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Let g be a simple Lie algebra of rank l over an algebraically
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An invertible linear map ϕ on b is said preserving zero Lie
products in both directions if for x, y ∈ b, [x, y] = 0 if and
only if [ϕ(x), ϕ(y)] = 0. In this paper, it is shown that an
invertible linear map ϕ on b preserving zero Lie products in
both directions if and only if it is a composition of an inner
automorphism, a graph automorphism, a scalar multiplication
map and a diagonal automorphism, which extends the main
result in [8] from a linear solvable Lie algebra to far more
general cases.
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1. Introduction

In this paper, the notations concerning Lie algebras mainly follow those of [1,2]. Let
F be an algebraically closed field of characteristic zero, g a simple Lie algebra over F

of rank l, h a fixed Cartan subalgebra of g, Φ ⊆ h∗ the corresponding root system of g,
Δ a fixed base of Φ, Φ+ (resp., Φ−) the set of positive (resp., negative) roots relative
to Δ. The roots in Δ are called simple. Actually, Δ defines a partial order on Φ in such
a way that β ≺ α iff α − β is a sum of simple roots or β = α. For β =

∑
α∈Δ kαα ∈ Φ,
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the integer ht β =
∑

α∈Δ kα is called the height of β. Φ has a unique maximal root
and a unique maximal short root (if two root lengths occur), which we denote by θ and
θs respectively. If Φ has two root lengths, we denote by Φl (resp., Φs) the subset of Φ
consisting of long (resp., short) roots, and let Φ+

l = Φ+∩Φl, Φ+
s = Φ+∩Φs, Δl = Δ∩Φl,

Δs = Δ ∩ Φs. For α ∈ Φ+, set

Xα =
{
β ∈ Φ+ ∣∣ β + α ∈ Φ+}; Yα =

{
β ∈ Φ+ ∣∣ β + α /∈ Φ+}.

Then Xα ∪ Yα = Φ+ and Xα ∩ Yα = ∅. Let Mα be the number of elements in Xα. For a
positive integer i, we set Φi = {α ∈ Φ | ht α = i}. For α ∈ Φ, let gα be the root space
of g relative to α, n =

∑
α∈Φ+ gα, and b = h ⊕ n, where b is called the standard Borel

subalgebra of g. For a positive integer k, let nk =
∑

ht β�k gβ . For a subalgebra s of b,
a subset A of b, we denote by Cs(A) the centralizer of A in s. Cb(A) and Cb(Cb(A)) are
abbreviated to {A}′ and {A}′′, respectively. We denote by ker α, for α ∈ Φ, the kernel
of α in h. For each α ∈ Φ+, let eα be a non-zero element of gα, then there is a unique
element e−α ∈ g−α such that eα, e−α, hα = [eα, e−α] span a three-dimensional simple
subalgebra of g isomorphic to sl(2, F ) via

eα 	→
(

0 1
0 0

)
, e−α 	→

(
0 0
1 0

)
, hα 	→

(
1 0
0 −1

)
.

The set {hα, eβ , e−β | α ∈ Δ,β ∈ Φ+} forms a basis of g. If α, β, α+β ∈ Φ, then [eα, eβ ] is
a scalar multiple of eα+β since [gα, gβ ] = gα+β . We define Nα,β by [eα, eβ ] = Nα,βeα+β ,
which is called the structure constants of g. A basis {hα, eβ , e−β | α ∈ Δ,β ∈ Φ+} of g can
be chosen such that all structure constants of g are integers. In this case the basis is called
a Chevalley basis of g. In the following of this paper, the set {hα, eβ , e−β | α ∈ Δ,β ∈ Φ+}
will always denote a Chevalley basis of g. For the base Δ of Φ, let dΔ = {dα | α ∈ Δ}
be the dual basis of h relative to Δ. Namely, β(dα) takes the value 0 when β �= α ∈ Δ

and takes the value 1 when β = α ∈ Δ. A symmetric bilinear form (,) is defined on the
l-dimensional real vector space spanned by Φ, which is dual to the Killing form on g.
For α, β ∈ Φ, let 〈β, α〉 = 2(β, α)/(α, α). If α �= ±β, let p, q be the greatest non-negative
integers for which β − pα, β + qα ∈ Φ, then 〈β, α〉 = p− q, and Nα,β = ±(p + 1).

An invertible linear map ϕ on b is called preserving zero Lie products in both directions
if for any x, y ∈ b, [x, y] = 0 if and only if [ϕ(x), ϕ(y)] = 0. Note that the product of
such two maps and the inverse of such a map are also such maps.

A lot of attention has been paid to linear preserver problem, which focuses on char-
acterizing linear maps on matrix spaces or algebras that leave certain functions, subsets,
relations, etc., invariant. The earliest paper on such problem dates back to 1897 (see [3]),
and a great deal of effort has been devoted to the study of this type of question since then.
One may consult the survey papers [4–7] for details. Here, let us particularly mention one
type of classical example: linear maps preserving commutativity. The importance of this
type example lies in the fact that the assumption of preserving commutativity of matri-
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ces can be considered as the assumption of preserving zero Lie products of the relative
linear Lie algebra. Such type of linear preserver problem has been extensively studied
on matrix algebras as well as on more general rings and operator algebras. For example,
the commutativity preserving linear maps on triangular matrices was studied in [8]; the
commutativity preserving linear maps on strictly triangular matrices was investigated
in [9]; the nonlinear commutativity preserving maps on the algebra of full matrices was
described by P. Šemrl in [10]. For more references about commutativity preserving maps
on associated algebras one may consult the survey paper [11].

Recently, linear preserver problem concerning Lie algebras attracted more attention.
Wong in [12] characterized the invertible linear maps on simple Lie algebras of linear
types preserving zero Lie products. Padjavi and Šemrl in [13] characterized the non-linear
maps on the general linear Lie algebra and the special linear Lie algebra which preserve
solvability in both directions. The non-linear bijective maps on triangular matrices pre-
serving Lie products were determined in [14]. The invertible linear maps on a finite
dimensional complex simple Lie algebras preserving commutativity were characterized
in [15]. A finite dimensional complex simple Lie algebra g and its parabolic subalgebras
were proved to be zero product determined in [16]. All quasi-automorphisms of g are
determined in [17]. Non-linear maps on a finite dimensional complex simple Lie algebra
g preserving Lie products and non-linear maps on the standard Borel subalgebra of g
that preserves ad-nilpotent ideals were respectively described in [18] and [19]. Invertible
linear maps on a finite dimensional complex simple Lie algebra preserving solvability
were studied in [20].

