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1. Introduction

Let H be a bialgebra. Consider the functor T :=(—) ® H : 9 — zmg from the category of vector
spaces to the category of right Hopf modules. It is well-known that T determines an equivalence if
and only if H has an antipode i.e. it is a Hopf algebra. The fact that T is an equivalence is the so-called
fundamental (or structure) theorem for Hopf modules, which is due, in the finite-dimensional case, to
Larson and Sweedler, see [14, Proposition 1, p. 82]. This result is crucial in characterizing the structure
of bialgebras with a projection as Radford-Majid bosonizations (see [19]). Recall that a bialgebra A
has a projection onto a Hopf algebra H if there exist bialgebra maps 0 :H - A and w : A— H
such that m o 0 =1dy. Essentially using the fundamental theorem, one proves that A is isomorphic,
as a vector space, to the tensor product R ® H where R is some bialgebra in the category ﬁyD
of Yetter-Drinfeld modules over H. This way R ® H inherits, from A, a bialgebra structure which
is called the Radford-Majid bosonization of R by H and denoted by R# H. It is remarkable that the
graded coalgebra gr A associated to a pointed Hopf algebra A (here “pointed” means that all simple
subcoalgebras of A are one-dimensional) always admits a projection onto its coradical. This is the
main ingredient in the so-called lifting method for the classification of finite-dimensional pointed
Hopf algebras, see [1].

In 1989 Drinfeld introduced the concept of quasi-bialgebra in connection with the Knizhnik-
Zamolodchikov system of partial differential equations. The axioms defining a quasi-bialgebra are a
translation of monoidality of its representation category with respect to the diagonal tensor product.
In [10], the antipode for a quasi-bialgebra (whence the concept of quasi-Hopf algebra) is introduced
in order to make the category of its flat right modules rigid. If we draw our attention to the category
of co-representations of H, we get the concepts of dual quasi-bialgebra and of dual quasi-Hopf alge-
bra. These notions have been introduced in [17] in order to prove a Tannaka-Krein type theorem for
quasi-Hopf algebras.

A fundamental theorem for dual quasi-Hopf algebras was proved by Schauenburg in [24]. It is re-
markable that the functor T giving the fundamental theorem in the case of ordinary Hopf algebras
must be substituted, in the “quasi” case, by the functor F := (—) ® H between the category "9 of
left H-comodules and the category Hfmg of right dual quasi-Hopf H-bicomodules (essentially this
is due to the fact that, unlike the classical case, a dual quasi-bialgebra H is not an algebra in the
category of right H-comodules but it is still an algebra in the category of H-bicomodules). In [4, The-
orem 3.9], we showed that, for a dual quasi-bialgebra H, the functor F is an equivalence if and only
if there exists a suitable map S: H — H that we called a preantipode for H. Moreover for any dual
quasi-bialgebra with antipode (i.e. a dual quasi-Hopf algebra) we constructed a specific preantipode,
see [4, Theorem 3.10].

It is worth to notice that there is a dual quasi-bialgebra H which has a preantipode but not
an antipode (i.e. it is not a dual quasi-Hopf algebra). Nevertheless, for a finite-dimensional dual
quasi-bialgebra, the existence of an antipode is equivalent to the existence of a preantipode (cf. Re-
mark 2.17).

The main aim of this paper is to introduce and investigate the notion of bosonization in the setting
of dual quasi-bialgebras. Explicitly, we associate a dual quasi-bialgebra R# H (that we call bosoniza-
tion of R by H) to every dual quasi-bialgebra H and bialgebra R in f,yD. Then, using the fundamental
theorem, we characterize as bosonizations the dual quasi-bialgebras with a projection onto a dual
quasi-bialgebra with a preantipode. As an application, for any dual quasi-bialgebra A with the dual
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Chevalley property (i.e. such that the coradical of A is a dual quasi-subbialgebra of A), under the
further hypothesis that the coradical H of A has a preantipode, we prove that there is a bialgebra
R in Z)iD such that grA is isomorphic to R#H as a dual quasi-bialgebra. In particular, if A is a
pointed dual quasi-Hopf algebra, then gr A comes out to be isomorphic to R#kG(A) as dual quasi-
bialgebra where R is the diagram of A and G(A) is the set of grouplike elements in A. We point out
that the results in this paper are obtained without assuming that the dual quasi-bialgebra considered
is finite-dimensional so that most of the proofs do not follow by a mere dualization of results on
quasi-bialgebras nor by the case of dual quasi-Hopf algebras.

The paper is organized as follows.

Section 2 contains preliminary results needed in the next sections. Moreover in Theorem 2.16, we
investigate cocommutative dual quasi-bialgebras with a preantipode and in Corollary 2.21, we provide
a Cartier-Gabriel-Kostant type theorem for dual quasi-bialgebras with a preantipode. In the connected
case such a result was achieved in [12, Theorem 4.3].

Section 3, is devoted to the study of the category Z)iD of Yetter-Drinfeld modules over a dual
quasi-bialgebra H. Explicitly, we consider the pre-braided monoidal category (ZyD, ®, k) of Yetter-
Drinfeld modules over a dual quasi-bialgebra H and we show that the functor F, as above, induces a
functor F : ZJ}D — ZD)IZ (that is an equivalence in case H has a preantipode, see Proposition 3.8).

In Section 4, we prove that the equivalence between the categories H9mH and HYD becomes
monoidal if we equip ﬁfmg with the tensor product ®y (or (y) and unit H (see Lemma 4.4
and Lemma 4.8). As a by-product, in Lemma 4.11, we produce a monoidal equivalence between
(omtt, @y, H) and (omt, Oy, H).

Section 5 contains the main results of the paper. In Theorem 5.2, to every dual quasi-bialgebra H
and bialgebra R in gyD we associate a dual quasi-bialgebra structure on the tensor product R® H
that we call the bosonization of R by H and denote by R# H. Now, let (A, H,o,m) be a dual quasi-
bialgebra with projection and assume that H has a preantipode S. In Lemma 5.7, we prove that such
an A is an object in the category ﬁi)ﬁ’,f, Therefore the fundamental theorem describes A as the tensor
product R ® H of some vector space R by H. Indeed, in Theorem 5.8, we prove that the dual quasi-
bialgebra structure inherited by R ® H through the claimed isomorphism is exactly the bosonization
of R by H. The analogous of this result for quasi-Hopf algebras, anything but trivial, has been estab-
lished by Bulacu and Nauwelaerts in [9], but their proof cannot be adapted to dual quasi-bialgebras
with a preantipode.

In Section 6 we collect some applications of our results. Let A be a dual quasi-bialgebra with
the dual Chevalley property and coradical H. Since A is an ordinary coalgebra, we can consider the
associated graded coalgebra gr A. In Proposition 6.3, we prove that gr A fits into a dual quasi-bialgebra
with projection onto H. As a consequence, in Corollary 6.4, under the further assumption that H has
a preantipode, we show that there is a bialgebra R in ﬂyD such that gr A is isomorphic to R#H
as a dual quasi-bialgebra. When A is a pointed dual quasi-Hopf algebra it is in particular a dual
quasi-bialgebra with the dual Chevalley property and its coradical has a preantipode. Using this fact,
in Theorem 6.10 we obtain that gr A is of the form R#kG(A) as dual quasi-bialgebra, where R is the
so-called diagram of A.

2. Preliminaries

In this section we recall the definitions and results that will be needed in the paper.

Notation 2.1. Throughout this paper k will denote a field. All vector spaces will be defined over k.
The unadorned tensor product ® will stand for the tensor product over k if not stated otherwise.

2.2. Monoidal categories. Recall that (see [13, Chapter XI]) a monoidal category is a category M
endowed with an object 1 € M (called unit), a functor ® : M x M — M (called tensor product), and
functorial isomorphisms axy z: (X®Y)®Z > X® (Y ®Z2),Ix: 13X —> X, rx: X®1— X, for
every X, Y, Z in M. The functorial morphism a is called the associativity constraint and satisfies the
Pentagon Axiom, that is the equality
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(U®ay,w,x)oauvew,x o (au,v,w ® X) =au,v,wex ©AugVv,w, X

holds true, for every U, V, W, X in M. The morphisms [ and r are called the unit constraints and
they obey the Triangle Axiom, that is (V ® lw)oay 1w =rv @ W, for every V, W in M.

The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can be
introduced in the general setting of monoidal categories. Given an algebra A in M one can define the
categories 4 M, Mz and s My of left, right and two-sided modules over A respectively. Similarly,
given a coalgebra C in M, one can define the categories of C-comodules M, M, ¢ MC. For more
details, the reader is refereed to [2].

Let M be a monoidal category. Assume that M is abelian and both the functors X ® (—) : M —
M and (-) ® X : M — M are additive and right exact, for any X € M. Given an algebra A in M,
there exist a suitable functor ®4 : AMa x aMa — aM, and constraints that make the category
(aMa, ®4, A) monoidal, see [2, 1.11]. The tensor product over A in M of a right A-module (V, u@)

and a left A-module (W, /L[‘/V) is defined to be the coequalizer:

ny W AXV.W
VAW VW —VesW ——0

VeAeWw)

Note that, since ® preserves coequalizers, then V ® 4 W is also an A-bimodule, whenever V and W
are A-bimodules.

Dually, given a coalgebra (C, A, €) in a monoidal category M, abelian and with additive and left
exact tensor functors, there exist a suitable functor C¢ : CMC x C M — € M and constraints that
make the category (M€, O¢, C) monoidal. The cotensor product over C in M of a right C-comodule
(V, py) and a left C-comodule (W, p{,v) is defined to be the equalizer:

csv.w vepl,
Vew VRECW)

m%’

VeOew

0 —— VO W

Note that, since ® preserves equalizers, then V ¢ W is also a C-bicomodule, whenever V and W
are C-bicomodules.

Definition 2.3. A dual quasi-bialgebra is a datum (H,m, u, A, &, ®) where
e (H, A,¢) is a coassociative coalgebra;
e m:H®H — H and u :k — H are coalgebra maps called multiplication and unit respectively; we

set 1y :=u(1y);
e w:H®H®H — k is a unital 3-cocycle i.e. it is convolution invertible and satisfies

OHRHIM+*wMmMR®HQH)=mp(e@w)*w(H®mMQ H) xmi(w &) (1)

and

oh®k®l) =¢c(h)ek)e(l) whenever 1y € {h,k,1}; (2)
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e m is quasi-associative and unitary i.e. it satisfies

mHM)*w=w+m(me H), (3)
m(lpy®h)=h forallheH, (4)
mh®1y)=h forallheH. (5)

w is called the reassociator of the dual quasi-bialgebra.

A morphism of dual quasi-bialgebras (see e.g. [20, Section 2])

o:(Hmu, A g,w)— (H,m' v, A&, o)
is a coalgebra homomorphism « : (H, A, &) — (H', A’, &’) such that

m(a ®a)=am, au=1u, D (ERuRa)=w.

