2, q1t1 + q2t2 = q1(u1)t1 + q2(u1, u2)t2

and rewrite (4) as

(
u�m

1 − u�m
2

)(
q1(u1)t1 + q2(u1, u2)t2

) = (
u�n

1 − u�n
2

)(
p1(u1)t1 + p2(u1, u2)t2

)
.

Replace u2t1 by u1t2 and obtain

u�m
1 q1t1 − u1u�m−1

2 q1t2 + (
u�m

1 − u�m
2

)
q2t2 = u�n

1 p1t1 − u1u�n−1
2 p1t2 + (

u�n
1 − u�n

2

)
p2t2.

Comparing the coefficients of t1 and t2, we derive

u�m
1 q1(u1) = u�n

1 p1(u1),

−u1u�m−1
2 q1 + (

u�m
1 − u�m

2

)
q2 = −u1u�n−1

2 p1 + (
u�n

1 − u�n
2

)
p2.

It is sufficient to solve these equations when pi , qi are homogeneous. We may assume that deg(q1) =
deg(q2) = a, deg(p1) = deg(p2) = a + �(m − n). Hence
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p1(u1) = ξua+�(m−n)
1 , q1(u1) = ξua

1, ξ ∈ K ,

−ξua+1
1 u�m−1

2 + (
u�m

1 − u�m
2

)
q2 = −ξua+�(m−n)+1

1 u�n−1
2 + (

u�n
1 − u�n

2

)
p2,(

u�m
1 − u�m

2

)
q2 + ξua+1

1 u�n−1
2

(
u�(m−n)

1 − u�(m−n)
2

) = (
u�n

1 − u�n
2

)
p2.

Defining the polynomial

Φb(u1, u2) = u�b
1 − u�b

2

u�
1 − u�

2

= u�(b−1)
1 + u�(b−2)

1 u�
2 + · · · + u�(b−1)

2 , b � 1,

and using that

Φm(u1, u2) = u�(m−n)
1 Φn(u1, u2) + u�n

2 Φm−n(u1, u2),

the equation for ξ, p2,q2 becomes

(
u�(m−n)

1 Φn + u�n
2 Φm−n

)
q2 + ξua+1

1 u�n−1
2 Φm−n = Φn p2,(

p2 − u�(m−n)
1 q2

)
Φn = u�n−1

2

(
u2q2 + ξua+1

1

)
Φm−n.

Since the polynomials Φn(u1, u2) and u�n−1
2 Φm−n(u1, u2) are relatively prime, we obtain

p2 − u�(m−n)
1 q2 = u�n−1

2 Φm−nr3, u2q2 + ξua+1
1 = Φnr3,

where r3(u1, u2) ∈ K [u1, u2]. Hence it is sufficient to solve the equation

u2q2(u1, u2) + ξua+1
1 = Φn(u1, u2)r3(u1, u2)

for ξ ∈ K and for homogeneous q2, r3 ∈ K [u1, u2]. Comparing the coefficients of ua+1
1 and using that

Φn = u�(n−1)
1 + u�

2Φn−1, we obtain

a + 1 � deg(Φn) = �(n − 1),

r3(u1, u2) = ξua−�(n−1)+1
1 + u2s3(u1, u2),

q2(u1, u2) = (
u�(n−1)

1 + u�
2Φn−1

)
s3(u1, u2) + ξua−�(n−1)+1

1 u�−1
2 Φn−1,

for any ξ ∈ K , and arbitrary homogeneous polynomial s3(u1, u2) ∈ K [u1, u2] of degree a − �(n − 1) or
s3(u1, u2) = 0.

It is natural to ask whether the structure of K 〈X〉 considered as a bimodule of K [ f ], when f ∈
K 〈X〉 is an arbitrary polynomial, is similar to that in Theorem 2.1. The following example shows that
in this case some strange phenomenon appear similar to the case in the Buchberger algorithm of the
Gröbner bases for ideals. We do not expect that there exists a nice bimodule structure of K 〈X〉 in
general.

Example 2.4. Let us order the monomials of 〈x, y〉 first by degree and then lexicographically, assuming
that x > y. Let

f = xyx + yxx, u = xyx, t1 = xy, t2 = yx.



