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Let R be a regular ring of characteristic p > 0. In [4], Hochster
showed that the category of Lyubeznik’s FR-modules has
enough injectives, so that every FR-module has an injective
resolution in this category. We show in this paper that under
mild conditions on R, for example when R is essentially of
finite type over an F -finite regular local ring, the category of
F -modules has finite global dimension d+1 where d = dimR.
In [4], Hochster also showed that when M and N are FR-finite
FR-modules, HomFR

(M,N) is finite. We show that in general
Ext1FR

(M,N) is not necessarily finite.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In [4], Hochster showed some properties of Lyubeznik’s F -modules:

Theorem 1.1. (See Theorem 3.1 in [4].) The category of FR-modules over a Noetherian
regular ring R of prime characteristic p > 0 has enough injectives, i.e., every FR-module
can be embedded in an injective FR-module.

Theorem 1.2. (See Theorem 5.1 and Corollary 5.2(b) in [4].) Let R be a Noetherian
regular ring of prime characteristic p > 0. Let M and N be FR-finite FR-modules.
Then HomFR

(M,N) is a finite-dimensional vector space over Z/pZ and, hence, is a
finite set. Moreover, when R is local, every FR-finite FR-module has only finitely many
FR-submodules.
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The main purpose of this paper is to get some further results based on Hochster’s
results. In connection with Theorem 1.1, we prove the following (this can be viewed as
an analogue of the corresponding statement for D-modules in characteristic 0):

Theorem 1.3. Let R be an F -finite regular ring of characteristic p > 0 such that there
exists a canonical module ωR with F !ωR

∼= ωR (this holds if R is essentially of finite type
over an F -finite regular local ring). Then the category of FR-modules has finite global
dimension d + 1 where d = dimR.

Theorem 1.2 makes it quite natural to ask whether the higher Ext groups are also
finite in this category (when M and N are FR-finite FR-modules). We show that in
general this fails even for Ext1:

Example 1.4. Let (R,m,K) be a regular local ring of characteristic p > 0 and di-
mension d � 1, and let E = E(R/m) be the injective hull of the residue field. Then
Ext1FR

(R,E) �= 0. Moreover, when K is infinite, Ext1FR
(R,E) is also infinite. In particu-

lar, E is not injective in the category of FR-modules.

This paper is organized as follows. In Section 2 we review the definitions and basic
properties of right R{F}-modules (i.e., Cartier modules) and Lyubeznik’s FR-modules,
and we introduce the notion of unit right R{F}-modules which is motivated by the ideas
in [2] and [1]. In Section 3 we prove Theorem 1.3, and we also obtain some results of
independent interest on right R{F}-modules and unit right R{F}-modules. In Section 4
we show some (non)finiteness results on Ext1FR

(M,N) when M and N are FR-finite
FR-modules. Examples will be given throughout.

2. Preliminaries

Throughout this paper, R will always denote a Noetherian regular ring of character-
istic p > 0 and dimension d. We use R(e) to denote the target ring of the e-th Frobenius
map F e : R → R. When M is an R-module and x ∈ M is an element, we use M (e)

to denote the corresponding module over R(e) and x(e) to denote the corresponding el-
ement in M (e). We shall let F e(−) denote the Peskine–Szpiro’s Frobenius functor from
R-modules to R-modules. In detail, F e(M) is given by base change to R(e) and then
identifying R(e) with R. Note that by Kunz’s result [5], we know that R(e) is faithfully
flat as an R-module. We say R is F -finite if R(1) is finitely generated as an R-module.
So for an F -finite regular ring, R(1) (and hence R(e) for every e) is finite and projective
as an R-module.

We use R{F} to denote the Frobenius skew polynomial ring, which is the noncommu-
tative ring generated over R by the symbols 1, F, F 2, . . . by requiring that Fr = rpF for
r ∈ R. Note that R{F} is always free as a left R-module and flat as a right R-module.
When R is F -finite, R{F} is projective as a right R-module (because R(1) is projective



L. Ma / Journal of Algebra 402 (2014) 1–20 3
in this case). We say an R-module M is a right R{F}-module if it is a right module
over the ring R{F}, or equivalently, there exists a morphism φ : M → M such that for
all r ∈ R and x ∈ M , φ(rpx) = rφ(x) (the right action of F can be identified with φ).
This morphism can be also viewed as an R-linear map φ : M (1) → M . We note that a
right R{F}-module is the same as a Cartier module defined in [1] (where it is defined
for general Noetherian rings and schemes of characteristic p > 0).

We collect some definitions from [6]. These are the main objects that we shall study
in this paper.

Definition 2.1. (See Definition 1.1 in [6].) An FR-module is an R-module M equipped
with an R-linear isomorphism θ : M → F (M) which we call the structure morphism
of M . A homomorphism of FR-modules is an R-module homomorphism f : M → M ′

such that the following diagram commutes

M
f

θ

M ′

θ′

F (M)
F (f)

F (M ′)

Definition 2.2. (See Definition 1.9 and Definition 2.1 in [6].) A generating morphism
of an FR-module M is an R-module homomorphism β : M0 → F (M0), where M0 is
some R-module, such that M is the limit of the inductive system in the top row of the
commutative diagram

M0
β

β

F (M0)

F (β)

F (β)
F 2(M0)

F 2(β)

F 2(β)

· · ·

F (M0)
F (β)

F 2(M0)
F 2(β)

F 3(M0)
F 3(β)

· · ·

and θ : M → F (M), the structure isomorphism of M , is induced by the vertical arrows
in this diagram. An FR-module M is called FR-finite if M has a generating morphism
β : M0 → F (M0) with M0 a finitely generated R-module.