It is an isomorphism of quasi-bialgebras if, in addition, it is invertible.
A dual quasi-subbialgebra of a dual quasi-bialgebra (H',m’,u’, A’,&’,®’) is a quasi-bialgebra

(H,m,u, A, e, ) such that H is a vector subspace of H' and the canonical inclusion « : H — H’
yields a morphism of dual quasi-bialgebras.

2.1. The category of bicomodules for a dual quasi-bialgebras

Let (H,m,u, A, &, w) be a dual quasi-bialgebra. It is well-known that the category MM of right
H-comodules becomes a monoidal category as follows. Given a right H-comodule V, we denote
by p=p, :V =V ®H, p(v) =vg® vy, its right H-coaction. The tensor product of two right
H-comodules V and W is a comodule via diagonal coaction i.e. p(v ® w) = (vo ® wg) ® viw1. The
unit is k, which is regarded as a right H-comodule via the trivial coaction i.e. p(k) =k ® 1y. The
associativity and unit constraints are defined, for all U, V, W € MU andueU,veV,weW, kek,
by

aff yw (U@ V)@ W) =10 ® (vo ® wo)w(u1 ® v1 ® wi),
lytkk®@u):=ku and ry(u®k):=uk.
The monoidal category we have just described will be denoted by (M, ®,k,a",1,r).
l

H
Similarly, the monoidal categories ("9, ®,k, Ha,l,r) and (FMH, ®,k, a1, 1) are introduced.
We just point out that

fayvw(@@vew):=o 19 v_1®w_1)u® (vo® wo),

Hag y w(@ev@w) =o' Uu_1®v_1 ® w_1itg® (Vo ® wo)w (Ui ® Vi ® wq).

Remark 2.4. We know that, if (H,m,u, A, &,w) is a dual quasi-bialgebra, we cannot construct the
category My, because H is not an algebra. Moreover H is not an algebra in 9" or in #9. On
the other hand ((H, pk, p};), m, u) is an algebra in the monoidal category ("9", ®,k, Ha®,1,r) with
pl; = pi; = A. Thus, the only way to construct the category 79 is to consider the right H-modules
in HomH. Hence, we can set

o = (o),
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The category ”Smg is the so-called category of right dual quasi-Hopf H-bicomodules [6, Remark 2.3]. In
a similar way one can introduce the category Zimﬁ =My,

Remark 2.5. (See [2, Example 1.5(a)].) Let (A,m,u) be an algebra in a given monoidal category
(M, ®,1,a,l,r). Then the assignments M~ (M @ A,(M @ m)oaaaa) and f— f® A define a
functor T : M — M 4. Moreover the forgetful functor U : M4 — M is a right adjoint of T.

2.2. An adjunction between H9nH and Hom

We are going to recall the construction of an adjunction between Himﬂ and P9 that will be
crucial afterwards.

2.6. Consider the functor L : "9t — H9tM defined on objects by L(*V) := *V° where the upper empty
dot denotes the trivial right coaction while the upper full dot denotes the given left H-coaction of V.
The functor L has a right adjoint R : H90tH — H9)t defined on objects by R(*M®) := *MH, where
M®H .= {meM |mg®m;=m® 1y} is the space of right H-coinvariant elements in M.

By Remark 2.5, the forgetful functor U : At — HonH, U(*M?) := *M* has a left adjoint, namely
the functor T : HomH — Hopll T(*M*) := *M* ® *H}. Here the upper dots indicate on which tensor
factors we have a codiagonal coaction and the lower dot indicates where the action takes place.
Explicitly, the structure of T(*M?*) is given as follows:

PhignM®h) :=m_1hy ® (mo ® hy),
Phion (M@ h) = (Mg ® h1) @ myhs,
M?VI@H [(m ® h) ® l] = (m ® h)l = CL)_1 (m_1 [ h] 24 l])mo ® hzlzw(m] ® h3 ® 13)

Define the functors F :=TL: "9 — Honkl and G := RU : Fnll — Hon. Explicitly G(*M}) = *McH
and F(*V):=°V°®*H; so that, for every ve V, h,l€H,
Phen(v@h) =v_1h ® (vo ® hy),
Pyen(v®h) = (v®hi) ®hy,
Wyen[(v@h ®l)=(veml=o"" (vo1 ® h1 ® )vo ® hala.

Remark 2.7. By the right-hand version of [24, Lemma 2.1], the functor F : #9t — HonH is a left
adjoint of the functor G, where the counit and the unit of the adjunction are given respectively by
ey FG(M) - M, ey(x®h) :=xh and by ny : N - GF(N), nn(n) :=n ® 1y, for every M € HDJTZ.
N e H9)t. Moreover ny is an isomorphism for any N € #9t. In particular the functor F is fully faithful,

2.3. The notion of preantipode

Next result characterizes when the adjunction (F, G) is an equivalence of categories in terms of
the existence of a suitable map 7.

Proposition 2.8. (See [4, Proposition 3.3].) Let (H,m,u, A, &, w) be a dual quasi-bialgebra. The following
assertions are equivalent.

(i) The adjunction (F, G) is an equivalence.
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(i) Foreach M € HonH, there exists a k-linear map © : M — M such that

T(mh) = '[t(mg)-1 ® My ® h|t(mo)o forallh e H, me M, (6)
m_1 ® t(mg) = t(mp)_1mq1 ® t(Mg)o forallme M, (7)
t(mg)my=m, Vme M. (8)

(iii) Foreach M € Ot there exists a k-linear map t : M — M®H such that (8) holds and

t(mh) =me(h) forallh e H, m e M®H, 9)

Remark 2.9. Let 7 : M — M%H be a k-linear map such that (8) holds. By [4, Remark 3.4], the map T
fulfills (9) if and only if it fulfills (6) and (7).

Definition 2.10. Following [4, Definition 3.6] we will say that a preantipode for a dual quasi-bialgebra
(H,m,u, A, &, w) is a k-linear map S : H — H such that, for all h € H,

S(h1)1hy ® S(h1)2 =1 ® S(h), (10)
S(h2)1 ® h1S(hz)2 = S(h) ® 14, (11)
w(h1 ® S(hy) ® h3) = ¢e(h). (12)

Remark 2.11. (See [4, Remark 3.7].) Let (H,m,u, A, ¢, w, S) be a dual quasi-bialgebra with a prean-
tipode. Then the following equalities hold

h1S(hy) =eS(h)1y = S(hy)hy forallh € H. (13)

Lemma 2.12. (See [4, Lemma 3.8].) Let (H, m, u, A, €, w, S) be a dual quasi-bialgebra with a preantipode. For
any M € "9t and m e M, set

T(m) :=w[m_1 ® S(my)1 ® my|meS(m1)3. (14)
Then (14) defines a map t : M — M which fulfills (6), (7) and (8).

Theorem 2.13. (See [4, Theorem 3.9].) For a dual quasi-bialgebra (H, m, u, A, €, w) the following are equiva-
lent.

(i) The adjunction (F, G) of Remark 2.7 is an equivalence of categories.
(ii) There exists a preantipode.

We include here some new results that will be needed later on in the paper.

Lemma 2.14. Let (H,m,u, A, €, w, S) be a dual quasi-bialgebra with a preantipode. Then

w ' [S(h1) ® hy ® S(h3)] =S(h) forallh e H. (15)
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Proof. Set ¢ .= w(HQH®m) *w(m@H Q@ H) s my(w~ ' ® &) and g =my(s @ w) *xw(H @m Q H). Fix
h € H. We have

o(S(h1) ® hy ® S(h3) ® hy)
= w[S(h1)1 ® hy ® S(hs)(1yhe|w[S(h1)2h3 ® S(hs)2) ® h7]w ™' [S(h1)3 ® ha ® S(hs)(3)]
= o[t ® hy @ 1 ]w[Sh1)ahs @ S(hs)a) ® el [Sh1)s ® ha ® S(hs)z)]
=w[S(h1)1h2 ® S(ha) 1y @ hs|w ' [S(h1)2 ® h3 ® S(ha) 2]

E)w[m ® S(ha)1) ® hsJw ' [S(h1) ® h3 ® S(ha)2)]
= '[Sh) ® hy ® S(h3)],

and

B(S(h1) ® hy ® S(h3) ® hs) = w[ha ® S(h4)1) ® hs|w[S(h1) ® h3S(ha)2) ® hs]

"2 why @ S(hs) @ ha]w[S(h1) ® 14 @ hs]
= w[hy ® S(h3) ® h4]eS(hy)

2 eshy.
By the cocycle condition we have « = 8. O

Definition 2.15. (See [15, p. 66].) A dual quasi-Hopf algebra (H,m,u, A, ¢, w, s, a, B) is a dual quasi-
bialgebra (H,m, u, A, &, ) endowed with a coalgebra anti-homomorphism

s:H—H,

called antipode, and two maps «, 8 in H*, such that, for all h € H:

h1B(h2)s(h3) = p(h)1y, (16)
sthpa(hp)hs =a(h)1y, (17)
w(hy ® B(ho)s(hs)a(hs) @ hs) = e(h) = w ™' (s(h1) ® a(h2)h3B(hs) ® s(hs)). (18)

In [4, Theorem 3.10], we proved that any dual quasi-Hopf algebra has a preantipode. The following
result proves that the converse holds true whenever H is also cocommutative.

Theorem 2.16. Let (H,m, u, A, €, w, S) be a dual quasi-bialgebra with a preantipode. If H is cocommutative,
then (H,m,u, A, €, s) is an ordinary Hopf algebra, where, for allh € H,

s(h) := S(hs)10[h1 ® S(h3); ® hy).

Furthermore (H,m,u, A, &, w, «, B,s) is a dual quasi-Hopf algebra, where o := ¢ and § := €S. Moreover
one has S = 8 *s.
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Proof. By (3), cocommutativity and convolution invertibility of w, we get that (hk)l = h(kl) for all
h,k,l € H. Therefore m is associative and hence (H,m, u, A, &) is an ordinary bialgebra. Let us check
that s is an antipode for H. Using cocommutativity, (10) and (12) one proves that s(h1)hy = 1ye(h)
for all h € H. Similarly one gets his(hy) =1ge(h) for all h € H. Hence (H,m, u, A, €, s) is an ordinary
Hopf algebra. Note that, for all h € H,

S(h) = S(h)[has(hs)] = [S(h)ha]s(hs) 'E e S (hy)s(hy) = Bhr)s(hy). (19)

Let us check that (H,m,u, A, &, w,«, B,s) is a dual quasi-Hopf algebra. For all h € H,

hy B(h)shs) 2 hyS(hp) 2 1S (),
s(hy)a(h2)hs = s(thi)hy =1ye(h) = 1pa(h),

o[h @ B(h)s(hs)a(ha) ® hs] = w[h @ S(hy) @ h3]'Z 14e(h).