V. Drensky, J.-T. Yu / Journal of Algebra 322 (2009) 2321–2334 2331
The leading monomial of f is u and we have t1u = ut2. Direct computation gives that

t1 f − f t2 + t2 f = (xy + yx)yxx

belongs to the K [ f ]-bimodule generated by t1 and t2 but its leading monomial xyyxx neither starts
or ends with u.

3. A counterexample to Conjecture 0.2

Theorem 3.1. Let X = {x, y}, k � 2, and let

u = (xy)kx, v = xy, w = yx,

f = u3 + r, r = uv + uw + wu,

g = u2 + s, s = v + w.

Then f and g are algebraically independent polynomials which generate their own centralizers in K 〈x, y〉
respectively. The homogeneous components of maximal degree of f and g are algebraically dependent and
neither of the degrees of f and g divides the other. Then

deg
([ f , g]) < deg(g) < deg( f ).

The fraction deg([ f , g])/deg(g) = (2k + 5)/(4k + 2) is strictly larger than 1/2 and can be made as close to
1/2 as possible by increasing k.

Proof. First note neither f nor g can be expressed as p(h), where p(t) ∈ K [t] with deg(p) > 1, and
h ∈ K 〈x, y〉. Hence f and g generalize their own centralizers in K 〈x, y〉 respectively.

Let u = (xy)kx, v = t1 = xy, w = t2 = yx. Hence vu = uw . As a special case of Example 2.3 with
l = 1, m = 3, ξ = 1, s3 = 0, r2 = 0, r1 = s1 = 0, hence p1 = u1, p2 = u1 + u2, q1 = q2 = 1, p = q = 0,
we obtain a solution r = ut1 + ut2 + t2u = uv + uw + wu, s = t1 + t2 = v + w for the equation
[u3, s] = [u2, r]. Now [ f , g] = [u3 + r, u2 + s] = [r, s], deg([ f , g]) = deg(r)+ deg(s) = 2k + 5 < 4k + 2 =
deg(g) < deg( f ). �

By the above approach, we were not able to obtain a pair ( f , g) such that deg([ f , g]) � deg(g)/2
as indicated below.

In order to decrease the degree of [ f , g] further, as in the example of Makar-Limanov, we may try
to add new homogeneous summands to f , that is,

f = um + r + r1, deg(r1) < deg(r),

such that [r, s] + [r1, un] = 0. But then we face some essential difficulties: the monomials of [r, s] are
of the form uatiubt juc , ti, t j = v, w . Using the relation vu = uw , we may assume that b = 0 if ti = v
or t j = w . Hence

[r, s] =
∑

hb wub v + h11v v + h12v w + h22 w w, hb,hij ∈ K [u1, u2].

Since the monomials wub v, v v, v w, w w are neither heads nor tails of u, we have to work in a
free K [u]-bimodule and it seems impossible to find r, s, r1 of sufficiently small degree such that



2332 V. Drensky, J.-T. Yu / Journal of Algebra 322 (2009) 2321–2334
[ f , g] = [r1, s] and deg([ f , g]) � deg(g)/2. The computations become even worse if we add one more
component to g as we have tried unsuccessfully:

f = um + r + r1, deg(r1) < deg(r),

g = un + s + s1, deg(s1) < deg(s).

4. Working in the Malcev–Neumann algebra

Let F (X) be the free group generated by X . We define the total degree of u = x±1
i1

· · · x±1
ik

∈ F (X)

in the usual way, assuming that deg(x±1
i ) = ±1. By the theorem of Neumann and Shimbireva [N1,S],

the group F (X) can be ordered linearly in many ways. In particular, see Theorem 2.3 in [N1], if H is
a linearly ordered factor group of F (X), then the order of H can be lifted to a linear order of F (X).
Defining a partial order on the free abelian group generated by X by total degree and then refining
it lexicographically, we obtain a linear order on F (X) such that if deg(u1) < deg(u2), then u1 < u2.
Since 〈X〉 ⊂ F (X), we assume that the elements of 〈X〉 are linearly ordered in the same way. If g =
g(X) = ∑p