Preserver problems for algebraic groups and for simple Lie algebras usually goes in
parallel (consult [21] and [22]). Bijective maps preserving commutators on certain clas-
sical groups were respectively studied in [23] and [24], except for the mapping induced
by the field automorphism, the results in [23,24] are parallel to those on Lie algebras
obtained in [18].

The Levi theorem tells us that every finite dimensional Lie algebra L is a semi-direct
sum of a semisimple Lie algebra S and the maximal solvable ideal R of L, i.e., the radical
of L. Semisimple Lie algebras over the field of complex numbers have been classified by
Cartan in [25]. So the problem of classifying finite dimensional Lie algebras is reduced
to the problem of classifying finite dimensional solvable Lie algebras. However, the clas-
sification of solvable Lie algebras is only complete for the case when the dimension is
not bigger than six (see [26]). It seems to be impossible to classify solvable Lie algebras
in an arbitrary large finite dimension. In view of this point, the structure of solvable
Lie algebras seems much complicated than those of simple Lie algebras. In the present
paper, we consider the invertible linear maps on a solvable Lie algebra, i.e., the standard
Borel subalgebra b of g. The result of this paper can be viewed as a generalization of the
main theorem in [8].

Before announcing the main result of this paper, we introduce several types of standard
maps on b preserving zero Lie products in both directions.
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(i) For α ∈ Φ+ and t ∈ F , teα is nilpotent in b, so the map σα(t) = exp(t ad eα) is an
automorphism of b. We denote by U the group generated by the elements σα(t) for
all α ∈ Φ+, t ∈ F . Each element σ ∈ U is called an inner automorphism of b.

(ii) If ρ is a symmetry (nontrivial or trivial) of the Dynkin diagram of Φ, or equivalently,
〈ρ(α), ρ(β)〉 = 〈α, β〉 for any α, β ∈ Δ, then ρ can be extended to an automorphism
ρ̄ of Φ in the way:

∑
α∈Δ

kαα ∈ Φ 	→
∑
α∈Δ

kαρ(α).

Using ρ̄ we define an automorphism ϕρ of b in the way:

∑
α∈Δ

aαhα +
∑

α∈Φ+

bαeα 	→
∑
α∈Δ

aαhρ(α) +
∑

α∈Φ+

bαrαeρ̄(α), aα, bα ∈ F,

where rα = 1 or −1 depending on α. ϕρ is called a graph automorphism of b.
(iii) Let P = ZΦ be the set of all Z-linear combinations of the elements of Φ. It is a

free abelian group of rank l and has Δ as its basis. A homomorphism χ from the
additive group P into the multiplicative group F ∗ of non-zero elements of F is called
a character of P . Each character χ of P gives rise to an automorphism ϕχ of b, by

h +
∑

α∈Φ+

xαeα 	→ h +
∑

α∈Φ+

xαχ(α)eα, h ∈ h, xα ∈ F.

ϕχ is called a diagonal automorphism of b.
(iv) For c ∈ F ∗, define

ϕc : b → b, x 	→ cx, ∀x ∈ b.

We call ϕc a scalar multiplication map on b.

It is clear that the inner automorphisms, the graph automorphisms, the diagonal
automorphisms and the scalar multiplication maps on b are respectively invertible linear
maps on b preserving zero Lie products in both directions.

Theorem 1.1. Suppose rank g = l � 2. ϕ is an invertible linear map on b preserving zero
Lie products in both directions if and only if it is a composition of an inner automorphism,
a graph automorphism, a scalar multiplication map and a diagonal automorphism.

Remark 1.2.

(i) In view of the main theorem we see that an invertible linear map on b preserving
zero Lie products in both directions differs only slightly from an automorphism of b.
Indeed, the group of all invertible linear maps on b preserving zero Lie products in
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both directions is isomorphic to the direct product of Aut b and F ∗, where Aut b
denotes the automorphism group of b.

(ii) When l = 1, the corresponding result can be easily concluded from the main result
of [8], so we leave this case.

2. Some elementary results

Let us start with some preliminary results on simple Lie algebras and irreducible root
systems. In the following, Φ always denotes irreducible roots of rank l. If only one root
length occurs, we view all roots in Φ to be long.

Lemma 2.1. Let h ∈ h, α ∈ Φ+. If β(h) = 0 for all β ∈ Yα, then h = 0.

Proof. Let Δ1 = Δ ∩ Yα and Δ2 = Δ ∩ Xα. For any β ∈ Δ2, let k be the maximal
positive integer such that β + kα ∈ Φ+, i.e., β + kα ∈ Φ+ and β + (k + 1)α /∈ Φ+. Thus
(β + kα)(h) = 0. This follows that β(h) = 0 (note that α(h) = 0). Therefore, β(h) = 0
for all β ∈ Δ, forcing h = 0. �
Lemma 2.2. {eα}′′ = gα for any α ∈ Φ+.

Proof. Obviously, gα ⊆ {eα}′′. Conversely, we first consider {eα}′. It’s easy to see that
ker α⊕ (

⊕
β∈Yα

gβ) ⊆ {eα}′. Suppose h+n ∈ {eα}′, where h ∈ h, n ∈ n. By [h+n, eα] =
α(h)eα + [n, eα] = 0, we have that α(h) = 0 and [n, eα] = 0. Thus h + n ∈ ker α ⊕
(
⊕

β∈Yα
gβ). So {eα}′ = ker α ⊕ (

⊕
β∈Yα

gβ). Suppose h0 + n0 ∈ {eα}′′, where h0 ∈ h,
n0 ∈ n. Then [h0 +n0, eβ ] = 0 for all β ∈ Yα. This implies that β(h0) = 0 for all β ∈ Yα,
forcing h0 = 0 (thanks to Lemma 2.1). Write n0 as n0 =

∑
β∈Φ+ aβeβ . For any h ∈ ker α,

by [h, n0] = 0, we have that β(h)aβ = 0 for β ∈ Φ+. This implies that ker α ⊆ ker β,
when aβ �= 0. So β = α when aβ �= 0. Therefore, n0 = aαeα ∈ gα. Hence {eα}′′ ⊆ gα.
Finally, {eα}′′ = gα. �
Lemma 2.3. {dα}′′ = F dα for any α ∈ Δ.