Now, since (H,m, u, A, ¢,s) is an ordinary Hopf algebra, we have that s is an anti-coalgebra map.
Thus

S(h)y1 ® S(h)2 = B(h1)s(h2)1 ® s(ha)2 = B(h1)s(h3) ® s(hy)

cocom.

M- 6 (hy)s(ha) @ s(hs) 2 S(hy) ® s(hy)

so that

o™ [s(h) @ a(hhsp(ha) @ 5hs)] = @' [s(h) @ h2 @ S(h)]
= o [Sth3) ®ha ® S(hs)]w[h & S(h3)2 ® hy)]
= o '[S(h3) @ hs ® S(he)|w[m @ s(ha) © o]

cocom.

@ '[S(h2) ® h3 ® S(ha)|w[h1 ® s(hs) ® he]

= eS(hy)w[h1 ® s(h3) ® h4]

Z ol @St @hs] E e, O

Remark 2.17. Following the Referee’s suggestions, we here give an extended version of [4, Re-
mark 3.12].

(1) We recall an example of a dual quasi-bialgebra considered in [21, Example 4.5.1] which has a
preantipode but not an antipode.

Consider the subgroup 22 of the multiplicative group Q* = {g € Q| g > 0}. Let the infinite cyclic
group (o) act on 22 by ¢ — 2¥ = 22* and consider the semidirect group G := 22 x (o). The multipli-
cation is given by (2¥0°%)(2Y0") = 2% Y55+ and the inverse of 2 is 272 ¥ S. Let B := 2% < 2Q
regarded as a subgroup of G in the obvious way. Consider the group algebras H :=k[G] and K :=k[B].
Define 7w : H — K on generators by setting 7 (2*0°) = 21*/ where |x] denotes the floor of x i.e.
[x] = max{m € Z | m < x}. One easily checks that 7w is a left K-linear, unitary coalgebra map. In
particular it is convolution invertible. If we regard H and K as dual quasi-bialgebras with trivial re-
associators, we get that H is an object in &;(K) in the sense of [21, Definition 4.1.1], where the map
i: K — H is the canonical inclusion such that i(2?) = 2260, Since H and K are cocommutative we
have that HP is cocleft as a left K“°°-module coalgebra (with cocleaving 7). Let us check that every
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(B, B)-double coset in G is the union of finitely many left B-cosets. In fact such a double coset is of
the form B(2*o%)B. We have

B(2'0%)B = J B(2%0%)2" = | J B(2¥*™0?).

zeZ zeZ

Now, if s > 0, then B(2*0%)B = B(2*c®) i.e. it is a left coset. If s <0 we can write z=q2~° +r with
g€Z and 0 <r <2~° and hence B(2*¢")B = U0<r<2*5 B(2Z"*55) (then B(2*¢*)B is union of 2~°
left cosets). By [21, p. 49], we have that Q := H/K*H is locally finite right K-module. Hence, we can
apply [21, Theorem 4.4.3] to get that the category ﬂ M is left and right rigid. By [21, Theorem 4.3.1],

the category ’,'(’M « is equivalent to the category " ¢ where H is a suitable dual quasi-bialgebra
(note that, by [21, Remark 4.4.4(3)], the underlying vector space of His isomorphic to Q ® K°). By the
left-handed version of [24, Theorem 2.6], we conclude that H has a preantipode (cf. Theorem 2.13).

Note also that B(2*¢c%)B as above can be written as union of right cosets as follows B(2*0%)B =
Uzez(z”"as)& Now, if s > 0, then we can write z=¢q2° +r with g € Z and 0 <r < 25 and hence
B(2*0%)B = U0<r<2s (2" *0%)B (then B(2*0%)B is union of 2° right cosets). If s < 0 then B(2*c°)B =
(2¥0%)B is a right coset. Thus, for s # 0, the (B, B)-double coset D := B(2*¢°)B does not contain as
many left as right cosets. As in [21, p. 49], one can consider V :=k[D]/k[B]*k[D] and dim(V) is the
number of left cosets in D while dim(VV) is the number of right cosets in D, where vV denotes
the right dual of V in A 2. Note that if H had an antipode, then ZV would have been isomorphic
to the k-dual V* as a vector space (see e.g. [21, p. 13]). Hence H has a preantipode but not an
antipode.

(2) Let H be a finite-dimensional dual quasi-bialgebra. Then H* is a quasi-bialgebra. Moreover
H has an antipode if and only if H* has an antipode. By the right-handed version of [24, The-
orem 3.1] the latter is equivalent to require that the monoidal category (Mp«)s = Hsz is rigid.
By the left-handed version of [24, Theorem 2.6], this means that H has a preantipode. Thus, in
the finite-dimensional case, a dual quasi-bialgebra H has an antipode if and only if it has a pre-
antipode.

Definition 2.18. A dual quasi-bialgebra (A, m, u, A, &, w) is called pointed if the underlying coalgebra
is pointed, i.e. all its simple subcoalgebras are one-dimensional.

Definition 2.19. Let (A, m, u, A, &, w) be a dual quasi-bialgebra. The set
G(A)={acA|A(@)=a®aand e(a) =1}
is called the set of the grouplike elements of A.

Remark 2.20. Let A be a pointed dual quasi-bialgebra. We know that the one-dimensional sub-
coalgebras of A are exactly those of the form kg for g € G [25, p. 57]. Thus the coradical of A is
Ap= dec kg =kG(A).

The following results extend the so-called Cartier-Gabriel-Kostant theorem to dual quasi-
bialgebras with a preantipode. In the connected case such a result was achieved in [12, Theorem 4.3].

Corollary 2.21. Let H be a dual quasi-bialgebra with a preantipode over a field k of characteristic zero.
If H is cocommutative and pointed, then H is an ordinary Hopf algebra isomorphic to the biproduct
U(P(H))#kG(H), where P(H) denotes the Lie algebra of primitive elements in H.

Proof. By Theorem 2.16, H is an ordinary Hopf algebra. By [25, Section 13.1, p. 279], we conclude
(see also [18, p. 79]). O
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3. Yetter-Drinfeld modules over a dual quasi-bialgebra

The main aim of this section is to restrict the equivalence between " EUIZ and "9 of Theorem 2.13,
to an equivalence between IF_’,SDIE and ﬁ)}D (the category of Yetter-Drinfeld modules over H) for any
dual quasi-bialgebra H with a preantipode.

Definition 3.1. Let (H, m,u, A, &, w) be a dual quasi-bialgebra. The category g)iD of Yetter-Drinfeld
modules over H, is defined as follows. An object in gyD is a tern (V, py, >>), where

e (V, p) is an object in "9,
e >:H®V — V is a k-linear map such that, for all h,le H and v e V

_ o ' (1 ®l ®v_why ® (I > vo)_1 ®3) }
(ev= [w‘1((h3 > (> & Vo)o)—1 ® hg & L) (hs > (12 & vo)o)o | 20
lp>v=v =
and
(h1 > v)—1h2 ® (h1 > v)o =h1v_1 @ (h2 > Vo). (22)

A morphism f:(V,p,>) — (V/, p/,>’) in ZyD is a morphism f: (V, p) — (V’, p’) in H9 such
that f(h>v)=hp' f(v).

3.2. The category ZJJD is isomorphic to the weak right center of #9t (regarded as a monoidal cate-
gory as in Section 2), see Theorem A.2. As a consequence 53}7) has a pre-braided monoidal structure

given as follows. The unit is k regarded as an object in g)}D via trivial structures i.e. px(k) =1y ®k
and h > k = e(h)k. The tensor product is defined by

V,ov,>) (W, pw,>)=(VRW, pvegw,>)
where pyew (VO W) =v_1w_1 ® vo ® wo and

ho (v ®w) = [ o ®v_1®@w_2)w ' ((hy>vo)2®h3 ®w_1) ] 23

w((hy > vg)—1 ® (hg > wo)—1 @ hs)(ha > vo)o ® (ha > wo)o

The constraints are the same of "9t viewed as morphisms in ZyD. The braiding cy. w : V@ W —
W ® V is given by

cvw(V®w)=(v_1 > w)® vo. (24)
Remark 3.3. It is easily checked that condition (20) holds for all h,l € H and v € V if and only if

H H, —1 H
CHoH,v = av.HHOo (CHv ®H)o"ay 'y yo(H®cHv)o "aun,v,

where Hg is the associativity constraint in Y91. Now, the displayed equality above can be written as

H_ —1 H_ —1 H_ —1
Ay y.y ©CHRH,V © aH.H,V=(CH-V®H)O aH,V,HO(H®CH'V)'

One easily checks that this is equivalent to ask that
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o @ @ v_w(((hal2) > vo) | ® h3 ® I3)((halz) > vo),
=w(h @ (1>Vv)_1®L)hs> (1 > v)o

holds for all h,l € H and v € V. This equation is the left-handed version of [5, (3.3)]. In conclusion,
the axioms defining the category ZJJD are the left-handed version of the ones appearing in [5, Defi-
nition 3.1].

3.1. The restriction of the equivalence (F, G)

Let H be a dual quasi-bialgebra. From Theorem 2.13, we know that the adjunction (F, G) of Re-
mark 2.7 is an equivalence of categories when H has a preantipode. Next aim is to prove that (F, G)
restricts to an equivalence between the categories D and HoH.

Lemma 3.4. Let (H,m, u, A, €, ) be a dual quasi-bialgebra. For all U € "9t and M e !, we have a map
sum:FU)y@n M- UM,
Eym(w®h) @y m)=w""(u_1 ® 1 ®m_1)uo ® hamg
which is a k-linear natural isomorphism with inverse given by ég’h(u ®m) = (u® ly) ®y m. Moreover:
(1) the map &y um is a natural isomorphism in Hfmz where U ® M has the following structures:
Phem U @m) =u_1m_1 @ (up ® mp).

Pueyu U ®m) = (u®my) ®my,

Kyem(@®@m)@h) = o '(u_1 ®m_1 ® h1)ug ® mohy;

(2)ifU € Z)iD, the map &y m is a natural isomorphism in ZDIIZ where U ® M has the structures above
along with the following left module structure:

W yem(h® @@m)) = @u_1 @m_2)w ™' ((hy > o)1 ® h3 ® m_1)(ha > up)o ® hamo.
Proof. Inspired by [23, Lemma 3.4]. See also [24, p. 541]. O
Lemma 3.5. Let (H, m, u, A, €, w) be a dual quasi-bialgebra. For all U,V € Hon, consider the map
ayv:U®(V®H) - U®V)®H,
ayy(U® (vek)=wl_1®v_1 k) ® vo) k.

(1) The map ay,y : U @ F(V) — F(U ® V) is a natural isomorphism in ”sm’:,, where U ® F(V) has the
structure described in Lemma 3.4 for M = F(V).

(2) IfU,V e BYD, thenayv : U ® F(V) — F(U ® V) is a natural isomorphism in 190t where U ® F(V)
has the structure described in Lemma 3.4 for M = F(V).

