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Let k be a field of characteristic p, where p is a prime number, let
ppk(G) be the Grothendieck group of p-permutation kG-modules,
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article, we find all the composition factors of the biset functor
Cppk restricted to the category of abelian groups.
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1. Introduction

Let k be an algebraically closed field of characteristic p, where p is a prime number.
Let G be a finite group and let ppk(G) be the Grothendieck group of p-permutation kG-modules.

If we tensor everything with C and if G varies, Cppk becomes a C-linear biset functor (Defini-
tion 31).

Recall that the simple biset functors S H,V are parametrized by pairs (H, V ), where H is a finite
group and V a simple COut(H)-module.

We want to describe the composition factors of the biset functor Cppk restricted to the category of
abelian groups. This is similar in spirit to the work The composition factors of the functor of permutation
modules [1], dealing with the subfunctor of permutation modules.

In order to work with abelian groups, we will define the tensor product of biset functors on groups
of coprime order. Let Cp×p′ be the category whose objects are finite groups of the form P × Q where
P is a p-group and Q is a p′-group (the morphisms are defined using bisets).

In this article, we will prove the following theorem:
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Theorem 1. The composition factors of Cppk on Cp×p′ are the simple functors SC p×C p×Cm,Cξ
and SCm,Cξ

,
where (m, ξ) runs over the set of pairs consisting of a positive integer m prime to p and a primitive character
ξ : (Z/mZ)� → C� . Their multiplicity as composition factor is 1.

Restricting to abelian groups, we obtain the following corollary:

Corollary 2. If G is a finite abelian group and V is a simple COut(G)-module then SG,V is a composition factor
of Cppk if and only if there exists a positive integer m prime to p and a primitive character ξ : (Z/mZ)� → C�

such that G ∼= Cm or G ∼= C p × C p × Cm, where V is the 1-dimensional module Cξ . Moreover, the multiplicity
of SG,V as composition factor is 1.

This article begins with some background results on biset functors and composition factors. Then
we define the tensor product of biset functors on groups of coprime order and show that the ten-
sor product of simple functors is also a simple functor. Using this and the composition factors of
the Burnside functor CB and of the functor CRk of ordinary representation obtained by Serge Bouc
[5, Chapters 5 and 7], we will find the composition factors of the functor of p-permutation modules
Cppk . So we will have the proof of Theorem 1. Then we will restrict the category Cp×p′ to abelian
groups to obtain Corollary 2.

All groups are supposed finite, all vector spaces are finite dimensional and all modules are finitely
generated left modules. Let G and H be finite groups. All G-sets and all (H, G)-bisets are finite. We
denote by [U ] the isomorphism class of U (where U can be a group, a vector space, a module, a G-set,
an (H, G)-biset, . . .). In the sequel, we assume that k is an algebraically closed field of characteristic p,
where for convenience, we allow p to be either a prime number or 0.

2. Background on biset functors

2.1. The category of biset functors

We begin with some facts on biset functors. See [5] for more details.

Definition 3. Let G and H be finite groups. Then B(H, G) is the Grothendieck group of the isomor-
phism classes of finite (H, G)-bisets (for the disjoint union).

Notation 4. (See [5, Definition 2.4.9 and Notation 2.4.10].) Let G be a group. We denote by IdG the
(G, G)-biset G where the two actions are defined by left and right multiplication in G . We also denote
by IdG the image of IdG in B(G, G).

The product ×H can be extended to a map

×H : B(G, H) × B(H, K ) → B(G, K )

such that [V ] ×H [U ] = [V ×H U ] for every (G, H)-biset V and every (H, K )-biset U .

Definition 5. (See [5, Definition 3.1.1].) We define the biset category GrB of finite groups as follows:

• The objects of GrB are all finite groups;
• If G and H are finite groups, then

HomGrB(G, H) = B(H, G);
• If G , H and K are finite groups, then the composition v ◦ u is equal to v ×H u, for all morphisms

u ∈ B(H, G) and for all morphisms v ∈ B(K , H);
• For any finite group G , the identity morphism of G in GrB is equal to IdG .
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Let R be a commutative noetherian ring with identity element.

Definition 6. (See [5, Definition 3.1.6].) We define the category RGrB as follows:

• The objects of RGrB are all finite groups;
• If G and H are finite groups, then

HomRGrB(G, H) = R ⊗Z B(H, G);

• The composition of morphisms in RGrB is the R-linear extension of the composition in GrB;
• For any finite group G , the identity morphism of G in RGrB is equal to IdR ⊗Z IdG .

Definition 7. (See [5, Definition 3.2.2].) Let D be a preadditive subcategory of GrB. A biset functor
defined on D with values in R-mod is an R-linear functor from RD to the category R-mod of all
finitely generated R-modules.

Biset functors over RD, with values in R-mod, are the objects of a category, denoted by FD,R ,
where morphisms are natural transformations of functors, and composition of morphisms is compo-
sition of natural transformations.

Proposition 8. (See [5, Proposition 3.2.8].) Let D be a preadditive subcategory of GrB.

1. The category FD,R is an R-linear abelian category: If f : F → F ′ is a morphism of biset functors, then for
every object G of D

(
Ker( f )

)
(G) = Ker

(
f (G)

)
,

(
Coker( f )

)
(G) = Coker

(
f (G)

)
.

