
Journal of Algebra 390 (2013) 126–159
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Bosonization for dual quasi-bialgebras and preantipode ✩

Alessandro Ardizzoni a, Alice Pavarin b,∗
a University of Turin, Department of Mathematics “G. Peano”, via Carlo Alberto 10, I-10123, Torino, Italy
b University of Padua, Department of Mathematics, via Trieste 63, I-35121, Padova, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 June 2012
Available online 15 June 2013
Communicated by Nicolás Andruskiewitsch

MSC:
primary 16W30
secondary 16S40

Keywords:
Dual quasi-bialgebras
Preantipode
Yetter–Drinfeld modules
Bosonization
Projections

To every dual quasi-bialgebra H and every bialgebra R in the cat-
egory of Yetter–Drinfeld modules over H , one can associate a dual
quasi-bialgebra, called bosonization. In this paper, using the funda-
mental theorem, we characterize as bosonizations the dual quasi-
bialgebras with a projection onto a dual quasi-bialgebra with
a preantipode. As an application we investigate the structure of
the graded coalgebra gr A associated to a dual quasi-bialgebra A
with the dual Chevalley property (e.g. A is pointed).

© 2013 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2.1. The category of bicomodules for a dual quasi-bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.2. An adjunction between HMH

H and HM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.3. The notion of preantipode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3. Yetter–Drinfeld modules over a dual quasi-bialgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.1. The restriction of the equivalence (F , G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4. Monoidal equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5. The main results: bosonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

✩ This paper was written while both the authors were members of GNSAGA and the first author was a Senior Post Ph.D.
Fellow at the Department of Mathematics of the University of Padua.

* Corresponding author.
E-mail addresses: alessandro.ardizzoni@unito.it (A. Ardizzoni), alicepavarin@gmail.com (A. Pavarin).
URL: http://www.unito.it/persone/alessandro.ardizzoni (A. Ardizzoni).
0021-8693/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2013.05.014

http://dx.doi.org/10.1016/j.jalgebra.2013.05.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:alessandro.ardizzoni@unito.it
mailto:alicepavarin@gmail.com
http://www.unito.it/persone/alessandro.ardizzoni
http://dx.doi.org/10.1016/j.jalgebra.2013.05.014


A. Ardizzoni, A. Pavarin / Journal of Algebra 390 (2013) 126–159 127
6. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.1. The associated graded coalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2. On pointed dual quasi-bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Appendix A. The weak right center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.1. Example: the group algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

1. Introduction

Let H be a bialgebra. Consider the functor T := (−) ⊗ H : M → MH
H from the category of vector

spaces to the category of right Hopf modules. It is well-known that T determines an equivalence if
and only if H has an antipode i.e. it is a Hopf algebra. The fact that T is an equivalence is the so-called
fundamental (or structure) theorem for Hopf modules, which is due, in the finite-dimensional case, to
Larson and Sweedler, see [14, Proposition 1, p. 82]. This result is crucial in characterizing the structure
of bialgebras with a projection as Radford–Majid bosonizations (see [19]). Recall that a bialgebra A
has a projection onto a Hopf algebra H if there exist bialgebra maps σ : H → A and π : A → H
such that π ◦ σ = IdH . Essentially using the fundamental theorem, one proves that A is isomorphic,
as a vector space, to the tensor product R ⊗ H where R is some bialgebra in the category H

HYD
of Yetter–Drinfeld modules over H . This way R ⊗ H inherits, from A, a bialgebra structure which
is called the Radford–Majid bosonization of R by H and denoted by R # H . It is remarkable that the
graded coalgebra gr A associated to a pointed Hopf algebra A (here “pointed” means that all simple
subcoalgebras of A are one-dimensional) always admits a projection onto its coradical. This is the
main ingredient in the so-called lifting method for the classification of finite-dimensional pointed
Hopf algebras, see [1].

In 1989 Drinfeld introduced the concept of quasi-bialgebra in connection with the Knizhnik–
Zamolodchikov system of partial differential equations. The axioms defining a quasi-bialgebra are a
translation of monoidality of its representation category with respect to the diagonal tensor product.
In [10], the antipode for a quasi-bialgebra (whence the concept of quasi-Hopf algebra) is introduced
in order to make the category of its flat right modules rigid. If we draw our attention to the category
of co-representations of H , we get the concepts of dual quasi-bialgebra and of dual quasi-Hopf alge-
bra. These notions have been introduced in [17] in order to prove a Tannaka–Krein type theorem for
quasi-Hopf algebras.

A fundamental theorem for dual quasi-Hopf algebras was proved by Schauenburg in [24]. It is re-
markable that the functor T giving the fundamental theorem in the case of ordinary Hopf algebras
must be substituted, in the “quasi” case, by the functor F := (−) ⊗ H between the category HM of
left H-comodules and the category HMH

H of right dual quasi-Hopf H-bicomodules (essentially this
is due to the fact that, unlike the classical case, a dual quasi-bialgebra H is not an algebra in the
category of right H-comodules but it is still an algebra in the category of H-bicomodules). In [4, The-
orem 3.9], we showed that, for a dual quasi-bialgebra H , the functor F is an equivalence if and only
if there exists a suitable map S : H → H that we called a preantipode for H . Moreover for any dual
quasi-bialgebra with antipode (i.e. a dual quasi-Hopf algebra) we constructed a specific preantipode,
see [4, Theorem 3.10].

It is worth to notice that there is a dual quasi-bialgebra H which has a preantipode but not
an antipode (i.e. it is not a dual quasi-Hopf algebra). Nevertheless, for a finite-dimensional dual
quasi-bialgebra, the existence of an antipode is equivalent to the existence of a preantipode (cf. Re-
mark 2.17).

The main aim of this paper is to introduce and investigate the notion of bosonization in the setting
of dual quasi-bialgebras. Explicitly, we associate a dual quasi-bialgebra R # H (that we call bosoniza-
tion of R by H) to every dual quasi-bialgebra H and bialgebra R in H

HYD. Then, using the fundamental
theorem, we characterize as bosonizations the dual quasi-bialgebras with a projection onto a dual
quasi-bialgebra with a preantipode. As an application, for any dual quasi-bialgebra A with the dual
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Chevalley property (i.e. such that the coradical of A is a dual quasi-subbialgebra of A), under the
further hypothesis that the coradical H of A has a preantipode, we prove that there is a bialgebra
R in H

HYD such that gr A is isomorphic to R # H as a dual quasi-bialgebra. In particular, if A is a
pointed dual quasi-Hopf algebra, then gr A comes out to be isomorphic to R #kG(A) as dual quasi-
bialgebra where R is the diagram of A and G(A) is the set of grouplike elements in A. We point out
that the results in this paper are obtained without assuming that the dual quasi-bialgebra considered
is finite-dimensional so that most of the proofs do not follow by a mere dualization of results on
quasi-bialgebras nor by the case of dual quasi-Hopf algebras.

The paper is organized as follows.
Section 2 contains preliminary results needed in the next sections. Moreover in Theorem 2.16, we

investigate cocommutative dual quasi-bialgebras with a preantipode and in Corollary 2.21, we provide
a Cartier–Gabriel–Kostant type theorem for dual quasi-bialgebras with a preantipode. In the connected
case such a result was achieved in [12, Theorem 4.3].

Section 3, is devoted to the study of the category H
HYD of Yetter–Drinfeld modules over a dual

quasi-bialgebra H . Explicitly, we consider the pre-braided monoidal category (H
HYD,⊗,k) of Yetter–

Drinfeld modules over a dual quasi-bialgebra H and we show that the functor F , as above, induces a
functor F : H

HYD → H
HM

H
H (that is an equivalence in case H has a preantipode, see Proposition 3.8).

In Section 4, we prove that the equivalence between the categories H
HM

H
H and H

HYD becomes
monoidal if we equip H

HM
H
H with the tensor product ⊗H (or �H ) and unit H (see Lemma 4.4

and Lemma 4.8). As a by-product, in Lemma 4.11, we produce a monoidal equivalence between
(H

HM
H
H ,⊗H , H) and (H

HM
H
H ,�H , H).

Section 5 contains the main results of the paper. In Theorem 5.2, to every dual quasi-bialgebra H
and bialgebra R in H

HYD we associate a dual quasi-bialgebra structure on the tensor product R ⊗ H
that we call the bosonization of R by H and denote by R # H . Now, let (A, H, σ ,π) be a dual quasi-
bialgebra with projection and assume that H has a preantipode S . In Lemma 5.7, we prove that such
an A is an object in the category H

HM
H
H . Therefore the fundamental theorem describes A as the tensor

product R ⊗ H of some vector space R by H . Indeed, in Theorem 5.8, we prove that the dual quasi-
bialgebra structure inherited by R ⊗ H through the claimed isomorphism is exactly the bosonization
of R by H . The analogous of this result for quasi-Hopf algebras, anything but trivial, has been estab-
lished by Bulacu and Nauwelaerts in [9], but their proof cannot be adapted to dual quasi-bialgebras
with a preantipode.

In Section 6 we collect some applications of our results. Let A be a dual quasi-bialgebra with
the dual Chevalley property and coradical H . Since A is an ordinary coalgebra, we can consider the
associated graded coalgebra gr A. In Proposition 6.3, we prove that gr A fits into a dual quasi-bialgebra
with projection onto H . As a consequence, in Corollary 6.4, under the further assumption that H has
a preantipode, we show that there is a bialgebra R in H

HYD such that gr A is isomorphic to R # H
as a dual quasi-bialgebra. When A is a pointed dual quasi-Hopf algebra it is in particular a dual
quasi-bialgebra with the dual Chevalley property and its coradical has a preantipode. Using this fact,
in Theorem 6.10 we obtain that gr A is of the form R #kG(A) as dual quasi-bialgebra, where R is the
so-called diagram of A.

2. Preliminaries

In this section we recall the definitions and results that will be needed in the paper.

Notation 2.1. Throughout this paper k will denote a field. All vector spaces will be defined over k.
The unadorned tensor product ⊗ will stand for the tensor product over k if not stated otherwise.

2.2. Monoidal categories. Recall that (see [13, Chapter XI]) a monoidal category is a category M
endowed with an object 1 ∈M (called unit), a functor ⊗ :M×M→M (called tensor product), and
functorial isomorphisms aX,Y ,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z), lX : 1 ⊗ X → X , rX : X ⊗ 1 → X , for
every X , Y , Z in M. The functorial morphism a is called the associativity constraint and satisfies the
Pentagon Axiom, that is the equality
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(U ⊗ aV ,W ,X ) ◦ aU ,V ⊗W ,X ◦ (aU ,V ,W ⊗ X) = aU ,V ,W ⊗X ◦ aU⊗V ,W ,X

holds true, for every U , V , W , X in M. The morphisms l and r are called the unit constraints and
they obey the Triangle Axiom, that is (V ⊗ lW ) ◦ aV ,1,W = rV ⊗ W , for every V , W in M.

The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can be
introduced in the general setting of monoidal categories. Given an algebra A in M one can define the
categories AM, MA and AMA of left, right and two-sided modules over A respectively. Similarly,
given a coalgebra C in M, one can define the categories of C-comodules CM, MC , CMC . For more
details, the reader is refereed to [2].

Let M be a monoidal category. Assume that M is abelian and both the functors X ⊗ (−) : M →
M and (−) ⊗ X : M → M are additive and right exact, for any X ∈ M. Given an algebra A in M,
there exist a suitable functor ⊗A : AMA × AMA → AMA and constraints that make the category
(AMA,⊗A, A) monoidal, see [2, 1.11]. The tensor product over A in M of a right A-module (V ,μr

V )

and a left A-module (W ,μl
W ) is defined to be the coequalizer:

(V ⊗ A) ⊗ W
μr

V ⊗W

aV ,A,W

V ⊗ W
AχV ,W

V ⊗A W 0

V ⊗ (A ⊗ W )

V ⊗μl
W

Note that, since ⊗ preserves coequalizers, then V ⊗A W is also an A-bimodule, whenever V and W
are A-bimodules.

Dually, given a coalgebra (C,�,ε) in a monoidal category M, abelian and with additive and left
exact tensor functors, there exist a suitable functor �C : CMC × CMC → CMC and constraints that
make the category ( CMC ,�C , C) monoidal. The cotensor product over C in M of a right C-comodule
(V ,ρr

V ) and a left C-comodule (W ,ρl
W ) is defined to be the equalizer:

0 V �C W
C ςV ,W

V ⊗ W
V ⊗ρl

W

ρr
V ⊗W

V ⊗ (C ⊗ W )

(V ⊗ C) ⊗ W

aV ,C,W

Note that, since ⊗ preserves equalizers, then V �C W is also a C-bicomodule, whenever V and W
are C-bicomodules.

Definition 2.3. A dual quasi-bialgebra is a datum (H,m, u,�,ε,ω) where

• (H,�,ε) is a coassociative coalgebra;
• m : H ⊗ H → H and u : k → H are coalgebra maps called multiplication and unit respectively; we

set 1H := u(1k);
• ω : H ⊗ H ⊗ H → k is a unital 3-cocycle i.e. it is convolution invertible and satisfies

ω(H ⊗ H ⊗ m) ∗ ω(m ⊗ H ⊗ H) = mk(ε ⊗ ω) ∗ ω(H ⊗ m ⊗ H) ∗ mk(ω ⊗ ε) (1)

and

ω(h ⊗ k ⊗ l) = ε(h)ε(k)ε(l) whenever 1H ∈ {h,k, l}; (2)
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• m is quasi-associative and unitary i.e. it satisfies

m(H ⊗ m) ∗ ω = ω ∗ m(m ⊗ H), (3)

m(1H ⊗ h) = h for all h ∈ H, (4)

m(h ⊗ 1H ) = h for all h ∈ H . (5)

ω is called the reassociator of the dual quasi-bialgebra.