Proof. It is straightforward. O
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Lemma 3.6. Let (H,m,u, A, &, ) be a dual quasi-bialgebra. The functor F : (=) ® H : "9 — Hol of 2.6
induces a functor F : YYD — HomH. Explicitly F(M) € Hont with the following structures, for all m € M,
h,leH,

Hyou[l®@ m@n]:=1-m@h) :=wli @m_1 @h1)(lz >mo ®13) - hy
= ol ®m_1 @h)w ' ((2>me) 1 ® I3 ®hy)(l > mo)o
® lghs, (25)
Phen[m@h) @1 :=meh) l:=0"'(m_1 ®h1 ® l))mg ® holy,
PugnM@h) :=m_1h1 ® (Mo & hy),
PrenM®h) := (M hi) ® hy. (26)
Proof. It is analogue to [23, Corollary 8.3]. O
Lemma 3.7. Let (H,m, u, A, &, ®, S) be a dual quasi-bialgebra with a preantipode. The functor G : (—)<°H :

Hontt — HOR of 2.6 induces a functor G : Bl — HyD. Explicitly G(M) € # YD with the following struc-
tures, for allm € MH, h e H,

Piyeor (M) 1= iy (),
Hiyeon (K @m) :=h > m :=T(hm) = w[h1m_1 ® S(h3)1 © ha](h2mo)S (h3)2.

Proof. Let M < HomH. We already know that G(M) € #9N. In order to prove that G(M) is in HYD,
we consider the canonical isomorphism €y, : FG(M) — M of Remark 2.7. A priori, this is a morphism
in Honf. Since M is in 0¥, we can endow FG(M) with a left H-module structure as follows

I-(m@h) = ey (lem(m®h)) = €' (Itmh)) = T [l1 (Moh1)] ® L (m1h2)
= t[li(mh1)] ® hy =11 > (mh1) ® L

so that

I-m®h) =1 > (mhy) ® lh; forallme M©" heH. (27)

By associativity we have

(k) - (m@h) =~ '(l1 ® k1 ® m_1h)lz (k2(mo ® ha))w (3 ® k3 @ h3)

i.e, for h=1py,

(k) - Mm@ 1p) =~ (1 ® ky @ m_p)lz(ka(mo ® 11)).

The first term is

k) - (m @ 1) 2 11ky) > m @ Lk,
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The second term is

ol ® k1 ® m_1)lz (ka(mo ® 1))
Dol @ k1 @m_1)la(ka >mo @ k3) 2 e 1(h @ ky @ m_1)ly > (k2 > mo)ks) ® Isks

=0 (1 ®k ® m_1)T[l2((k2 > mo)ks) ] ® Izks

= (I ®k; ®M_1)w(l2 ® (ka > mo)—1 ® k3)T[(I3(kz > mo)o)ks] ® laks

_ [ o 1l @k @m_pw(ly ® (k2 > mg)_1 ®k3) }
o~ ((3 > (ka > mp)o)—1 ® la ® ka) (I3 > (k2 > mg)0)o ® Isks |

Hence, we obtain

o ' (h @k @m_1)w(lz ® (ka > mg)_1 ®k3) }
likq) > Lk, = .
(i) =m @ bl [6071((13 > (k2 >mo)o)—1 @ ls @ ka)(I3 &> (ka2 > mo)o)o ® Isks

By applying M ® ey on both sides, we arrive at (20). Moreover, by (9), we have 1y >m=1(m)=m
and

(h1 >m)_1hy ® (h1 >m)o = T(him)_1hy ® T(him)o = T((hm)o) _, (hm); ® T((hm)o),
2 hmy_1 © t((hm)o) = him_1 ® T(hamp) =him_1 ® (ha > mo).

We have so proved that G(M) € HYD. Now it is easy to verify that for every g: M — N e HomH we
have that G(g) : M®" — N« e HyD. o

Proposition 3.8. Let (H,m, u, A, &, w, S) be a dual quasi-bialgebra with a preantipode. (F, G) is an equiv-
alence between H9MM and BYD, ie. the morphisms ey and ny of Remark 2.7 are in H9MA and in YD
respectively, for each M € Bont N e ByD.

Proof. We already know that gy € H Smﬂ Let us check that &) is left H-linear

EMUpegyh@m@ k)
—em(h- Mm@k)'E en[ot @m_y @ ki) (hy > mo @ ha)ks ]
M om_y © knem|(ha >mo ® h3) Jkz = w(hy @ m—1 @ k1)[ (ha > mo)h3 Jka
=w(hy @ m_1 @ ky)[T(hamo)hz k2 = w(h1 @ m_1 @ ky)[ T (hamo) (hamy) Jka
Loy @ m_1 @ k) (hamo)ka = hy (mok)ex(hy ® m1 @ k) = h(mk)
=umH®em)h@mek).

Now let us check the compatibility of n with >. For N € ZyD andneN,

[JU“I(N®H)COH ° HaH.N,H o(H® nN)](h ®n)

= [MI(N®H)COH ofagnn](h®@®1n)=w ' (1 ®n1® 1H)MI(N®H)C0H (ha ® (o ® 1p))
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25 26
= /’LI(N®H)COH(h ® (n ® 1H)) = T(h(n ® 1H)) (=)T(h1 >N hz)(z)‘f((h] >n® 1H)h2)

9
=1 (nn(hy > n)hy) (:)TINUH >n)ey (hy) =nn(h > n).
So ny € YD, for each Ne HyD. O

4. Monoidal equivalences

In this section we prove that the equivalence between the categories Z{))”(Z and ,’ij becomes
monoidal if we equip H9H with the tensor product ®y (or Oy) and unit H. As a by-product we
produce a monoidal equivalence between (#9H, @y, H) and (i, Oy, H).

Lemma 4.1. Let (H,m, u, A, &, w) be a dual quasi-bialgebra. The category (zﬂﬁz ®py, H) is monoidal with
respect to the following constraints:
au,v.w (U ®n V) ®y w) = ' (U_1 ® Vo1 ® W_1)Ug ®H (Vo ®n Wo)w (U1 ® vi ® w1),
ly(h ®y u) =hu,
ry(u ®py h) =uh.

Proof. See e.g. [2, Theorem 1.12]. O

Lemma 4.2. Let (H,m, u, A, ¢, ) be a dual quasi-bialgebra. Let U € "M, v e HH. Then U @ V., o',
o, ) € ot with the following structures:

pb@,v(u ®V)=u_1V_1 ® (U ® Vo),

Puey U ® V) = (1o ® Vo) ® UT V1,

Hyey (W@ Vv)®h) = o (u_1 ® v_1 @ h1)up ® vohaw(u1 ® vi @ h3).
Proof. It is left to the reader. O

Definition 4.3. We recall that a lax monoidal functor

(F.¢0.42): M, ®,1,a,l,1) > (M, &, 1.d.I.1)
between two monoidal categories consists of

e a functor F: M — M/,
e a natural transformation ¢,(U,V): F(U)® F(V) — F(U® V), with U,V € M, and
e a natural transformation ¢ : 1" — F(1) such that the diagram

, , $2(U,V)®'F(W) , $2(URV,W)
FUOSFV)Q®FW) ———— = FUQV)® F(IW) ——— = F(UQ V)@ W)

“%(U),Flvw(W) F(au.v.w)

, , FU)®'¢2(V,. W) , $2(U, VW)
FUOQ(FV)Q FW) ———— = FU) FVOW) ————= FUQ(VQW))

(28)
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commutes and the following conditions are satisfied

F(ly) o d2(1,U) o (o ® F(U)) =l . (29)
F(ru) o ¢2(U, 1) o (F(U) @ o) = - (30)

The morphisms ¢, (U, V) and ¢o are called structure morphisms.

Colax monoidal functors are defined similarly but with the directions of the structure morphisms
reversed. A strong monoidal functor or simply a monoidal functor is a lax monoidal functor with
invertible structure morphisms.

Lemma 4.4. Let (H,m,u, A, &, w) be a dual quasi-bialgebra. The functor F : ZyD — Z‘)ﬁz defines a
monoidal functor F : (YD, ®, k) — ({Mh, @y, H). For U, V € BYD, the structure morphisms are

©U,V):FU)Qyg F(V) > FU®V) and ¢o:H — F(k)

which are defined, foreveryu e U, v € V, h,k € H, by

o N u_s ®h1 ® v_sk))w(hy @ v_1 ® k)
U V[weh) ®y(vek]:= [w‘l((hz > Vo) 2 ®hy @ k3)w(u_1 ® (h3 > vo)_1 ® h5k4)}
(1o ® (h3 > vo)o) ® heks
and
@wo(h) =1 ®h.
Moreover
U V) (wev)®k) =0 (U1 ®v_1 ®k)(Uo® 14) ®n (Vo ® k2). (31)

Proof. Let us check that ¢g is a morphism in szﬁ Since ¢ = 1;11 :H — k ® H, i.e. the inverse of
the left unit constraint in 9%, then ¢q is in 79" and it is invertible. It is easy to check that it is
H-bilinear in FonH.

Let us consider now ¢, (U, V).

By Lemma 3.4, for all U,V € 5)71), the map &y rv): F(U) ®u F(V) — U ® F(V), is a natural
isomorphism in H9f. By Lemma 3.5, ay,v : U® F(V) — F(U®V) is a natural isomorphism in Honf,
where U ® F(V) has the structure described in Lemma 3.4 for M = F(V).

Thus ay véu rvy : F(U) ®y4 F(V) — F(U ® V) is a natural isomorphism in H9nH. A direct com-
putation shows that ¢»(U,V) = ay,v&u,rvy) and hence ¢(U,V) is a well-defined isomorphism
in HonH. Moreover ¢, (U, V)~! :sa}(v)alj}‘, fulfills (31).

In order to check the commutativity of the diagram (28) it suffices to prove the following equality:

(05" (U. V) @1 FW)]py ' (U V. W)F(ayl, )

-1 -1 -1
= aF(U),F(V),F(W)[F(U) ®H §02 (V, W)](ﬂz (Us Ve W)

Since these maps are right H-linear, it suffices to check this equality on elements of the form
uU®(vVeWw)) ®1y, where uc U, veV, we W. This computation and the ones of (29) and (30) are
straightforward. O

We now compute explicitly the braiding induced on ﬁimg through the functor F in Lemma 4.4, in
case F comes out to be an equivalence i.e. when H has a preantipode.
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Lemma 4.5. Let (H,m,u, A, &, w, S) be a dual quasi-bialgebra with a preantipode. Through the monoidal
equivalence (F, G) we have that (ZS)’JIZ, ®H, H) becomes a pre-braided monoidal category, with braiding
defined as follows:

cm N (M ®p ) = w(m_z ® T(ng)—1 ®n1)(M_1 > T(Np)o ®x Mo) - N2,
where M, N € #ont andm e M,n e N.

Proof. First of all, for any U,V € ZyD, let us consider the following composition:

©2(U,V) F(cu,v) Sl
—_—

huv = (F(U) @ F(V) FU V) 2 Fv guy 20 vy gy FU)).