2. A sequence 0 → F
f−→ F ′ f ′−→ F ′′ → 0 is an exact sequence of FD,R if and only if for any object G of D,

the sequence

0 → F (G)
f (G)−−−→ F ′(G)

f ′(G)−−−→ F ′′(G) → 0

is an exact sequence of R-modules.

Remark 9. For this proposition, we need the fact that R is noetherian.

Definition 10. (See [5, Definition 4.1.7].) A class D of finite groups is said to be closed under taking
subquotients if any group isomorphic to a subquotient of an element of D is in D.

A subcategory D of GrB is called replete if it is a full subcategory whose class of objects is closed
under taking subquotients.

A subcategory C of RGrB is called replete if there exists a replete subcategory D of GrB such that
C = RD.

2.2. Simple functors and composition factors

Let R be a commutative ring with identity element and D be a replete subcategory of GrB con-
taining group isomorphisms. We set C = RD.

Now we recall some results on simple functors of the category FD,R . For more details, see [3,5,2].

Definition 11. A functor is said simple if it is non-zero and its only subfunctors are itself and the zero
functor.
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Remark 12. Proposition 4.2.2 of [5] implies that the restriction to a full subcategory of a simple
functor is either zero or a simple functor.

Definition 13. (See [5, Example 3.3.5].) Let G be an object of C and V be a simple R Out(G)-module.
Then V is also an EndC(G)-module and we define the biset functor LG,V by:

• For all object H of C , we set

LG,V (H) = HomC(G, H) ⊗EndC(G) V = R B(H, G) ⊗R B(G,G) V .

• For all morphism ϕ : H → H ′ in C , LG,V (ϕ) : LG,V (H) → LG,V (H ′) is defined by

LG,V (ϕ) : LG,V (H) → LG,V
(

H ′),
f ⊗ v �→ (ϕ ◦ f ) ⊗ v.

We can notice that LG,V (G) ∼= V .

Proposition 14. (See [5, Corollary 4.2.4].) Let G be an object of C and V be a simple EndC(G)-module. Then the
functor LG,V has a unique proper maximal subfunctor J G,V , and the quotient SG,V = LG,V / J G,V is a simple
object of FD,R , such that SG,V (G) ∼= V .

Remark 15. (See [5, Remark 4.2.6].) Let H be an object of C . Then J G,V (H) is equal to the set of finite
sums

∑n
i=1 ϕi ⊗ vi in LG,V (H), where ϕi ∈ HomC(G, H) and vi ∈ V , such that

∑n
i=1(ψ ◦ϕi) · vi = 0 for

any ψ ∈ HomC(H, G), where (ψ ◦ ϕi) · vi denotes the image of the element vi of V under the action
of the endomorphism ψ ◦ ϕi of G .

The simple objects of the category FD,R are labeled by pairs (G, V ), where G is a finite group
and V a simple R Out(G)-module. We denote by SG,V the simple functor associated to (G, V ). If
F ∈ FD,R is a simple functor, then F ∼= SG,V where G is the smallest group (unique up to isomor-
phism) such that F (G) 	= {0} and V = F (G). We can define a notion of isomorphism on those pairs
such that two simple functors are isomorphic if and only if the corresponding pairs are isomorphic
[5, Theorem 4.3.10].

Definition 16. Let F be a biset functor on C . A simple functor S is a composition factor of F if there
exist subfunctors F ′ ⊆ F ′′ ⊆ F such that F ′′/F ′ ∼= S .

Definition 17. Let G be an object of C . We define the category C↓G as the full subcategory of C whose
objects are subquotients of G .

Definition 18. (See [10, p. 20].) Let G be a fixed object of C and F be a biset functor on C . The functor
F has a composition series over G if there is a series of subfunctors

0 = T0 ⊆ B1 ⊂ T1 ⊆ · · · ⊆ Bm ⊂ Tm ⊆ Bm+1 = F

such that:

• Ti/Bi is a simple functor, whose restriction to C↓G is non-zero for all i = 1, . . . ,m.
• ResCC↓G

(Bi+1/Ti) = 0 for all i = 0, . . . ,m.

If such a composition series exists, we will call the set of simple functors Ti/Bi together with their
multiplicities the composition factors of F over G .
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Remark 19. The composition factors of F over G correspond exactly to the composition factors of F
which are non-zero on G . In particular, this allows us to have a notion of multiplicity for composition
factors (thanks to the following proposition and theorem).

Proposition 20. (See [10, Proposition 3.1].) Let G be a fixed object of C and F a biset functor on C . If F
has a composition series over G, then any other composition series over G of F has the same length and the
composition factors on G (taken with multiplicities) are the same.

Theorem 21. We suppose that R is a field. Then every biset functor on C has a composition series over G, for
every group G in C .

Proof. This is a consequence of Theorem 3.3, p. 22 of [10]. �
3. Tensor product of biset functors on groups of coprime order

Let k be an algebraically closed field. Let π be a set of prime numbers. Let P be the full subcate-
gory of kGrB whose objects are all finite π -groups and let Q be the full subcategory of kGrB whose
objects are all finite π ′-groups. Moreover, let CP,Q be the full subcategory of kGrB whose objects are
all the groups of the form P × Q where P is an object of P and Q is an object of Q. Those three
categories are replete.