A morphism of dual quasi-bialgebras (see e.g. [20, Section 2])

α : (H,m, u,�,ε,ω) → (
H ′,m′, u′,�′, ε′,ω′)

is a coalgebra homomorphism α : (H,�,ε) → (H ′,�′, ε′) such that

m′(α ⊗ α) = αm, αu = u′, ω′(α ⊗ α ⊗ α) = ω.

It is an isomorphism of quasi-bialgebras if, in addition, it is invertible.
A dual quasi-subbialgebra of a dual quasi-bialgebra (H ′,m′, u′,�′, ε′,ω′) is a quasi-bialgebra

(H,m, u,�,ε,ω) such that H is a vector subspace of H ′ and the canonical inclusion α : H → H ′
yields a morphism of dual quasi-bialgebras.

2.1. The category of bicomodules for a dual quasi-bialgebras

Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. It is well-known that the category MH of right
H-comodules becomes a monoidal category as follows. Given a right H-comodule V , we denote
by ρ = ρr

V : V → V ⊗ H , ρ(v) = v0 ⊗ v1, its right H-coaction. The tensor product of two right
H-comodules V and W is a comodule via diagonal coaction i.e. ρ(v ⊗ w) = (v0 ⊗ w0) ⊗ v1 w1. The
unit is k, which is regarded as a right H-comodule via the trivial coaction i.e. ρ(k) = k ⊗ 1H . The
associativity and unit constraints are defined, for all U , V , W ∈ MH and u ∈ U , v ∈ V , w ∈ W , k ∈ k,
by

aH
U ,V ,W

(
(u ⊗ v) ⊗ w

) := u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1),

lU (k ⊗ u) := ku and rU (u ⊗ k) := uk.

The monoidal category we have just described will be denoted by (MH ,⊗,k,aH , l, r).
Similarly, the monoidal categories (HM,⊗,k, Ha, l, r) and (HMH ,⊗,k, H aH , l, r) are introduced.

We just point out that

HaU ,V ,W
(
(u ⊗ v) ⊗ w

) := ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0),

HaH
U ,V ,W

(
(u ⊗ v) ⊗ w

) := ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1).

Remark 2.4. We know that, if (H,m, u,�,ε,ω) is a dual quasi-bialgebra, we cannot construct the
category MH , because H is not an algebra. Moreover H is not an algebra in MH or in HM. On
the other hand ((H,ρl

H ,ρr
H ),m, u) is an algebra in the monoidal category (HMH ,⊗,k, HaH , l, r) with

ρl
H = ρr

H = �. Thus, the only way to construct the category HMH
H is to consider the right H-modules

in HMH . Hence, we can set

HMH
H := (HMH)

.
H
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The category HMH
H is the so-called category of right dual quasi-Hopf H-bicomodules [6, Remark 2.3]. In

a similar way one can introduce the category H
HM

H
H := H (HMH )H .

Remark 2.5. (See [2, Example 1.5(a)].) Let (A,m, u) be an algebra in a given monoidal category
(M,⊗,1,a, l, r). Then the assignments M �→ (M ⊗ A, (M ⊗ m) ◦ aA,A,A) and f �→ f ⊗ A define a
functor T :M→MA . Moreover the forgetful functor U :MA →M is a right adjoint of T .

2.2. An adjunction between HMH
H and HM

We are going to recall the construction of an adjunction between HMH
H and HM that will be

crucial afterwards.

2.6. Consider the functor L : HM → HMH defined on objects by L(•V ) := •V ◦ where the upper empty
dot denotes the trivial right coaction while the upper full dot denotes the given left H-coaction of V .
The functor L has a right adjoint R : HMH → HM defined on objects by R(•M•) := •McoH , where
McoH := {m ∈ M | m0 ⊗ m1 = m ⊗ 1H } is the space of right H-coinvariant elements in M .

By Remark 2.5, the forgetful functor U : HMH
H → HMH , U (•M••) := •M• has a left adjoint, namely

the functor T : HMH → HMH
H , T (•M•) := •M• ⊗ •H•• . Here the upper dots indicate on which tensor

factors we have a codiagonal coaction and the lower dot indicates where the action takes place.
Explicitly, the structure of T (•M•) is given as follows:

ρl
M⊗H (m ⊗ h) := m−1h1 ⊗ (m0 ⊗ h2),

ρr
M⊗H (m ⊗ h) := (m0 ⊗ h1) ⊗ m1h2,

μr
M⊗H

[
(m ⊗ h) ⊗ l

] = (m ⊗ h)l := ω−1(m−1 ⊗ h1 ⊗ l1)m0 ⊗ h2l2ω(m1 ⊗ h3 ⊗ l3).

Define the functors F := T L : HM → HMH
H and G := RU : HMH

H → HM. Explicitly G(•M••) = •McoH

and F (•V ) := •V ◦ ⊗ •H•• so that, for every v ∈ V , h, l ∈ H ,

ρl
V ⊗H (v ⊗ h) = v−1h1 ⊗ (v0 ⊗ h2),

ρr
V ⊗H (v ⊗ h) = (v ⊗ h1) ⊗ h2,

μr
V ⊗H

[
(v ⊗ h) ⊗ l

] = (v ⊗ h)l = ω−1(v−1 ⊗ h1 ⊗ l1)v0 ⊗ h2l2.

Remark 2.7. By the right-hand version of [24, Lemma 2.1], the functor F : HM → HMH
H is a left

adjoint of the functor G , where the counit and the unit of the adjunction are given respectively by
εM : F G(M) → M , εM(x ⊗ h) := xh and by ηN : N → G F (N), ηN (n) := n ⊗ 1H , for every M ∈ HMH

H ,
N ∈ HM. Moreover ηN is an isomorphism for any N ∈ HM. In particular the functor F is fully faithful.

2.3. The notion of preantipode

Next result characterizes when the adjunction (F , G) is an equivalence of categories in terms of
the existence of a suitable map τ .

Proposition 2.8. (See [4, Proposition 3.3].) Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. The following
assertions are equivalent.

(i) The adjunction (F , G) is an equivalence.



132 A. Ardizzoni, A. Pavarin / Journal of Algebra 390 (2013) 126–159
(ii) For each M ∈ HMH
H , there exists a k-linear map τ : M → McoH such that

τ (mh) = ω−1[τ (m0)−1 ⊗ m1 ⊗ h
]
τ (m0)0 for all h ∈ H, m ∈ M, (6)

m−1 ⊗ τ (m0) = τ (m0)−1m1 ⊗ τ (m0)0 for all m ∈ M, (7)

τ (m0)m1 = m, ∀m ∈ M. (8)

(iii) For each M ∈ HMH
H , there exists a k-linear map τ : M → McoH such that (8) holds and

τ (mh) = mε(h) for all h ∈ H, m ∈ McoH. (9)

Remark 2.9. Let τ : M → McoH be a k-linear map such that (8) holds. By [4, Remark 3.4], the map τ
fulfills (9) if and only if it fulfills (6) and (7).

Definition 2.10. Following [4, Definition 3.6] we will say that a preantipode for a dual quasi-bialgebra
(H,m, u,�,ε,ω) is a k-linear map S : H → H such that, for all h ∈ H ,

S(h1)1h2 ⊗ S(h1)2 = 1H ⊗ S(h), (10)

S(h2)1 ⊗ h1 S(h2)2 = S(h) ⊗ 1H , (11)

ω
(
h1 ⊗ S(h2) ⊗ h3

) = ε(h). (12)

Remark 2.11. (See [4, Remark 3.7].) Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a prean-
tipode. Then the following equalities hold

h1 S(h2) = εS(h)1H = S(h1)h2 for all h ∈ H . (13)

Lemma 2.12. (See [4, Lemma 3.8].) Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a preantipode. For
any M ∈ HMH

H and m ∈ M, set

τ (m) := ω
[
m−1 ⊗ S(m1)1 ⊗ m2

]
m0 S(m1)2. (14)

Then (14) defines a map τ : M → McoH which fulfills (6), (7) and (8).

Theorem 2.13. (See [4, Theorem 3.9].) For a dual quasi-bialgebra (H,m, u,�,ε,ω) the following are equiva-
lent.

(i) The adjunction (F , G) of Remark 2.7 is an equivalence of categories.
(ii) There exists a preantipode.

We include here some new results that will be needed later on in the paper.

Lemma 2.14. Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a preantipode. Then

ω−1[S(h1) ⊗ h2 ⊗ S(h3)
] = εS(h) for all h ∈ H . (15)
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Proof. Set α := ω(H ⊗ H ⊗m) ∗ω(m ⊗ H ⊗ H) ∗mk(ω
−1 ⊗ ε) and β = mk(ε ⊗ω) ∗ω(H ⊗m ⊗ H). Fix

h ∈ H . We have

α
(

S(h1) ⊗ h2 ⊗ S(h3) ⊗ h4
)

= ω
[

S(h1)1 ⊗ h2 ⊗ S(h5)(1)h6
]
ω

[
S(h1)2h3 ⊗ S(h5)(2) ⊗ h7

]
ω−1[S(h1)3 ⊗ h4 ⊗ S(h5)(3)

]
(10)= ω

[
S(h1)1 ⊗ h2 ⊗ 1H

]
ω

[
S(h1)2h3 ⊗ S(h5)(1) ⊗ h6

]
ω−1[S(h1)3 ⊗ h4 ⊗ S(h5)(2)

]
= ω

[
S(h1)1h2 ⊗ S(h4)(1) ⊗ h5

]
ω−1[S(h1)2 ⊗ h3 ⊗ S(h4)(2)

]
(10)= ω

[
1H ⊗ S(h4)(1) ⊗ h5

]
ω−1[S(h1) ⊗ h3 ⊗ S(h4)(2)

]
= ω−1[S(h1) ⊗ h2 ⊗ S(h3)

]
,

and

β
(

S(h1) ⊗ h2 ⊗ S(h3) ⊗ h4
) = ω

[
h2 ⊗ S(h4)(1) ⊗ h5

]
ω

[
S(h1) ⊗ h3 S(h4)(2) ⊗ h6

]
(11)= ω

[
h2 ⊗ S(h3) ⊗ h4

]
ω

[
S(h1) ⊗ 1H ⊗ h5

]
= ω

[
h2 ⊗ S(h3) ⊗ h4

]
εS(h1)

(12)= εS(h).

By the cocycle condition we have α = β . �
Definition 2.15. (See [15, p. 66].) A dual quasi-Hopf algebra (H,m, u,�,ε,ω, s,α,β) is a dual quasi-
bialgebra (H,m, u,�,ε,ω) endowed with a coalgebra anti-homomorphism

s : H → H,

called antipode, and two maps α, β in H∗ , such that, for all h ∈ H :

h1β(h2)s(h3) = β(h)1H , (16)

s(h1)α(h2)h3 = α(h)1H , (17)

ω
(
h1 ⊗ β(h2)s(h3)α(h4) ⊗ h5

) = ε(h) = ω−1(s(h1) ⊗ α(h2)h3β(h4) ⊗ s(h5)
)
. (18)

In [4, Theorem 3.10], we proved that any dual quasi-Hopf algebra has a preantipode. The following
result proves that the converse holds true whenever H is also cocommutative.

Theorem 2.16. Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a preantipode. If H is cocommutative,
then (H,m, u,�,ε, s) is an ordinary Hopf algebra, where, for all h ∈ H,

s(h) := S(h3)1ω
[
h1 ⊗ S(h3)2 ⊗ h2

]
.

Furthermore (H,m, u,�,ε,ω,α,β, s) is a dual quasi-Hopf algebra, where α := ε and β := εS. Moreover
one has S = β ∗ s.
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Proof. By (3), cocommutativity and convolution invertibility of ω, we get that (hk)l = h(kl) for all
h,k, l ∈ H . Therefore m is associative and hence (H,m, u,�,ε) is an ordinary bialgebra. Let us check
that s is an antipode for H . Using cocommutativity, (10) and (12) one proves that s(h1)h2 = 1Hε(h)

for all h ∈ H . Similarly one gets h1s(h2) = 1Hε(h) for all h ∈ H . Hence (H,m, u,�,ε, s) is an ordinary
Hopf algebra. Note that, for all h ∈ H ,

S(h) = S(h1)
[
h2s(h3)

] = [
S(h1)h2

]
s(h3)

(13)= εS(h1)s(h2) = β(h1)s(h2). (19)

Let us check that (H,m, u,�,ε,ω,α,β, s) is a dual quasi-Hopf algebra. For all h ∈ H ,

h1β(h2)s(h3)
(19)= h1 S(h2)

(13)= 1HεS(h),

s(h1)α(h2)h3 = s(h1)h2 = 1Hε(h) = 1Hα(h),

ω
[
h1 ⊗ β(h2)s(h3)α(h4) ⊗ h5

] (19)= ω
[
h1 ⊗ S(h2) ⊗ h3

] (12)= 1Hε(h).