This map is right H-linear, so, if we compute

ruv[U®h) @y (v 1h)]

_ [ @ (-4 ®h1 ® V_1)o(_3 ® (h2 > vo)_1 @ h3) ]
o N ((u_z > (h2 > v0)o)—1 ® U_1 ® ha)((u_2 > (h2 > V0)0)o ® 14) ®n Uo ® hs
(22())((1171}11) > v ® 1y) ®u (o ® hy),

we obtain

Av[U®h) @ (vek)]
= i v[UW®h) ®u (v®1h) k]
=w(u_1h1 ® v_1 @ kD)Au,v [[(Uo ® h2) ®n (vo ® 11)] k2]~ (h3 ® 1 @ k3)
=w(_1h1 ® v_1 @ki)ru.v[[(uo ® h2) ®H (Vo ® 11)] - k2]
=w(_1h1 ® v_1 ®k1)Au,v[(o ® h2) @y (Vo ® 11)] - k2
=wu_2h ® v_1 @ k)[((U-1h2) > vo ® 14) ®H (uo ® h3)] - ka.

Now, using the map Ay v, we construct the braiding of Zimﬂ in this way:

1 1
Meu N BN EG(M) @n FG(N) 2SMC™, EG(N) @y FG(M) X85, N @ M.

Therefore

(N ®H €MIAcM),G(N) (E,\j,l ®H 6,Ql)(m ®u n)
= (en ®H em)Acam.cn {[T(Mo) @ m1]| @4 [T(no) @ n1]}

_ [ w(t(mg)—2m1 @ T(ng)—1 ®N1) }
(en Qn em){[((t(mg)—1m2) > T(No)o @ 1x) ®n (T (Mg)o ® mM3)] - N2}

[ w(m_3 ® T(Ng)—1 ®N1) ]
(en ®Hy em)[(M_1 > T(Np)o ® 1) ®n (T(Mo) @ M1)] - N2

= w(m-2 ® T(ng)—1 ®@n1)[m_1 > T(no)o ®n T(Mo)m1 ] - na

:)a)(m,z ® T(ng)—1 ® M) [m-1 > T(No)o ®n Mo -n2. O
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Next aim is to prove that the equivalence between the categories ’;’,Smﬂ and ,’ij becomes
monoidal if we equip ZE)JTZ with the tensor product Oy and unit H.

4.6. Let (H,m,u, A,¢e,w) be a dual quasi-bialgebra. Note that, since H is an ordinary coalgebra,
we have that ("9t Oy, H,b,r,1) is a monoidal category with constraints defined, for all L, M, N €
HonH by
bL,M’N:(LDHM)DHN—)LDH (MDHN):(IDHm)DHTlI—)lDH (mDHn),
'™m :MDHH—>M:mDHh|—>m8H(h),
lmiHDHM%MZhDHmI—)SH(h)m,

where, for sake of brevity we just wrote m Oy n in place of the more precise Y_;m' Oy n'.

We want to endow f,imﬁ with a monoidal structure, following the dual version of [11] (see also
[23, Definition 3.2]). The definition of the claimed structure is given in such a way that the forgetful
functor Homft — HomH is a strict monoidal functor. Hence the constraints are induced by the ones of
HonH (ie. br.m.n, Im and ry), and the tensor product is given by M [y N with structures

IOIIVIDHN(m Oy n)=m_1 ® (mg Uy n),
Pyo,n M Ow 1) = (m Oy no) @ na,
MIMDHN[h ® (mOyn)]=h-(m0Oyn)=himOy hyn,
o, n[(m Ok n) @ h] = (m Oy n) - h = mhy Oy nhy.

The unit of the category is H endowed with the following structures:

P =hi ®ha,  pjy(h) =hi ®ha,
h-1=hl, l-h=lIh.
The following result is similar to (2) in Lemma 3.4.
Lemma 4.7. Let (H, m, u, A, &, ®) be a dual quasi-bialgebra. For all V € ¥YD and M € H9mH, the map
Bym:FV)OpM—VM:(veh) Oym— vethy@m

is a natural isomorphism in ZS)JTZ where V ® M has the structures as in Lemma 3.4. The inverse of By m is
given by

ByyiVOM— (VRH) Oy M:vem— (v@m_1) Oy mo.
Proof. The proof is straightforward and is based on the fact that (v®h) Ogm € (V ® H) Oy M implies

(veh) @m=(ve(h) ®m_1) ® my. O (32)

Lemma 4.8. (Cf. [23, Proposition 3.6].) Let (H,m,u, A, e,w) be a dual quasi-bialgebra. The functor
F:HyD — Honll defines a monoidal functor F : (YD, ®,k) — (ol Oy, H). For U,V € HYD, the
structure morphisms are
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Vo (U,V): FU)Oy F(V) > FU®V) and vo:H — F(k)

which are defined, foreveryu e U, v € V, h,k € H, by

V(U V[ @h) ® (v k)] :=wu_1®v_1 ®kuge(h) ® vo @ ka (33)
and
Yo(h) :=1x @ h.
Moreover
YU, V) N (we@v)®h) =0 ' (u_1 ® v_a ® h1)(Uo ® v_1h2) ® (vo ® hs). (34)

Proof. Since Yo = ¢p as in Lemma 4.4, we already know that y is an isomorphism in ﬂimﬁ Let us
deal with ¥ (U, V). By Lemma 3.5, the map ay.v : U ® F(V) - F(U ® V) is a natural isomorphism
in ZDJTZ where U ® F(V) has the structure described in Lemma 3.4 for M = F(V). By Lemma 4.7,
Bu.rvy=B:FU)Oy F(V) - U® F(V) is a natural isomorphism in {9%#, where U ® F(V) has the
structure described in Lemma 3.4 for M = F(V). Hence it makes sense to consider the composition
Y2(U, V) :=0ay v o Bu,veu- Then ¥ (U, V) fulfills (33). It is clear that y»(U,V): F(U) Oy F(V) —
F(U ® V) is a natural isomorphism in B9t with inverse given by y(U, V)~ ! := ﬁJ}V@,H oaa,lv.
Moreover (U, V)1 satisfies (34).

In order to check the commutativity of the diagram (28) it suffices to prove the following equality:

(V2U. V)T @ FIW))ya(U® V., W) ' F(ayy ) [(u ® (v @ w)) @ h]
= by vy rewny LF W) @ Y2 (V, W) (U, Ve W) ' [(u® (ve w)) @h).

By right H-linearity, it suffices to check the displayed equality for h = 1. The proof of this fact and
of (29) and (30) is straightforward. O

If H has a preantipode, the functor F of Lemma 4.8 is an equivalence. As a consequence, its adjoint
G is monoidal too. For future reference we include here its explicit monoidal structure.

Lemma 4.9. Let (H,m,u, A,&,w,S) be a dual quasi-bialgebra with a preantipode. The right adjoint
G : Homlt — HYD of the functor F, defines a monoidal functor G : (fmt, Oy, H) — (YD, ®, k). For
M, N e tonH, the structure morphisms are

1//26(M,N):G(M)®G(N)—>G(MDHN) and wg:keG(H)
which are defined, for everym € M,n € N, k € H, by

YS(M,NY(m®n)=mn_, Oyno and ¢§ k) :=kly.

Moreover, forallm € M,n € N,

s (M, N)"{(m Oy n) = t(m) ® T(n).
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Proof. Apply |3, Proposition 1.4] to the functor F. Then G is monoidal with structure morphisms

¥S (M, N) := G(em Op €m) 0 G(¥2(GM, GN) ™) 0 nomscn,
U5 ==G(¥g ') oM.

A direct computation shows that they are the desired maps.
The inverse of %G (M, N) can be computed by

¥s (M, N)™ ' = ngheon © G(¥2(GM, GN)) 0 G(€3,' O ey'). O

Remark 4.10. Consider the composition

K=KU,V):=92(U, V) oga(U,V): (U®H)®u (V®H) > (U®H) O (V& H).

We have

KU, V[w®h) @y (vek)]
=12(U. V) ' (U, V)[w®h) ®u (v ® k)]

o N Uu_2 ®h1 ® vk w(hy ® v_1 ® k)
=| 0 N ((h3 > vo)—2 @ ha ® k3)w(u_1 ® (h3 > Vo)1 ® hsks)
L Y2 (U, V)7 [(ug ® (h3 > v0)o) ® (heks)]

o M u_; ®h @ v_skpw(hy ® v_1 ® k)
o 1 ((h3 > vo)—2 @ ha ® k3)w(u_1 ® (h3 > vo)—_1 @ hska)
o N (ug—1 ® (h3 > vo)o—2 ® (heks)1)
L (uoo ® (h3 > vo)o—1(heks)2) Oy ((hs > vo)oo ® (heks)s3)
o N u_3®@h1 ® v_sk)w(hy ® v_1 ® k2)
= @ N((h3 > v0)—a @ ha @ k3)w(u_2 ® (h3 1> vo)_3 ® hsky) i|
Lo (u_1 ® (h3 > vo)—2 ® heks) (o ® (h3 1> vo)_1(h7ke)) On ((h3 > vo)o ® hgk7)

= @™ ((h3 > vo) 2 ® ha ® k3)
L (up ® (h3 > vo)_1(hsks)) Oy ((h3 > vo)o @ heks)

|: o~ (u_1 ®h @ v_zk)w(hy @ v_1 ® k2) i|

o N u_1 ®h1 ® v_sk)w(hy @ v_1 ® k) :|

(1o ® (((h3 > vo)_2h4)k3))
@~ 1((h3 > vo)—1 ® hs ® ka) Oy ((h3 > vo)o ® heks)

_ [ o (U1 ®h1 ® v_akpw(hy ® v_1 ® k2) }
(uo ® (((h3 > vo)—1ha)k3)) Op (((h3 > vo)o @ hs) - kg)

(2=2)|: o (U1 ®h1 @ v_sk)w(hy ® v_2 @ k) }
(uo ® ((h3v_1)k3)) Oy (((ha > vo) ® hs) - k)
@) |: o N (u_1 ®hy ®v_3sky) j|

(ug ® (h2(v_2k2)))
w(hs ® v_1 ®k3) Op (((hg > vo) @ hs) - ka)
Lo usr @ hy ® v_gk) (uo ® (ha(v_1k2))) Oyt (h3 - (vo ® k3)
= (up ®h1) - (v_1ky) Oy h3 - (vo ® k3)

=W®h)-(vek_105 W®h)1-(vek)
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so that

kU, W[ueh) @y (vek]=u®h)o-(vek 1Oy u®h)-(veko.

Thus, for M, N € H9nH, using that the counit € is in 90, one gets

[(GM Oy en) o K(MCOH, NCOH) o (61\_/11 RN Eﬁl)](m ®u n) =mon_q1 Oy myng.