Now we introduce the notion of unit right R{F}-modules which is an analogue of unit
left R{F}-modules in [2]. This is a key concept in relating Lyubeznik’s FR-modules with
right R{F}-modules. The ideas can be also found in Section 5.2 in [1]. We first recall the
functor F !(−) in the case that R is regular and F -finite: for any R-module M , F !(M) is
the R-module obtained by first considering HomR(R(1),M) as an R(1)-module and then
identifying R(1) with R. Remember that giving an R-module M a right R{F}-module
structure is equivalent to giving an R-linear map M (1) → M . But this is the same as
giving an R(1)-linear map M (1) → HomR(R(1),M). Hence after identifying R(1) with R,
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we find that giving M a right R{F}-module structure is equivalent to giving a map
τ : M → F !M . Moreover, it is straightforward to check that a homomorphism of right
R{F}-modules is an R-module homomorphism g : M → M ′ such that the following
diagram commutes

M
g

τ

M ′

τ ′

F !M
F !(g)

F !M ′

Definition 2.3. A unit right R{F}-module is a right R{F}-module M such that the
structure map τ : M → F !M is an isomorphism.

Remark 2.4. Similarly to Definition 2.2, we introduce the notion of generating morphism
of unit right R{F}-modules. Let M0 be a right R{F}-module with structure morphism
τ0 : M0 → F !(M0). Let M be the limit of the inductive system in the top row of the
commutative diagram

M0
τ0

τ0

F !(M0)

F !(τ0)

F !(τ0)
(F !)2(M0)

(F !)2(τ0)

(F !)2(τ0)

· · ·

F !(M0)
F !(τ0)

(F !)2(M0)
(F !)2(τ0)

(F !)3(M0)
(F !)3(τ0) · · ·

Since R is F -finite, it is easy to see that F !(−) commutes with direct limit. Hence
τ : M → F !M induced by the vertical arrows in the above diagram is an isomorphism.
M is a unit right R{F}-module.

For an F -finite regular ring R, any rank 1 projective module is a canonical module ωR

of R (we refer to [3] for a detailed definition of canonical module and dualizing complex).
When R is local, ωR = R is unique. It is easy to see that F !ωR is always a canonical
module of R (see [3] for more general results). However, to the best of our knowledge,
it is still unknown whether there always exists ωR such that F !ωR

∼= ωR for F -finite
regular ring R. Nonetheless, it is true if either R is essentially of finite type over an
F -finite regular local ring or R is sufficiently affine. We refer to Proposition 2.20 and
Proposition 2.21 in [1] as well as [3] for more details on this question.

The next theorem is well known. It follows from duality theory in [3]. In the context
of the Frobenius morphism it is explained in [1]. Since we need to use this repeatedly
throughout the article, we give a short proof for completeness.

Theorem 2.5. Let R be an F -finite regular ring such that there exists a canonical mod-
ule ωR with F !ωR

∼= ωR. Then the category of unit right R{F}-modules is equivalent to
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the category of FR-modules. Moreover, the equivalence is given by tensoring with ω−1
R ,

its inverse by tensoring with ωR.

Proof. We first note that, for any R-module M ,

(
ω−1
R

)(1) ⊗R(1) HomR

(
R(1),M

) ∼= (
ω−1
R

)(1) ⊗R(1) HomR

(
R(1), ωR

)
⊗R

(
ω−1
R ⊗R M

)
.

Hence after identifying R(1) with R, the above equality becomes

ω−1
R ⊗R F !M ∼= ω−1

R ⊗R F !ωR ⊗R F
(
ω−1
R ⊗R M

) ∼= F
(
ω−1
R ⊗R M

)
where the last equality is by our assumption F !ωR

∼= ωR. Now for any unit right
R{F}-module M , we have an isomorphism M τ−→ F !M . Hence after tensoring with ω−1

R ,
we get ω−1 ⊗R M

id⊗Rτ−−−−−→ ω−1 ⊗R F !M ∼= F (ω−1
R ⊗R M). This shows that ω−1

R ⊗R M is
an FR-module with structure morphism θ given by id⊗R τ . The converse can be proved
similarly. �

Throughout the rest of the paper, we will use ExtiR, ExtiR{F}, ExtiuR{F}, and ExtiFR

(respectively, idR, idR{F}, iduR{F}, idFR
) to denote the i-th Ext group (respectively, the

injective dimension) computed in the category of R-modules, right R{F}-modules, unit
right R{F}-modules, and FR-modules.

We end this section by studying some examples of FR-modules. The simplest ex-
ample of an FR-module is R equipped with structure isomorphism the identity map,
that is, sending 1 in R to 1 in F (R) ∼= R. Note that this corresponds to the unit
right R{F}-module ωR

∼= F !ωR under Theorem 2.5. Another important example is
E = E(R/m), the injective hull of R/m for a maximal ideal m of R. We can give it a gen-
erating morphism β : R/m → F (R/m) by sending 1 to xp−1

1 · · ·xp−1
d (where x1, . . . , xd

represents minimal generators of mRm). We will call these structure isomorphisms of R
and E the standard FR-module structures on R and E. Note that in particular R and
E with the standard FR-module structures are FR-finite FR-modules. Now we provide
a nontrivial example of an FR-module:

Example 2.6. Let R∞ :=
⊕

i∈Z
Rzi denote the infinite direct sum of copies of R equipped

with the FR-module structure by setting

θ : zi → zi+1.