i=1 αiui , 0 �= αi ∈ K , ui ∈ 〈X〉, u1 > u2 > · · · > up , we denote by ν(g) the leading monomial
α1u1 of g . We denote by A(X) the Malcev–Neumann algebra of formal power series used by Malcev
and Neumann [M,N2] to show that the group algebra of an ordered group can be embedded into
a division ring. The algebra A(X) consists of all formal sums τ = ∑

u∈� αuu, αu ∈ K , where � is a
well-ordered subset of F (X). (In the commutative case when F (X) itself is the free abelian group
generated by X , the similar construction was discovered and used by Hahn [H].)

Use A(X) as in Makar-Limanov and Yu [MLY] and assume that � is well ordered relative to the
opposite ordering, that is, any nonempty subset of � has a largest element. Again, if 0 �= τ ∈ A(X),
denote by ν(τ ) its leading monomial α1u1, α1 ∈ K , u1 ∈ F (X). The following lemma on radicals of
Bergman [B2,B3] plays a crucial role in [MLY].

Lemma 4.1. Let 0 �= τ ∈ A(X) such that ν(τ ) = (βu)n for a positive integer n, where β ∈ K , u ∈ F (X). Then
there exists a ρ ∈ A(X) such that τ = ρn.

Now we are going to prove that the polynomial g from the counterexample to Conjecture 0.2
serves also as a counterexample to Conjecture 0.3.

Theorem 4.2. Let X = {x, y}, k � 2, and let

u = (xy)kx, v = xy, w = yx,

g = u2 + s, s = v + w.

Then g generates its own centralizer in K 〈x, y〉 and g3/2 ∈ A(x, y) contains no monomial of positive degree
containing a negative power of x or y.

Proof. First by Theorem 3.1, g generates its own centralizer in K 〈x, y〉. Now let ρ := g1/2 = u + a1 +
a2 + · · · , where ai are homogeneous polynomials such that

2k + 1 = deg(u) > deg(a1) > deg(a2) > · · · .

These polynomials are determined step-by-step in a unique way from the condition

g = u2 + s = ρ2 = u2 + (ua1 + a1u) + (
a2

1 + ua2 + a2u
) + · · · .
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Comparing the homogeneous components of g and ρ2 and their degrees, we obtain

ua1 + a1u = s, deg(a1) = deg(s) − deg(u) = 1 − 2k,

a2
1 + ua2 + a2u = 0, deg(a2) = 2 deg(a1) − deg(u) = 1 − 6k,

deg(ai) = deg(a1) + deg(ai−1) − deg(u) = 1 − 2(2i − 1)k, i � 1.

As in the proof of Theorem 3.1, we have vu = uw , hence wu−1 = u−1 v and u(wu−1) + (wu−1)u =
v + w = s, therefore a1 = wu−1. Now

ρ3 = u3 +
∑(

u2ai + uaiu + aiu
2) +

∑
(uaia j + aiua j + aia ju) +

∑
aia jal,

deg(ua1u) = deg
(
a1u2) = deg

(
u2a1

) = 2(2k + 1) + (1 − 2k) = 2k + 3,

deg(uaiu) = deg
(
aiu

2) = deg
(
u2ai

)
� deg

(
u2a2

)
= 2(2k + 1) + (1 − 6k) = 3 − 2k < 0, i � 2,

deg(aiua j) = deg(aia ju) = deg(uaia j) � deg
(
ua2

1

)
= (2k + 1) + 2(1 − 2k) = 3 − 2k < 0, i, j � 1,

and deg(aia jak) � deg(a3
1) = 3(1 − 2k) < 0, i, j,k � 1, hence the component of positive degree of ρ3

is

u3 + (
u2a1 + ua1u + a1u2) = u3 + [

u2(wu−1) + u
(

wu−1)u + (
wu−1)u2]

= u3 + (uv + uw + wu) = u3 + r = f ,

as wu−1 = u−1 v , where f = u3 + r is the other polynomial from Theorem 3.1. Therefore ρ3 does not
contain monomials of positive degree with negative powers of x or y. �
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