Proof. Obviously, {dα}′ = h ⊕ (
⊕

β(dα)=0 gβ). If x = h0 + n0 ∈ {dα}′′, where h0 ∈ h,
n0 ∈ n. Then n0 = 0, since [h, n0] = 0. Thus x = h0 ∈ h. By [h0, gβ ] = 0 for all
α �= β ∈ Δ, we have that h0 ∈ F dα. So x ∈ F dα and {dα}′′ ⊆ F dα. Another direction
is clear. Therefore, {dα}′′ = F dα. �
Lemma 2.4. Let x = h0 + n0 ∈ b, where h0 ∈ h, n0 ∈ n. If h0 and n0 are both nonzero,
and [h0, n0] = 0, then the dimension of {x}′′ is at least two.

Proof. It suffices to prove that, for y ∈ b, if [x, y] = 0, then [h0, y] = [n0, y] = 0. Write
n0 as n0 =

∑
α∈Φ+ xαeα, and suppose y = h + n, where h ∈ h, n =

∑
α∈Φ+ yαeα ∈ n.

If we can show that [h0, n] = 0 then the aim is achieved. Otherwise, if [h0, n] =
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∑
α∈Φ+ yαα(h0)eα �= 0, assume that α0 is a positive root with the lowest height for

which yα0α0(h0) �= 0. It’s clear that in the expression of [h, n0] =
∑

α∈Φ+ α(h)xαeα,
the term α0(h)xα0eα0 is zero (note that xα0 = 0). On the other hand, in the expression
of [n0, n] =

∑
α,β∈Φ+ xαyβNα,βeα+β , the coefficient of eα0 is

∑
α+β=α0

xαyβNα,β . We
now intend to show that it takes the value 0. For α, β ∈ Φ+ satisfying α + β = α0, if
α(h0) �= 0, then xα = 0, thus xαyβ = 0. Suppose α(h0) = 0, then β(h0) �= 0 (since
α0(h0) �= 0). If xα = 0 then xαyβ = 0. If xα �= 0, for the aim to show xαyβ = 0, we need
to show that yβ = 0. Otherwise, β is a positive root with the lower height than that of
α0 for which β(h0)yβ �= 0. This contradicts to the way of chosen of α0. So we have that∑

α+β=α0
xαyβNα,β = 0. So [x, y] = [h0, n] − [h, n0] + [n0, n] �= 0, the absurd. �

Lemma 2.5. Let l � 2 and 0 �= h0 ∈ h. Then dim{h0}′ � dim b− 2.

Proof. Firstly, {h0}′ = h⊕ (
∑

α(h0)=0 gα). Let Φ+
0 (h0) be the subset of Φ+ consisting of

positive roots which take value 0 at h0. Then dim{h0}′ = l + |Φ+
0 (h0)| (where |Φ+

0 (h0)|
means the number of elements of Φ+

0 (h0)). h0 �= 0 implies that α(h0) �= 0 for certain
α ∈ Δ. If θ(h0) �= 0, then the result is proved. If θ(h0) = 0, then there exists some
α �= β ∈ Δ such that β(h0) �= 0. In this case, the assertion also holds. �
Lemma 2.6. Let β be a long positive root, then β can be written in the form β = α1+α2+
· · ·+αk, αi ∈ Δ, k = ht β, such that α1 is long and all partial sums βi = α1+α2+· · ·+αi,
i = 1, 2, . . . , k, are positive roots.

Proof. If Φ is of type G2, the result can be checked directly to be true. For the left eight
cases, we will give the proof by induction on ht β. If ht β = 1, the assertion naturally
holds. Assume that the assertion holds for ht β � m− 1 and consider the case ht β = m.
Write β in the form β = α1 + α2 + · · · + αm, αi ∈ Δ, such that all partial sums
βi = α1 + α2 + · · · + αi, i = 1, 2, . . . ,m, are roots. If α1 is long, this expression has
already satisfied what required. If α1 is short, since β1 is short and βm is long, we
assume that t (1 � t � m− 1) is the minimal positive integer such that βt is short and
βt+1 is long. Then βt − αt+1 is also a long positive root. Now the height of βt − αt+1
is smaller than that of β. By induction assumption, we know that βt − αt+1 can be
written as βt − αt+1 = α′

1 + α′
2 + · · · + α′

t−1 with α′
i ∈ Δ, such that α′

1 is long and all
partial sums α′

1 + α′
2 + · · · + α′

i, i = 1, 2, . . . , t− 1, are positive roots. Now β has a new
expression β = α′

1 + α′
2 + · · · + α′

t−1 + αt+1 + αt+1 + αt+2 + · · · + αm, which satisfies
what required. �
Lemma 2.7. Let α, β, η be roots, k a positive integer. If β + kα and (β + kα)+ η are both
roots, and β + η /∈ Φ ∪ {0}, then η + α ∈ Φ ∪ {0}.

Proof. By assumption, we have [eη, [eα, [eα, [. . . [eα, eβ ] . . .]]]] �= 0 (where the inner
derivation ad eα acts on eβ k times), and [eη, eβ ] = 0. Using Jacobi identity repeat-
edly, we have that [eη, eα] �= 0. Thus η + α ∈ Φ ∪ {0}. �
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Lemma 2.8. Let Φ be an irreducible root system of type not G2, β ∈ Φ+ with ht β � 2.
Then there exists α ∈ Δ such that β − α ∈ Φ+ but β + α /∈ Φ+.

Proof. We can find certain α0 ∈ Δ such that (β, α0) > 0. Otherwise, if (β, α) � 0 for all
α ∈ Δ, then Δ∪{β} is linear independent, the absurd. By (β, α0) > 0 we have 〈β, α0〉 � 1.
This implies that β − α0 ∈ Φ+ and β + α0 /∈ Φ+ (note that Φ is not of type G2). �
Lemma 2.9. Let Φ be an irreducible root system of type not G2, β ∈ Φ+, α ∈ Δ, γ =
β + α ∈ Φ+.

(i) If β is long and γ is short, then Mβ � Mγ .
(ii) If β is the unique maximal short root θs, then Mβ = Mγ + 1.
(iii) If β, γ have the same root length, then Mβ = Mγ + 1.
(iv) If γ′ = γ + α is also a root, then Mβ = Mγ′ + 1.
(v) If β is short and γ is long, then Mβ � Mγ + 1.

Proof. Let α �= η ∈ Xβ \Xγ , i.e., η + β ∈ Φ+ but η + γ /∈ Φ+. We have, by Lemma 2.7,
that η−α ∈ Φ+. It’s clear that η−α ∈ Xγ . Similarly, if ε ∈ Xγ \Xβ , then we have that
ε + α ∈ Xβ .