Then R∞ is not FR-finite. It is easy to see that we have a short exact sequence of
FR-modules:

0 → R∞ zi �→zi−zi+1−−−−−−−−→ R∞ zi �→1−−−−→ R → 0

where the last R is equipped with the standard FR-module structure.
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We want to point out that the above sequence does not split in the category
of FR-modules. Suppose g : R → R∞ is a splitting, say g(1) = {yj}j∈Z �= 0.
Then a direct computation shows that θ({yj}) = {ypj }, which is impossible by the
definition of θ. Hence, by Yoneda’s characterization of Ext groups, we know that
Ext1FR

(R,R∞) �= 0.

3. The global dimension of Lyubeznik’s F -modules

Our goal in this section is to prove Theorem 1.3. First we want to show that, when
R is F -finite, the category of right R{F}-modules has finite global dimension d+ 1. We
start with a lemma which is an analogue of Lemma 1.8.1 in [2].

Lemma 3.1. Let R be a regular ring and let M be a right R{F}-module, so that there is
an R-linear map φ : M (1) → M (so for every i, we get an R-linear map φi : M (i) → M

by composing φ i times). Then we have an exact sequence of right R{F}-modules

0 → M (1) ⊗R R{F} α−−→ M ⊗R R{F} β−−→ M → 0

where for every x(1) ∈ M (1),

α
(
x(1) ⊗ F i

)
= φ

(
x(1))⊗ F i − x⊗ F i+1

and for every y ∈ M ,

β
(
y ⊗ F i

)
= φi

(
y(i)).

Proof. It is clear that every element in M (1)⊗RR{F} (resp. M⊗RR{F}) can be written
uniquely as a finite sum

∑
x

(1)
i ⊗ F i where x

(1)
i ∈ M (1) (resp. xi ∈ M) because R{F}

is free as a left R-module (this verifies that our maps α and β are well-defined). It
is straightforward to check that α, β are morphisms of right R{F}-modules and that
β ◦ α = 0 and β is surjective (because β(y ⊗ 1) = φ0(y) = y). So it suffices to show α is
injective and ker(β) ⊆ im(α).

Suppose α(
∑

x
(1)
i ⊗ F i) = 0. By definition of α we get

∑
(φ(x(1)

i ) − xi−1) ⊗ F i = 0.
Hence by uniqueness we get φ(x(1)

i ) = xi−1 for all i. Hence xi = 0 for all i (because it is
a finite sum). This proves α is injective.

Now suppose β(
∑n

i=0 yi ⊗ F i) = 0. We want to find xi such that

α

(
n∑

i=0
x

(1)
i ⊗ F i

)
=

n∑
i=0

yi ⊗ F i. (3.1.1)

By definition of β we know that
∑n

i=0 φ
i(y(i)

i ) = 0. Now one can check that
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x0 = −
(
y1 + φ

(
y
(1)
2

)
+ · · · + φn−1(y(n−1)

n

))
,

x2 = −
(
y2 + φ

(
y
(1)
3

)
+ · · · + φn−2(y(n−2)

n

))
,

...

xn−1 = −yn,

xn = 0,

is a solution of (3.1.1). This proves ker(β) ⊆ im(α). �
In [2], a similar two-step resolution is proved for left R{F}-modules (see Lemma 1.8.1

in [2]). And using the two-step resolution it is proved in [2] that the category of left
R{F}-modules has Tor-dimension at most d+ 1 (see Corollary 1.8.4 in [2]). We want to
mimic the strategy and prove the corresponding results for right R{F}-modules. And we
can actually improve the result: we show that when R is F -finite, the category of right
R{F}-modules has finite global dimension exactly d + 1.

Theorem 3.2. Let R be an F -finite regular ring of dimension d. Then the category of
right R{F}-modules has finite global dimension d + 1.

Proof. We first note that for every right R{F}-module M with structure map τ : M →
F !M , a projective resolution of M in the category of R-modules can be given a structure
of right R{F}-modules such that it becomes an exact sequence of right R{F}-modules.
This is because we can lift the natural map τ : M → F !M to a commutative dia-
gram

0 Pk Pk−1 · · · P1 P0 M

τ

0

0 F !(Pk) F !(Pk−1) · · · F !(P1) F !(P0) F !(M) 0

because we can always lift a map from a complex of projective modules to an acyclic
complex (F !(−) is an exact functor when R is F -finite).

By Lemma 3.1, we have an exact sequence of right R{F}-modules

0 → M (1) ⊗R R{F} α−→ M ⊗R R{F} β−→ M → 0. (3.2.1)

Now we tensor the above (3.2.1) with the projective resolution of M over R, we have
the following commutative diagram
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0 Pk Pk−1 · · · P1 P0 0

0 Pk ⊗R R{F} Pk−1 ⊗R R{F} · · · P1 ⊗R R{F} P0 ⊗R R{F} 0

0 P
(1)
k ⊗R R{F}

αk

P
(1)
k−1 ⊗R R{F}

αk−1

· · · P
(1)
1 ⊗R R{F}

α1

P
(1)
0 ⊗R R{F}

α0

0

(3.2.2)

The first line is a projective resolution of M over R. And by the above discussion we
can give each Pi a right R{F}-module structure such that it is an exact sequence of right
R{F}-modules. The second line (resp. the third line) is obtained from the first line by
tensoring with R{F} (resp. applying (1) and then tensoring with R{F}). Each column is
the map described in Lemma 3.1. In particular, all columns are exact sequences of right
R{F}-modules.

Let C• be the complex of the third line and D• be the complex of the second line
of (3.2.2). The homology of the mapping cone of C• → D• is the same as the homology of
the quotient complex D•/C•, which is the first line in (3.2.2). Hence the mapping cone is
acyclic. Since each Pi is projective as an R-module, we know that Pi is a direct summand
of a free R-module G. So P

(1)
i is a direct summand of G(1). Since R is F -finite, G(1) is

projective as an R-module, so P
(1)
i is also projective as an R-module. Hence P (1)

i ⊗RR{F}
and Pi ⊗R R{F} are projective as right R{F}-modules for every i. Thus the mapping
cone of C• → D• gives a right R{F}-projective resolution of M . We note that this
resolution has length k + 1. Since we can always take a projective resolution of M of
length k � d, the right R{F}-projective resolution we obtained has length � d + 1.