Let FP be a biset functor on the category P and FQ be a biset functor on the category Q. The
aim is to construct a biset functor F = FP ⊗k FQ on the category CP,Q , which depends functorially
on both FP and FQ .

We start by defining F on the objects of CP,Q: Let G = P × Q , where P is an object of P and Q
is an object of Q. We set

F (G) = FP (P ) ⊗k FQ(Q ).

As FP (P ) and FQ(Q ) are finite dimensional k-vector spaces, F (G) is also a finite dimensional
k-vector space.

Now we have to define F (μ) when μ is an element of kB(H, G) (where P and P ′ are objects of
P and Q and Q ′ are objects of Q such that G = P × Q and H = P ′ × Q ′). In order to do this, we
need the following proposition:

Proposition 22. Let G, G ′ , H and H ′ be finite groups. If U is a (G, G ′)-biset and V is an (H, H ′)-biset, then
U × V is a (G × H, G ′ × H ′)-biset for the structure given by

(g,h) · (u, v) · (g′,h′) = (
gxg′,hyh′),

for all g ∈ G, for all g′ ∈ G ′ , for all h ∈ H, for all h′ ∈ H ′ , for all u ∈ U and for all v ∈ V . The correspondence
(U , V ) �→ U × V induces a bilinear map from B(G, G ′)× B(H, H ′) to B(G × H, G ′ × H ′), hence a linear map

ε : B
(
G, G ′) ⊗Z B

(
H, H ′) → B

(
G × H, G ′ × H ′),

which is an injective Z-module homomorphism preserving identity elements. If G × G ′ and H × H ′ have
coprime order, this map is an isomorphism.

Proof. It is a generalization of Proposition 2.5.14 b), pp. 38–39 of [5]. The proof is analogous. The fact
that the correspondence induces a bilinear map also comes from Lemma 8.1.2, p. 135 of [5]. �
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Remark 23. The previous proposition remains true if we replace Z by k. We obtain a homomorphism
of k-vector spaces

ε : kB
(
G, G ′) ⊗k kB

(
H, H ′) → kB

(
G × H, G ′ × H ′)

which becomes an isomorphism if G × G ′ and H × H ′ have coprime order. If moreover G = G ′ and
H = H ′ , it becomes an isomorphism of k-algebras.

Let G = P × Q and H = P ′ × Q ′ , where P and P ′ are objects of P and Q and Q ′ are objects of Q.
Let u be an element of CB(P × Q , P ′ × Q ′). Then we define F (u) : F (G) → F (H) as the map

n∑
i=1

λi FP (uP,i) ⊗k FQ(uQ,i) : FP (P ) ⊗k FQ(Q ) → FP
(

P ′) ⊗k FQ
(

Q ′),
where ε−1(u) = ∑n

i=1 λiuP,i ⊗k uQ,i , with uP,i ∈ kB(P , P ′) and uQ,i ∈ kB(Q , Q ′), for all i = 1, . . . ,n.

Proposition 24.

1. The above constructions define a biset functor F = FP ⊗k FQ on CP,Q .
2. The assignment (FP , FQ) �→ FP ⊗k FQ is a k-bilinear functor from FP,k ×FQ,k to FCP,Q,k.

Proof. 1. Since ε preserves identity elements, it is easy to check that F (IdG) = IdF (G) for all objects G
of CP,Q .

It remains to check that F (u1 ◦ u2) = F (u1) ◦ F (u2) for all u1 ∈ kB(P ′′ × Q ′′, P ′ × Q ′) and for all
u2 ∈ kB(P ′ × Q ′, P × Q ). By k-linearity, it is enough to verify this in the case of transitive bisets. Let P ,
P ′ and P ′′ be objects of P , Q , Q ′ and Q ′′ be objects of Q, U be a transitive (P ′′ × Q ′′, P ′ × Q ′)-biset
and V be a transitive (P ′ × Q ′, P × Q )-biset. Then, by Proposition 22, there exists a (P ′′, P ′)-biset
UP , a (P ′, P )-biset VP , a (Q ′′, Q ′)-biset UQ and a (Q ′, Q )-biset VQ such that

U = UP × UQ and V = VP × VQ.

Then we have

F
([U ]) ◦ F

([V ]) = (
FP

([UP ]) ⊗k FQ
([UQ])) ◦ (

FP
([VP ]) ⊗k FQ

([VQ]))
= (

FP
([UP ]) ◦ FP

([VP ])) ⊗k
(

FQ
([UQ]) ◦ FQ

([VQ]))
= FP

([UP ×P ′ VP ]) ⊗k FQ
([UQ ×Q ′ VQ])

= F
([U ×P ′×Q ′ V ])

because there exists an isomorphism of (P ′′ × Q ′′, P × Q )-bisets

(UP ×P ′ VP ) × (UQ ×Q ′ VQ) ∼= (UP × UQ) ×P ′×Q ′ (VP × VQ).

2. We define a map ν : FP,k × FQ,k → FCP,Q,k . On the objects, ν is defined by ν(FP , FQ) =
FP ⊗k FQ . Let ϕ : FP → F ′

P and ψ : FQ → F ′
Q be two morphisms of FP,k and FQ,k respectively.