For (i), the fact that β ∈ Φ+
l , γ ∈ Φ+

s implies that α ∈ Δs, 〈β, α〉 = −2 and α ∈
Xβ ∩Xγ . If η ∈ Xβ \Xγ , then we have, by above discussions, that η− α ∈ Xγ . We now
show that η − α /∈ Xβ . Otherwise, β + (η − α) ∈ Φ+. Thus 〈β + η, α〉 = 1 or 2 (recall
that β + η + α /∈ Φ+). Since 〈β, α〉 = −2, we obtain 〈η, α〉 � 3, the absurd. Now we can
set up an injective map from Xβ to Xγ , which fixes each element in Xβ ∩Xγ , and maps
any η ∈ Xβ \Xγ to η − α ∈ Xγ \Xβ . Therefore, Mβ � Mγ .

In case (ii), we see that α ∈ Δs, 〈β, α〉 = 0 and α ∈ Xβ \Xγ . Let α �= η ∈ Xβ \Xγ ,
then we also have that η−α ∈ Xγ . Actually, η is a short root, since η+β is a long root.
If η− α ∈ Xβ , then by β + η− α ∈ Φ+ and β + η + α /∈ Φ+, we have 1 � 〈β + η, α〉 � 2.
Since β + η is long and α is short, we obtain 〈β + η, α〉 = 2. This follows that 〈η, α〉 = 2,
contradiction with the fact that η is short. So η−α ∈ Xγ\Xβ . Conversely, let ε ∈ Xγ\Xβ ,
then we have that ε + α ∈ Xβ . If it also lies in Xγ , then we have −2 � 〈γ + ε, α〉 � −1,
since γ+ε+α ∈ Φ+ and γ+ε−α /∈ Φ+. Because γ+ε is long and α is short, we see that
〈γ+ε, α〉 = −2. Thus 〈ε, α〉 = −4 (recall 〈γ, α〉 = 2), the absurd. Hence ε+α ∈ Xβ \Xγ .
Now we can set up a bijective map from Xβ \ {α} to Xγ , which fixes each element in
Xβ ∩Xγ , and sends any α �= η ∈ Xβ \Xγ to η−α ∈ Xγ \Xβ . Therefore, Mβ = Mγ + 1.

In case (iii), 〈β, α〉 = −1 and α ∈ Xβ \Xγ . Let α �= η ∈ Xβ \Xγ , then η − α ∈ Xγ .
If η − α ∈ Xβ , we also have that 1 � 〈β + η, α〉 � 2. Then by 〈β, α〉 = −1, we have that
〈η, α〉 = 2, and 〈β + η, α〉 = 1. So η − 2α ∈ Φ+, γ + (η − 2α) = β + η − α ∈ Φ+ and
β + (η − 2α) /∈ Φ+, i.e., η − 2α ∈ Xγ \Xβ . Conversely, let ε ∈ Xγ \Xβ , then we have
that ε + α ∈ Xβ . If it also lies in Xγ , then we also have that −2 � 〈γ + ε, α〉 � −1. By
〈γ, α〉 = 〈β + α, α〉 = 1, we have 〈ε, α〉 = −2 and 〈γ + ε, α〉 = −1. So ε + 2α ∈ Xβ \Xγ .
Now we can set up a bijective map τ from Xβ \ {α} to Xγ , in such a way that τ(η) = η
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for η ∈ Xβ ∩Xγ ; τ(η) = η − α for η (distinct with α) in Xβ \Xγ satisfying η − α /∈ Xβ ;
and τ(η) = η − 2α for η (distinct with α) in Xβ \Xγ satisfying η − α ∈ Xβ . Therefore,
Mβ = Mγ + 1.

In case (iv), β is long and α is short, 〈β, α〉 = −2, and β +α is a short root, β + 2α is
a long root. It’s easy to see that α ∈ Xβ \Xγ′ . Let α �= η ∈ Xβ \Xγ′ , then η − α ∈ Φ+.
If η is long, then 〈η, α〉 = 2, 〈β + η, α〉 = 0. This says that η − 2α ∈ Φ+. It’s not difficult
to verify that η−2α ∈ Xγ′ \Xβ . If η is short, then 〈η, α〉 = 1, 〈β+η, α〉 = −1. This says
that η − α ∈ Φ+. Then we have η − α ∈ Xγ′ \ Xβ . Conversely, let ε ∈ Xγ′ \ Xβ , then
we see ε + α ∈ Xβ . If ε is long then 〈ε, α〉 = −2 and 〈γ′ + ε, α〉 = 0. Thus ε + 2α ∈ Φ+.
Furthermore, we have that ε + 2α ∈ Xβ \ Xγ′ . If ε is short then 〈ε, α〉 = −1 and
〈γ′ + ε, α〉 = 1. Thus ε + α ∈ Φ+. Furthermore, we have that ε + α ∈ Xβ \ Xγ′ . Now
we can set up a bijective map τ from Xβ \ {α} to Xγ′ in such a way that, τ(η) = η for
η ∈ Xβ ∩Xγ′ ; τ(η) = η − 2α for α �= η ∈ Xβ \Xγ′ being a long root; τ(η) = η − α for
α �= η ∈ Xβ \Xγ′ being a short root. Finally, we also have Mβ = Mγ′ + 1.

In case (v), 〈β, α〉 = 0 and β − α is a long root. Denote β − α by β1. Then we have,
by (i), that Mβ1 � Mβ , and by (iv), that Mβ1 = Mγ + 1. Hence Mβ � Mγ + 1. �
Lemma 2.10. Let Φ be an irreducible root system with only one root length. Then for any
β ∈ Φ+, Mβ = ht θ − ht β.

Proof. We give the proof by induction on ht β. If ht β = ht θ, the result obviously holds.
Assume that the assertion holds for ht β = k (2 � k � ht θ), and consider the case
that ht β = k − 1. Find α ∈ Δ such that γ = β + α ∈ Φ+. It follows from (iii) of
Lemma 2.9 that Mβ = Mγ + 1. By induction assumption, Mγ = ht θ − ht γ. Therefore,
Mβ = ht θ − ht β. �
Lemma 2.11. Let Φ be an irreducible root system with two root lengths and suppose it is
not of type G2.

(i) If β ∈ Φ+ is short, then Mβ = ht θ − ht β. In particular, Mβ = ht θ − 1 for any
β ∈ Δs.

(ii) Mα are equal for all α ∈ Δl; and Mα < ht θ − 1 for any α ∈ Δl.
(iii) If β ∈ Φ+ is a long root with ht β � 2, then Mβ < Mα for any α ∈ Δl.
(iv) If β ∈ Φ+ is long, then Mβ � ht θ − ht β.

