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Canonical decomposition

Introduction

Consider mod(kQ, 3), the variety of S-dimensional modules over a path algebra kQ.
A decomposition § = B(1) + ...+ B(s) of S into smaller dimension vectors is called
the canonical decomposition of f§ if there exists an open subset U C mod(kQ, 3) for
which every module V' € U has direct sum decomposition V= V(1) & ... @ V(s)
where V() is indecomposable of dimension 5(i) for each i. It was originally Kac who
introduced this concept and showed that such a canonical decomposition (necessarily
unique) exists for any dimension vector 3. Later, Schofield [11] and Derksen and Weyman
[5] gave independent algorithms for determining the canonical decomposition of a given
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dimension vector for any quiver @, although a description of the corresponding open set
U remains out of reach. The modules in this set will be called generic in this article.

For quivers with relations, the situation is more intricate. Module varieties need not be
irreducible, so one needs to consider the canonical decomposition of a dimension vector
and describe the generic modules with respect to a given irreducible component. While
it is generally difficult to describe the irreducible components of module varieties, this
problem can be solved for a certain class of zero-relation algebras, namely triangular
gentle algebras.

In this article, we give an algorithm to describe the set U in irreducible components
of module varieties for triangular gentle algebras. In particular, we construct, for each
irreducible component of a module variety for a gentle algebra, a graph referred to as an
up-and-down graph. From each such graph, a family of representations is constructed, and
it is shown that the union of the orbits of these special representations is dense within
the irreducible component. In particular, the up-and-down graph allows one to read
the generic decomposition of, and describe the generic modules within any irreducible
component. Its connected components count the indecomposable direct summands of
the generic modules, and the type of each connected component (either a chain or cycle)
describes the type of the corresponding indecomposable direct summand (as a string or
band). This work is a generalization of Kraskiewicz and Weyman (see [10]), in which the
generic modules for the algebras A(n) are constructed.

In [8], it is shown that for a quiver @ and dimension vector 3, a decomposition
B =p5(1)+ ...+ B(s) is the canonical decomposition of g if and only if 3(i) are Schur
roots (i.e., the generic module in mod(kQ, 3(¢)) is indecomposable) and there are no
extensions between the generic modules of dimensions () and 3(j) for ¢ # j. This result
(with some modifications, recalled in Section 4) was extended to module varieties of finite
dimensional associative algebras by Crawley-Boevey and Schréer in [3]. Furthermore (see
[6,12]), if a S-dimensional module admits no self extensions, then its GL(3) orbit is open
in its irreducible component. Thus the criterion used to determine the generic modules
has interesting connections with tilting theory.

In the author’s joint work with Calin Chindris [1], the generic modules (specifically,
those which are band modules) herein described are put to use in showing that fields
of rational invariants for irreducible components of modules varieties for gentle algebras
are rational fields. In particular, the combinatorics of these specific modules, as well as
their explicit projective presentations provide for simple construction of semi-invariant
functions on the irreducible components. Ratios of semi-invariant functions of the same
weight are rational invariants, and by evaluating on the set of generic modules it is pos-
sible to show that the rational invariants so-constructed are algebraically independent.

The paper is laid out as follows. In Section 1, the pertinent definitions are recalled,
including the notion of a gentle algebra, quiver morphisms, and module varieties, con-
cluding with the parametrization of irreducible components of module varieties for gentle
algebras. In Section 2, we give the combinatorial construction of the generic modules,
followed by a collection of some of their important properties in Section 3. Section 4
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contains a statement of the two main theorems, the first asserting genericity of the mod-
ules constructed, and the second presenting the dimensions of various extension spaces.
In Section 5, a minimal projective resolution of the modules is constructed and utilized
to calculate the dimensions of the extension spaces referred to in the theorem from the
previous section, thereby proving said theorem. Finally, in Section 6, the projective res-
olution is used to calculate the dimensions of spaces of higher self-extensions for the
generic modules.