Then ν(ϕ,ψ) is defined by

ν(ϕ,ψ)(P , Q ) = ϕ(P ) ⊗ ψ(Q ),
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for any object P of P and any object Q of Q. This defines a k-bilinear functor. We leave the details
to the read. �
Proposition 25. Let FQ be a biset functor on the category Q. Then the functor FP �→ FP ⊗k FQ is an exact
functor from FP,k to FCP×Q,k.

Proof. Let 0 → FP
μ−→ F ′

P
η−→ F ′′

P → 0 be an exact sequence of biset functors on the category P and
let FQ be a biset functor on the category Q. We can define an exact sequence of biset functors on
CP,Q:

0 → FP ⊗k FQ
μ⊗k IdFQ−−−−−−→ F ′

P ⊗k FQ
η⊗k IdFQ−−−−−→ F ′′

P ⊗k FQ → 0.

We begin by defining μ ⊗k IdFQ and verifying that this is a natural transformation. Let G = P × Q ,
where P is an object of P and Q is an object of Q. We define (μ ⊗k IdFQ )(G) : (FP ⊗k FQ)(G) →
(F ′

P ⊗k FQ)(G) by

(μ ⊗k IdFQ)(P × Q ) = μ(P ) ⊗k IdFQ(Q ) : FP (P ) ⊗k FQ(Q ) → F ′
P (P ) ⊗k FQ(Q ).

It is easy to check that it is a natural transformation, by verifying that the diagrams involved in this
property are commutative for transitive bisets, using the fact that we have k-linear maps. The map
η ⊗k IdFQ is defined in the same way.

Now we have to verify that we really obtain an exact sequence. By Proposition 8, it is enough to
verify that it is an exact sequence when evaluating in a group G of CP,Q . Let G = P × Q , where P is
an object of P and Q is an object of Q. We have to check that the following sequence of C-vector
spaces is exact:

0 → FP (P ) ⊗k FQ(Q ) → F ′
P (P ) ⊗k FQ(Q ) → F ′′

P (P ) ⊗k FQ(Q ) → 0.

But, by Proposition 8, the following sequence is exact:

0 → FP (P )
μ(P )−−−→ F ′

P (P )
η(P )−−→ F ′′

P (P ) → 0,

which implies that the previous sequence is also exact. �
3.1. The product of simple functors

Let P be an object of P , Q be an object of Q, V be a simple k Out(P )-module and W be a simple
k Out(Q )-module.

Remark 26.

1. When P and Q are finite groups of coprime orders, there is a natural isomorphism Out(P × Q ) ∼=
Out(P ) × Out(Q ).

2. Since k is an algebraically closed field, the simple modules for the algebra k Out(P )⊗k k Out(Q ) ∼=
k Out(P × Q ) are exactly the modules V ⊗k W , where V is a simple k Out(P )-module, and W is
a simple k Out(Q )-module.

We want to show the following theorem:

Theorem 27. We consider S P ,V as a simple functor on P and S Q ,W as a simple functor on Q. The functor
S P ,V ⊗k S Q ,W is, on the category CP,Q , isomorphic to the simple functor S P×Q ,V ⊗k W .
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In order to prove this theorem, we first need the following proposition:

Proposition 28. We consider L P ,V as a functor on P and L Q ,W as a functor on Q. The functor L P ,V ⊗k L Q ,W

is, on the category CP,Q , isomorphic to the functor L P×Q ,V ⊗k W .

Proof. Let G be an object of P and H be an object of Q. Then

(L P ,V ⊗k L Q ,W )(G × H) = (
kB(G, P ) ⊗kB(P ,P ) V

) ⊗k
(
kB(H, Q ) ⊗kB(Q ,Q ) W

)
and

(L P×Q ,V ⊗k W )(G × H) = kB(G × H, P × Q ) ⊗kB(P×Q ,P×Q ) (V ⊗k W )

∼= (
kB(G, P ) ⊗k kB(H, Q )

) ⊗kB(P ,P )⊗kkB(Q ,Q ) (V ⊗k W ).

Those are isomorphic k-vector spaces, by the map ϕ(G × H) defined by

ϕ(G × H) : (L P ,V ⊗k L Q ,W )(G × H) → L P×Q ,V ⊗k W (G × H),

(u1 ⊗kB(P ,P ) v) ⊗k (u2 ⊗kB(Q ,Q ) w) �→ ε(u1 ⊗k u2) ⊗kB(P×Q ,P×Q ) (v ⊗k w).

This induces a natural transformation ϕ : L P ,V ⊗k L Q ,W → L P×Q ,V ⊗k W and completes the proof of the
proposition. �

Now we have the following commutative diagram:

L P ,V ⊗k L Q ,W
proj⊗kproj

ψ
ϕ

S P ,V ⊗k S Q ,W

L P×Q ,V ⊗k W
proj

S P×Q ,V ⊗k W .

We set ψ = proj ◦ ϕ : L P ,V ⊗k L Q ,W → S P×Q ,V ⊗k W .

Lemma 29. The kernel of proj ⊗k proj is contained in the kernel of ψ .