Proof. We give the proof of (i) by steps.
Step 1. If θs ≺ β ∈ Φ+ and θs �= β, then Mβ = ht θ − ht β.
We use induction on ht β to complete the proof of this step. If ht β = ht θ, i.e., β = θ,

the result naturally holds. Assume that the assertion holds when ht β = k. For the case
that ht β = k − 1. Find α ∈ Δ such that γ = β + α is a root. Note that β and γ are
both long roots. So by (iii) of Lemma 2.9, we have that Mβ = Mγ + 1. By induction
assumption, Mγ = ht θ − ht γ. Therefore, Mβ = ht θ − ht β.
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Step 2. Mθs = ht θ − ht θs.
For θs, we can find some α ∈ Δ such that γ = β + α is a root. Then we have, by (ii)

of Lemma 2.9, that Mθs = Mγ + 1 = ht θ − ht γ + 1 = ht θ − ht θs.
Step 3. For any short positive root β, Mβ = ht θ − ht β.
For θs, one will see (by directly check for Φ of different types) that there exist simple

roots α1, α2, . . . , αt, t = ht θs−ht β such that θs = β+α1 +α2 + · · ·+αt, and all partial
sums βi = β + α1 + · · · + αi, i = 0, 1, . . . , t, are short roots (where β0 and βt refer to β

and θs, respectively). Thus by (iii) of Lemma 2.9, we have that

Mβ = Mβ1 + 1 = Mβ2 + 2 = · · · = Mβt
+ t

= ht θ − ht θs + t = ht θ − ht β.

For (ii), set λ =
∑

α∈Δl
α, then λ is a long root. Thus we have, by (iii) of Lemma 2.9,

that Mα = Mλ + ht λ − 1 for any α ∈ Δl. This says that all Mα are equal for α ∈ Δl.
We can write θ in the form θ = α1 + α2 + · · · + αm, m = ht θ, αi ∈ Δ, such that α1
is long and all partial sums βi = α1 + α2 + · · · + αi, i = 1, 2, . . . ,m, are roots (thanks
to Lemma 2.6). Note that there exists certain αi (in the expression of θ as the linear
combination of simple roots) whose length is short. Assume that α1, α2, . . . , αk−1 are all
long and αk is short. Then βk−1 is long and βk is short. Then by Lemma 2.9, we know
that Mβk−1 � Mβk

. Furthermore,

Mα1 = Mβk−1 + k − 2 � Mβk
+ k − 2 = ht θ − ht βk + k − 2 = ht θ − 2.

Thus Mα < ht θ − 1 for all α ∈ Δl.
For (iii), we write β in the form β = α1 +α2 + · · ·+αk, k = ht β, αi ∈ Δ, such that α1

is long and all partial sums βi = α1 + α2 + · · · + αi, i = 1, 2, . . . , k, are roots (thanks to
Lemma 2.6). If all βi, i = 1, 2, . . . , k, are long roots, then we have, by (iii) of Lemma 2.9,
that Mβ = Mα1 − (k− 1) < Mα1 . If certain βi is short, we use induction on ht β to show
that Mβ < Mα1 . In this case, we may assume that βi−1 is short but βi, . . . , βk are all
long. Then βi − 2αi is a long root. Denote it by γ. Then we have, by Lemma 2.9, that
Mβi

= Mγ − 1. Note that γ is a long root. So we have, by induction assumption, that
Mγ � Mα1 . Therefore Mβ = Mβi

− (k − i) � Mα1 − 1 − (k − i) < Mα1 .
For (iv), we write θ in the form θ = β+α1+α2+ · · ·+αk, k = ht θ−ht β, αi ∈ Δ, such

that all partial sums βi = β + α1 + α2 + · · · + αi, i = 0, 1, 2, . . . , k, are roots (β0 and βk

refer to β and θ respectively). If all βi, i = 0, 1, . . . , k, are long roots, then we have, by (iii)
of Lemma 2.9, that Mβ = ht θ − ht β. If certain βi is short, we use decreasing induction
on ht β to complete the proof. In this case, we assume that β0, β1, . . . , βi−1 are long but
βi is short. Then γ = βi−1 + 2αi is also a long root. By (iv) of Lemma 2.9, we have that
Mβi−1 = Mγ+1. By induction assumption, Mγ � ht θ−ht γ. So Mβi−1 � ht θ−ht βi−1−1.
Therefore, Mβ = Mβi−1 + i− 1 � ht θ − ht β − 1 < ht θ − ht β. �

Let d be a subspace of h, and define Φ0(d) to be the subset of Φ consisting of α ∈ Φ

satisfying α(d) = 0 for all d ∈ d, Φ+
0 (d) = Φ0(d) ∩ Φ+. It’s easy to see that, if Φ0(d) is
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not the empty set, then it forms a new root system in the subspace spanned by Φ0(d).
Now put U(d) to be the subgroup of U generated by all σα(t) for α ∈ Φ+

0 (d), t ∈ F .
Obviously, σ(d) = d for any σ ∈ U(d) and d ∈ d.

Lemma 2.12. For any fixed x ∈ {d}′, we can find certain σ ∈ U(d) such that σ(x) = h+n,
where h ∈ h, n ∈ Cn(d) and [h, n] = 0.

Proof. It’s clear that {d}′ = h ⊕ (
⊕

α∈Φ+
0 (d) gα). Write x in the form x = h +∑

α∈Φ+
0 (d) aαeα, aα ∈ F , h ∈ h. For a positive integer i, set Φi

∗ = {α ∈ Φi | α(h) �= 0};
Φi

0 = {α ∈ Φi | α(h) = 0}. Take σ1 =
∏

α∈Φ1
∗∩Φ+

0 (d) σα(α(h)−1aα), where the product is
taken according to any fixed order. Then

σ1(x) ≡ h +
∑

α∈Φ1
0∩Φ+

0 (d)

aαeα (mod n2).

Now suppose

σ1(x) ≡ h +
∑

α∈Φ1
0∩Φ+

0 (d)

aαeα +
∑

α∈Φ2∩Φ+
0 (d)

bαeα (mod n3),

and take σ2 =
∏

α∈Φ2
∗∩Φ+

0 (d) σα(α(h)−1bα). Then

(σ2σ1)(x) ≡ h +
∑

α∈Φ1
0∩Φ+

0 (d)

aαeα +
∑

α∈Φ2
0∩Φ+

0 (d)

bαeα (mod n3).

Continuing such process, after ht θ steps, we can choose σ1, σ2, . . . , σm (m = ht θ) such
that (σm · · ·σ2σ1)(x) = h + n, where n ∈ Cn(d) and [h, n] = 0, as desired. �

Let ϕ be an invertible linear map on b preserving zero Lie products in both directions.
Then for an arbitrary subset A of b, it is clear that ϕ({A}′) = {ϕ(A)}′ and ϕ({A}′′) =
{ϕ(A)}′′.