Now, since (H,m, u,�,ε, s) is an ordinary Hopf algebra, we have that s is an anti-coalgebra map.
Thus

S(h)1 ⊗ S(h)2
(19)= β(h1)s(h2)1 ⊗ s(h2)2 = β(h1)s(h3) ⊗ s(h2)

cocom.= β(h1)s(h2) ⊗ s(h3)
(19)= S(h1) ⊗ s(h2)

so that

ω−1[s(h1) ⊗ α(h2)h3β(h4) ⊗ s(h5)
] (19)= ω−1[s(h1) ⊗ h2 ⊗ S(h3)

]
= ω−1[S(h3)1 ⊗ h4 ⊗ S(h5)

]
ω

[
h1 ⊗ S(h3)2 ⊗ h2

]
= ω−1[S(h3) ⊗ h5 ⊗ S(h6)

]
ω

[
h1 ⊗ s(h4) ⊗ h2

]
cocom.= ω−1[S(h2) ⊗ h3 ⊗ S(h4)

]
ω

[
h1 ⊗ s(h5) ⊗ h6

]
(15)= εS(h2)ω

[
h1 ⊗ s(h3) ⊗ h4

]
(19)= ω

[
h1 ⊗ S(h2) ⊗ h3

] (12)= 1Hε(h). �
Remark 2.17. Following the Referee’s suggestions, we here give an extended version of [4, Re-
mark 3.12].

(1) We recall an example of a dual quasi-bialgebra considered in [21, Example 4.5.1] which has a
preantipode but not an antipode.

Consider the subgroup 2Q of the multiplicative group Q+ = {q ∈ Q | q > 0}. Let the infinite cyclic
group 〈σ 〉 act on 2Q by σ ⇀ 2x = 22x and consider the semidirect group G := 2Q � 〈σ 〉. The multipli-
cation is given by (2xσ s)(2yσ t) = 2x+2s yσ s+t and the inverse of 2xσ s is 2−2−sxσ−s . Let B := 2Z ⊆ 2Q

regarded as a subgroup of G in the obvious way. Consider the group algebras H := k[G] and K := k[B].
Define π : H → K on generators by setting π(2xσ s) = 2
x� where 
x� denotes the floor of x i.e.

x� = max{m ∈ Z | m � x}. One easily checks that π is a left K -linear, unitary coalgebra map. In
particular it is convolution invertible. If we regard H and K as dual quasi-bialgebras with trivial re-
associators, we get that H is an object in El(K ) in the sense of [21, Definition 4.1.1], where the map
i : K → H is the canonical inclusion such that i(2z) = 2zσ 0. Since H and K are cocommutative we
have that Hcop is cocleft as a left K cop-module coalgebra (with cocleaving π ). Let us check that every
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(B, B)-double coset in G is the union of finitely many left B-cosets. In fact such a double coset is of
the form B(2xσ s)B . We have

B
(
2xσ s)B =

⋃
z∈Z

B
(
2xσ s)2z =

⋃
z∈Z

B
(
22s z+xσ s).

Now, if s � 0, then B(2xσ s)B = B(2xσ s) i.e. it is a left coset. If s < 0 we can write z = q2−s + r with
q ∈ Z and 0 � r < 2−s and hence B(2xσ s)B = ⋃

0�r<2−s B(22sr+xσ s) (then B(2xσ s)B is union of 2−s

left cosets). By [21, p. 49], we have that Q := H/K +H is locally finite right K -module. Hence, we can
apply [21, Theorem 4.4.3] to get that the category H

K MK is left and right rigid. By [21, Theorem 4.3.1],

the category H
K MK is equivalent to the category H̃M f where H̃ is a suitable dual quasi-bialgebra

(note that, by [21, Remark 4.4.4(3)], the underlying vector space of H̃ is isomorphic to Q ⊗ K ◦). By the
left-handed version of [24, Theorem 2.6], we conclude that H̃ has a preantipode (cf. Theorem 2.13).

Note also that B(2xσ s)B as above can be written as union of right cosets as follows B(2xσ s)B =⋃
z∈Z(2z+xσ s)B . Now, if s � 0, then we can write z = q2s + r with q ∈ Z and 0 � r < 2s and hence

B(2xσ s)B = ⋃
0�r<2s (2r+xσ s)B (then B(2xσ s)B is union of 2s right cosets). If s < 0 then B(2xσ s)B =

(2xσ s)B is a right coset. Thus, for s �= 0, the (B, B)-double coset D := B(2xσ s)B does not contain as
many left as right cosets. As in [21, p. 49], one can consider V := k[D]/k[B]+k[D] and dim(V ) is the
number of left cosets in D while dim(∨V ) is the number of right cosets in D , where ∨V denotes
the right dual of V in H̃M f . Note that if H̃ had an antipode, then ∨V would have been isomorphic
to the k-dual V ∗ as a vector space (see e.g. [21, p. 13]). Hence H̃ has a preantipode but not an
antipode.

(2) Let H be a finite-dimensional dual quasi-bialgebra. Then H∗ is a quasi-bialgebra. Moreover
H has an antipode if and only if H∗ has an antipode. By the right-handed version of [24, The-
orem 3.1] the latter is equivalent to require that the monoidal category (MH∗) f

∼= HM f is rigid.
By the left-handed version of [24, Theorem 2.6], this means that H has a preantipode. Thus, in
the finite-dimensional case, a dual quasi-bialgebra H has an antipode if and only if it has a pre-
antipode.

Definition 2.18. A dual quasi-bialgebra (A,m, u,�,ε,ω) is called pointed if the underlying coalgebra
is pointed, i.e. all its simple subcoalgebras are one-dimensional.

Definition 2.19. Let (A,m, u,�,ε,ω) be a dual quasi-bialgebra. The set

G(A) = {
a ∈ A

∣∣ �(a) = a ⊗ a and ε(a) = 1
}

is called the set of the grouplike elements of A.

Remark 2.20. Let A be a pointed dual quasi-bialgebra. We know that the one-dimensional sub-
coalgebras of A are exactly those of the form kg for g ∈ G [25, p. 57]. Thus the coradical of A is
A0 = ∑

g∈G kg = kG(A).

The following results extend the so-called Cartier–Gabriel–Kostant theorem to dual quasi-
bialgebras with a preantipode. In the connected case such a result was achieved in [12, Theorem 4.3].

Corollary 2.21. Let H be a dual quasi-bialgebra with a preantipode over a field k of characteristic zero.
If H is cocommutative and pointed, then H is an ordinary Hopf algebra isomorphic to the biproduct
U (P (H))#kG(H), where P (H) denotes the Lie algebra of primitive elements in H.

Proof. By Theorem 2.16, H is an ordinary Hopf algebra. By [25, Section 13.1, p. 279], we conclude
(see also [18, p. 79]). �
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3. Yetter–Drinfeld modules over a dual quasi-bialgebra

The main aim of this section is to restrict the equivalence between HMH
H and HM of Theorem 2.13,

to an equivalence between H
HM

H
H and H

HYD (the category of Yetter–Drinfeld modules over H) for any
dual quasi-bialgebra H with a preantipode.

Definition 3.1. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. The category H
HYD of Yetter–Drinfeld

modules over H , is defined as follows. An object in H
HYD is a tern (V ,ρV ,�), where

• (V ,ρ) is an object in HM,
• �: H ⊗ V → V is a k-linear map such that, for all h, l ∈ H and v ∈ V

(hl) � v =
[

ω−1(h1 ⊗ l1 ⊗ v−1)ω(h2 ⊗ (l2 � v0)−1 ⊗ l3)
ω−1((h3 � (l2 � v0)0)−1 ⊗ h4 ⊗ l4)(h3 � (l2 � v0)0)0

]
, (20)

1H � v = v (21)

and

(h1 � v)−1h2 ⊗ (h1 � v)0 = h1 v−1 ⊗ (h2 � v0). (22)

A morphism f : (V ,ρ,�) → (V ′,ρ ′,�′) in H
HYD is a morphism f : (V ,ρ) → (V ′,ρ ′) in HM such

that f (h � v) = h �′ f (v).

3.2. The category H
HYD is isomorphic to the weak right center of HM (regarded as a monoidal cate-

gory as in Section 2), see Theorem A.2. As a consequence H
HYD has a pre-braided monoidal structure

given as follows. The unit is k regarded as an object in H
HYD via trivial structures i.e. ρk(k) = 1H ⊗ k

and h � k = ε(h)k. The tensor product is defined by

(V ,ρV ,�) ⊗ (W ,ρW ,�) = (V ⊗ W ,ρV ⊗W ,�)

where ρV ⊗W (v ⊗ w) = v−1 w−1 ⊗ v0 ⊗ w0 and

h � (v ⊗ w) =
[

ω(h1 ⊗ v−1 ⊗ w−2)ω
−1((h2 � v0)−2 ⊗ h3 ⊗ w−1)

ω((h2 � v0)−1 ⊗ (h4 � w0)−1 ⊗ h5)(h2 � v0)0 ⊗ (h4 � w0)0

]
. (23)

The constraints are the same of HM viewed as morphisms in H
HYD. The braiding cV ,W : V ⊗ W →

W ⊗ V is given by

cV ,W (v ⊗ w) = (v−1 � w) ⊗ v0. (24)

Remark 3.3. It is easily checked that condition (20) holds for all h, l ∈ H and v ∈ V if and only if

cH⊗H,V = HaV ,H,H ◦ (cH,V ⊗ H) ◦ Ha−1
H,V ,H ◦ (H ⊗ cH,V ) ◦ HaH,H,V ,

where Ha is the associativity constraint in HM. Now, the displayed equality above can be written as

Ha−1
V ,H,H ◦ cH⊗H,V ◦ Ha−1

H,H,V = (cH,V ⊗ H) ◦ Ha−1
H,V ,H ◦ (H ⊗ cH,V ).

One easily checks that this is equivalent to ask that
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ω(h1 ⊗ l1 ⊗ v−1)ω
((

(h2l2) � v0
)
−1 ⊗ h3 ⊗ l3

)(
(h2l2) � v0

)
0

= ω
(
h1 ⊗ (l1 � v)−1 ⊗ l2

)
h3 � (l1 � v)0

holds for all h, l ∈ H and v ∈ V . This equation is the left-handed version of [5, (3.3)]. In conclusion,
the axioms defining the category H

HYD are the left-handed version of the ones appearing in [5, Defi-
nition 3.1].

3.1. The restriction of the equivalence (F , G)

Let H be a dual quasi-bialgebra. From Theorem 2.13, we know that the adjunction (F , G) of Re-
mark 2.7 is an equivalence of categories when H has a preantipode. Next aim is to prove that (F , G)

restricts to an equivalence between the categories H
HYD and H

HM
H
H .

Lemma 3.4. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. For all U ∈ HM and M ∈ H
HM

H
H , we have a map

ξU ,M : F (U ) ⊗H M → U ⊗ M,

ξU ,M
(
(u ⊗ h) ⊗H m

) = ω−1(u−1 ⊗ h1 ⊗ m−1)u0 ⊗ h2m0

which is a k-linear natural isomorphism with inverse given by ξ−1
U ,M(u ⊗ m) = (u ⊗ 1H ) ⊗H m. Moreover:

(1) the map ξU ,M is a natural isomorphism in HMH
H where U ⊗ M has the following structures:

ρl
U⊗M(u ⊗ m) = u−1m−1 ⊗ (u0 ⊗ m0),

ρr
U⊗M(u ⊗ m) = (u ⊗ m0) ⊗ m1,

μr
U⊗M

(
(u ⊗ m) ⊗ h

) = ω−1(u−1 ⊗ m−1 ⊗ h1)u0 ⊗ m0h2;

(2) if U ∈ H
HYD, the map ξU ,M is a natural isomorphism in H

HM
H
H where U ⊗ M has the structures above

along with the following left module structure:

μl
U⊗M

(
h ⊗ (u ⊗ m)

) = ω(h1 ⊗ u−1 ⊗ m−2)ω
−1((h2 � u0)−1 ⊗ h3 ⊗ m−1

)
(h2 � u0)0 ⊗ h4m0.

Proof. Inspired by [23, Lemma 3.4]. See also [24, p. 541]. �
Lemma 3.5. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. For all U , V ∈ HM, consider the map

αU ,V : U ⊗ (V ⊗ H) → (U ⊗ V ) ⊗ H,

αU ,V
(
u ⊗ (v ⊗ k)

) = ω(u−1 ⊗ v−1 ⊗ k1)(u0 ⊗ v0) ⊗ k2.

(1) The map αU ,V : U ⊗ F (V ) → F (U ⊗ V ) is a natural isomorphism in HMH
H , where U ⊗ F (V ) has the

structure described in Lemma 3.4 for M = F (V ).
(2) If U , V ∈ H

HYD, then αU ,V : U ⊗ F (V ) → F (U ⊗ V ) is a natural isomorphism in H
HM

H
H , where U ⊗ F (V )

has the structure described in Lemma 3.4 for M = F (V ).

Proof. It is straightforward. �
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Lemma 3.6. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. The functor F : (−) ⊗ H : HM → HMH
H of 2.6

induces a functor F : H
HYD → H

HM
H
H . Explicitly F (M) ∈ H

HM
H
H with the following structures, for all m ∈ M,

h, l ∈ H,

μl
M⊗H

[
l ⊗ (m ⊗ h)

] := l · (m ⊗ h) := ω(l1 ⊗ m−1 ⊗ h1)(l2 � m0 ⊗ l3) · h2

= ω(l1 ⊗ m−1 ⊗ h1)ω
−1((l2 � m0)−1 ⊗ l3 ⊗ h2

)
(l2 � m0)0

⊗ l4h3, (25)

μr
M⊗H

[
(m ⊗ h) ⊗ l

] := (m ⊗ h) · l := ω−1(m−1 ⊗ h1 ⊗ l1)m0 ⊗ h2l2,

ρl
M⊗H (m ⊗ h) := m−1h1 ⊗ (m0 ⊗ h2),

ρr
M⊗H (m ⊗ h) := (m ⊗ h1) ⊗ h2. (26)

Proof. It is analogue to [23, Corollary 8.3]. �
Lemma 3.7. Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a preantipode. The functor G : (−)coH :
HMH

H → HM of 2.6 induces a functor G : H
HM

H
H → H

HYD. Explicitly G(M) ∈ H
HYD with the following struc-

tures, for all m ∈ McoH, h ∈ H,

ρl
McoH (m) := ρl

M(m),

μl
McoH (h ⊗ m) := h � m := τ (hm) = ω

[
h1m−1 ⊗ S(h3)1 ⊗ h4

]
(h2m0)S(h3)2.