Proof. By Proposition 8, it is enough to prove it for a group G × H , where G is an object of P and H
is an object of Q. Moreover,

Ker(proj ⊗k proj) = J P ,V ⊗k L Q ,W + L P ,V ⊗k J Q ,W

and Remark 15 gives a description of J P ,V (G) and J Q ,W (H).
Let n ∈ N, ui ∈ HomP (G, P ) and vi ∈ V such that

∑n
i=1(α ×G ui) · vi = 0 for all α ∈ HomP (P , G)

(that is
∑n

i=1 ui ⊗ vi ∈ J P ,V (G)). Let u ⊗ w ∈ L Q ,W . We have to verify that ψ(G × H)((
∑n

i=1 ui ⊗ vi)⊗k
(u ⊗ w)) = 0, which is equivalent to checking that ϕ(G × H)((

∑n
i=1 ui ⊗ vi) ⊗k (u ⊗ w)) ∈

J P×Q ,V ⊗k W (G × H). But

ϕ(G × H)

((
n∑

i=1

ui ⊗ vi

)
⊗k (u ⊗ w)

)
=

n∑
i=1

ε(ui ⊗k u) ⊗ (vi ⊗k w).

Let U be a transitive (P × Q , G × H)-biset. Then there exists a (P , G)-biset UP and a (Q , H)-biset
UQ such that U = UP × UQ . Then
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n∑
i=1

([U ] ×G×H ε(ui ⊗k u)
)
(vi ⊗k w) =

n∑
i=1

(
ε
(([UP ] ×G ui

) ⊗k
([UQ] ×H u

)))
(vi ⊗k w)

=
n∑

i=1

([UP ] ×G ui
)
(vi)︸ ︷︷ ︸

=0

⊗k
([UQ] ×H u

)
(w)

= 0.

By k-linearity, this implies that

ϕ(G × H)

((
n∑

i=1

ui ⊗ vi

)
⊗k (u × w)

)
∈ J P×Q ,V ⊗k W (G × H).

Similarly, we can show that

ϕ(G × H)
(
L P ,V (G) ⊗k J Q ,W (H)

) ⊆ J P×Q ,V ⊗k W (G × H).

This completes the proof of the lemma. �
As Ker(proj ⊗k proj) ⊆ Kerψ , there exists a natural transformation

μ : S P ,V ⊗k S Q ,W → S P×Q ,V ⊗k W .

We will show that it is an isomorphism. It is enough to show it for a group G × H of CP,Q .

Lemma 30. The k-vector space S P×Q ,V ⊗k W (G × H) is zero if and only if S P ,V (G) or S Q ,W (H) is zero.

Proof. If S P ,V (G) or S Q ,W (H) is zero, then S P ,V (G) ⊗k S Q ,W (H) = 0. As μ(G × H) is surjective (be-
cause ϕ and proj are surjective and so is ψ ), we have that S P×Q ,V ⊗k W (G × H) = 0.

Conversely, suppose that S P×Q ,V ⊗k W (G × H) = 0. If S P ,V (G) = 0, we have finished, so we can sup-
pose that S P ,V (G) 	= 0, that is J P ,V (G) � L P ,V (G). Therefore, there exists n ∈ N, ϕi ∈ kB(G, P ), vi ∈ V
for all 1 � i � n and ρ ∈ kB(P , G) such that

∑n
i=1(ρ ×G ϕi)(vi) 	= 0. We will show that S Q ,W (H) = 0.

It is enough to show that the elements u ⊗ w , where u ∈ kB(H, Q ) and w ∈ W , are in J Q ,W (H),
because, this implies that J Q ,W (H) = L Q ,W (H) and so S Q ,W (H) = 0. Let u ∈ kB(H, Q ) and w ∈ W .
For all ũ ∈ kB(Q , H), as

∑n
i=1 ε(ϕi ⊗k u) ⊗ (vi ⊗k w) is in L P×Q ,V ⊗k W (G × H) = J P×Q ,V ⊗k W (G × H):

0 =
n∑

i=1

(
ε(ρ ⊗k ũ)ε(ϕi ⊗k u)

)
(vi ⊗k w)

=
n∑

i=1

ε
(
(ρ ×G ϕi) ⊗k ( ũ ×H u)

)
(vi ⊗k w)

=
n∑

i=1

(
(ρ ×G ϕi)(vi)

) ⊗k
(
( ũ ×H u)(w)

)

=
(

n∑
i=1

(ρ ×G ϕi)(vi)

)
︸ ︷︷ ︸

	=0

⊗k
(
( ũ ×H u)(w)

)
.
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Consequently, we must have that ( ũ ×H u)(w) = 0. As ũ is arbitrary, this implies that u ⊗k w ∈
J Q ,W (H). This completes the proof of the lemma. �

Now we can suppose that S P×Q ,V ⊗k W (G × H) and S P ,V (G) ⊗k S Q ,W (H) are non-zero. But then,
by Corollary 4.2.4, p. 58 of [5], we know that S P ,V (G) is a simple kB(G, G)-module, S Q ,W (H) is a
simple kB(H, H)-module and S P×Q ,V ⊗k W (G × H) is a simple kB(G × H, G × H)-module. As k is al-
gebraically closed, the tensor product of two simple modules on finite dimensional k-algebras is a
simple module on the tensor product of the two algebras (Proposition 3.56, p. 65 of [7] and Schur’s
lemma [8, Lemma 27.3, p. 181]), so S P ,V (G) ⊗k S Q ,W (H) is a simple kB(G, G) ⊗k kB(H, H)-module.
But kB(G, G) ⊗k kB(H, H) ∼= kB(G × H, G × H) as k-algebras (Remark 23), so we can consider
S P ,V (G)⊗k S Q ,W (H) as a simple kB(G × H, G × H)-module. Now we have a non-zero homomorphism
of modules between two simple kB(G × H, G × H)-modules, which implies that it is an isomorphism
by Schur’s lemma [8, Lemma 27.3, p. 181]. Now we have proved Theorem 27.