Lemma 2.13. Suppose rank g � 2, then ϕ(gθ) = gθ.

Proof. Firstly, we can choose σ ∈ U , by Lemma 2.12, such that (σ ◦ ϕ)(eθ) = h + n,
where h ∈ h, n ∈ n and [h, n] = 0. It follows from {eθ}′′ = gθ that {h + n}′′, as the
image of {eθ}′′ under σ ◦ϕ, is one dimensional. Thus h = 0 or n = 0 (recall Lemma 2.4).
If n = 0, then {h + n}′ = {h}′ has the dimension � dim b − 2 (recall Lemma 2.5).
However the dimension of {eθ}′ is dim b − 1, the absurd. So h = 0 and n �= 0. Suppose
n =

∑
α∈Φ+ aαeα. If there exist distinct positive roots α, β such that aα and aβ both

are nonzero. Then we have, by Ch(n) ⊆ ker α ∩ ker β, that dim Ch(n) � l − 2. Since

dim Ch(n) = dim
(
{n}′ ∩ h

)
= dim{n}′ + dim h− dim

(
{n}′ + h

)
,
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we have that dim{n}′ � dim Ch(n) + dim b− l � dim b− 2, which contradicts with the
fact that dim{eθ}′ = dim b − 1. Now we see that there exists certain β ∈ Φ+ such that
n ∈ gβ . Since dim{n}′ = dim{eθ}′ = dim b− 1 and {n}′ = ker β ⊕Cn(eβ), we have that
Cn(eβ) = n, which shows that β = θ. Now we see that (σ ◦ ϕ)(gθ) = gθ. It follows that
ϕ(gθ) = gθ, since σ−1(gθ) = gθ. �
Lemma 2.14. Let rank g � 2, ϕ be an invertible linear map on b preserving zero Lie
products in both directions. There exists σ ∈ U such that (σ ◦ ϕ)(h) = h.

Proof. Let Δ = {α1, α2, . . . , αl}, and let dΔ = {dα1 , dα2 , . . . , dαl
} be the dual basis of

h relative to Δ. Now consider the action of ϕ on dα1 , dα2 , . . . , dαl
in turn. Suppose that

ϕ(dα1) = h1 + v1, h1 ∈ h, v1 ∈ n. By Lemma 2.12, we can find σ1 ∈ U such that
(σ1 ◦ ϕ)(dα1) = h1 + n1, where n1 ∈ n and [h1, n1] = 0. Since {dα1}′′ = F dα1 is one
dimensional, we see that {h1+n1}′′ is also one dimensional. Thus either h1 = 0 or n1 = 0
(using Lemma 2.4). Since gθ is not contained in {dα1}′ and gθ is stable under σ1 ◦ϕ, we
know that gθ � {h1 + n1}′. This shows that n1 = 0 and h1 �= 0. Denote σ1 ◦ ϕ by ϕ1.
Suppose that ϕ1(dα2) = h2 +v2, h2 ∈ h, v2 ∈ n. Then h2 +v2 ∈ {Fh1}′. By Lemma 2.12,
we can find σ2 ∈ U(Fh1) such that (σ2 ◦ ϕ1)(dα2) = h2 + n2, where n2 ∈ Cn(Fh1)
and [h2, n2] = 0. Similar as above, we obtain that n2 = 0 and h2 �= 0. Denote σ2 ◦ ϕ1
by ϕ2. Note that ϕ2(dαj

) = hj , j = 1, 2. Generally, suppose that we have found σ1 ∈ U ,
σ2 ∈ U(Fh1), . . . , σk−1 ∈ U(

∑k−2
i=1 Fhi) such that

(σk−1 ◦ σk−2 ◦ · · · ◦ σ1 ◦ ϕ)(dαi
) = hi ∈ h, i = 1, 2, . . . , k − 1.

Denote σk−1 ◦ σk−2 ◦ · · · ◦ σ1 ◦ ϕ by ϕk−1. We now intend to find σk ∈ U(
∑k−1

i=1 Fhi)
such that (σk ◦ϕk−1)(dαj

) ∈ h for j = 1, 2, . . . , k. By [dαk
, di] = 0, for i = 1, 2, . . . , k− 1,

we know that [ϕk−1(dαk
),
∑k−1

i=1 Fhi] = 0. Thus ϕk−1(dαk
) ∈ {

∑k−1
i=1 Fhi}′. Sup-

pose ϕk−1(dαk
) = hk + vk, where hk ∈ h, vk ∈ Cn(

∑k−1
i=1 Fhi). By Lemma 2.12,

we can find σk ∈ U(
∑k−1

i=1 Fhi) such that (σk ◦ ϕk−1)(dαk
) = hk + nk, where nk ∈

Cn(
∑k−1

i=1 Fhi) satisfying [hk, nk] = 0. Discussing as the first step, we also have nk = 0.
So (σk ◦ ϕk−1)(dαk

) = hk ∈ h. Note that σk fixes each hi for i = 1, 2, . . . , k − 1. So
(σk ◦ ϕk−1)(dαi

) = hi, i = 1, 2, . . . , k. Finally, we have by induction that there exist
σ1, σ2, . . . , σl ∈ U , such that

(σl ◦ σl−1 ◦ · · · ◦ σ1 ◦ ϕ)(dαi
) = hi ∈ h, i = 1, 2, . . . , l.

Set σ = σl ◦ σl−1 ◦ · · · ◦ σ1 we have that (σ ◦ ϕ)(h) = h. �
Lemma 2.15. Let ϕ be an invertible linear map on b preserving zero Lie products in both
directions. If ϕ(h) = h, then ϕ(n) = n.

Proof. For any α ∈ Φ+, we can find σ ∈ U such that (σ ◦ ϕ)(eα) = h + n, where h ∈ h,
n ∈ n satisfy [h, n] = 0. Since {eα}′′ is one dimensional we know that {h + n}′′ is also
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one dimensional. Thus we know, by Lemma 2.4, that either h = 0 or n = 0. If n = 0 then
(ϕ−1 ◦ σ−1)(h) = eα, which is impossible (recall ϕ(h) = h). So h = 0 and n �= 0. Then
(σ ◦ϕ)(eα) ∈ n. Obviously, σ−1(n) = n, from which it follows that ϕ(eα) ∈ n. Therefore,
ϕ(n) = n. �
Lemma 2.16. Let ϕ be an invertible linear map on b preserving zero Lie products in
both directions. If ϕ(h) = h, then for any given α ∈ Φ+, there exists β ∈ Φ+ such that
ϕ(gα) = gβ.