Proof. Let M ∈ H
HM

H
H . We already know that G(M) ∈ HM. In order to prove that G(M) is in H

HYD,
we consider the canonical isomorphism εM : F G(M) → M of Remark 2.7. A priori, this is a morphism
in HMH

H . Since M is in H
HM

H
H , we can endow F G(M) with a left H-module structure as follows

l · (m ⊗ h) := ε−1
M

(
lεM(m ⊗ h)

) = ε−1
M

(
l(mh)

) = τ
[
l1(m0h1)

] ⊗ l2(m1h2)

= τ
[
l1(mh1)

] ⊗ l2h2 = l1 � (mh1) ⊗ l2h2

so that

l · (m ⊗ h) = l1 � (mh1) ⊗ l2h2 for all m ∈ McoH , h ∈ H . (27)

By associativity we have

(lk) · (m ⊗ h) = ω−1(l1 ⊗ k1 ⊗ m−1h1)l2
(
k2(m0 ⊗ h2)

)
ω(l3 ⊗ k3 ⊗ h3)

i.e., for h = 1H ,

(lk) · (m ⊗ 1H ) = ω−1(l1 ⊗ k1 ⊗ m−1)l2
(
k2(m0 ⊗ 1H )

)
.

The first term is

(lk) · (m ⊗ 1H )
(27)= (l1k1) � m ⊗ l2k2.
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The second term is

ω−1(l1 ⊗ k1 ⊗ m−1)l2
(
k2(m0 ⊗ 1H )

)
(27)= ω−1(l1 ⊗ k1 ⊗ m−1)l2(k2 � m0 ⊗ k3)

(27)= ω−1(l1 ⊗ k1 ⊗ m−1)l2 �
(
(k2 � m0)k3

) ⊗ l3k4

= ω−1(l1 ⊗ k1 ⊗ m−1)τ
[
l2

(
(k2 � m0)k3

)] ⊗ l3k4

= ω−1(l1 ⊗ k1 ⊗ m−1)ω
(
l2 ⊗ (k2 � m0)−1 ⊗ k3

)
τ
[(

l3(k2 � m0)0
)
k4

] ⊗ l4k5

=
[

ω−1(l1 ⊗ k1 ⊗ m−1)ω(l2 ⊗ (k2 � m0)−1 ⊗ k3)

ω−1((l3 � (k2 � m0)0)−1 ⊗ l4 ⊗ k4)(l3 � (k2 � m0)0)0 ⊗ l5k5

]
.

Hence, we obtain

(l1k1) � m ⊗ l2k2 =
[

ω−1(l1 ⊗ k1 ⊗ m−1)ω(l2 ⊗ (k2 � m0)−1 ⊗ k3)

ω−1((l3 � (k2 � m0)0)−1 ⊗ l4 ⊗ k4)(l3 � (k2 � m0)0)0 ⊗ l5k5

]
.

By applying M ⊗ εH on both sides, we arrive at (20). Moreover, by (9), we have 1H � m = τ (m) = m
and

(h1 � m)−1h2 ⊗ (h1 � m)0 = τ (h1m)−1h2 ⊗ τ (h1m)0 = τ
(
(hm)0

)
−1(hm)1 ⊗ τ

(
(hm)0

)
0

(7)= (hm)−1 ⊗ τ
(
(hm)0

) = h1m−1 ⊗ τ (h2m0) = h1m−1 ⊗ (h2 � m0).

We have so proved that G(M) ∈ H
HYD. Now it is easy to verify that for every g : M → N ∈ H

HM
H
H , we

have that G(g) : McoH → NcoH ∈ H
HYD. �

Proposition 3.8. Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a preantipode. (F , G) is an equiv-
alence between H

HM
H
H and H

HYD, i.e. the morphisms εM and ηN of Remark 2.7 are in H
HM

H
H and in H

HYD
respectively, for each M ∈ H

HM
H
H , N ∈ H

HYD.

Proof. We already know that εM ∈ HMH
H . Let us check that εM is left H-linear

εMμMcoH⊗H (h ⊗ m ⊗ k)

= εM
(
h · (m ⊗ k)

) (25)= εM
[
ω(h1 ⊗ m−1 ⊗ k1)(h2 � m0 ⊗ h3)k2

]
εM right lin= ω(h1 ⊗ m−1 ⊗ k1)εM

[
(h2 � m0 ⊗ h3)

]
k2 = ω(h1 ⊗ m−1 ⊗ k1)

[
(h2 � m0)h3

]
k2

= ω(h1 ⊗ m−1 ⊗ k1)
[
τ (h2m0)h3

]
k2 = ω(h1 ⊗ m−1 ⊗ k1)

[
τ (h2m0)(h3m1)

]
k2

(8)= ω(h1 ⊗ m−1 ⊗ k1)(h2m0)k2
(3)= h1(m0k1)ω(h2 ⊗ m1 ⊗ k2) = h(mk)

= μM(H ⊗ εM)(h ⊗ m ⊗ k).

Now let us check the compatibility of η with �. For N ∈ H
HYD and n ∈ N ,

[
μl

(N⊗H)coH ◦ HaH,N,H ◦ (H ⊗ ηN)
]
(h ⊗ n)

= [
μl

coH ◦ HaH,N,H
](

h ⊗ (n ⊗ 1H )
) = ω−1(h1 ⊗ n−1 ⊗ 1H )μl

coH

(
h2 ⊗ (n0 ⊗ 1H )

)

(N⊗H) (N⊗H)
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= μl
(N⊗H)coH

(
h ⊗ (n ⊗ 1H )

) = τ
(
h(n ⊗ 1H )

) (25)= τ (h1 � n ⊗ h2)
(26)= τ

(
(h1 � n ⊗ 1H )h2

)
= τ

(
ηN(h1 � n)h2

) (9)= ηN(h1 � n)εH (h2) = ηN(h � n).

So ηN ∈ H
HYD, for each N ∈ H

HYD. �
4. Monoidal equivalences

In this section we prove that the equivalence between the categories H
HM

H
H and H

HYD becomes
monoidal if we equip H

HM
H
H with the tensor product ⊗H (or �H ) and unit H . As a by-product we

produce a monoidal equivalence between (H
HM

H
H ,⊗H , H) and (H

HM
H
H ,�H , H).

Lemma 4.1. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. The category (H
HM

H
H ,⊗H , H) is monoidal with

respect to the following constraints:

aU ,V ,W
(
(u ⊗H v) ⊗H w

) = ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗H (v0 ⊗H w0)ω(u1 ⊗ v1 ⊗ w1),

lU (h ⊗H u) = hu,

rU (u ⊗H h) = uh.

Proof. See e.g. [2, Theorem 1.12]. �
Lemma 4.2. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. Let U ∈ HMH , V ∈ HMH

H . Then (U ⊗ V ,ρl,

ρr,μ) ∈ HMH
H with the following structures:

ρl
U⊗V (u ⊗ v) = u−1 v−1 ⊗ (u0 ⊗ v0),

ρr
U⊗V (u ⊗ v) = (u0 ⊗ v0) ⊗ u1 v1,

μr
U⊗V

(
(u ⊗ v) ⊗ h

) = ω−1(u−1 ⊗ v−1 ⊗ h1)u0 ⊗ v0h2ω(u1 ⊗ v1 ⊗ h3).

Proof. It is left to the reader. �
Definition 4.3. We recall that a lax monoidal functor

(F , φ0, φ2) : (M,⊗,1,a, l, r) → (
M′,⊗′,1′,a′, l′, r′)

between two monoidal categories consists of

• a functor F :M→M′ ,
• a natural transformation φ2(U , V ) : F (U ) ⊗′ F (V ) → F (U ⊗ V ), with U , V ∈M, and
• a natural transformation φ0 : 1′ → F (1) such that the diagram

(F (U ) ⊗′ F (V )) ⊗′ F (W )

a′
F (U ),F (V ),F (W )

φ2(U ,V )⊗′ F (W )
F (U ⊗ V ) ⊗′ F (W )

φ2(U⊗V ,W )
F ((U ⊗ V ) ⊗ W )

F (aU ,V ,W )

F (U ) ⊗′ (F (V ) ⊗′ F (W ))
F (U )⊗′φ2(V ,W )

F (U ) ⊗′ F (V ⊗ W )
φ2(U ,V ⊗W )

F (U ⊗ (V ⊗ W ))

(28)
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commutes and the following conditions are satisfied

F (lU ) ◦ φ2(1, U ) ◦ (
φ0 ⊗ F (U )

) = l′F (U ), (29)

F (rU ) ◦ φ2(U ,1) ◦ (
F (U ) ⊗ φ0

) = r′
F (U ). (30)

The morphisms φ2(U , V ) and φ0 are called structure morphisms.
Colax monoidal functors are defined similarly but with the directions of the structure morphisms

reversed. A strong monoidal functor or simply a monoidal functor is a lax monoidal functor with
invertible structure morphisms.

Lemma 4.4. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. The functor F : H
HYD → H

HM
H
H defines a

monoidal functor F : (H
HYD,⊗,k) → (H

HM
H
H ,⊗H , H). For U , V ∈ H

HYD, the structure morphisms are

ϕ2(U , V ) : F (U ) ⊗H F (V ) → F (U ⊗ V ) and ϕ0 : H → F (k)

which are defined, for every u ∈ U , v ∈ V , h,k ∈ H, by

ϕ2(U , V )
[
(u ⊗ h) ⊗H (v ⊗ k)

] :=
[

ω−1(u−2 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

ω−1((h3 � v0)−2 ⊗ h4 ⊗ k3)ω(u−1 ⊗ (h3 � v0)−1 ⊗ h5k4)

(u0 ⊗ (h3 � v0)0) ⊗ h6k5

]

and

ϕ0(h) := 1k ⊗ h.

Moreover

ϕ2(U , V )−1((u ⊗ v) ⊗ k
) = ω−1(u−1 ⊗ v−1 ⊗ k1)(u0 ⊗ 1H ) ⊗H (v0 ⊗ k2). (31)

Proof. Let us check that ϕ0 is a morphism in H
HM

H
H . Since ϕ0 = l−1

H : H → k ⊗ H , i.e. the inverse of

the left unit constraint in HMH , then ϕ0 is in HMH and it is invertible. It is easy to check that it is
H-bilinear in HMH .

Let us consider now ϕ2(U , V ).
By Lemma 3.4, for all U , V ∈ H

HYD, the map ξU ,F (V ) : F (U ) ⊗H F (V ) → U ⊗ F (V ), is a natural
isomorphism in H

HM
H
H . By Lemma 3.5, αU ,V : U ⊗ F (V ) → F (U ⊗ V ) is a natural isomorphism in H

HM
H
H ,

where U ⊗ F (V ) has the structure described in Lemma 3.4 for M = F (V ).
Thus αU ,V ξU ,F (V ) : F (U ) ⊗H F (V ) → F (U ⊗ V ) is a natural isomorphism in H

HM
H
H . A direct com-

putation shows that ϕ2(U , V ) = αU ,V ξU ,F (V ) and hence ϕ2(U , V ) is a well-defined isomorphism
in H

HM
H
H . Moreover ϕ2(U , V )−1 = ξ−1

U ,F (V )
α−1

U ,V fulfills (31).
In order to check the commutativity of the diagram (28) it suffices to prove the following equality:[

ϕ−1
2 (U , V ) ⊗H F (W )

]
ϕ−1

2 (U ⊗ V , W )F
(
a−1

U ,V ,W

)
= a−1

F (U ),F (V ),F (W )

[
F (U ) ⊗H ϕ−1

2 (V , W )
]
ϕ−1

2 (U , V ⊗ W ).

Since these maps are right H-linear, it suffices to check this equality on elements of the form
(u ⊗ (v ⊗ w)) ⊗ 1H , where u ∈ U , v ∈ V , w ∈ W . This computation and the ones of (29) and (30) are
straightforward. �

We now compute explicitly the braiding induced on H
HM

H
H through the functor F in Lemma 4.4, in

case F comes out to be an equivalence i.e. when H has a preantipode.
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Lemma 4.5. Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a preantipode. Through the monoidal
equivalence (F , G) we have that (H

HM
H
H ,⊗H , H) becomes a pre-braided monoidal category, with braiding

defined as follows:

cM,N(m ⊗H n) = ω
(
m−2 ⊗ τ (n0)−1 ⊗ n1

)(
m−1 � τ (n0)0 ⊗H m0

) · n2,

where M, N ∈ H
HM

H
H and m ∈ M, n ∈ N.

Proof. First of all, for any U , V ∈ H
HYD, let us consider the following composition:

λU ,V := (
F (U ) ⊗H F (V )

ϕ2(U ,V )−−−−−→ F (U ⊗ V )
F (cU ,V )−−−−→ F (V ⊗ U )

ϕ−1
2 (V ,U )−−−−−−→ F (V ) ⊗H F (U )

)
.