4. The biset functor of p-permutation modules

Now, suppose that k is an algebraically closed field of characteristic p, where p is a prime number.
First, we need to define Cppk and two other biset functors:

Definition 31. Let G be a finite group. We define ppk(G) as the Grothendieck group of the set of
isomorphism classes of p-permutation kG-modules (i.e. direct sums of indecomposable trivial source
kG-modules) with respect to direct sums. For every (H, G)-biset U we define

ppk

([U ]) : ppk(G) → ppk(H),

[M] �→ [kU ⊗kG M]
for every trivial source kG-module M . This extends by C-linearity to a map Cppk([U ]) : Cppk(G) →
Cppk(H), where Cppk(G) = C⊗Z ppk(G).

Now we can define Cppk(u) for every u ∈C⊗Z B(H, G). Let u = ∑n
i=1 λi[Ui] where λi ∈C and Ui

is an (H, G)-biset, for every i = 1, . . . ,n. Then Cppk(u) = ∑n
i=1 λiCppk([Ui]). This defines a structure

of biset functor Cppk .

Definition 32. Let G be a finite group and B(G) be the Grothendieck group of the set of isomorphism
classes of finite G-sets (for disjoint union). Then B(G) is a ring (called the Burnside ring of G), where
the multiplication is defined by

[U ] · [V ] = [U × V ]
for all G-sets U and V (extended to B(G) by bilinearity).

Let G and H be two finite groups. For every (finite) (H, G)-biset U , we can define the following
map:

B
([U ]) : B(G) → B(H),

[V ] �→ [U ×G V ]
for every (finite) G-set V .

This map can be extended by C-linearity to a map CB([U ]) :CB(G) →CB(H), where CB(G) =
C⊗Z B(G). As for Cppk , we can now define CB(u) for every u ∈C⊗Z B(H, G). This defines a structure
of biset functor CB .

Remark 33. Let G be a finite group. The group B(G) is isomorphic to the group B(G,1).
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Definition 34. (See [5, Notation 5.2.2 and Definition 5.4.6].) If G is a finite group, and N is a normal
subgroup of G , denote by mG,N the rational number defined by

mG,N = 1

|G|
∑

X N=G

|X |μ(X, G),

where μ is the Möbius function of the poset of subgroups of G .
A finite group G is called a B-group if for any non-trivial normal subgroup N of G , the constant

mG,N is equal to zero.

Theorem 35. (See [5, Remark 5.5.2].) Let D be a replete subcategory of GrB. The composition factors of the
Burnside functor CB on CD are exactly the functors SG,C , where G is an object of D which is a B-group.

Definition 36. (See [5, Notation 7.1.1].) Let G be a finite p′-group. Denote by Rk(G) the Grothendieck
group of the category of finite dimensional kG-modules (for exact sequences). If H is another finite
p′-group and U is an (H, G)-biset, denote by Rk([U ]) : Rk(G) → Rk(H) the group homomorphism
defined by

Rk
([U ])([E]) = [kU ⊗kG E],

for all kG-modules E . By Z-linearity, we can extend this definition to Rk(G).
As for Cppk and CB , this construction can be extend by C-linearity to a biset functor CRk defined

on CD with values in C-mod, where D is the full subcategory of GrB of all finite p′-groups.

Definition 37. (See [5, Definition 7.3.1].) Let m ∈ N� . A character ξ : (Z/mZ)� → C� is called primitive
if it cannot be factored through any quotient (Z/nZ)� of (Z/mZ)� , where n is a proper divisor of m.

Theorem 38. The functor CRk is a semisimple object of FD,C (where D is the full subcategory of GrB of all
finite p′-group). More precisely

CRk
∼=

⊕
(m,ξ)

SCm,Cξ
,

where (m, ξ) runs through the set of pairs consisting of a positive integer m prime to p and a primitive char-
acter ξ : (Z/mZ)� → C� and Cξ is the vector space C on which the group Out(Cm) ∼= (Z/mZ)� acts via ξ .

Proof. This is a consequence of [5, Corollary 7.3.5] and the fact that when k is an algebraically closed
field of positive characteristic p, the restrictions of the functors CRk and CRC to p′-groups are iso-
morphic biset functors. �

Let Cp be the full subcategory of CGrB whose objects are all the finite p-groups and let Cp′ be the
full subcategory of CGrB whose objects are all the finite p′-groups. Let moreover Cp×p′ be the full
subcategory of CGrB whose objects are all the groups of the form P × Q where P is a finite p-group
and Q is a finite p′-group. We will now prove to the following theorem:

Theorem 39. The biset functor Cppk on the category Cp×p′ is isomorphic to the functor CB ⊗C CRk, where
CB is considered as a functor on Cp and CRk as a functor on Cp′ .