We have already seen that the global dimension of right R{F}-modules is � d + 1.
Now we let M and N be two right R{F}-modules with trivial right F -action (i.e., the
structure maps of M and N are the zero maps). I claim that in this case, we have

ExtjR{F}(M,N) = ExtjR(M,N) ⊕ Extj−1
R

(
M (1), N

)
. (3.2.3)

To see this, we look at (3.2.2) applied to M with trivial right F -action. It is clear that in
this case each Pi in the first line of (3.2.2) also has trivial right R{F}-module structure.
So as described in Lemma 3.1, we have

αj

(
x(1) ⊗ F i

)
= −x⊗ F i+1 (3.2.4)

for every x(1)⊗F i ∈ P
(1)
j ⊗RR{F}. The key observation is that, since N has trivial right

F -action, when we apply HomR{F}(−, N) to αj : P (1)
j ⊗RR{F} → Pj⊗RR{F}, the dual

map α∨
j is the zero map (one can check this by a direct computation using (3.2.4)). Hence

when we apply HomR{F}(−, N) to the mapping cone of C• → D•, the j-th cohomology
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is the same as the direct sum of the j-th cohomology of HomR{F}(C•[−1], N) and the
j-th cohomology of HomR{F}(D•, N). That is,

ExtjR{F}(M,N) = Hj
(
HomR{F}(D•, N)

)
⊕Hj

(
HomR{F}

(
C•[−1], N

))
. (3.2.5)

But for every right R{F}-module N , HomR{F}(− ⊗R R{F}, N) ∼= HomR(−, N). So
applying HomR{F}(−, N) to D• and C• are the same as applying HomR(−, N) to

0 → Pk → Pk−1 → · · · → P0 → 0

and

0 → P
(1)
k → P

(1)
k−1 → · · · → P

(1)
0 → 0,

which are R-projective resolutions of M and M (1) respectively. Hence we know that

Hj
(
HomR{F}(D•, N)

)
⊕Hj

(
HomR{F}

(
C•[−1], N

))
= ExtjR(M,N) ⊕ Extj−1

R

(
M (1), N

)
. (3.2.6)

Now (3.2.3) follows from (3.2.5) and (3.2.6).
In particular, we can take two R-modules M and N such that ExtdR(M (1), N) �= 0 (for

example, take N = R and M = R/(x1, . . . , xd) where x1, . . . , xd is a regular sequence
in R). Applying (3.2.3) to j = d + 1 gives

Extd+1
R{F}(M,N) = ExtdR

(
M (1), N

)
�= 0.

Hence the global dimension of right R{F}-modules is at least d+1. Since we have already
shown it is bounded by d+1, this completes the proof that the global dimension of right
R{F}-modules is exactly d + 1. �

We can use the method in the proof of Theorem 3.2 to compute some Ext groups in
the category of right R{F}-modules. Below we give an example which is a key ingredient
when we show that the global dimension of FR-module is d + 1.

Example 3.3. Let R be an F -finite regular ring of dimension d such that there exists a
canonical module ωR with F !ωR

∼= ωR. Let ω∞
R :=

⊕
j∈Z

ωRzj be an infinite direct sum
of ωR. We give ω∞

R the right R{F}-module structure by setting τ : ω∞
R → F !(ω∞

R ) ∼= ω∞
R

such that

τ(yzj) = yzj+1

for every y ∈ ωR. It is clear that ω∞
R is in fact a unit right R{F}-module, and it

corresponds to the FR-module R∞ described in Example 2.6 under Theorem 2.5.
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Lemma 3.4. With the same notations as in Example 3.3, we have

idR{F} ω
∞
R = d + 1. (3.4.1)

Proof. We first notice that the right R{F}-module structure on ωR defined by ωR
∼=

F !ωR induces a canonical map φ : ω(1)
R → ωR, which is a generator of the free R(1)-module

HomR(ω(1)
R , ωR) ∼= R(1). That is, any map in HomR(ω(1)

R , ωR) can be expressed as
φ(r(1) · −) for some r(1) ∈ R(1) (we refer to [1] for more details on this).

Next we fix x1, . . . , xd a regular sequence in R. We note that

φ̃ := φ
((
x

(1)
1 · · ·x(1)

d

)p−1 · −
)
∈ HomR

(
ω

(1)
R , ωR

)
satisfies φ̃((x(1)

1 , . . . , x
(1)
d )ω(1)

R ) ⊆ (x1, . . . , xd)ωR, so it induces a map

(
ωR/(x1, . . . , xd)ωR

)(1) → ωR/(x1, . . . , xd)ωR.