Proof. It’s easy to see that

dim Ch

(
ϕ(eα)

)
= dim Ch(eα) = dim(ker α) = l − 1.

Write ϕ(eα) as ϕ(eα) =
∑

β∈Φ+ aβeβ (recall that ϕ(n) = n). If there exist distinct positive
roots β1, β2 such that aβ1 , aβ2 both are nonzero, then by Ch(ϕ(eα)) ⊆ ker β1 ∩ ker β2,
we have that dim Ch(ϕ(eα)) � l − 2, the absurd. So only one β ∈ Φ+ such that aβ �= 0.
Therefore, ϕ(gα) = gβ . �

If ϕ stabilizes h, then by Lemma 2.16, ϕ induces a permutation ρ on Φ+ in the way
that ϕ(gα) = gρ(α). The following lemma about the properties of ρ is clear.

Lemma 2.17.

(i) (ρ(α), ρ(β)) = 0 if and only if (α, β) = 0 for α, β ∈ Δ.
(ii) ρ(Xα) = Xρ(α); ρ(Yα) = Yρ(α), for any α ∈ Φ+.
(iii) Mρ(α) = Mα for any α ∈ Φ+. �
Lemma 2.18. ρ stabilizes Δ and 〈ρ(α), ρ(β)〉 = 〈α, β〉 for any α, β ∈ Δ. In other words,
ρ induces a symmetry of the Dynkin diagram of Φ.

Proof. We give the proof for Φ of different types.
Case 1. Φ has only one root length.
In this case, Mβ = ht θ − 1 if and only if β ∈ Δ. Thus we have, by Lemma 2.17,

that ρ(Δ) = Δ. It’s clear that 〈ρ(α), ρ(β)〉 = 〈α, β〉 for any α, β ∈ Δ (using (i) of
Lemma 2.17).

In the following we consider the case that Φ has two different root lengths.
Case 2. Φ is of type Bl (l � 3).
Let the Dynkin diagram of Bl type root system be

1 2 l − 2 l − 1 l
· · · =⇒◦ ◦ ◦ ◦ ◦

In this case, θ = α1 +
∑l

i=2 2αi and θs =
∑l

i=1 αi. We know that Mβ = ht θ−1 if and
only if β = αl. So ρ fixes αl. Let Ψ1 = {β ∈ Φ+ | Mβ = ht θ − 2}. It is stable under ρ.
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Then by Lemmas 2.9 and 2.11, we know Ψ1 = {α1, α2, . . . , αl−1, αl−1 + αl}. It’s easy to
see that Ψ1 ∩ Yαl

= {α1, α2, . . . , αl−2} and Ψ1 ∩Xαl
= {αl−1, αl−1 + αl}. They are both

stable under ρ. Now let Ψ2 = {β ∈ Φ+ | Mβ � l−2}. Actually, Ψ2 consists of the roots of
height � l+1. Since Ψ2 ∩Xαl−1+αl

= ∅, θs +αl ∈ Ψ2 ∩Xαl−1 , it is concluded that ρ fixes
αl−1 and αl−1 + αl, respectively. By ρ(αl−1) = αl−1, we conclude that ρ(αl−2) = αl−2,
since α ∈ Δl satisfies (α, αl−1) �= 0 iff α = αl−2 or α = αl−1. Then, by this way, we
will have that ρ(αl−3) = αl−3, . . . , ρ(α2) = α2, ρ(α1) = α1. Now we see that ρ fixes each
element in Δ.

Case 3. Φ is of type Cl (l � 2).
Let the Dynkin diagram of Cl type root system be

1 2 l − 2 l − 1 l
· · · ⇐=◦ ◦ ◦ ◦ ◦

In this case, θ = αl+
∑l−1

i=1 2αi and θs = θ−α1. By Lemmas 2.11 and 2.17, we see that
ρ stabilizes Δs, which is {α1, α2, . . . , αl−1}. Let Ψ1 be the subset of Φ+ consisting of β
satisfying Mβ = 1. It is stable under ρ. Actually, Ψ1 has only two roots, they are θ−α1 and
θ−2α1. Note that, for γ ∈ Φ+, Ψ1 ⊆ Xγ if and only if γ = α1. This forces that ρ(α1) = α1.
Obviously, for α ∈ Δs (distinct with α1), (α1, α) �= 0 if and only if α = α2. By this we
conclude that ρ(α2) = α2. Similarly, we will further have that ρ(α3) = α3, . . . , ρ(αl−1) =
αl−1. Let Ψ2 be the subset of Φ+ consisting of the roots β satisfying Mβ = l−1. It is also
stabilized by ρ. We know, by Lemma 2.9, that Ψ2 consists of αl together with all short
roots of height l. It is not difficult to see that Ψ2 ∩Xαl−1 = {αl, γ}, where γ =

∑l
i=1 αl.

Thus ρ stabilizes the subset {αl, γ} of Ψ2. Now we intend to show that ρ actually fixes αl

and γ, respectively. Otherwise, if ρ permutes αl and γ nontrivially, namely, ϕ(gαl
) = gγ

and ϕ(gγ) = gαl
. By ϕ(gαi

) = gαi
for i = 1, 2, . . . , l − 1 and ϕ(h) = h, we see that

ϕ(F dαl
) = F dαl

, since F dαl
=

⋂l−1
i=1 Ch(gαi

). Suppose ϕ(eαl
) = aeγ , ϕ(eγ) = beαl

and
ϕ(dαl

) = cdαl
. Now it follows from [eαl

+ dαl
, eγ−αl

−Nαl,γ−αl
eγ ] = 0 that

[
aeγ + cdαl

, ϕ(eγ−αl
) −Nαl,γ−αl

beαl

]
=

[
aeγ + cdαl

, ϕ(eγ−αl
)
]
− bcNαl,γ−αl

eαl
= 0.

But it is impossible (note that ϕ(eγ−αl
) /∈ gαl

). So ρ(αl) = αl. Finally, we see that ρ

fixes each element in Δ.
Case 4. Φ is of type F4.
Let the Dynkin diagram of F4 type root system be

1 2 3 4
=⇒◦ ◦ ◦ ◦

In this case, Δs = {α3, α4}, which is stabilized by ρ (thanks to Lemmas 2.11 and 2.17).
Let

Ψ1 =
{
β ∈ Φ+ ∣∣ Mβ = 1

}
; Ψ2 =

{
β ∈ Φ+ ∣∣ Mβ = 2

}
.