We can also compute « (U, V)™ := @y (U, V)" o yra(U, V). We have
KU, V)" (@w®h) Oy (v k) = (ue(h) ® 1) @ (v @ K).

We are now able to provide a monoidal equivalence between (EMH. @y, H) and (i, Oy, H).
This result is similar to [22, Corollary 6.1].

Lemma 4.11. Let (H,m, u, A, €, w, S) be a dual quasi-bialgebra with a preantipode. The identity functor on
Homt defines a monoidal functor E : (B, @y, H) — (i9mk, Oy, H). For M, N € Homfi, the structure
morphisms are

U2(M,N) :E(M)Uy E(V) > E(M®u N) and v9:H—EH)=H

which are defined, foreverym € M,n € N, h € H, by

(M, Ny(mOgn):=1t(m)®yn and dg(h):=h.

Moreover

92(M, N)~'(m ®y n) = mon_1 Oy myn, (35)
172(FU,FV):¢2(U,V)71olﬂz(U, V). (36)

Proof. Using the map « of Remark 4.10, for each M, N € Zimﬁ we set

92(M, N) := (em ®H €n) o k (MH, NOH) 1o (e Oy e ).

Clearly, by Remark 4.10, 9(M, N)~! fulfills (35). Moreover, using (8), one gets

(M, N)Y(m Oy n) = t(m) Qy n.

It is straightforward to check that ! makes commutative the diagram (28) and that (29) and
(30) hold. Let us check that (36) holds
92(FU, FV) = (€ry ®n €pv) ok (GFU, GFV) ' o (€5 On €5y)
= (€ru ®n €rv) 0 2(GFU,GFV) ™1 o yr2(GFU, GFV) o (€5 O €5y

_ [ (€ru ®n €rv) 0 2(GFU, GFV) o Flnu ®ny)
Fing' ®ny ") o2 (GFU,GFV) o (€x) On €5y)

[ (eru ®H €Fv) o (Fnu ® Fnv) o (U, V)71 1
= [wzw, Vo (Fny' @ Fn,Y) o (e Oy e;&)] =@, V) Te2(U.V). D
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The following result is similar to [23, Proposition 3.11].

Corollary 4.12. Let (H,m,u, A, &, w) be a dual quasi-bialgebra. The identity functor on Zimﬁ defines a
monoidal functor £ : (HoH, Oy, H) — (imH, @y, H). For M, N € U9 the structure morphisms are

Y2o(M,N): E(M)®y E(V) > E(MOy N) and yo:H — E(H)
which are defined by y>(M, N) := 192_] (M, N) and yp := 190‘1 using Lemma 4.11.
Proof. It follows by [3, Proposition 1.4]. O
Next, we include a technical result that will be used in Section 5.

Lemma 4.13. Let (M, ®, 1) be a monoidal category which is abelian.

(1) Let A be an algebra in M. Assume that the tensor functors are additive and right exact (see [2, Theo-
rem 1.12]). Then the forgetful functor

D:(aMa,®4,A) —> (M,®,1)

is a lax monoidal functor with structure morphisms

H(M,N):D(M) @ DIN) - D(M®a N) and ¢o:1— D(A),
where ¢, is the canonical epimorphism and ¢ is the unity of A.

(2) Let C be a coalgebra in M. Assume that the tensor functors are additive and left exact. Then the forgetful
functor

D: (M, 0c, C) > M, ®,1)
is a colax monoidal functor with structure morphisms
(M,N):D(MO¢c N) - D(M)® D(N) and ¢o:D(C) —1,
where ¢ is the canonical monomorphism and ¢y is the counit of C.
Proof. (1) From [2, 1.11], for all M, N, S € 4 M4, we deduce
D(*afy y.s) o L2(M®aN.S) o [£2(M.N) ® D(S)]
=5(M,N®4 S) o [D(M) ® &2(N, S)] o au,n.s-
Moreover, for all M € 4 M4, we have
D(A1f) 0 22(A, M) 0[50 ® D(M)] = 418} 0 &2 (A, M) o (¢0 ® M)
=M5\40(UA®M)=IM~

Similarly D(Ar,'a,) 0 2(M, A) o [D(M) ® £o] =rym. We have so proved that D is a lax monoidal functor.
(2) It follows by dual arguments. 0O
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5. The main results: bosonization

5.1. Let H be a Hopf algebra, let A be a bialgebra and let 0 : H— A and 7 : A— H be morphisms
of bialgebras such that w0 =Id. In this case A is called a bialgebra with projection onto H and
A e ot through

pPrl@=am®nr@), p@=r@)ea,

pWaeh=awh, pheag=oha.

Define now the map 7:A — A :ar~ a;0S(ay). It can be proved that Im7 = A" =: R and, when
H is the coradical of A, that R is connected. Indeed it is well-known that R becomes a connected
bialgebra in the pre-braided monoidal category ﬁyD of Yetter-Drinfeld modules over H (cf. [19]).

Now, from the fact that (F, G) is an equivalence we know that €4 : R® H — A is an isomorphism.
Conversely, it can be proved that, given a Hopf algebra H and a braided bialgebra R in ZyD, we
can endow R ® H with a bialgebra structure and define two bialgebras morphisms ¢ and 7 such
that mo = Idy, see [19]. This bialgebra is called Radford—Majid Bosonization (or Radford biproduct)
and permits to classify different kinds of bialgebras as “compositions” (crossed product) of different
objects in the same category.

The main aim of this section is to extend the results above to the setting of dual quasi-bialgebras.

Theorem 5.2. Let (H, my, uy, Ay, €y, wy) be a dual quasi-bialgebra.
Let (R, (LR, PR, AR, ER, MR, UR) be a bialgebra in ﬁyD and use the following notations
hor:=purth®r), r_1Qro:=pgr(r),
r-gs:=mgp(r®s), 1g == ur(1k),
r'®r? = Ag(r).

Let us consider on B := F(R) = R ® H the following structures:

wy' (r—2 ® h1 ® s_akwh (hy @ s_1 ® ka),
mp[r@h) @ (s®K)] = | wy'[(h3 > s0)—2 ® ha ® kslwp (r—1 ® (h3 > S0)—1 ® hska) |
ro ‘R (h3 > S0)o ® heks

up(k) =k1g ® 1,
Apr®h) =wy' (r, @’y @ hi)ri ® 2 hy ® 12 @ hs,
eg(r@h) =er(r)en(h),
wp(r®h) @ (s@k) ® (t®1)) = er(Ner()er(Own(h @k ).
Then (B, Ap, €g, mp, Up, wp) is a dual quasi-bialgebra.

Proof. It is analogue to [9, Lemma 3.1]. O

Remark 5.3. The Referee pointed out to our attention that the coalgebra structure of F(R) in the
previous result is a smash coproduct one, see [8, Definition 3.4].

Definition 5.4. With hypotheses and notations as in Theorem 5.2, the bialgebra B will be called the
bosonization of R by H and denoted by R#H.
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Definition 5.5. Let (H,m,u, A,&,w) and (A, ma,ua, Aa, €4, wa) be dual quasi-bialgebras, and sup-
pose there exist morphisms of dual quasi-bialgebras

o:H—A and m:A—H
such that wo =Idy. Then (A, H, o, ) is called a dual quasi-bialgebra with a projection onto H.

Proposition 5.6. Keep the hypotheses and notations of Theorem 5.2. Then (R#H, H, o, i) is a dual quasi-
bialgebra with projection onto H where

o:H— R#H, o(h):=1g#h, m:R#H — H, mw@#h):=¢er()h.
Proof. It is straightforward. O

Next aim is to characterize dual quasi-bialgebras with a projection onto a dual quasi-bialgebra
with a preantipode as bosonizations.

Lemma 5.7. Let (A, ma, ua, A4, Ea,wa) and (H, my, uy, Ay, €4, wy) be dual quasi-bialgebras such that
(A, H, o, m) is a dual quasi-bialgebra with a projection onto H. Then A is an object in meg through

Ph@=a1®7m(@). ph@=m@)a,
ph@®h =aoh), phhea=oca.
Proof. It is straightforward. O

Theorem 5.8. Let (A, my, ua, Aa, €4, wa) and (H, my, uy, Ay, €y, wy) be dual quasi-bialgebras such that
(A, H,o,m) is a dual quasi-bialgebra with projection onto H. Assume that H has a preantipode S. For all
a,be A weseta; @ ay := Ax(a) and ab =mpu(a ® b). Then, for all a € A we have

T(a) :=wa[a1 ® 0 ST (a3)1 ® as]az0 S (as)2

and R := G(A) is a bialgebra ((R, 4R, PR), MR, UR, AR, ER, WR) in gyD where, forallr,se R,he H, k €k,
we have

h>r:=prh@r):=t[ohr], r_1®r10:=pr(r):=m(r) @12,
mr(r®s):=rs, ugr(k) :=klg,

@rr:=Ar() =1 ®T@2),  er@):=ea).

Moreover there is a dual quasi-bialgebra isomorphism €4 : R# H — A given by

ear@h)y =roh), €' (@=r1(a)®m(a).

Proof. We have

Pa@) ®a=a1Qm(ay) ®az =a; ®P£\(az)
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so that As(a) € AOy A for all a e A. Let Ay : A— Ay A be the corestriction of A4 to Ay A.
Using that wy = wA (T ® T ® ), we obtain

mao(A®uly)ofall |y =m0 (1), ®A).
Denote by xxy:X®Y — X ®p Y the canonical projection, for all X,Y objects in ﬁimﬁ
Since (A ®nu A, xa,a) is the coequalizer of ((A® ,u’A)”af\’_’HqA, (u!y ® A)), we get that my factors
through to a map m/, : AQy A — A such that m/, o x4 4 =ma. Consider the canonical map 9,(M, N) :

MOy N— M ®y N of Lemma 4.11 defined by 9, (M, N)(m Oy n) := t(m) ®y n and let my := m;‘ o
% (A, A). Then

Ma(a Oy b) =m'y(t(a) ®u b) = T (a)b.
Note that, by Lemma 2.12, the map 7 : A — A®H is defined, for all a € A, by

T(a) =wh[a-1 ® S(a1)1 ® az]aoS(ar)2

[
wp[7(a1) ® S (a3)1 ® 7w (as) a0 [S7 (a3):]
w7 (@) @ mo[Sm(a3)1] ® 7 (as)]azo[S7 (a3)2]

a1 ® o[S7(a3)1] ® as]azo [S7 (a3)2]

WA

wa [111 ®oSm(as) ® 04]02057T(G3)2-
It is straightforward to prove that (A, Ap,Ep:=m)isa coalgebra in (ﬁim”, Oy, H).

One checks that (A,m/,, o) is an algebra in ({0, @y, H).

Now, by applying [3, Proposition 1.5] to the monoidal functor E : ({9}, @y, H) — (iomti. O, H)
of Lemma 4.11 we have that (E(A), mg(a), UE(a)) is an algebra in (ZED”(Z Oy, H) where

mga) = E(m)y) 0 92(A, A) and uga) = E(0) o do.