M. Baumann / Journal of Algebra 392 (2013) 142–157 153
Let P be a finite p-group and Q be a finite p′-group. We define μ(P × Q ) by

μ(P × Q ) :CB(P ) ⊗CRk(Q ) →Cppk(P × Q ),

[X] ⊗C [V ] �→ [kX ⊗k V ]

for all P -set X and for all kQ -module V . The action of P × Q on kX ⊗k V is such that P acts
on kX and Q acts on V . The k(P × Q )-module kX ⊗k V is a p-permutation module because V is a
p-permutation kQ -module. We extend the definition of μ(P × Q ) to CB(P )⊗CRk(Q ) by C-linearity.
It is a bijective C-linear map: we are going to prove that its inverse is the following map:

μ−1(P × Q ) : Cppk(P × Q ) →CB(P ) ⊗CRk(Q ),

[M] �→ [P/D] ⊗ [V ],

for all indecomposable p-permutation k(P × Q )-module, where D is a vertex of M and V is a simple
kQ -module such that M = IndP×Q

D×Q InfD×Q
Q V .

Proposition 40. Such a D and such a V always exist.

Proof. By the classification of the p-permutation indecomposable modules (Theorem 3.2 of [6] or
Theorem 27.10 of [9]), there exists a vertex D of M and a projective indecomposable kN P (D)/D ×
Q -module W such that M is a direct summand of

IndP×Q
N P (D)×Q InfN P (D)/D×Q W .

But then, there exists a simple kQ -module V such that W = IndN P (D)/D×Q
Q V and so M is a direct

summand of

IndP×Q
N P (D)×Q InfN P (D)/D×Q IndN P (D)/D×Q

Q V .

But IndP×Q
N P (D)×Q InfN P (D)/D×Q IndN P (D)/D×Q

Q V is indecomposable (Corollary 6.11, [4]) and so equal
to M . But then

M ∼= IndP×Q
N P (D)×Q InfN P (D)/D×Q IndN P (D)/D×Q

Q V

∼= IndP×Q
N P (D)×Q IndN P (D)/D×Q

D×Q InfD×Q
Q V

∼= IndP×Q
D×Q InfD×Q

Q V

which concludes the proof. �
Lemma 41. If D is a subgroup of P and V is a kQ -module, then IndP×Q

D×Q InfD×Q
Q V is isomorphic to the

k(P × Q )-module k(P/D) ⊗k V .

Proof. We have

IndP×Q
D×Q InfD×Q

Q V ∼= k(P × Q ) ⊗k(D×Q ) V .

Now we define the following homomorphism of k(P × Q )-modules:
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ϕ : k(P/D) ⊗k V → k(P × Q ) ⊗k(D×Q ) V ,

n∑
i=1

λi(pi D) ⊗k v �→
n∑

i=1

λi(pi,1) ⊗k(D×Q ) v

for all
∑n

i=1 λi(pi D) ∈ k(P/D) and for all v ∈ V . It is easy to check that this map is well defined and
a surjective homomorphism of k(P × Q )-modules. It remains to check that it’s bijective. But

dimk
(
k(P/D) ⊗k V

) = [P : D] · dimk V

= [P × Q : D × Q ] · dimk V

= dimk
(
k(P × Q ) ⊗k(D×Q ) kQ ⊗kQ V

)
. �

Proposition 42. The application μ−1(P × Q ) is the inverse of the application μ(P × Q ).

Proof. Let M be an indecomposable p-permutation k(P × Q )-module. Let D be a vertex of M and V
be a simple kQ -module such that M = IndP×Q

D×Q InfD×Q
Q V . Then

μ(P × Q )μ−1(P × Q )
([M]) = μ(P × Q )

([P/D] ⊗ [V ])
= [

k(P/D) ⊗k V
]

= [
IndP×Q

D×Q InfD×Q
Q V

]
= [M].

Conversely, let D be a subgroup of P and V be a simple kQ -module. Then

μ(P × Q )
([P/D] ⊗k [V ]) = [

k(P/D) ⊗k V
]

so if we prove that D is a vertex of k(P/D) ⊗k V then

μ−1(P × Q )μ(P × Q )
([P/D] ⊗k [V ]) = [P/D] ⊗k [V ].

As M = k(P/D) ⊗k V ∼= IndP×Q
D×Q InfD×Q

Q V is a direct summand of

IndP×Q
D×Q InfD×Q

Q kQ ∼= IndP×Q
D×Q InfD×Q

Q IndQ
1 k

∼= IndP×Q
D×Q IndD×Q

D InfD
1 k

∼= IndP×Q
D InfD

1 k

∼= IndP×Q
D k,

M is relatively D-projective. So some vertex of M must be a subgroup of D , say D̃ . Then M is a direct
summand of IndP×Q˜ k, so ResP×Q

D M is a direct summand of ResP×Q
D IndP×Q˜ k. But
D D
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ResP×Q
D M = ResP×Q

D

(
k(P/D) ⊗k V

)
∼=

dimk V⊕
i=1

ResP
D k(P/D)

∼= k ⊕ (other summands),

and

ResP×Q
D IndP×Q

D̃
k ∼=

∑
x∈[D\P×Q /D̃]

IndD
D∩x D̃

Conj(x)ResD̃
Dx∩D̃

k

∼=
∑

x∈[D\P×Q /D̃]
IndD

D∩x D̃
k.