Thus Ψ1 and Ψ2 are both stable under ρ. Actually, Ψ1 and Ψ2 both consist of just one
root, they respectively are θ − α1 and θ − α1 − α2. One easily sees that Xθ−α1 = {α1}
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and Xθ−α1−α2 = {α2, α1 + α2}. Thus we know that ρ(α1) = α1 and ρ stabilizes the
subset {α2, α1 + α2}. Since Mα2 = Mα1+α2 + 1, we see that ρ also fixes α2. Finally, it’s
easy to see that ρ fixes α3 and α4, respectively.

Case 5. Φ is of type G2.
In this case, let α1 ∈ Δ be long and α2 ∈ Δ be short. Then θ = 2α1 + 3α2 and

θs = α1 + 2α2. Denote θ − α1 by θ1. Let

Ψ1 =
{
β ∈ Φ+ ∣∣ Mβ = 1

}
; Ψ2 =

{
β ∈ Φ+ ∣∣ Mβ = 3

}
.

Then ρ(Ψi) = Ψi, i = 1, 2. Actually, Ψ1 and Ψ2 both consist of just one root, they
respectively are θ1 and α2. This follows that ρ(α2) = α2 and ρ(θ1) = θ1. By Xθ1 = {α1}
we have that ρ(α1) = α1. �
3. The proof of the main theorem

Let ϕ be an invertible linear map on b preserving zero Lie products in both directions.
By Lemma 2.14, there exists σ ∈ U such that (σ ◦ϕ)(h) = h. Denote σ ◦ϕ by ϕ1. Then,
by Lemma 2.18, ϕ1 induces a symmetry ρ (trivial or nontrivial) on the Dynkin diagram
of Φ. Using ρ we construct the graph automorphism ϕρ of b. Then ϕ−1

ρ ◦ ϕ1 stabilizes
each root space gα for α ∈ Δ. Denote ϕ−1

ρ ◦ ϕ1 by ϕ2.
For any given α ∈ Δ, since

F dα =
⋂

β∈Δ\{α}
ker β =

⋂
β∈Δ\{α}

Ch(gβ);

ϕ2
(
Ch(gβ)

)
= Ch

(
ϕ2(gβ)

)
= Ch(gβ), for β ∈ Δ,

we have that ϕ2(F dα) = F dα for any α ∈ Δ. Now suppose ϕ2(dα) = aαdα for α ∈ Δ.
We wish to show that all aα, α ∈ Δ, are equal. Write θ as the linear combination of
the simple roots: θ =

∑
α∈Δ kαα, where all kα are positive integers. We know that

Ch(gθ) = {
∑

α∈Δ xαdα ∈ h |
∑

α∈Δ kαxα = 0} = ker θ is an l − 1 dimensional subspace
of h. If

∑
α∈Δ kαxα = 0, then

∑
α∈Δ xαdα ∈ Ch(gθ). Thus

∑
α∈Δ

aαxαdα = ϕ2

(∑
α∈Δ

xαdα

)
∈ ϕ2

(
Ch(gθ)

)
= Ch

(
ϕ2(gθ)

)
= Ch(gθ) = ker θ,

from which it follows that
∑

α∈Δ aαkαxα = 0. So the equation (in variants xα, α ∈ Δ)
∑
α∈Δ

kαxα = 0

and the equations {∑
α∈Δ kαxα = 0∑

aαkαxα = 0
α∈Δ
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have the same solutions. So all aαkα

kα
(= aα) are equal for α ∈ Δ. Now we denote the

same value aα by c, and using it we construct the multiplication map ϕc. Then we see
that ϕ−1

c ◦ ϕ2 fixes each element in h. Denote ϕ−1
c ◦ ϕ2 by ϕ3.

For β ∈ Φ+, it’s clear that gβ = Cn(ker β). By applying ϕ3, we have that
ϕ3(gβ) = gβ for any β ∈ Φ+. Now suppose that ϕ3(eα) = bαeα for α ∈ Δ, and de-
fine χ : P = ZΦ → F ∗, by

∑
α∈Δ kαα 	→

∏
α∈Δ bkα

α . Then χ is an F -character of P .
Using it we construct the diagonal automorphism ϕχ of b. Then ϕ−1

χ ◦ϕ3 will further fix
each eα for α ∈ Δ. Denote ϕ−1

χ ◦ ϕ3 by ϕ4.
If Φ is not of type G2, we wish to show, by induction on ht β, that ϕ4 fixes all eβ for

β ∈ Φ+. If ht β = 1, the result has been shown to be true. Assume that ϕ4(eβ) = eβ for
β ∈ Φ+ with ht β = k − 1 (where 2 � k � ht θ). Let ht β = k. Since Φ is not of type G2,
we can find α ∈ Δ such that γ = β − α ∈ Φ+, but β + α /∈ Φ+ (recall Lemma 2.8).
Choose h ∈ h such that γ(h) = 0 and β(h) = −Nα,γ . Then by [eα + h, eγ + eβ ] = 0 and
ϕ4(eγ) = eγ , we have that [eα + h, eγ + ϕ4(eβ)] = 0. This implies that ϕ4(eβ) = eβ . We
have by induction that ϕ4(eβ) = eβ for all β ∈ Φ+. If Φ is of type G2, let θ1 = θ − α1.
We know that Nα2,α1 = δ, Nα2,α1+α2 = 2δ, Nα2,α1+2α2 = 3δ, where δ = 1, or −1. Let
h0 = −δdα2 . Then (α1 + kα2)(h0) = −kδ. It follows from

[eα2 + h0, eα1 + eα1+α2 + eα1+2α2 + eα1+3α2 ] = 0

that [
eα2 + h0, eα1 + ϕ4(eα1+α2) + ϕ4(eα1+2α2) + ϕ4(eα1+3α2)

]
= 0.

This implies that ϕ(eα1+kα2) = eα1+kα2 , for k = 1, 2, 3. Now consider the action
of ϕ4 on eθ. Choose h ∈ h such that θ1(h) = 0 and θ(h) = −Nα1,θ1 . Then by
[h + eα1 , eθ1 + eθ] = 0, we obtain [h + eα1 , eθ1 + ϕ4(eθ)] = 0. So ϕ4(eθ) = eθ. Now we
have that ϕ4(eβ) = eβ for all β ∈ Φ+.

Till now, we have shown that ϕ4 acts as the identity on b. Finally, we know that the
original invertible linear map ϕ on b is a composition of an inner automorphism, a graph
automorphism, a scalar multiplication map and a diagonal automorphism. �
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