This map is right H-linear, so, if we compute

λU ,V
[
(u ⊗ h) ⊗H (v ⊗ 1H )

]
=

[
ω−1(u−4 ⊗ h1 ⊗ v−1)ω(u−3 ⊗ (h2 � v0)−1 ⊗ h3)

ω−1((u−2 � (h2 � v0)0)−1 ⊗ u−1 ⊗ h4)((u−2 � (h2 � v0)0)0 ⊗ 1H ) ⊗H u0 ⊗ h5

]
(20)= (

(u−1h1) � v ⊗ 1H
) ⊗H (u0 ⊗ h2),

we obtain

λU ,V
[
(u ⊗ h) ⊗H (v ⊗ k)

]
= λU ,V

[
(u ⊗ h) ⊗H (v ⊗ 1H ) · k

]
= ω(u−1h1 ⊗ v−1 ⊗ k1)λU ,V

[[
(u0 ⊗ h2) ⊗H (v0 ⊗ 1H )

] · k2
]
ω−1(h3 ⊗ 1H ⊗ k3)

= ω(u−1h1 ⊗ v−1 ⊗ k1)λU ,V
[[

(u0 ⊗ h2) ⊗H (v0 ⊗ 1H )
] · k2

]
= ω(u−1h1 ⊗ v−1 ⊗ k1)λU ,V

[
(u0 ⊗ h2) ⊗H (v0 ⊗ 1H )

] · k2

= ω(u−2h1 ⊗ v−1 ⊗ k1)
[(

(u−1h2) � v0 ⊗ 1H
) ⊗H (u0 ⊗ h3)

] · k2.

Now, using the map λU ,V , we construct the braiding of H
HM

H
H in this way:

M ⊗H N
ε−1

M ⊗Hε−1
N−−−−−−→ F G(M) ⊗H F G(N)

λG(M),G(N)−−−−−−→ F G(N) ⊗H F G(M)
εN⊗H εM−−−−−→ N ⊗H M.

Therefore

(εN ⊗H εM)λG(M),G(N)

(
ε−1

M ⊗H ε−1
N

)
(m ⊗H n)

= (εN ⊗H εM)λG(M),G(N)

{[
τ (m0) ⊗ m1

] ⊗H
[
τ (n0) ⊗ n1

]}
=

[
ω(τ(m0)−2m1 ⊗ τ (n0)−1 ⊗ n1)

(εN ⊗H εM){[((τ (m0)−1m2) � τ (n0)0 ⊗ 1H ) ⊗H (τ (m0)0 ⊗ m3)] · n2}
]

(7)=
[

ω(m−2 ⊗ τ (n0)−1 ⊗ n1)

(εN ⊗H εM)[(m−1 � τ (n0)0 ⊗ 1H ) ⊗H (τ (m0) ⊗ m1)] · n2

]
= ω

(
m−2 ⊗ τ (n0)−1 ⊗ n1

)[
m−1 � τ (n0)0 ⊗H τ (m0)m1

] · n2

(8)= ω
(
m−2 ⊗ τ (n0)−1 ⊗ n1

)[
m−1 � τ (n0)0 ⊗H m0

] · n2. �
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Next aim is to prove that the equivalence between the categories H
HM

H
H and H

HYD becomes
monoidal if we equip H

HM
H
H with the tensor product �H and unit H .

4.6. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. Note that, since H is an ordinary coalgebra,
we have that (HMH ,�H , H,b, r, l) is a monoidal category with constraints defined, for all L, M, N ∈
HMH , by

bL,M,N : (L �H M) �H N → L �H (M �H N) : (l �H m) �H n �→ l �H (m �H n),

rM : M �H H → M : m �H h �→ mεH (h),

lM : H �H M → M : h �H m �→ εH (h)m,

where, for sake of brevity we just wrote m �H n in place of the more precise
∑

i mi �H ni .
We want to endow H

HM
H
H with a monoidal structure, following the dual version of [11] (see also

[23, Definition 3.2]). The definition of the claimed structure is given in such a way that the forgetful
functor H

HM
H
H → HMH is a strict monoidal functor. Hence the constraints are induced by the ones of

HMH (i.e. bL,M,N , lM and rM ), and the tensor product is given by M �H N with structures

ρl
M�H N(m �H n) = m−1 ⊗ (m0 �H n),

ρr
M�H N(m �H n) = (m �H n0) ⊗ n1,

μl
M�H N

[
h ⊗ (m �H n)

] = h · (m �H n) = h1m �H h2n,

μr
M�H N

[
(m �H n) ⊗ h

] = (m �H n) · h = mh1 �H nh2.

The unit of the category is H endowed with the following structures:

ρl
H (h) = h1 ⊗ h2, ρr

H (h) = h1 ⊗ h2,

h · l = hl, l · h = lh.

The following result is similar to (2) in Lemma 3.4.

Lemma 4.7. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. For all V ∈ H
HYD and M ∈ H

HM
H
H , the map

βV ,M : F (V ) �H M → V ⊗ M : (v ⊗ h) �H m �→ vε(h) ⊗ m

is a natural isomorphism in H
HM

H
H where V ⊗ M has the structures as in Lemma 3.4. The inverse of βV ,M is

given by

β−1
V ,M : V ⊗ M → (V ⊗ H) �H M : v ⊗ m �→ (v ⊗ m−1) �H m0.

Proof. The proof is straightforward and is based on the fact that (v ⊗h)�H m ∈ (V ⊗ H)�H M implies

(v ⊗ h) ⊗ m = (
vε(h) ⊗ m−1

) ⊗ m0. � (32)

Lemma 4.8. (Cf. [23, Proposition 3.6].) Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. The functor
F : H

HYD → H
HM

H
H defines a monoidal functor F : (H

HYD,⊗,k) → (H
HM

H
H ,�H , H). For U , V ∈ H

HYD, the
structure morphisms are
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ψ2(U , V ) : F (U ) �H F (V ) → F (U ⊗ V ) and ψ0 : H → F (k)

which are defined, for every u ∈ U , v ∈ V , h,k ∈ H, by

ψ2(U , V )
[
(u ⊗ h) ⊗ (v ⊗ k)

] := ω(u−1 ⊗ v−1 ⊗ k1)u0ε(h) ⊗ v0 ⊗ k2 (33)

and

ψ0(h) := 1k ⊗ h.

Moreover

ψ2(U , V )−1((u ⊗ v) ⊗ h
) = ω−1(u−1 ⊗ v−2 ⊗ h1)(u0 ⊗ v−1h2) ⊗ (v0 ⊗ h3). (34)

Proof. Since ψ0 = ϕ0 as in Lemma 4.4, we already know that ψ0 is an isomorphism in H
HM

H
H . Let us

deal with ψ2(U , V ). By Lemma 3.5, the map αU ,V : U ⊗ F (V ) → F (U ⊗ V ) is a natural isomorphism
in H

HM
H
H , where U ⊗ F (V ) has the structure described in Lemma 3.4 for M = F (V ). By Lemma 4.7,

βU ,F (V ) = β : F (U ) �H F (V ) → U ⊗ F (V ) is a natural isomorphism in H
HM

H
H , where U ⊗ F (V ) has the

structure described in Lemma 3.4 for M = F (V ). Hence it makes sense to consider the composition
ψ2(U , V ) := αU ,V ◦ βU ,V ⊗H . Then ψ2(U , V ) fulfills (33). It is clear that ψ2(U , V ) : F (U ) �H F (V ) →
F (U ⊗ V ) is a natural isomorphism in H

HM
H
H with inverse given by ψ2(U , V )−1 := β−1

U ,V ⊗H ◦ α−1
U ,V .

Moreover ψ2(U , V )−1 satisfies (34).
In order to check the commutativity of the diagram (28) it suffices to prove the following equality:

(
ψ2(U , V )−1 ⊗ F (W )

)
ψ2(U ⊗ V , W )−1 F

(
a−1

U ,V ,W

)[(
u ⊗ (v ⊗ w)

) ⊗ h
]

= b−1
F (U ),F (V ),F (W )

[
F (U ) ⊗ ψ2(V , W )−1]ψ2(U , V ⊗ W )−1[(u ⊗ (v ⊗ w)

) ⊗ h
]
.

By right H-linearity, it suffices to check the displayed equality for h = 1H . The proof of this fact and
of (29) and (30) is straightforward. �

If H has a preantipode, the functor F of Lemma 4.8 is an equivalence. As a consequence, its adjoint
G is monoidal too. For future reference we include here its explicit monoidal structure.

Lemma 4.9. Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a preantipode. The right adjoint
G : H

HM
H
H → H

HYD of the functor F , defines a monoidal functor G : (H
HM

H
H ,�H , H) → (H

HYD,⊗,k). For
M, N ∈ H

HM
H
H , the structure morphisms are

ψG
2 (M, N) : G(M) ⊗ G(N) → G(M �H N) and ψG

0 : k → G(H)

which are defined, for every m ∈ M, n ∈ N, k ∈ H, by

ψG
2 (M, N)(m ⊗ n) = mn−1 �H n0 and ψG

0 (k) := k1H .

Moreover, for all m ∈ M, n ∈ N,

ψG
2 (M, N)−1(m �H n) = τ (m) ⊗ τ (n).
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Proof. Apply [3, Proposition 1.4] to the functor F . Then G is monoidal with structure morphisms

ψG
2 (M, N) := G(εM �H εM) ◦ G

(
ψ2(GM, GN)−1) ◦ ηGM⊗GN ,

ψG
0 := G

(
ψ−1

0

) ◦ ηk.

A direct computation shows that they are the desired maps.
The inverse of ψG

2 (M, N) can be computed by

ψG
2 (M, N)−1 := η−1

GM⊗GN ◦ G
(
ψ2(GM, GN)

) ◦ G
(
ε−1

M �H ε−1
M

)
. �

Remark 4.10. Consider the composition

κ = κ(U , V ) := ψ2(U , V )−1 ◦ ϕ2(U , V ) : (U ⊗ H) ⊗H (V ⊗ H) → (U ⊗ H) �H (V ⊗ H).

We have

κ(U , V )
[
(u ⊗ h) ⊗H (v ⊗ k)

]
= ψ2(U , V )−1ϕ2(U , V )

[
(u ⊗ h) ⊗H (v ⊗ k)

]
=

[
ω−1(u−2 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

ω−1((h3 � v0)−2 ⊗ h4 ⊗ k3)ω(u−1 ⊗ (h3 � v0)−1 ⊗ h5k4)

ψ2(U , V )−1[(u0 ⊗ (h3 � v0)0) ⊗ (h6k5)]

]

=
⎡⎢⎣

ω−1(u−2 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

ω−1((h3 � v0)−2 ⊗ h4 ⊗ k3)ω(u−1 ⊗ (h3 � v0)−1 ⊗ h5k4)

ω−1(u0−1 ⊗ (h3 � v0)0−2 ⊗ (h6k5)1)

(u00 ⊗ (h3 � v0)0−1(h6k5)2) �H ((h3 � v0)00 ⊗ (h6k5)3)

⎤⎥⎦
=

[
ω−1(u−3 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

ω−1((h3 � v0)−4 ⊗ h4 ⊗ k3)ω(u−2 ⊗ (h3 � v0)−3 ⊗ h5k4)

ω−1(u−1 ⊗ (h3 � v0)−2 ⊗ h6k5)(u0 ⊗ (h3 � v0)−1(h7k6)) �H ((h3 � v0)0 ⊗ h8k7)

]

=
[

ω−1(u−1 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

ω−1((h3 � v0)−2 ⊗ h4 ⊗ k3)

(u0 ⊗ (h3 � v0)−1(h5k4)) �H ((h3 � v0)0 ⊗ h6k5)

]

(3)=
[

ω−1(u−1 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

(u0 ⊗ (((h3 � v0)−2h4)k3))

ω−1((h3 � v0)−1 ⊗ h5 ⊗ k4) �H ((h3 � v0)0 ⊗ h6k5)

]

=
[

ω−1(u−1 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

(u0 ⊗ (((h3 � v0)−1h4)k3)) �H (((h3 � v0)0 ⊗ h5) · k4)

]
(22)=

[
ω−1(u−1 ⊗ h1 ⊗ v−3k1)ω(h2 ⊗ v−2 ⊗ k2)

(u0 ⊗ ((h3 v−1)k3)) �H (((h4 � v0) ⊗ h5) · k4)

]
(3)=

[
ω−1(u−1 ⊗ h1 ⊗ v−3k1)

(u0 ⊗ (h2(v−2k2)))

ω(h3 ⊗ v−1 ⊗ k3) �H (((h4 � v0) ⊗ h5) · k4)

]
(25)= ω−1(u−1 ⊗ h1 ⊗ v−2k1)

(
u0 ⊗ (h2(v−1k2))

)
�H

(
h3 · (v0 ⊗ k3)

)
= (u0 ⊗ h1) · (v−1k1) �H h3 · (v0 ⊗ k3)

= (u ⊗ h)0 · (v ⊗ k)−1 �H (u ⊗ h)1 · (v ⊗ k)0
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so that

κ(U , V )
[
(u ⊗ h) ⊗H (v ⊗ k)

] = (u ⊗ h)0 · (v ⊗ k)−1 �H (u ⊗ h)1 · (v ⊗ k)0.

Thus, for M, N ∈ H
HM

H
H , using that the counit ε is in H

HM
H
H , one gets[

(εM �H εN) ◦ κ
(
McoH, NcoH) ◦ (

ε−1
M ⊗H ε−1

N

)]
(m ⊗H n) = m0n−1 �H m1n0.

We can also compute κ(U , V )−1 := ϕ2(U , V )−1 ◦ ψ2(U , V ). We have

κ(U , V )−1((u ⊗ h) �H (v ⊗ k)
) = (

uε(h) ⊗ 1H
) ⊗H (v ⊗ k).

We are now able to provide a monoidal equivalence between (H
HM

H
H ,⊗H , H) and (H

HM
H
H ,�H , H).

This result is similar to [22, Corollary 6.1].