1. Preliminary definitions

Fix an algebraically closed field k = k. A quiver Q = (Qo, Q1) is a pair consisting of
a set of vertices Qo and arrows Q1. We denote by ta (resp. ha) the tail (resp. head) of
the arrow a. A path p in @ is a sequence of arrows asas—1 ...a; such that ha; = ta;11
for i =1,...,s — 1. A (finite-dimensional) representation V of @ is a pair ({V;}zecqo,
{Va : Via = Vhatacq,) where V; are (finite-dimensional) vector spaces, and V, are linear
maps. A morphism of representations ¢ : V' — W is a linear map ¢, : V, — W, for each
vertex x € Qg such that for each arrow a € @)1 the following square commutes:

Pta
Vvta > Wta

v |

Vha - Wha
Pha
The vector dimV with (dimV'), = dimV,, is referred to as the dimension vector of V.
The category of finite-dimensional representations of () with morphisms so-defined is
denoted by repg.

The path algebra kQ of @ is the algebra whose basis consists of the set of paths p in @
(including the length-zero paths concentrated at each vertex) with multiplication defined
by concatenation of paths. We denote by mod(kQ®) the category of finitely generated left
kQ-modules, and remark that the categories mod(kQ@) and repg, are equivalent.

Given a two-sided ideal I of kQ, we call the pair (@, I) a bound quiver. A represen-
tation V' of a bound quiver (Q,I) is a representation of @ such that for p € I, V, =0
(here V, is the composition of the linear maps on the arrows of p, in the order prescribed
by the path). The category rep(o. 1) of (finite-dimensional) representations of the bound
quiver is equivalent to mod(kQ/I), so we will make no distinction speaking of modules
or representations.

Definition 1. A finite-dimensional k-algebra A is called gentle if it admits a presentation
kQ/I satistying the following properties:

e each vertex in @ is the source of at most two arrows, and the target of at most two
arrows;
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o for any arrow b € @1, there is at most one arrow a € 1 with hb = ta and ab ¢ I,
and at most one arrow ¢ € Q1 such that he = tb and be ¢ I;

e for any arrow b € @1, there is at most one arrow a € @)1 with hb = ta such that
ab € I, and at most one arrow ¢ € ()1 with hc = tb such that ab € I;

o [ is generated by paths of length 2.

The geometry of module varieties for gentle algebras can be best understood by rec-
ognizing them as products of varieties of complexes. This is achieved by “coloring” the
quiver. A coloring c of ) is a surjective set map c¢: Q1 — .S, with S some finite set of ele-
ments (whose elements are called colors) satisfying the property that the arrows in ¢=1(s)
form a directed path in Q. Given a coloring ¢ of (), we denote by I. the ideal generated
by products of consecutive monochromatic arrows: I, = (ba | ha = tb and c(a) = ¢(b)).
The bound quiver (@, I.) will often be denoted (@, c). It can be easily shown that if
kQ/I is a triangular gentle algebra (i.e., @ contains neither loops nor oriented cycles),
then there is a coloring ¢ on @ such that I = I, (see [2]).

1.1. Quiver morphisms

Let T and @ be quivers. A morphism of quivers = : I' = @ is a pair of maps 7 :
Ty = Qp and m; : I'y — @1 such that 7 commutes with taking heads and tails of arrows.
That is, mo(ha) = h(m(a)) and 7o(ta) = t(m1(a)). A morphism of quivers 7 gives rise to
a pushforward map 7. : repp — rep defined by

(me(V))e = @ vy

yer—1(z)

(W*(V))a = Z W
)

ber—1(a

For a quiver I', denote by 1r the representation of I" with (1r), = k for each z € Qg
and for each a € @1, the map (1r), : 1 — 1 is simply multiplication by the unit. When T
is an orientation of the diagram A,,, the module 7. (1r) is called a string module. Alter-
natively, suppose that the connected components of I' are orientations of the diagrams
A, and A,. Let B be the set of connected components of type A, and for each b € B
pick an arrow ©'(b) in said component. For any A = ()\;) € (k*)Z, denote by Ar the
representation of I' with (Ap), = k and

Op)a: 1 {)\b if a = ©’(b) for some b € B
sres 1 otherwise.

If T consists of a single connected component of type A,,, then the modules T, (Ar) are
called band modules.
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1.2. Module varieties

Let A = kQ/I be a bound quiver algebra, and g € Zgg be a dimension vector
for Q. We denote by mod(A, 3) the variety of -dimensional A-modules, which we view
as a closed subvariety of [[,cq, Homy, (kPta | kPre). Notice that in general (if I # 0)
these varieties need not be irreducible. While it can be quite difficult to determine these
irreducible components, when I = I, for some coloring, this can be accomplished.