So k is a direct summand of IndD
D∩x D̃

k for some x ∈ P × Q . This is impossible except if D = D̃ because
the kD-module k has vertex D . �

It remains to check that μ is a natural transformation between CB ⊗C CRk and Cppk . Thanks
to the C-linearity of μ, it is enough to verify it for the element of a basis of CB(P × Q , P ′ × Q ′),
where P and P ′ are finite p-groups and Q and Q ′ are finite p′-groups. Let U be a transitive (P × Q ,

P ′ × Q ′)-biset. We have to check that the following diagram commutes

CB(P ) ⊗C CRk(Q )
μ(P×Q )

(CB⊗CRk)([U ])

Cppk(P × Q )

C ppk([U ])

CB(P ′) ⊗C CRk(Q ′)
μ(P ′×Q ′)

Cppk(P ′ × Q ′).

There exists a (transitive) (P , P ′)-biset UP and a (transitive) (Q , Q ′)-biset UQ such that U =
UP × UQ (Proposition 22). It is enough to verify that the diagram commutes for the elements of a
basis of CB(P ) ⊗C CRk(Q ). So let X be a P -set and V a kQ -module. Then

Cppk

([U ]) ◦ μ(P × Q )
([X] ⊗C [V ]) = Cppk

([U ])([kX ⊗k V ])
= [

kU ⊗k(P×Q ) (kX ⊗k V )
]

= [
(kUP ⊗k kUQ) ⊗k(P×Q ) (kX ⊗k V )

]
and

μ
(

P ′ × Q ′) ◦ (CB ⊗C CRk)
([U ])([X] ⊗C [V ])

= μ
(

P ′ × Q ′) ◦ (
CB

([UP ]) ⊗CRk
([UQ]))([X] ⊗C [V ])

= μ
(

P ′ × Q ′)([UP ×P X] ⊗C [kUQ ⊗kQ V ])
= [

k(UP ×P X) ⊗k (kUQ ⊗kQ V )
]

= [
(kUP ⊗kP kX) ⊗k (kUQ ⊗kQ V )

]
.
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Given the definition of the action of P × Q on kUP ⊗k kUQ and kX ⊗k V , it is easy to check that
there is an isomorphism of k(P ′ × Q ′)-modules

(kUP ⊗k kUQ) ⊗k(P×Q ) (kX ⊗k V ) ∼= (kUP ⊗kP kX) ⊗k (kUQ ⊗kQ V ).

This completes the proof of Theorem 39.
Now on Cp′ , CRk decomposes as a direct sum of simple functors:

CRk
∼=

⊕
(m,ξ)

SZ/mZ,Cξ
,

where (m, ξ) runs over the set of pairs consisting of a positive integer m prime to p and a primitive
character ξ : (Z/mZ)� →C� . Consequently, on Cp×p′ , we have the following decomposition:

Cppk
∼=

⊕
(m,ξ)

CB ⊗C SCm,Cξ
,

where (m, ξ) runs over the same set of pairs. So, to find the composition factors of Cppk on Cp×p′ ,
it is enough to find the composition factors of CB ⊗C SZ/mZ,Cξ

on Cp×p′ , for every positive integer m
prime to p and for every primitive character ξ : (Z/mZ)� →C� . By 5.6.9 “The case of p-groups”, p. 94
of [5], we have the following exact sequence, on Cp :

0 → SC p×C p ,C →CB → S1,C → 0.

But now, applying Proposition 25, we have the following exact sequence (on Cp×p′ ):

0 → SC p×C p ,C ⊗C SCm,Cξ
→CB ⊗C SCm,Cξ

→ S1,C ⊗C SCm,Cξ
→ 0.

We can now apply Theorem 27 and we obtain the following exact sequence:

0 → SC p×C p×Cm,Cξ
→CB ⊗C SCm,Cξ

→ SCm,Cξ
→ 0

on Cp×p′ , where the COut(C p ×C p ×Cm)-module Cξ is defined as follows: the action of Out(C p ×C p)

is trivial and Out(Cm) acts through ξ (by Remark 26 Out(C p × C p × Cm) ∼= Out(C p × C p) × Out(Cm),
so we can describe the two actions separately).

Now the composition factors of CB ⊗C SZ/mZ,Cξ
on Cp×p′ are SC p×C p×Cm,Cξ

and SCm,Cξ
. Conse-

quently, we have proved the following theorem:

Theorem 43. The composition factors of Cppk on Cp×p′ are the simple functors SC p×C p×Cm,Cξ
and SCm,Cξ

,
where (m, ξ) runs over the set of pairs consisting of a positive integer m prime to p and a primitive character
ξ : (Z/mZ)� → C� . Their multiplicity as composition factor is 1.

As corollary, we obtain:

Corollary 44. If G is a finite abelian group and V is a simple COut(G)-module then SG,V is a composition
factor of Cppk on CGrB if and only if there exists a positive integer m prime to p and a primitive character
ξ : (Z/mZ)� → C� such that G ∼= Cm or G ∼= C p × C p × Cm, where V is the module Cξ . Moreover, the
multiplicity of SG,V as composition factor is 1.
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