Lemma 4.11. Let (H,m, u,�,ε,ω, S) be a dual quasi-bialgebra with a preantipode. The identity functor on
H
HM

H
H defines a monoidal functor E : (H

HM
H
H ,⊗H , H) → (H

HM
H
H ,�H , H). For M, N ∈ H

HM
H
H , the structure

morphisms are

ϑ2(M, N) : E(M) �H E(V ) → E(M ⊗H N) and ϑ0 : H → E(H) = H

which are defined, for every m ∈ M, n ∈ N, h ∈ H, by

ϑ2(M, N)(m �H n) := τ (m) ⊗H n and ϑ0(h) := h.

Moreover

ϑ2(M, N)−1(m ⊗H n) = m0n−1 �H m1n0, (35)

ϑ2(F U , F V ) = ϕ2(U , V )−1 ◦ ψ2(U , V ). (36)

Proof. Using the map κ of Remark 4.10, for each M, N ∈ H
HM

H
H , we set

ϑ2(M, N) := (εM ⊗H εN) ◦ κ
(
McoH, NcoH)−1 ◦ (

ε−1
M �H ε−1

N

)
.

Clearly, by Remark 4.10, ϑ2(M, N)−1 fulfills (35). Moreover, using (8), one gets

ϑ2(M, N)(m �H n) = τ (m) ⊗H n.

It is straightforward to check that ϑ−1
2 makes commutative the diagram (28) and that (29) and

(30) hold. Let us check that (36) holds

ϑ2(F U , F V ) = (εF U ⊗H εF V ) ◦ κ(G F U , G F V )−1 ◦ (
ε−1

F U �H ε−1
F V

)
= (εF U ⊗H εF V ) ◦ ϕ2(G F U , G F V )−1 ◦ ψ2(G F U , G F V ) ◦ (

ε−1
F U �H ε−1

F V

)
=

[
(εF U ⊗H εF V ) ◦ ϕ2(G F U , G F V )−1 ◦ F (ηU ⊗ ηV )

F (η−1
U ⊗ η−1

V ) ◦ ψ2(G F U , G F V ) ◦ (ε−1
F U �H ε−1

F V )

]
=

[
(εF U ⊗H εF V ) ◦ (FηU ⊗ FηV ) ◦ ϕ2(U , V )−1

ψ (U , V ) ◦ (Fη−1 ⊗ Fη−1) ◦ (ε−1 � ε−1)

]
= ϕ2(U , V )−1 ◦ ψ2(U , V ). �
2 U V F U H F V
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The following result is similar to [23, Proposition 3.11].

Corollary 4.12. Let (H,m, u,�,ε,ω) be a dual quasi-bialgebra. The identity functor on H
HM

H
H defines a

monoidal functor Ξ : (H
HM

H
H ,�H , H) → (H

HM
H
H ,⊗H , H). For M, N ∈ H

HM
H
H , the structure morphisms are

γ2(M, N) : Ξ(M) ⊗H Ξ(V ) → Ξ(M �H N) and γ0 : H → Ξ(H)

which are defined by γ2(M, N) := ϑ−1
2 (M, N) and γ0 := ϑ−1

0 using Lemma 4.11.

Proof. It follows by [3, Proposition 1.4]. �
Next, we include a technical result that will be used in Section 5.

Lemma 4.13. Let (M,⊗,1) be a monoidal category which is abelian.

(1) Let A be an algebra in M. Assume that the tensor functors are additive and right exact (see [2, Theo-
rem 1.12]). Then the forgetful functor

D : (AMA ,⊗A, A) → (M,⊗,1)

is a lax monoidal functor with structure morphisms

ζ2(M, N) : D(M) ⊗ D(N) → D(M ⊗A N) and ζ0 : 1 → D(A),

where ζ2 is the canonical epimorphism and ζ0 is the unity of A.
(2) Let C be a coalgebra in M. Assume that the tensor functors are additive and left exact. Then the forgetful

functor

D : (CMC ,�C , C
) → (M,⊗,1)

is a colax monoidal functor with structure morphisms

ζ2(M, N) : D(M �C N) → D(M) ⊗ D(N) and ζ0 : D(C) → 1,

where ζ2 is the canonical monomorphism and ζ0 is the counit of C .

Proof. (1) From [2, 1.11], for all M, N, S ∈ AMA , we deduce

D
(AaA

M,N,S

) ◦ ζ2(M ⊗A N, S) ◦ [
ζ2(M, N) ⊗ D(S)

]
= ζ2(M, N ⊗A S) ◦ [

D(M) ⊗ ζ2(N, S)
] ◦ aM,N,S .

Moreover, for all M ∈ AMA , we have

D
(AlA

M

) ◦ ζ2(A, M) ◦ [
ζ0 ⊗ D(M)

] = AlA
M ◦ ζ2(A, M) ◦ (ζ0 ⊗ M)

= μl
M ◦ (u A ⊗ M) = lM .

Similarly D(Ar A
M) ◦ ζ2(M, A) ◦ [D(M) ⊗ ζ0] = rM . We have so proved that D is a lax monoidal functor.

(2) It follows by dual arguments. �
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5. The main results: bosonization

5.1. Let H be a Hopf algebra, let A be a bialgebra and let σ : H → A and π : A → H be morphisms
of bialgebras such that πσ = Id. In this case A is called a bialgebra with projection onto H and
A ∈ H

HM
H
H through

ρr(a) = a1 ⊗ π(a2), ρl(a) = π(a1) ⊗ a2,

μr(a ⊗ h) = aσ(h), μl(h ⊗ a) = σ(h)a.

Define now the map τ : A → A : a �→ a1σ S(a2). It can be proved that Imτ = AcoH =: R and, when
H is the coradical of A, that R is connected. Indeed it is well-known that R becomes a connected
bialgebra in the pre-braided monoidal category H

HYD of Yetter–Drinfeld modules over H (cf. [19]).
Now, from the fact that (F , G) is an equivalence we know that εA : R ⊗ H → A is an isomorphism.

Conversely, it can be proved that, given a Hopf algebra H and a braided bialgebra R in H
HYD, we

can endow R ⊗ H with a bialgebra structure and define two bialgebras morphisms σ and π such
that πσ = IdH , see [19]. This bialgebra is called Radford–Majid Bosonization (or Radford biproduct)
and permits to classify different kinds of bialgebras as “compositions” (crossed product) of different
objects in the same category.

The main aim of this section is to extend the results above to the setting of dual quasi-bialgebras.

Theorem 5.2. Let (H,mH , uH ,�H , εH ,ωH ) be a dual quasi-bialgebra.
Let (R,μR ,ρR ,�R , εR ,mR , uR) be a bialgebra in H

HYD and use the following notations

h � r := μR(h ⊗ r), r−1 ⊗ r0 := ρR(r),

r ·R s := mR(r ⊗ s), 1R := uR(1k),

r1 ⊗ r2 := �R(r).

Let us consider on B := F (R) = R ⊗ H the following structures:

mB
[
(r ⊗ h) ⊗ (s ⊗ k)

] =
⎡⎣ ω−1

H (r−2 ⊗ h1 ⊗ s−2k1)ωH (h2 ⊗ s−1 ⊗ k2),

ω−1
H [(h3 � s0)−2 ⊗ h4 ⊗ k3]ωH (r−1 ⊗ (h3 � s0)−1 ⊗ h5k4)

r0 ·R (h3 � s0)0 ⊗ h6k5

⎤⎦ ,

uB(k) = k1R ⊗ 1H ,

�B(r ⊗ h) = ω−1
H

(
r1−1 ⊗ r2−2 ⊗ h1

)
r1

0 ⊗ r2−1h2 ⊗ r2
0 ⊗ h3,

εB(r ⊗ h) = εR(r)εH (h),

ωB
(
(r ⊗ h) ⊗ (s ⊗ k) ⊗ (t ⊗ l)

) = εR(r)εR(s)εR(t)ωH (h ⊗ k ⊗ l).

Then (B,�B , εB ,mB , uB ,ωB) is a dual quasi-bialgebra.

Proof. It is analogue to [9, Lemma 3.1]. �
Remark 5.3. The Referee pointed out to our attention that the coalgebra structure of F (R) in the
previous result is a smash coproduct one, see [8, Definition 3.4].

Definition 5.4. With hypotheses and notations as in Theorem 5.2, the bialgebra B will be called the
bosonization of R by H and denoted by R # H .
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Definition 5.5. Let (H,m, u,�,ε,ω) and (A,mA, u A,�A, εA,ωA) be dual quasi-bialgebras, and sup-
pose there exist morphisms of dual quasi-bialgebras

σ : H → A and π : A → H

such that πσ = IdH . Then (A, H, σ ,π) is called a dual quasi-bialgebra with a projection onto H .

Proposition 5.6. Keep the hypotheses and notations of Theorem 5.2. Then (R # H, H, σ ,π) is a dual quasi-
bialgebra with projection onto H where

σ : H → R # H, σ (h) := 1R # h, π : R # H → H, π(r # h) := εR(r)h.

Proof. It is straightforward. �
Next aim is to characterize dual quasi-bialgebras with a projection onto a dual quasi-bialgebra

with a preantipode as bosonizations.

Lemma 5.7. Let (A,mA, u A,�A, εA,ωA) and (H,mH , uH ,�H , εH ,ωH ) be dual quasi-bialgebras such that
(A, H, σ ,π) is a dual quasi-bialgebra with a projection onto H. Then A is an object in H

HM
H
H through

ρr
A(a) = a1 ⊗ π(a2), ρl

A(a) = π(a1) ⊗ a2,

μr
A(a ⊗ h) = aσ(h), μl

A(h ⊗ a) = σ(h)a.

Proof. It is straightforward. �
Theorem 5.8. Let (A,mA, u A,�A, εA,ωA) and (H,mH , uH ,�H , εH ,ωH ) be dual quasi-bialgebras such that
(A, H, σ ,π) is a dual quasi-bialgebra with projection onto H. Assume that H has a preantipode S. For all
a,b ∈ A, we set a1 ⊗ a2 := �A(a) and ab = mA(a ⊗ b). Then, for all a ∈ A we have

τ (a) := ωA
[
a1 ⊗ σ Sπ(a3)1 ⊗ a4

]
a2σ Sπ(a3)2

and R := G(A) is a bialgebra ((R,μR ,ρR),mR , uR ,�R , εR ,ωR) in H
HYD where, for all r, s ∈ R, h ∈ H, k ∈ k,

we have

h � r := μR(h ⊗ r) := τ
[
σ(h)r

]
, r−1 ⊗ r0 := ρR(r) := π(r1) ⊗ r2,

mR(r ⊗ s) := rs, uR(k) := k1A,

r1 ⊗ r2 := �R(r) := τ (r1) ⊗ τ (r2), εR(r) := εA(r).

Moreover there is a dual quasi-bialgebra isomorphism εA : R # H → A given by

εA(r ⊗ h) = rσ(h), ε−1
A (a) = τ (a1) ⊗ π(a2).

Proof. We have

ρr
A(a1) ⊗ a2 = a1 ⊗ π(a2) ⊗ a3 = a1 ⊗ ρl

A(a2)
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so that �A(a) ∈ A �H A for all a ∈ A. Let �A : A → A �H A be the corestriction of �A to A �H A.
Using that ωH = ωA(π ⊗ π ⊗ π), we obtain

mA ◦ (
A ⊗ μl

A

) ◦ HaH
A,H,A = mA ◦ (

μr
A ⊗ A

)
.

Denote by χX,Y : X ⊗ Y → X ⊗H Y the canonical projection, for all X, Y objects in H
HM

H
H .

Since (A ⊗H A,χA,A) is the coequalizer of ((A ⊗ μl
A)H aH

A,H,A, (μr
A ⊗ A)), we get that mA factors

through to a map m′
A : A ⊗H A → A such that m′

A ◦χA,A = mA . Consider the canonical map ϑ2(M, N) :
M �H N → M ⊗H N of Lemma 4.11 defined by ϑ2(M, N)(m �H n) := τ (m) ⊗H n and let mA := m′

A ◦
ϑ2(A, A). Then

mA(a �H b) = m′
A

(
τ (a) ⊗H b

) = τ (a)b.

Note that, by Lemma 2.12, the map τ : A → AcoH is defined, for all a ∈ A, by

τ (a) = ωH
[
a−1 ⊗ S(a1)1 ⊗ a2

]
a0 S(a1)2

= ωH
[
π(a1) ⊗ Sπ(a3)1 ⊗ π(a4)

]
a2σ

[
Sπ(a3)2

]
= ωH

[
π(a1) ⊗ πσ

[
Sπ(a3)1

] ⊗ π(a4)
]
a2σ

[
Sπ(a3)2

]
= ωA

[
a1 ⊗ σ

[
Sπ(a3)1

] ⊗ a4
]
a2σ

[
Sπ(a3)2

]
= ωA

[
a1 ⊗ σ Sπ(a3)1 ⊗ a4

]
a2σ Sπ(a3)2.

It is straightforward to prove that (A,�A, εA := π) is a coalgebra in (H
HM

H
H ,�H , H).

One checks that (A,m′
A, σ ) is an algebra in (H

HM
H
H ,⊗H , H).

Now, by applying [3, Proposition 1.5] to the monoidal functor E : (H
HM

H
H ,⊗H , H) → (H

HM
H
H ,�H , H)

of Lemma 4.11 we have that (E(A),mE(A), uE(A)) is an algebra in (H
HM

H
H ,�H , H) where

mE(A) = E
(
m′

A

) ◦ ϑ2(A, A) and uE(A) = E(σ ) ◦ ϑ0.