Suppose now that I = I, for some coloring ¢ of Q. A rank function r for 3 is a map
r: Q1 — Z>o such that r(a) < min{f,, Bra} and r(a) + r(b) < B, whenever a and
b are arrows with ha = tb = z and c(a) = ¢(b). A rank function is called mazimal if
it is so with respect to the coordinate-wise partial order, namely r < ' if and only if
r(a) < 7'(a) for all a € Q1. Denote by mod(A4, 3,r) the closed subvariety of mod(4, 3)
consisting of modules V' for which rank V, < r(a).

Proposition 1. (See [2].) With all assumptions as above, the collection of subvarieties
mod(A, B,r) for r mazimal constitutes the complete list of irreducible components of

mod (A4, B).

The proof is essentially a corollary of the work of De Concini and Strickland [4] in
which they show that irreducible components of varieties of complexes are parameterized
by maximal ranks. We then notice that the module varieties mod(A, 8) are products of
varieties of complexes taken along each individual color. Details can be found in the
article [2].

2. Up-and-down modules

For the remainder of the article, fix a triangular gentle algebra A = kQ/I and a color-
ing ¢: Q1 — S for which I = I.. For each dimension vector S and each rank sequence r,
we construct a module (or family of modules) in mod(A4, 3,r). This construction was
inspired by the combinatorics arising from the calculation of the rings of semi-invariant
functions in k[mod(4, 5,7)].

Let X denote the set of pairs (z,s) € Qo x S such that there is an arrow of color s
incident to z. Notice that since A is a gentle algebra, there are at most two elements in X
with first coordinate x for any € Q. A function € : X — {£1} is called a sign function
for Aif e(z,s) = —€(x, s’) when s # s’. We now introduce the main combinatorial object.

Definition 2. Let I'(Q, ¢, 8, , €) be the quiver with vertices {v¥ |z € Qo, i =1,...,08:}
and arrows {f{' |a € Q1, j=1,...,7(a)} where

1
-1

Lo =

vg _it il €(ta,c(a))

{ v if €(ta, c(a))
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B — vgga_jﬂ if e(ha,c(a)) =1
I vhe if e(ha, c(a)) = —1

The quiver I'(Q, ¢, B, 1, €) is referred to as the up-and-down graph.

When the quiver and coloring are understood, they will be suppressed from the no-
tation. There is an obvious morphism of quivers 7 : T'(8,r,¢) — Q with w(v¥) = x and
w(f#) = a. By abuse of notation, we will write ¢(ff*) = ¢(a) but note that it does not
induce a coloring on I'(8, 1, €) since the arrows of a single color may comprise more than
a single path.

Remark 1. Notice that each vertex in I'(8, r, €) is incident to at most two arrows, which
must be of different colors, so the connected components of T'(, r, €) are orientations of
A, and A,,. We call these components strings and bands, respectively.

Recall that a sink (resp. source) in @ is a vertex which is not a tail (resp. not a
head) of any arrow in Q. As before, denote by B = B(T") the set of band components of
(8,1, €). For each b € B, chose a vertex O(b) € I'(3,r, €) which is a sink contained in B.
Denote by ©'(b) the arrow in I'(3, 7, €) with h(0'(b)) = ©(b) and €(0O(b), c(0'(d))) = —1,
which is guaranteed to exist since a sink in a band component is necessarily the head of
two arrows.

Definition 3. Fix the notation above. For any A € (k*)Z, the up-and-down module
M(Q,c,B,r,6,A,0) € mod(kQ, ) is defined to be the module W*(Ap(ﬁmé)). As usual,
we write M (8,1, €, A\, ©) when the quiver and coloring are understood.

Example 1. Consider the quiver below with coloring indicated by type of arrow:

az

1- 2 =3
g1 /// pz\\\
> ~
p1 -7 g2 <
4=l 25 6
SO SSN: - S -
by )

Let us say that the color of the arrow x; is * in the above picture (so, for example,

¢(a1) = c(ag) = a). Let 3, r be the pair depicted in the following diagram:

OO0
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and (1) = {(1,9),(2,p), (3,9), (4,0), (5,0), (6,p)} (50 e~ (~1) is the complement
in X). Then I'(Q, ¢, B, 7, €) takes the following form:

1 2 3
U1 —

al U1 N

. NI
~ ~
: b2 S B
WWW\/_\/WWM/WV\Mijl
. N
92 \&
6
Vs

For example, we know there are three arrows labeled f{"*, fo*, f5*, with ¢(f{"*) = vi and

h(f{) = v? since €(1,7) = —1 = €(2,7).