That is, φ̃ gives ωR/(x1, . . . , xd)ωR a right R{F}-module structure. It is clear that we
can lift this map φ̃ to the Koszul complex K•(x1, . . . , xd;ωR) as follows:

0 ω
(1)
R

φ

· · · (ωd
R)(1) ω

(1)
R

φ̃

(ωR/(x1, . . . , xd)ωR)(1)

φ̃

0

0 ωR · · · ωd
R ωR ωR/(x1, . . . , xd)ωR 0

Chasing through the diagram, one can check that the induced map on the last spot of
the above commutative diagram is exactly the map φ (the generator of HomR(ω(1)

R , ωR)).
Now we apply (3.2.2) to M = ωR/(x1, . . . , xd)ωR with structure map φ̃ and let the

first line in (3.2.2) be the Koszul complex K•(x1, . . . , xd;ωR). The above argument shows
that the induced right R{F}-module structure on Pd = ωR is given by the canonical map
φ : ω(1)

R → ωR (i.e., it corresponds to ωR
∼= F !ωR). As in Theorem 3.2, the mapping cone

of C• → D• is a right R{F}-projective resolution of ωR/(x1, . . . , xd)ωR of length d + 1,
and the tail of this resolution is

0 → ω
(1)
R ⊗R R{F} h−→ ωR ⊗R R{F} ⊕

(
ωd
R

)(1) ⊗R R{F} → · · · (3.4.2)

where we have

h
(
y(1) ⊗ F i

)
= (−1)d

(
y ⊗ F i+1 − φ

(
y(1))⊗ F i

)
⊕
(
x

(1)
1 y(1), . . . , x

(1)
d y(1))⊗ F i

(3.4.3)

for every y ∈ ωR. Now we apply HomR{F}(−, ω∞
R ) to (3.4.2) and identify HomR(−, ω∞

R ) =
HomR{F}(−⊗R R{F}, ω∞

R ), we get

0 ← HomR

(
ω

(1)
R , ω∞

R

)
h∨←−− HomR

(
ωR, ω

∞
R

)
⊕ HomR

(
ω

(1)
R , ω∞

R

)d ← · · · . (3.4.4)
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Since HomR(ω(1)
R , ωR) ∼= R(1) and HomR(ωR, ωR) = R, we can rewrite (3.4.4) as

0 ←
⊕
j∈Z

R(1) h∨←−−
(⊕

j∈Z

R

)
⊕

(⊕
j∈Z

R(1)
)d

← · · · .

And after a careful computation using (3.4.3) and the right R{F}-module structure
of ω∞

R , we have

h∨({sj} ⊕ ({
t
(1)
1j

}
, . . . ,

{
t
(1)
dj

}))
=

{
(−1)d

((
s
(1)
j

)p − s
(1)
j−1

)
+

d∑
i=1

x
(1)
i t

(1)
ij

}
j∈Z

(3.4.5)

where {sj} denotes an element in
⊕

j∈Z
R and ({t(1)1j }, . . . , {t

(1)
dj }) denotes an element in

(
⊕

j∈Z
R(1))d. The key point here is that h∨ is not surjective. To be more precise, I claim

(−1)d−1z0 = (. . . , 0, (−1)d−1, 0, 0, . . .) (i.e., the element in
⊕

j∈Z
R(1) with 0-th entry

(−1)d−1 and other entries 0) is not in the image of h∨. This is because
∑d

i=1 x
(1)
i t

(1)
ij can

only take values in
⊕

j∈Z
(x(1)

1 , . . . , x
(1)
d ), so if z0 ∈ imh∨, then mod

⊕
j∈Z

(x(1)
1 , . . . , x

(1)
d ),

we know by (3.4.5) that (sj(1))p − sj−1
(1) = 0 for j �= 0 and (s0

(1))p − s−1
(1) = −1. And

it is straightforward to see that a solution {sj}j∈Z to this system must satisfy sj = 0
when j � 0 and sj = 1 when j < 0 where s denotes the image of s ∈ R mod (x1, . . . , xd).
So there is no solution in

⊕
j∈Z

R, since sj = 1 for every j < 0 implies there has to be
infinitely many nonzero sj .

Hence we get

Extd+1
R{F}

(
ωR/(x1, . . . , xd)ωR, ω

∞
R

) ∼= cokerh∨ �= 0. (3.4.6)

Combining (3.4.6) with Theorem 3.2 completes the proof of the lemma. �
Remark 3.5. One might hope that idR{F} ωR = d + 1 by the same type computation
used in Lemma 3.4. But there is a small gap when doing this. The problem is, when we
apply HomR{F}(−, ωR) to (3.4.2) and compute cokerh∨, we get

Extd+1
R{F}

(
ωR/(x1, . . . , xd)ωR, ωR

)
= cokerh∨ ∼= R

(x1, . . . , xd) + {rp − r}r∈R
. (3.5.1)

So if the set {rp− r}r∈R can take all values of R (this happens, for example when (R,m)
is a complete regular local ring with algebraically closed residue field, see Remark 4.6),
then Extd+1

R{F}(ωR/(x1, . . . , xd)ωR, ωR) = 0. So we cannot get the desired result in this
way. However, we do get from (3.5.1) that if (R,m,K) is an F -finite regular local ring
with K ∼= R/m a finite field, then idR{F} R = d + 1.

Now we prove our main result. We start by proving that the Ext groups are the same
no matter one computes in the category of unit right R{F}-modules or the category of
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right R{F}-modules. We give two proofs of this result, the second proof is suggested by
the referee, which in fact shows a stronger result.

Theorem 3.6. Let R be an F -finite regular ring of dimension d such that there exists
a canonical module ωR with F !ωR

∼= ωR. Let M , N be two unit right R{F}-modules.
Then we have ExtiuR{F}(M,N) ∼= ExtiR{F}(M,N) for every i. In particular, the category
of unit right R{F}-modules and the category of FR-modules has finite global dimension
� d + 1.

Proof. First we note that by Theorem 3.2 and Theorem 2.5, it is clear that we only need
to show ExtiuR{F}(M,N) ∼= ExtiR{F}(M,N) for M , N two unit right R{F}-modules.
Below we give two proofs of this fact.