It is clear that (E(A),mE(A), uE(A)) = (A,mA, u A = σ). Thus (A,mA, u A) is an algebra in (H
HM

H
H ,

�H , H).
Now, we apply [3, Proposition 1.5] to the functor G : H

HM
H
H → H

HYD of Lemma 4.9. Set R :=
G(A) = AcoH . Then R is both an algebra and a coalgebra in H

HYD through

mR := G(mA) ◦ ψG
2 (A, A), uR := G(u A) ◦ ψG

0 ,

�R := ψG
2 (A, A)−1 ◦ G(�A), εR := (

ψG
0

)−1 ◦ G(εA).

Explicitly, for all r, s ∈ R , k ∈ k

mR(r ⊗ s) = τ (rs−1)s0
(9)= rεH (s−1)s0 = rs,

uR(k) = G(u A)ψG
0 (k) = u A(k1H ) = kσ(1H ) = k1A,

�R(r) = τ (r1) ⊗ τ (r2),

εR(r) = (
ψG

0

)−1
G(εA)(r) = (

ψG
0

)−1
π(r) = π(r) = εA(r1)π(r2) = εA(r0)r1 = εA(r)1H .
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We will use the following notations for all r, s ∈ R ,

r ·R s := mR(r ⊗ s), 1R := uR(1k).

Now, by [3, Corollary 1.7], we have that εA : F G(A) → A is an algebra and a coalgebra isomorphism in
(H

HM
H
H ,�H , H). Let us write the algebra and coalgebra structure of F G(A) = R ⊗ H . By construction

[3, Proposition 1.5], we have

mF (R) := F (mR) ◦ ψ2(R, R) : F (R) �H F (R) → F (R),

uF (R) := F (uR) ◦ ψ0 : H → F (R),

�F (R) := ψ2(R, R)−1 ◦ F (�R) : F (R) → F (R) �H F (R),

εF (R) := ψ−1
0 ◦ F (εR) : F (R) → H .

Explicitly we have

mF (R)

(
(r ⊗ h) �H (s ⊗ k)

) = ω(r−1 ⊗ s−1 ⊗ k1)r0ε(h) ·R s0 ⊗ k2,

uF (R)(h) = F (uR)ψ0(h) = 1R ⊗ h,

�F (R)(r ⊗ h) = ω−1(r1−1 ⊗ r2−2 ⊗ h1
)(

r1
0 ⊗ r2−1h2

)
�H

(
r2

0 ⊗ h3
)
,

εF (R)(r ⊗ h) = ψ−1
0 F (εR)(r ⊗ h) = ψ−1

0

(
εR(r) ⊗ h

) = εR(r)h.

In view of 4.6, the forgetful functor (H
HM

H
H ,�H , H)→(HMH ,�H , H) is a strict monoidal functor. Be-

ing εA : (F (R),�F (R), εF (R)) → (A,�A, εA = π) a coalgebra morphism in (H
HM

H
H ,�H , H), we have

that εA : (F (R),�F (R), εF (R)) → (A,�A, εA = π) is a coalgebra morphism in (HMH ,�H , H). Ap-
ply Lemma 4.13 to the case (M,⊗,1) = (M,⊗,k) and C = H . Let j X,Y : X �H Y → X ⊗ Y be
the canonical map. Then εA : (F (R), j F (R),F (R) ◦ �F (R), εH ◦ εF (R)) → (A, j A,A ◦ �A, εH ◦ εA) is a
coalgebra morphism in (M,⊗,k). In other words it is an ordinary coalgebra morphism. Note that
(A, j A,A ◦ �A, εH ◦ εA) = (A,�A, εA). Set (�F (R), εF (R)) := ( j F (R),F (R) ◦ �F (R), εH ◦ εF (R)). Let us com-
pute explicitly these maps. We have

�F (R)(r ⊗ h) = ( j F (R),F (R) ◦ �F (R))(r ⊗ h) = ω−1(r1−1 ⊗ r2−2 ⊗ h1
)(

r1
0 ⊗ r2−1h2

) ⊗ (
r2

0 ⊗ h3
)
,

εF (R)(r ⊗ h) = (εH ◦ εF (R))(r ⊗ h) = εR(r)εH (h).

Thus εA : (F (R),�F (R), εF (R)) → (A,�A, εA) is an ordinary coalgebra morphism.
Being εA : (F (R),mF (R), uF (R)) → (A,mA, u A = σ) an algebra morphism in (H

HM
H
H ,�H , H), then, in

view of Lemma 4.11,

εA : (F (R),Ξ(mF (R)) ◦ γ2
(

F (R), F (R)
)
,Ξ(uF (R)) ◦ γ0

) → (
A,Ξ(mA) ◦ γ2(A, A),Ξ(u A) ◦ γ0

)
is an algebra morphism in (H

HM
H
H ,⊗H , H). Note that

Ξ(mA) ◦ γ2(A, A) = mA ◦ ϑ−1
2 (A, A) = m′

A,

Ξ(u A) ◦ γ0 = u A = σ
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so that (
A,Ξ(mA) ◦ γ2(A, A),Ξ(u A) ◦ γ0

) = (
A,m′

A,σ
)
.

Set (m′
F (R), u′

F (R)) := (Ξ(mF (R)) ◦ γ2(F (R), F (R)),Ξ(uF (R)) ◦ γ0). We have

m′
F (R)

(
(r ⊗ h) ⊗H (s ⊗ k)

)
= [

Ξ(mF (R)) ◦ γ2
(

F (R), F (R)
)](

(r ⊗ h) ⊗H (s ⊗ k)
)

= mF (R)

[
(r ⊗ h)0(s ⊗ k)−1 ⊗H (r ⊗ h)1(s ⊗ k)0

]
= mF (R)

[
(r ⊗ h1)(s−1k1) ⊗H h2(s0 ⊗ k2)

]
= ω−1[r−1 ⊗ h1 ⊗ s−2k1]mF (R)

[
r0 ⊗ [

h2(s−1k2)
] ⊗H h3(s0 ⊗ k3)

]
=

[
ω−1[r−1 ⊗ h1 ⊗ s−3k1]ω(h3 ⊗ s−1 ⊗ k3)ω

−1((h4 � s0)−1 ⊗ h5 ⊗ k4)

mF (R)[r0 ⊗ [h2(s−2k2)] ⊗H (h4 � s0)0 ⊗ h6k5]
]

=
[
ω−1[r−2 ⊗ h1 ⊗ s−3k1]ω(h3 ⊗ s−1 ⊗ k3)ω

−1((h4 � s0)−2 ⊗ h5 ⊗ k4)

ω(r−1 ⊗ (h4 � s0)−1 ⊗ h6k5)r0εH [h2(s−2k2)] ·R (h4 � s0)0 ⊗ h7k6

]

=
[

ω−1[r−2 ⊗ h1 ⊗ s−2k1]ω(h2 ⊗ s−1 ⊗ k2)

ω−1((h3 � s0)−2 ⊗ h4 ⊗ k3)ω(r−1 ⊗ (h3 � s0)−1 ⊗ h5k4)

r0 ·R (h3 � s0)0 ⊗ h6k5

]

so that

m′
F (R)

(
(r ⊗ h) ⊗H (s ⊗ k)

)
=

[
ω−1[r−2 ⊗ h1 ⊗ s−2k1]ω(h2 ⊗ s−1 ⊗ k2)

ω−1((h3 � s0)−2 ⊗ h4 ⊗ k3)ω(r−1 ⊗ (h3 � s0)−1 ⊗ h5k4)

r0 ·R (h3 � s0)0 ⊗ h6k5

]
.

Moreover

u′
F (R)(h) = [

Ξ(uF (R)) ◦ γ0
]
(h) = uF (R)(h) = 1R ⊗ h.

Apply Lemma 4.13 to the case (M,⊗,1) = (HMH ,⊗,k) and A = H . Then

εA : (F (R),m′
F (R) ◦ χF (R),F (R), u′

F (R) ◦ uH
) → (

A,m′
A ◦ χA,A,σ ◦ uH

)
is an algebra homomorphism in (HMH ,⊗,k). Note that (A,m′

A ◦ χA,A, σ ◦ uH ) = (A,mA, u A). More-
over, if we set (mF (R), uF (R)) := (m′

F (R) ◦ χF (R),F (R), u′
F (R) ◦ uH ), we get

mF (R)

(
(r ⊗ h) ⊗ (s ⊗ k)

)
=

[
ω−1[r−2 ⊗ h1 ⊗ s−2k1]ω(h2 ⊗ s−1 ⊗ k2)

ω−1((h3 � s0)−2 ⊗ h4 ⊗ k3)ω(r−1 ⊗ (h3 � s0)−1 ⊗ h5k4)

r0 ·R (h3 � s0)0 ⊗ h6k5

]
.

Moreover

uF (R)(k) = 1R ⊗ k.
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Thus εA : (F (R),mF (R), uF (R)) → (A,mA, u A) is an algebra isomorphism in (HMH ,⊗,k) and
εA : (F (R),�F (R), εF (R)) → (A,�A, εA) is an ordinary coalgebra isomorphism. Thus

mA ◦ (εA ⊗ εA) = εA ◦ mF (R), εA ◦ uF (R) = u A,

(εA ⊗ εA) ◦ �F (R) = �A ◦ εA, εA ◦ εA = εF (R),

so that mF (R) , uF (R) , �F (R) , εF (R) are exactly the morphisms induced by mA , u A , �A , εA via the
vector space isomorphism εA : F (R) → A. Let ωF (R) be the map induced by ωA via the vector space
isomorphism εA i.e.

ωF (R) := ωA ◦ (εA ⊗ εA ⊗ εA) : F (R) ⊗ F (R) ⊗ F (R) → k.

Then εA : (F (R),�F (R), εF (R),mF (R), uF (R),ωF (R)) → (A,mA, u A,�A, εA,ωA) is clearly an isomor-
phism of dual quasi-bialgebras. Since, for all r ∈ R , we have π(r) = εA(r1)π(r2) = εA(r)1H , then, for
r, s, t ∈ R , h,k, l ∈ H , we get

ωF (R)

[
(r ⊗ h) ⊗ (s ⊗ k) ⊗ (t ⊗ l)

]
= ωA

(
rσ(h) ⊗ sσ(k) ⊗ tσ(l)

) = ωH
[
π

(
rσ(h)

) ⊗ π
(
sσ(k)

) ⊗ π
(
tσ(l)

)]
= ωH

[
π(r)h ⊗ π(s)k ⊗ π(t)l

] = ωH
[
εA(r)h ⊗ εA(s)k ⊗ εA(t)l

]
= εA(r)εA(t)εA(s)ωH (h ⊗ k ⊗ l)

so that

ωF (R)

[
(r ⊗ h) ⊗ (s ⊗ k) ⊗ (t ⊗ l)

] = εA(r)εA(t)εA(s)ωH (h ⊗ k ⊗ l).

Note that (F (R),�F (R), εF (R),mF (R), uF (R),ωF (R)) = R # H once proved that (R,mR , uR ,�R , εR) is a
bialgebra in the monoidal category (H

HYD,⊗,k). It remains to prove that mR and uR are coalgebra
maps. Since H

HYD is a pre-braided monoidal category and (R,�R , εR) is a coalgebra in this category,
then we can define two morphisms �R⊗R and εR⊗R in H

HYD such that (R ⊗ R,�R⊗R , εR⊗R) is a
coalgebra in H

HYD too. We have

�R⊗R := a−1
R,R,R⊗R ◦ (R ⊗ aR,R,R) ◦ (R ⊗ cR,R ⊗ R) ◦ (

R ⊗ a−1
R,R,R

) ◦ aR,R,R⊗R ◦ (�R ⊗ �R),

εR⊗R := εR ⊗ εR .

Explicitly �R⊗R satisfies

�R⊗R(r ⊗ s) =
⎡⎣ ω−1(r1−2 ⊗ r2−5 ⊗ s1−2s2−4)ω(r2−4 ⊗ s1−1 ⊗ s2−3)

ω−1[(r2−3 � s1
0)−2 ⊗ r2−2 ⊗ s2−2]ω(r1−1 ⊗ (r2−3 � s1

0)−1 ⊗ r2−1s2−1)

[r1
0 ⊗ (r2−3 � s1

0)0] ⊗ (r2
0 ⊗ s2

0)

⎤⎦ . (37)

In order to prove that mR is a morphism of coalgebras in H
HYD, we have to check the following

equality

(mR ⊗ mR)�R⊗R = �RmR .
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Since we already obtained that B := F (R) is a dual quasi-bialgebra, we know that

�B
[
(r ⊗ 1H ) ·B (s ⊗ 1H )

] = (r ⊗ 1H )1 ·B (s ⊗ 1H )1 ⊗ (r ⊗ 1H )2 ·B (s ⊗ 1H )2.

By applying R ⊗ εH ⊗ R ⊗ εH on both sides we get

(r ·R s)1 ⊗ (r ·R s)2 =

⎡⎢⎢⎢⎢⎣
ω−1((r1)−2 ⊗ (r2−1)1 ⊗ (s1)−2(s2−1)1)

ω((r2−1)2 ⊗ (s1)−1 ⊗ (s2−1)2)

ω−1[((r2−1)3 � (s1)0)−2 ⊗ (r2−1)4 ⊗ (s2−1)3]
ω((r1)−1 ⊗ ((r2−1)3 � (s1)0)−1 ⊗ (r2−1)5(s2−1)4)

(r1)0 ·R ((r2−1)3 � (s1)0)0

⎤⎥⎥⎥⎥⎦ ⊗ (
r2

0 ·R s2
0

)

=

⎡⎢⎢⎣
ω−1(r1−2 ⊗ r2−5 ⊗ s1−2s2−4)ω(r2−4 ⊗ s1−1 ⊗ s2−3)

ω−1[(r2−3 � s1
0)−2 ⊗ r2−2 ⊗ s2−2]

ω(r1−1 ⊗ (r2−3 � s1
0)−1 ⊗ r2−1s2−1)

r1
0 ·R (r2−3 � s1

0)0 ⊗ (r2
0 ·R s2

0)

⎤⎥⎥⎦
= (mR ⊗ mR)�R⊗R(r ⊗ s).