It is clear that (E(A),mga), Upa)) = (A,Ma,lia = o). Thus (A,fMa,lia) is an algebra in (Homh,
Oy, H).
Now, we apply [3, Proposition 15] to the functor G : 9t — HYD of Lemma 4.9. Set R :=
G(A) = A Then R is both an algebra and a coalgebra in Z)iD through
mg :=G(ifia) o Y5 (A, A),  ug:=G(lia)o Vg,

AR:=yS(A AT 0GR,  eri=(U)  0GEa).

Explicitly, for all r,s e R, k ek

mr(r®s)=7t(rs_1)so (9=)r8H(5—1)50 =Ts,
ur(k) = GV (k) =tiakly) =ko (1) =klg,
AR =1(r) ® T(r2),

er) = (¥S) 'GENM = (V) A M) =T () =Ea(r1)T(r2) = £a(ro)T1 = £4(N 4.
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We will use the following notations for all r,s € R,

rrS:=mpr®s), 1g ;== ur(lk).

Now, by [3, Corollary 1.7], we have that €4 : FG(A) — A is an algebra and a coalgebra isomorphism in
(ZD)IZ, Oy, H). Let us write the algebra and coalgebra structure of FG(A) = R ® H. By construction
[3, Proposition 1.5], we have

MmgR) = F(mg) o Y2(R, R) : F(R) Oy F(R) — F(R),

l_lF(R) = F(UR) o 100 :H— F(R),

AFR) = Y2(R,R) " o F(AR) : F(R) — F(R) Oy F(R),

EFR) =V, ' oF(er): F(R) — H.

Explicitly we have

ey (r@h) Op (s®K)) = w(r—1 @ s_1 @ k)roe(h) -r so ® k2,
uprRy(h) =F(ug)yo(h) =1 ®h,

A @) =w ' (rLy @12, ® 1) (ry ® r21h2) Oy (1§ ® h3).

ErR)(r®h) =y 'F(en)(r®h) = ¥y ' (er(r) @ h) = eg(Mh.
In view of 4.6, the forgetful functor (Homf, Oy, H)—HmH, Oy, H) is a strict monoidal functor. Be-
ing €4 : (F(R), AF(R) EFR)) — (A, Ap,Ea=m) a coalgebra morphism in (H DH,H) we have
that €4 : (F(R), Arr), 8FR)) — (A, Ap,Ea4 =) is a coalgebra morphism in (HE)JIH Oy, H). Ap-
ply Lemma 4.13 to the case (M,®,1) = (M, ®,k) and C =H. Let jxy: XOgY > X®Y be
the canonical map. Then €p: (F(R), ]F(R) F(R) © AF(R) €y o 8F(R)) — (A, ]A A O AA,SH o &4) is a
coalgebra morphism in (9N, ®,k). In other words it is an ordinary coalgebra morphism. Note that
(A, jA,A [¢] AA, EH Oé,q) = (A, AA, EA). Set (AF(R)7 SF(R)) = (jF(R),F(R) o AF(R), EH o E_,‘F(R)). Let us com-
pute explicitly these maps. We have

AFR) (T ®h) = (jr®R).F(R) © AFR) (T @) =™ (Tll ®r,® h])(f(l) ® rﬂhz) ® (T(Z) ® h3),

EFR)(r®h) = (eq 0 EFR)(r ®h) =er(Ney (h).

Thus €4 : (F(R), AFr), €F(r)) = (A, Aa, £4) is an ordinary coalgebra morphism.
Being €4 : (F(R), MEg(r), Ur(r)) = (A, M4, Ua =0) an algebra morphism in (HE);TZZ, Oy, H), then, in
view of Lemma 4.11,

a:(F(R), E(MEr)) o y2(F(R), F(R)), E(liF(r)) © Yo) — (A, E(iMa) o y2(A, A), E(ia) o yo)
is an algebra morphism in (M}, ®y, H). Note that

E(a) o y2(A, A) =Tlia 005 (A, A) =),

E(Up)oyo=Upa=0
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so that

(A, E(Ma) o y2(A, A), E(lia) o yo) = (A, m)y, 0).

Set (m}(R), u/F(R)) = (E(MFrr)) o Y2(F(R), F(R)), E(uufr)) o yo). We have

M ry (T @ h) ®n (s © X))
=[E@@r@) o 2(FR). FR)] (@1 @1 (s © 1)
=Mpr) [(r @ Mo(s @ k) -1 @1 (r ® h)1(s ® k)o]
= MpR) [(r ® h1)(s—1k1) ®H ha(so ® k2)]
= '[r-1 ® h1 ® s_2ki 1M [ro ® [h2(s-1k2)] ®H h3(s0 @ k3)]

_ [0~ 1[r_1 ® h1 ® s_skilo(hs ® s_1 ®k3)w ™ ((ha > S0)—1 @ hs @ ka)
MEry[ro @ [h2(s—2k2)1 @n (ha > s0)o ® heks]

_ [ r-2®h1 @ s_skilw(hs @ s-1 @ k)~ ((ha 1> 50)—2 ® hs ® k4)]
| @(r—1 ® (hg > s0)—1 ® heks)roen[ha(s—2k2)] -r (hg D> S0)o ® h7ke

o r_y ®h1 ® s_a2ki]w(hy @ s_1 @ k) i|

=| 0 1 ((h3 > s0)—2 ® ha @ k3)w(r_1 ® (h3 > S0)—1 ® hska)
L ro -r (h3 > Sp)o ® heks

so that
Mgy ((r @ h) @p (s @K))
o r_2 ® hy @ s_zkilw(h; @ s_1 ® k)
=| 0 N ((h3>s0)—2 ® ha @ k3)w(r_1 ® (h3 > Sp)—_1 ® hsky) |.
ro -r (h3 D> S0)o ® heks
Moreover

Upry (M) = [E (ElEr)) © Vo] (h) =ty (h) = 1R ® h.

Apply Lemma 4.13 to the case (M, ®,1) = HomH ®,k) and A = H. Then

€a: (F(R), M Ry © XF(R),F(R)> UF(R) © up) — (A,mjy o xa.a,0oup)

is an algebra homomorphism in (HomH | ®, k). Note that (A, m’A 0 XA.A, 0 olUp)=(A,ma,us). More-
over, if we set (Mg gy, UF(R)) = (m’F(R) © XF(R),F(R)s u/F(R) oly), we get

meg) (r®h) ® (s ®k))

o r_2 ® hy ® s_okilw(hy ® s_1 ® ka)
=| o N ((h3>50)—2 ® hs @ k3)w(r_1 ® (h3 > So)_1 ® hsky) |.
1o -r (h3 > S0)o ® heks

Moreover

up(R)(k) =1r ®k.
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Thus €4 : (F(R), Mgy, Upr)) — (A,ma,ua) is an algebra isomorphism in (F9MF ®, k) and
€a: (F(R), Arr), €F(r)) — (A, Aa, €4) is an ordinary coalgebra isomorphism. Thus
Ma o (€4 ® €4) = €4 0ME(R), €A O0UFR) =Uga,

(€Aa®€p) o ApRy=Ap0€q, EACEA=EFWR),

so that mr(R), UF(R), AFR), €Fr) are exactly the morphisms induced by mga, ua, Aa, €4 via the
vector space isomorphism €4 : F(R) — A. Let wf(r) be the map induced by wx via the vector space
isomorphism €4 i.e.

WFR) :=wa0(€4Q€4®€4): F(R)® F(R)® F(R) — k.

Then €a : (F(R), Af(R), EF(R), MF(R), UF(R), WF(R)) — (A, Ma,up, Aa, €4, wa) is clearly an isomor-
phism of dual quasi-bialgebras. Since, for all r € R, we have 7 (r) = €4(r1)7 (r;) = €4(r)1y, then, for
r,s,teR, h,k,1 € H, we get
WFR[T@N) (K @ (t®D)]
=wa(ro(h) ® so (k) @ to () = wy |7 (ro (h) @ w(so (k) @ 7 (to ()]
=wy[T(Nh @ T(Hk @ T ()] = wh[ea(h @ ea(S)k ® a(t)]]
=eaMea®IeaS)wnh @k ®1)

so that

WFR[T®N R QK R (t®D]=ecaMea®)ea®)wnh @k ).

Note that (F(R), AFR), EF(R), MF(R), UF(R), WF(R)) = R# H once proved that (R, mg, ug, Ag,€g) is a
bialgebra in the monoidal category (ZJJD, ®, k). It remains to prove that mg and ug are coalgebra
maps. Since ZyD is a pre-braided monoidal category and (R, Ag, €g) is a coalgebra in this category,
then we can define two morphisms Argr and grgr in ZyD such that (R ® R, AgrgRr, ERgR) IS a
coalgebra in ﬁyD too. We have

ARgR = GE}R,R@,R o(R®agrr)o(R®crRr®R)o (R ®a§,1R’R) o 4R R.R®R © (AR ® AR),
ER®R ‘= ER ® ER.
Explicitly Argr satisfies

o, @k, ®@s!,s2 o, ®s! | ®s25)
Apgr(r®s)=| 0 '[P >s)2 @1, ®s%, ]l @ (P >s)1 @252 | (37)
[} ® (25> 500l ® (13 ® s3)

In order to prove that mg is a morphism of coalgebras in ZyD, we have to check the following
equality

(mgp @ Mp)ARrgr = ARmg.
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Since we already obtained that B := F(R) is a dual quasi-bialgebra, we know that

Ap[r®1y) B (S® 1) | =0T @11 B @11 @ (r® 11)2 8 (S® 1p)2.
By applying R ® ey ® R ® €y on both sides we get

o N )20 D1 ® ()22 1)
o((r21)2® (M1 ® (s2))2)
rr)'®@Tr)=| 023> N)2® 2 Da® (23] | ®(r§ -k Sp)
(-1 ® (D3> (sHo)-1 ® (2 )5(52)4)

L Dok (23> (sHo)o
ro 1, @rt,@s! )82 po?, ®@s!, ®@s2,)

o > s 2@, ®5%,]

w(r]_1 by (T'2_3 > 5(1))—1 ® '{152_1)
L ro R (25> 58)0 ® (1% g s3)
= (Mg ® MR)ARgr(r ®s).