First proof : We use Yoneda’s characterization of Exti (cf. Chapter 3.4 in [7]).
Note that this is the same as the derived functor Exti whenever the abelian cate-
gory has enough injectives or enough projectives, hence holds for both the category
of unit right R{F}-modules and the category of right R{F}-modules (unit right
R{F}-modules has enough injectives by Theorem 1.1 and Theorem 2.5). An element
in ExtiuR{F}(M,N) (resp. ExtiR{F}(M,N)) is an equivalence class of exact sequences of
the form

ξ : 0 → N → X1 → · · · → Xi → M → 0

where each Xi is a unit right R{F}-module (resp. right R{F}-module) and the maps are
maps of unit right R{F}-modules (resp. maps of right R{F}-modules). The equivalence
relation is generated by the relation ξX ∼ ξY if there is a commutative diagram

0 N

∼=

X1 · · · Xi M

∼=

0

0 N Y1 · · · Yi M 0

From this characterization of Exti it is clear that we have a well-defined map

ι : ExtiuR{F}(M,N) → ExtiR{F}(M,N)

taking an equivalence class of an exact sequence of unit right R{F}-modules to
the same exact sequence but viewed as an exact sequence in the category of right
R{F}-modules.

Conversely, if we have an element in ExtiR{F}(M,N), say ξ, we have an exact sequence
of right R{F}-modules, this induces a commutative diagram
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0 N

∼=

X1 · · · Xi M

∼=

0

0 F !(N)

∼=

F !(X1) · · · F !(Xi) F !(M)

∼=

0

0 (F !)2(N)
∼=

(F !)2(X1) · · · (F !)2(Xi) (F !)2(M)
∼=

0

Taking direct limits for columns and noticing that M , N are unit right R{F}-modules,
we get a commutative diagram

0 N

∼=

X1 · · · Xi M

∼=

0

0 N lim−→ (F !)e(X1) · · · lim−→ (F !)e(Xi) M 0

(3.6.1)

Since the functor F !(−) and the direct limit functor are both exact, the bottom sequence
is still exact and hence it represents an element in ExtiuR{F}(M,N) (note that each
lim−→(F !)e(Xj) is a unit right R{F}-module by Remark 2.4). We call this element ξ′.
Then we have a map

η : ExtiR{F}(M,N) ξ �→ξ′−−−−→ ExtiuR{F}(M,N).

This map is well-defined because it is easy to check that if ξ1 ∼ ξ2, then we also have
ξ′1 ∼ ξ′2. It is also straightforward to check that ι and η are inverses of each other. Obvi-
ously η ◦ ι([ξ]) = [ξ] and ι ◦ η([ξ]) = [ξ′] = [ξ], where the last equality is by (3.6.1)
(which shows that ξ ∼ ξ′, and hence they represent the same equivalence class in
ExtiR{F}(M,N)).

Second proof : By Theorem 1.1 and Theorem 2.5 we know that the category of unit
right R{F}-module has enough injectives. Now we show that every injective object in
the category of unit right R{F} modules is in fact injective in the category of right
R{F}-modules. To see this, let I be a unit right R{F}-injective module. It is enough to
show that whenever we have 0 → I → W for some right R{F}-module W , the sequence
splits. But 0 → I → W induces the following diagram:
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0 I

∼=

W

0 F !(I)

∼=

F !(W )

0 (F !)2(I)
∼=

(F !)2(W )

Taking direct limit for the columns we get

0 I

∼=

W

0 I lim−→ (F !)e(W )

(3.6.2)

We still have exactness because the functor F !(−) and the direct limit functor are
both exact. We also note that lim−→ (F !)e(W ) is a unit right R{F}-module by Remark 2.4.
Now since I is injective in the category of unit right R{F}-modules, we know that the
bottom map 0 → I → lim−→ (F !)e(W ) splits as unit right R{F}-modules, so it also splits as
right R{F}-modules. But now composing with the commutative diagram (3.6.2) shows
that the map 0 → I → W splits as right R{F}-modules.

Now it is clear that ExtiuR{F}(M,N) ∼= ExtiR{F}(M,N). Because one can take an
injective resolution of N in the category of unit right R{F}-modules:

0 → N → I0 → I1 → · · · . (3.6.3)

By the above argument this can be also viewed as an injective resolution in the category
of right R{F}-modules. Since applying HomR{F}(M,−) and HomuR{F}(M,−) to (3.6.3)
are obviously the same, we know that ExtiuR{F}(M,N) ∼= ExtiR{F}(M,N). �
Theorem 3.7. Let R be an F -finite regular ring of dimension d such that there exists a
canonical module ωR with F !ωR

∼= ωR. Then the category of unit right R{F}-modules
and the category of Lyubeznik’s FR-modules both have finite global dimension d + 1.

Proof. By Theorem 2.5, it suffices to show that the category of unit right R{F}-modules
has finite global dimension d + 1. By Theorem 3.6, we know that the global dimension
is at most d + 1.
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Now let ω∞
R be the unit right R{F}-module described in Example 3.3. If the global

dimension is � d, then we know that ω∞
R has a unit right R{F}-injective resolution of

length d′ � d:

0 → ω∞
R → I0 → I1 → · · · → Id′ → 0. (3.7.1)

But by the argument in the second proof of Theorem 3.6, we know that each Ij is
injective in the category of right R{F}-modules. So (3.7.1) can be viewed as an injective
resolution of ω∞

R in the category of right R{F}-modules. And hence idR{F} ω
∞
R � d,

which contradicts Lemma 3.4. �
Remark 3.8. It is clear from Theorem 2.5 and the above proof of Theorem 3.7 that

idFR
R∞ = iduR{F} ω

∞
R = d + 1.

4. Non-finiteness of Ext1FR

In this section we study the group Ext1FR
(M,N) when M , N are FR-finite FR-modules.