The compatibility of mR with εR and the fact that uR is a coalgebra morphism can be easily
proved. �
6. Applications

Here we collect some applications of the results of the previous sections.

6.1. The associated graded coalgebra

Example 6.1. Let (A,mA, u A,�A, εA,ωA) be a dual quasi-bialgebra with the dual Chevalley property
i.e. such that the coradical H of A is a dual quasi-subbialgebra of A. Since A is an ordinary coalgebra,
we can consider the associated graded coalgebra

gr A :=
⊕
n∈N

grn A where grn A := An

An−1
.

Here A−1 := {0} and, for all n � 0, An is the nth term of the coradical filtration of A. The coal-
gebra structure of gr A is given as follows. The nth graded component of the counit is the map
εn

gr A : An/An−1 → k defined by setting

εn
gr A(x + An−1) = δn,0εA(x).

The nth graded component of comultiplication is the map

�n
gr A : gra+b A →

⊕
a+b=n, a,b�0

gra A ⊗ grb A

defined as the diagonal map of the family (�
a,b
gr A)a+b=n, a,b�0 where

�
a,b
gr A : gra+b A → gra A ⊗ grb A, �

a,b
gr A(x + Aa+b−1) = (x1 + Aa−1) ⊗ (x2 + Ab−1).
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Proposition 6.2. Let A be a dual quasi-bialgebra with the dual Chevalley property. Then

(gr A,mgr A, ugr A,�gr A, εgr A,ωgr A)

is a dual quasi-bialgebra where the graded components of the structure maps are given by the maps

ma,b
gr A : gra A ⊗ grb A → gra+b A, un

gr A : k → grn A,

�
a,b
gr A : gra+b A → gra A ⊗ grb A, εn

gr A : grn A → k,

ωa,b,c
gr A : gra A ⊗ grb A ⊗ grc A → k,

defined by

ma,b
gr A

[
(x + Aa−1) ⊗ (y + Ab−1)

] := xy + Aa+b−1, un
gr A(k) := δn,01A + A−1 = δn,01A,

�
a,b
gr A(x + Aa+b−1) := (x1 + Aa−1) ⊗ (x2 + Ab−1), εn

gr A(x + An−1) := δn,0εA(x),

ωa,b,c
gr A

[
(x + Aa−1) ⊗ (y + Ab−1) ⊗ (z + Ac−1)

] := δa,0δb,0δc,0ωA(x ⊗ y ⊗ z).

Here δi, j denotes the Kronecker delta.

Proof. The proof of the facts that mgr A and ugr A are well-defined, are coalgebra maps and that mgr A

is unitary is analogous to the classical case, and depend on the fact that the coradical filtration is
an algebra filtration. This can be proved mimicking [18, Lemma 5.2.8]. The cocycle condition and the
quasi-associativity of mgr A are straightforward. �
Proposition 6.3. Let A be a dual quasi-bialgebra with the dual Chevalley property and coradical H. Then
(gr A, H, σ ,π) is a dual quasi-bialgebra with projection onto H, where

σ : H → gr A : h �→ h + A−1,

π : gr A → H : a + An−1 �→ δn,0a for all a ∈ An.

Proof. It is straightforward. �
Corollary 6.4. Let A be a dual quasi-bialgebra with the dual Chevalley property and coradical H. Assume
that H has a preantipode. Then there is a bialgebra R in H

HYD such that gr A is isomorphic to R # H a dual
quasi-bialgebra.

Proof. It follows by Proposition 6.3 and Theorem 5.8. �
Definition 6.5. Following [1, Definition, p. 659], the bialgebra R in H

HYD of Corollary 6.4, is called the
diagram of A.

6.2. On pointed dual quasi-bialgebras

We conclude this section considering the pointed case.
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Lemma 6.6. Let G be a monoid and consider the monoid algebra H := kG. Suppose there is a map ω ∈
(H ⊗ H ⊗ H)∗ such that (H,ω) is a dual quasi-bialgebra. Then (H,ω) has a preantipode S if and only if G is
a group. In this case

S(g) = [
ω

(
g ⊗ g−1 ⊗ g

)]−1
g−1.

Proof. Suppose that S is a preantipode for (H,ω). Since H is a cocommutative ordinary bialgebra,
by Theorem 2.16, we have that kG is an ordinary Hopf algebra, where the antipode is defined, for all
g ∈ G , by

s(g) := S(g)1ω
[

g ⊗ S(g)2 ⊗ g
]
.

Moreover one has S = εS ∗ s. Now, since kG is a Hopf algebra, one has that the set of grouplike
elements in kG , namely G itself, form a group, where g−1 := s(g), for all g ∈ G .

Now, since s is an anti-coalgebra map, we have

S(g)1 ⊗ S(g)2 = εS(g)s(g)1 ⊗ s(g)2 = εS(g)s(g) ⊗ s(g) = S(g) ⊗ g−1

so that s(g) = S(g)1ω[g ⊗ S(g)2 ⊗ g] = S(g)ω(g ⊗ g−1 ⊗ g). Hence S(g) = [ω(g ⊗ g−1 ⊗ g)]−1 g−1.
The other implication is trivial (see [4, Example 3.14]). �
The motivation for the previous result is Corollary 6.9 below.

Proposition 6.7. Let (A,m, u,�,ε,ω) be a dual quasi-bialgebra. Then the set of grouplike elements G(A) of
A is a monoid and the monoid algebra kG(A) is a dual quasi-subbialgebra of A.

Proof. It is straightforward. �
Corollary 6.8. Let (A,m, u,�,ε,ω) be a pointed dual quasi-bialgebra. Then A0 = kG(A) is a dual quasi-
subbialgebra of A.

Proof. By Remark 2.20, A0 = kG(A). In view of Proposition 6.7, we conclude. �
Corollary 6.9. Let (A,m, u,�,ε,ω, s,α,β) be a pointed dual quasi-Hopf algebra. Then G(A) is a group and
A0 = kG(A) is a dual quasi-Hopf algebra with respect to the induced structures.

Proof. Set G := G(A). By Corollary 6.8, A0 = kG is a dual quasi-subbialgebra of A. It remains to check
that the antipode on A induces an antipode on A0. We have

�s(g) = s(g2) ⊗ s(g1) = s(g) ⊗ s(g),

εs(g) = ε(g) = 1,

i.e. s(g) ∈ G , for any g ∈ G . Let s0, α0, β0, ω0, m0, u0, �0, ε0 be the induced maps from s, α, β , ω, m,
u, �, ε, respectively. It is then clear from the definition that A0, with respect to these structures, is a
dual quasi-Hopf algebra. Since any dual quasi-Hopf algebra has a preantipode, by Lemma 6.6, G is a
group. �

Pointed dual quasi-Hopf algebras have been investigated also in [12, p. 2] under the name of
pointed Majid algebras. In view of Corollary 6.9, which seems to be implicitly assumed in [12, p. 2],
we can apply Corollary 6.4 to obtain the following result.
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Theorem 6.10. Let A be a pointed dual quasi-Hopf algebra. Then gr A is isomorphic to R #kG(A) as dual
quasi-bialgebra where R is the diagram of A.
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Appendix A. The weak right center

Definition A.1. (See [7, Section 1.5].) Let (M,⊗,1,a, l, r) be a monoidal category. The weak right
center Wr(M) of M is a category defined as follows. An object in Wr(M) is a pair (V , c−,V ), where
V is an object of M and c−,V is a family of morphisms in M, c X,V : X ⊗ V → V ⊗ X , defined for any
object X in M, which is natural in the first entry, such that, for all X, Y ∈M we have

a−1
V ,X,Y ◦ c X⊗Y ,V ◦ a−1

X,Y ,V = (c X,V ⊗ Y ) ◦ a−1
X,V ,Y ◦ (X ⊗ cY ,V ) (38)

and such that rV ◦ c1,V = lV . A morphism f : (V , c−,V ) → (W , c−,W ) is a morphism f : V → W in M
such that, for each X ∈M we have

( f ⊗ X) ◦ c X,V = c X,W ◦ (X ⊗ f ).

Wr(M) becomes a monoidal category with unit (1, l−1 ◦ r) and tensor product

(V , c−,V ) ⊗ (W , c−,W ) = (V ⊗ W , c−,V ⊗W )

where, for all X ∈M, the morphism c X,V ⊗W : X ⊗ (V ⊗ W ) → (V ⊗ W ) ⊗ X is defined by

c X,V ⊗W := a−1
V ,W ,X ◦ (V ⊗ c X,W ) ◦ aV ,X,W ◦ (c X,V ⊗ W ) ◦ a−1

X,V ,W .

The constraints are the same of M viewed as morphisms in Wr(M). Moreover the monoidal category
Wr(M) is pre-braided, with braiding

c(V ,c−,V ),(W ,c−,W ) : (V , c−,V ) ⊗ (W , c−,W ) → (W , c−,W ) ⊗ (V , c−,V )

given by cV ,W .

Theorem A.2. Let H be a dual quasi-bialgebra. The categories Wr(
HM) and H

HYD are isomorphic, where HM

is regarded as a monoidal category as in Section 2.

Proof. The proof is analogue to [5, Theorem 3.5]. �
A.1. Example: the group algebra

We now investigate the category of Yetter–Drinfeld modules over a particular dual quasi-Hopf
algebra.

Let G be a group. Let θ : G × G × G → k∗ := k\{0} be a normalized 3-cocycle on the group G in
the sense of [15, Example 2.3.2, p. 54] i.e. a map such that, for all g,h,k, l ∈ G

θ(g,1G ,h) = 1,

θ(h,k, l)θ(g,hk, l)θ(g,h,k) = θ(g,h,kl)θ(gh,k, l).
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Then θ can be extended by linearity to a reassociator ω : kG ⊗ kG ⊗ kG → k making kG a dual
quasi-bialgebra with usual underlying algebra and coalgebra structures. This dual quasi-bialgebra is
denoted by kθ G . Note that in particular kθ G is an ordinary bialgebra but with nontrivial reassociator.
In particular it is associative as an algebra. Let us investigate the category kθ G

kθ G
YD of Yetter–Drinfeld

module over kθ G .

Definition A.3. Let θ : G × G × G → k∗ be a normalized 3-cocycle on a group G . The category of
cocycle crossed left G-modules (G, θ)-Mod is defined as follows. An object in (G, θ)-Mod is a pair
(V ,�), where V = ⊕

g∈G V g is a G-graded vector space endowed with a map �: G × V → V such
that, for all g,h, l ∈ H and v ∈ V , we have

h � V g ∈ Vhgh−1 , (39)

h � (l � v) = θ(hlgl−1h−1,h, l)θ(h, l, g)

θ(h, lgl−1, l)
(hl) � v, (40)

1H � v = v. (41)

A morphism f : (V ,�) → (V ′,�′) in (G, θ)-Mod is a morphism f : V → V ′ of G-graded vector spaces
such that, for all h ∈ H , v ∈ V , we have f (h � v) = h �′ f (v).

The following result is inspired by [16, Proposition 3.2].

Proposition A.4. Let θ : G × G × G → k∗ be a normalized 3-cocycle on a group G. Then the category kθ G
kθ G

YD
is isomorphic to (G, θ)-Mod.

Proof. Set H := kθ G and let (V ,ρV ,�) ∈ H
HYD. Then (V ,ρV ) is an object in kGM. Hence, see e.g.

[18, Example 1.6.7], we have that V = ⊕
g∈G V g where V g = {v ∈ V | ρV (v) = g ⊗ v}. Define the map

� : G × V → V , by setting g � v := g � v . It is easy to prove that the assignments

(V ,ρV ,�) �→
(

V =
⊕
g∈G

V g,�
)

, f �→ f

define a functor L : H
HYD → (G, θ)-Mod. Conversely, let (V = ⊕

g∈G V g,�) be an object in (G, θ)-Mod.
Then � can be extended by linearity to a map � : kG ⊗ V → V . Define ρV : V → kG ⊗ V , by setting
ρV (v) = g ⊗ v for all v ∈ V g . Therefore, the assignments(

V =
⊕
g∈G

V g,�
)

�→ (V ,ρV ,�), f �→ f

define a functor R : (G, θ)-Mod → H
HYD. It is clear that LR = Id and RL = Id. �

A.5. As a consequence of the previous result, the pre-braided monoidal structure on kθ G
kθ G

YD induces a
pre-braided monoidal structure on (G, θ)-Mod as follows. The unit is k regarded as a G-graded vector
space whose homogeneous components are all zero excepted the one corresponding to 1G . Moreover
h � k = εH (h)k for all h ∈ H , k ∈ k. The tensor product is defined by

(V ,�) ⊗ (W ,�) = (V ⊗ W ,�)

where
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(V ⊗ W )g =
⊕
h∈H

(Vh ⊗ Wh−1 g)

and, for all v ∈ V g , w ∈ Wl , we have

h � (v ⊗ w) = θ(hgh−1,hlh−1,h)θ(h, g, l)

θ(hgh−1,h, l)
(h � v) ⊗ (h � w).

The constraints are the same of HM viewed as morphisms in H
HYD.

The braiding cV ,W : V ⊗ W → W ⊗ V is given, for all v ∈ V g , w ∈ Wl , by

cV ,W (v ⊗ w) = (g � w) ⊗ v.
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