The compatibility of mg with €g and the fact that ugp is a coalgebra morphism can be easily
proved. O

6. Applications
Here we collect some applications of the results of the previous sections.
6.1. The associated graded coalgebra
Example 6.1. Let (A, my4,ua, Aa, €4, wa) be a dual quasi-bialgebra with the dual Chevalley property

i.e. such that the coradical H of A is a dual quasi-subbialgebra of A. Since A is an ordinary coalgebra,
we can consider the associated graded coalgebra

An

grA = @gr”A where gr'" A := RS
n—1

neN

Here A_1:= {0} and, for all n > 0, A, is the nth term of the coradical filtration of A. The coal-
gebra structure of grA is given as follows. The nth graded component of the counit is the map
SgrA : An/An—1 — k defined by setting

82”\(?( + An—1) =n,08a(%).
The nth graded component of comultiplication is the map

AL gAS P gAee’A
a+b=n, a,b>0

defined as the diagonal map of the family (Ag’rbA)aer:n,a,@o where

Ag;bA gt A S gl AR e’ A, Ag;bA X+ Agtp—1) = (X1 + Aa—1) ® (X2 + Ap—1).
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Proposition 6.2. Let A be a dual quasi-bialgebra with the dual Chevalley property. Then

(grA, Mgra, Ugra, Agra, Egr As Wer A)

is a dual quasi-bialgebra where the graded components of the structure maps are given by the maps

g AQ g’ A— grtth A, ‘k— g A,

grA grA

grA g A S et A el A, egrA:gr”A—>]k,

abc

Wy A cgr? A®gr A®gr‘ A— Kk,

defined by

mg}bA [(X +Ag-1) R (¥ + Ab—l)] =Xy + Aagtb-1. ugr/\(k) :=08n,01a+ A1 =0n01a,
Agr A(X + Agyb—1) = (X1 + Ag—1) ® (X2 + Ap_1), Egr a(X + An—1) 1= 8n 084 (%),

abc

Wgr 4 [X+ A1) ® (Y + Ap—1) ® (2 + Ac—1)] := 84,08p,08c,00A(X ® ¥y ® 2).
Here §; ; denotes the Kronecker delta.

Proof. The proof of the facts that mg; 4 and ug 4 are well-defined, are coalgebra maps and that mg; 4
is unitary is analogous to the classical case, and depend on the fact that the coradical filtration is
an algebra filtration. This can be proved mimicking [18, Lemma 5.2.8]. The cocycle condition and the
quasi-associativity of mg 4 are straightforward. O

Proposition 6.3. Let A be a dual quasi-bialgebra with the dual Chevalley property and coradical H. Then
(grA, H, o, m) is a dual quasi-bialgebra with projection onto H, where

o:H—>grA:h—~>h+A_q,
w:grA— H:a+ Ap—1+—8poa forallae Ay.
Proof. It is straightforward. O

Corollary 64. Let A be a dual quasi-bialgebra with the dual Chevalley property and coradical H. Assume
that H has a preantipode. Then there is a bialgebra R in ﬂyD such that gr A is isomorphic to R# H a dual
quasi-bialgebra.

Proof. It follows by Proposition 6.3 and Theorem 5.8. O

Definition 6.5. Following [1, Definition, p. 659], the bialgebra R in ﬂyD of Corollary 6.4, is called the
diagram of A.

6.2. On pointed dual quasi-bialgebras

We conclude this section considering the pointed case.
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Lemma 6.6. Let G be a monoid and consider the monoid algebra H := kG. Suppose there is a map w €
(H ® H® H)* such that (H, w) is a dual quasi-bialgebra. Then (H, w) has a preantipode S if and only if G is
a group. In this case

s@=[o(zeg'eg)] g

Proof. Suppose that S is a preantipode for (H, w). Since H is a cocommutative ordinary bialgebra,

by Theorem 2.16, we have that kG is an ordinary Hopf algebra, where the antipode is defined, for all
gegG, by

s(8) = =S(21w[g®S(g)29g].
Moreover one has S = ¢S *s. Now, since kG is a Hopf algebra, one has that the set of grouplike

elements in kG, namely G itself, form a group, where g~ :=s(g), for all g € G.
Now, since s is an anti-coalgebra map, we have

S(£)1® S(8)2=£S(8)5(8)1®5(2)2 =£5(2)5(2) ®s(8) =S ® g™

so that s(g) = S(2)1w[g® S(8)2 ® gl =S(w(g® g ' ® g). Hence S(g) =[w(g®g '@ g1 g~
The other implication is trivial (see [4, Example 3.14]). O

The motivation for the previous result is Corollary 6.9 below.

Proposition 6.7. Let (A, m, u, A, €, w) be a dual quasi-bialgebra. Then the set of grouplike elements G(A) of
A is a monoid and the monoid algebra kG (A) is a dual quasi-subbialgebra of A.

Proof. It is straightforward. O

Corollary 6.8. Let (A, m,u, A, &, w) be a pointed dual quasi-bialgebra. Then Ay = kG(A) is a dual quasi-
subbialgebra of A.

Proof. By Remark 2.20, Ag = kG(A). In view of Proposition 6.7, we conclude. O

Corollary 6.9. Let (A,m,u, A, &, w, s, &, B) be a pointed dual quasi-Hopf algebra. Then G(A) is a group and
Ao =kG(A) is a dual quasi-Hopf algebra with respect to the induced structures.

Proof. Set G := G(A). By Corollary 6.8, Ag =kG is a dual quasi-subbialgebra of A. It remains to check
that the antipode on A induces an antipode on Agp. We have

As(g) =s(g2) ®s(g1) =s(g) ®s(g),
es(g)=¢(g) =1,

i.e. s(g) € G, for any g € G. Let sg, g, Bo, wo, Mo, Ug, Ag, & be the induced maps from s, «, B, w, m,
u, A, g, respectively. It is then clear from the definition that Ag, with respect to these structures, is a
dual quasi-Hopf algebra. Since any dual quasi-Hopf algebra has a preantipode, by Lemma 6.6, G is a
group. 0O

Pointed dual quasi-Hopf algebras have been investigated also in [12, p. 2] under the name of
pointed Majid algebras. In view of Corollary 6.9, which seems to be implicitly assumed in [12, p. 2],
we can apply Corollary 6.4 to obtain the following result.
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Theorem 6.10. Let A be a pointed dual quasi-Hopf algebra. Then gr A is isomorphic to R#kG(A) as dual
quasi-bialgebra where R is the diagram of A.
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Appendix A. The weak right center
Definition A.1. (See |7, Section 1.5].) Let (M, ®,1,a,l,r) be a monoidal category. The weak right
center W, (M) of M is a category defined as follows. An object in W:(M) is a pair (V,c_ y), where

V is an object of M and c_y is a family of morphisms in M, cx,yv : X® V — V ® X, defined for any
object X in M, which is natural in the first entry, such that, for all X,Y € M we have

ay'y y ocxov.voayly y = (cxv ®Y)oayly y o (X®cy.v) (38)

and such that ry ocq,yv =ly. A morphism f:(V,c_y) — (W,c_ w) is a morphism f:V — W in M
such that, for each X € M we have

(f®X)ocxv =cxwo(X® f).

W; (M) becomes a monoidal category with unit (1,/-! o) and tensor product

V,ccv)@W,ccw) =V W, c_vew)

where, for all X € M, the morphism cx yew : X® (V@ W) — (V® W) ® X is defined by

g1 1
cx,vew :=ay y x o (V®cxw)oay xwo(cx,y @ Wyoay y .

The constraints are the same of M viewed as morphisms in W, (MM). Moreover the monoidal category
W:r(M) is pre-braided, with braiding

CV.ee) W) - (Ve v) @ Woc—w) > (W, c-w)®(V,c-v)
given by cy w.

Theorem A.2. Let H be a dual quasi-bialgebra. The categories W, (H90t) and ZyD are isomorphic, where "9
is regarded as a monoidal category as in Section 2.

Proof. The proof is analogue to [5, Theorem 3.5]. O
A.1. Example: the group algebra

We now investigate the category of Yetter-Drinfeld modules over a particular dual quasi-Hopf
algebra.

Let G be a group. Let 6 : G x G x G — k* :=k\{0} be a normalized 3-cocycle on the group G in
the sense of [15, Example 2.3.2, p. 54| i.e. @ map such that, for all g, h,k,l € G

0(g,1c.h) =1,
O(h,k,DO0(g, hk,1)6(g, h,k) =06(g, h,kD)o(gh,k,1).
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Then 6 can be extended by linearity to a reassociator w : kG ® kG ® kG — k making kG a dual
quasi-bialgebra with usual underlying algebra and coalgebra structures. This dual quasi-bialgebra is
denoted by k?G. Note that in particular k?G is an ordinary bialgebra but with nontrivial reassociator.
In particular it is associative as an algebra. Let us investigate the category gcyp of Yetter-Drinfeld

G
module over kG.

Definition A.3. Let 0 : G x G x G — k™ be a normalized 3-cocycle on a group G. The category of
cocycle crossed left G-modules (G, 8)-Mod is defined as follows. An object in (G, 6)-Mod is a pair
(V,»), where V =, Vg is a G-graded vector space endowed with a map »: G x V — V such
that, for all g,h,l€ H and v € V, we have

h» Vg c thh_l’ (39)

O(hlgl="h=1 h,Do(h,1, g)
he (> v)= hi 40
> (> v) gD (hD» v, (40)
Typv=yv. (41)

A morphism f: (V,»)— (V/,»’) in (G, 8)-Mod is a morphism f : V — V’ of G-graded vector spaces
such that, for all h € H, v € V, we have f(h» v) =h»' f(v).

The following result is inspired by [16, Proposition 3.2].

Proposition A4. Let 6 : G x G x G — k* be a normalized 3-cocycle on a group G. Then the category ﬁizgyl)
is isomorphic to (G, 6)-Mod.

Proof. Set H :=k’G and let (V, py,>) € BYD. Then (V, pv) is an object in ¥°90. Hence, see e.g.
[18, Example 1.6.7], we have that V = @gec Vg where Vg ={v eV | py(v) = g ® v}. Define the map
»:GxV — V, by setting g » v:=g>v. It is easy to prove that the assignments

(VHOV»D)’—)(V=@V};7>>7 f'_)f

geG

define a functor L : ﬁyD — (G, 6)-Mod. Conversely, let (V = @gec Vg, ») be an object in (G, 6)-Mod.
Then » can be extended by linearity to a map > : kG ® V — V. Define py : V — kG ® V, by setting
pv(v) =g®v for all v e V. Therefore, the assignments

<vz@vg,>) = (V,py,>), fref
geG

define a functor R : (G, 8)-Mod — 53}1). It is clear that LR=1Id and RL=1d. O

A.5. As a consequence of the previous result, the pre-braided monoidal structure on Ezgjﬂ) induces a
pre-braided monoidal structure on (G, )-Mod as follows. The unit is k regarded as a G-graded vector
space whose homogeneous components are all zero excepted the one corresponding to 1¢. Moreover

hw» k=e¢ey(h)k for all h € H, k € k. The tensor product is defined by

V) W.,»)=(VeWw,»)

where
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(VR W)g=EPVh®Wj-1p)
heH

and, for all v e Vg, w € W, we have

6(hgh=1, hih=1, h)o(h, g, 1)

thgh=T.h.D (h»v)® (h» w).

h» (v w)=

The constraints are the same of "9t viewed as morphisms in gyD.
The braiding cy,w : VO W — W Q V is given, for all ve Vg, w € W, by

cvw(vew)=(grw)Qv.
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