We prove that when (R,m,K) is a regular local ring, Ext1FR
(M,N) is finite when K =

R/m is separably closed and M is supported only at m. However, we provide examples
to show that in general Ext1FR

(M,N) is not necessarily a finite set. We begin with some
lemmas.

Lemma 4.1. (See Proposition 3.1 in [6].) Let S be a regular ring of characteristic p > 0
and let R → S be a surjective homomorphism with kernel I ⊆ R. There exists an
equivalence of categories between FR-modules supported on SpecS = V (I) ⊆ SpecR and
FS-modules. Under this equivalence the FR-finite FR-modules supported on SpecS =
V (I) ⊆ SpecR correspond to the FS-finite FS-modules.

Lemma 4.2. (See Theorem 4.2(c)(e) in [4].) Let K be a separably closed field. Then
every FK-finite FK-module is isomorphic with a finite direct sum of copies of K with the
standard FK-module structure. Moreover, Ext1FK

(K,K) = 0.

Lemma 4.3. Let (R,m,K) be a regular local ring with K separably closed. Then every
FR-finite FR-module supported only at m is isomorphic (as an FR-module) with a finite
direct sum of copies of E = E(R/m) (where E is equipped with the standard FR-module
structure). Moreover, Ext1FR

(E,E) = 0.

Proof. This is clear from Lemma 4.1 (applied to S = K and I = m) and Lemma 4.2
because it is straightforward to check that the standard FR-module structure on E

corresponds to the standard FK-module structure on K via Lemma 4.1. �
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Theorem 4.4. Let (R,m,K) be a regular local ring such that K is separably closed and
let M , N be FR-finite FR-modules. Then Ext1FR

(M,N) is finite if M is supported only
at m.

Proof. Since K is separably closed, by Lemma 4.3 we know that M is a finite direct sum
of copies of E in the category of FR-modules. So it suffices to show that Ext1FR

(E,N) is
finite. For every exact sequence of FR-finite FR-modules

0 → N1 → N2 → N3 → 0,

the long exact sequence of Ext gives

Ext1FR
(E,N1) → Ext1FR

(E,N2) → Ext1FR
(E,N3).

So we immediately reduce to the case that N is simple (since R is local, every FR-finite
FR-module has finite length by Theorem 3.2 in [6]).

We want to show that Ext1FR
(E,N) is finite when N is simple. There are two cases:

AssR(N) = m or AssR(N) = P �= m (by Theorem 2.12(b) in [6]). If AssR(N) = m,
then N ∼= E as FR-modules by Lemma 4.3. So Ext1FR

(E,N) = Ext1FR
(E,E) = 0 by

Lemma 4.3.
If AssR(N) = P �= m, by Yoneda’s characterization of Ext groups, it suffices to show

that we only have a finite number of isomorphism classes of short exact sequences

0 → N → L → E → 0

of FR-modules. We first show the number of choices of isomorphism classes for L is
finite. Say AssR(N) = P �= m, we have P ∈ AssR(L) ⊆ {P,m}. If AssR(L) = {P,m},
then H0

m(L) �= 0 and it does not intersect N . So H0
m(L) ⊕N is an FR-submodule of L.

Hence we must have L ∼= H0
m(L) ⊕N ∼= E ⊕N since L has length 2 as an FR-module.

If AssR(L) = {P}, we can pick x ∈ m− P . Localizing at x gives a short exact sequence

0 → Nx → Lx → Ex → 0.

But Ex = 0, so we get Nx
∼= Lx as FR-module. Since x is not in P , we have L ↪→ Lx as

FR-module. That is, L is isomorphic to an FR-submodule of Lx, hence is isomorphic to
an FR-submodule of Nx. But Nx is FR-finite by Proposition 2.9(b) in [6], so it only has
finitely many FR-submodules by Theorem 1.2. This proves that the number of choices
of isomorphism classes for L is finite.

Because the number of choices of isomorphism classes for L is finite, and for each
FR-finite FR-module L, HomFR

(N,L) is always finite by Theorem 1.2. It follows that
the number of isomorphism classes of short exact sequences 0 → N → L → E → 0 is
finite. �



L. Ma / Journal of Algebra 402 (2014) 1–20 17
If M is an FR-module with structure morphism θM , for every x ∈ M we use xp to
denote θ−1

M (1 ⊗ x). Notice that when M = R with the standard FR-module structure,
this is exactly the usual meaning of xp. We let GM denote the set {xp − x | x ∈ M}. It
is clear that GM is an abelian subgroup of M .

Theorem 4.5. Let R be a regular ring. Giving R the standard FR-module structure, we
have Ext1FR

(R,M) ∼= M/GM as an abelian group for every FR-module M .

Proof. By Yoneda’s characterization of Ext groups, an element in Ext1FR
(R,M) can be

represented by an exact sequence of FR-modules

0 → M → L → R → 0.

It is clear that L ∼= M ⊕ R as R-module. Moreover, one can check that the structure
isomorphism θL composed with θ−1

M ⊕ θ−1
R defines an isomorphism

M ⊕R
θL−−→ F (M) ⊕ F (R) θ−1

M ⊕θ−1
R−−−−−−→ M ⊕R

which sends (y, r) to (y + rz, r) for every (y, r) ∈ M ⊕ R and for some z ∈ M . Hence,
giving a structure isomorphism of L is equivalent to giving some z ∈ M . Therefore, θL
is determined by an element z ∈ M . Two exact sequences with structure isomorphism
θL, θ′L are in the same isomorphism class if and only if there exists a map g : L → L,
sending (y, r) to (y + rx, r) for some x ∈ M such that

(1 ⊗ g) ◦ θL = θ′L ◦ g.

Now we apply θ−1
M ⊕θ−1

R on both sides. If θL, θ′L are determined by z1 and z2 respectively,
a direct computation gives that

(
θ−1
M ⊕ θ−1

R

)
◦ (1 ⊗ g) ◦ θL(y, r) =

(
y + rz1 + rxp, r

)
while

(
θ−1
M ⊕ θ−1

R

)
◦ θ′L ◦ g(y, r) = (y + rz2 + rx, r).

So θL and θ′L are in the same isomorphism class if and only if there exists x ∈ M such
that

z2 − z1 = xp − x.

So Ext1FR
(R,M) ∼= M/GM as an abelian group. �

Before we use Theorem 4.5 to study examples, we make the following remark. I would
like to thank the referee for his suggestions on this remark.



18 L. Ma / Journal of Algebra 402 (2014) 1–20
Remark 4.6.

(1) In the case that R is a regular ring which is F -finite and local. By Theorem 2.5, we can
identify the category of FR-modules with the category of unit right R{F}-modules
(ωR = R is unique). And by Theorem 3.6, we can compute Ext1FR

(R,M) ∼=
Ext1uR{F}(R,M) ∼= Ext1R{F}(R,M) by taking the right R{F}-projective resolution
of R and then applying HomR{F}(−,M). Note that one right R{F}-projective res-
olution of R is given by

0 → R(1) ⊗R R{F} → R{F} → R → 0

as in Lemma 3.1. Thus in this case one can give another proof of Theorem 4.5, we
leave the details to the reader.

(2) When (R,m) is a strict Henselian local ring (e.g., (R,m) is a complete local ring with
algebraically closed residue field), the Artin–Schreier sequence

0 → Fp → R xp−x−−−−→ R → 0

is exact in the Zariski topology, which shows that GR =R, and hence Ext1FR
(R,R) = 0

when R is a strict Henselian local ring. In particular, applying this to R = K a
separably closed field, we recover Lemma 4.2.

Now we give some examples to show that, in general, Ext1FR
(R,M) ∼= M/GM is not

necessarily finite, even in simple cases.

Example 4.7. Let R = k(t) or k[t](t) with k an algebraically closed field. We will prove
that Ext1FR

(R,R) is infinite in both cases. By Theorem 4.5, it suffices to show that for
a, b ∈ k (a, b �= 0 in the second case), 1

t−a and 1
t−b are different in R/GR whenever a �= b.

Otherwise there exists h(t)
g(t) ∈ R with h(t), g(t) ∈ k[t] (g(t) is not divisible by t in the

second case) and gcd(h(t), g(t)) = 1 such that

1
t− a

− 1
t− b

= h(t)p

g(t)p − h(t)
g(t)

which gives

a− b

t2 − (a + b)t + ab
= h(t)p − h(t) · g(t)p−1

g(t)p . (4.7.1)

Since gcd(h(t), g(t)) = 1, gcd(h(t)p − h(t) · g(t)p−1, g(t)p) = 1. So from (4.7.1) we know
that g(t)p|(t2 − (a + b)t + ab). This is clearly impossible.

Example 4.8. Let (R,m,K) be a regular local ring of dimension d � 1. Let E = E(R/m)
be the injective hull of the residue field. We will show that Ext1F (R,E) is not zero and
R
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is in fact infinite when K is infinite. In particular, E = E(R/m), though injective as
an R-module, is not injective as an FR-module (with its standard FR-structure) when
dimR � 1.

Recall that E = lim−→n
R

(xn
1 ,...,x

n
d ) . So every element z in E can be expressed as

(r;xn
1 , . . . , x

n
d ) for some n � 1 (which means z is the image of r in the n-th piece in

this direct limit system). By Theorem 4.5, Ext1FR
(R,E) ∼= E/GE . I claim that any two

different socle elements u1, u2 are different in E/GE . Suppose this is not true, we have:

u1 − u2 = zp − z (4.8.1)

in E. Since u1 − u2 is a nonzero element in the socle of E, we may write u1 − u2 =
(λ;x1, . . . , xd) for some λ �= 0 in K. Say z = (r;xn

1 , . . . , x
n
d ) with n minimum. Then

(4.8.1) will give

(
r;xn

1 , . . . , x
n
d

)
= (λ;x1, . . . , xd) +

(
rp;xnp

1 , . . . , xnp
d

)
.

This will give us

rp + λ(x1 · · ·xd)np−1 − r(x1 · · ·xd)np−n ∈
(
xnp

1 , . . . , xnp
d

)
. (4.8.2)

If n = 1, then 0 �= z ∈ Soc(E), hence r is a nonzero unit in R. But (4.8.2) shows that
rp ∈ (x1, . . . , xd) which is a contradiction.

If n � 2, we have np−1 � np−n � p. We know from (4.8.2) that for every 1 � i � d, we
have rp ∈ (xnp

1 , . . . , xnp
i−1, x

p
i , x

np
i+1, . . . , x

np
d ). Hence r ∈ (xn

1 , . . . , x
n
i−1, xi, x

n
i+1, . . . , x

n
d ) for

every 1 � i � d. Taking their intersection, we get that r ∈ (x1 · · ·xd, x
n
1 , . . . , x

n
d ). That is,

mod (xn
1 , . . . , x

n
d ), we have r = (x1 · · ·xd)r0. But then we have z = (r0;xn−1

1 , . . . , xn−1
d )

contradicting our choice of n.
Therefore we have proved that any two different socle elements u1, u2 are different

in Ext1FR
(R,E) = E/GE . This shows that Ext1FR

(R,E) �= 0 and is infinite when K is
infinite.
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