Proposition 2. The representation M(Q,c, 8,r,¢€,A, ©) is a representation of (Q,1.), so
can be identified with a module (which we denote in the same way) over A. In particular,
it is a direct sum of string and band modules.

Proof. Abbreviate the module by M. Let ef denote the basis element of M, corre-
sponding to the vertex v¥. We need only demonstrate that if a,b € ()1 are arrows with
ha = tb = x and ¢(a) = ¢(b), My o M, = 0. Suppose €(z,c(a)) = 1. Then the image of
M, is precisely the span of the basis elements e? for which 8, —r(a)+1 < i < §,, while
the kernel of M, is precisely the span of the elements e? for which r(b) < ¢ < §,. Since
r is a rank sequence, r(b) < 8, —r(a) + 1, so ker M}, D image M,. When €(z, c(a)) = —1,
the proof is essentially the same. That M is a direct sum of string and band modules is
directly seen from Remark 1. O

In the subsequent sections, we will fix once-and-for-all a gentle algebra kQ/I. (with
associated coloring ¢), as well as a sign function ¢, and distinguished function © for each
up-and-down graph. We may therefore write I'(8,r) and M (8, r, \) without reference to
these fixed elements.

3. Properties of up-and-down graphs

The goal will be to show that when 7 is a maximal rank function for 3, the module
M(B,r,e,\) is generic. The proof of this assertion employs homological considerations,
most importantly calculation of the dimensions of Extl (M, M). This requires a pro-
jective resolution and various combinatorial data about these modules. We first collect
some technical definitions and notation.
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A vertex v} in I'(8,7) is said to be above (resp. below) v}, if j > j' (resp. j < j').
As in Example 1, we will depict the up-and-down graphs in the plane in such a way
that above and below are literal. We denote by S(I') and T'(T") the set of sources and
sinks in T'(8, r), respectively. A source (resp. sink) incident to exactly ¢ arrows will be
called an i-source (resp. i-target), and the sets of these vertices will be denoted by S*(T")
and T%(T) respectively. (This only defines four potentially non-empty sets, S, S, T, T
since I'(f3, r) contains only strings and bands.)

Let us call two paths 7, 7/ in T'(8,r) parallel if w(y) = w(y’) (here we define the
path () to be the one obtained by applying the quiver morphism 7 to the sequence of
arrows in ). A path v = apmam—1...a1 in T'(5,r) is called target positive (resp. target
negative) if €(ham, c(an,)) = 1 (resp. —1), and source positive (resp. source negative) if
€(tar,c(ar)) = 1 (resp. —1). The following lemma is utilized to determine the relative
ordering of vertices on either end of parallel paths.

Lemma 1. Suppose that ~ is a path in T(B,r), h(y) = v} and t(y) = v{. Then the
following hold.

a. If v is target negative, and vy, is above vy, then there is a path ~" parallel to v with
h(y') = v§,. Furthermore, t('y) is above (resp. below) t(7y) if and only if v is source
positive ( resp. negative).

b. Dually, if v is target positive, and vj, is below v}, then there is a path ~' parallel to
v with h(y') = v§,. In this case, t(v) is above (resp. below) t(vy) if and only if v is
source positive (resp negative).

c. If~y is source positive (resp. negative) and v, is above (resp. below) vy, then there is
a path v parallel to .

Proof. To any path v = aymam—1...a1 in I', we can associate a sequence of pairs

((jO; mO)a ceey (jmaxm))

such that h(a;) = v;” and t(a1) = v}”{f Notice that if v, v/ are two parallel paths, then
for each 4, the coordinates z; coincide (since m commutes with taking heads and tails of

arrows).

Tm

Suppose now that v is target negative, and vy s above v ¥m_In particular, j,, <

Jm < r(m(am)), so by definition of T', there is all arrow an, 6 Fl with h(al,) = U;:;:L

that is parallel to a,,. Denote by vx/" 11 the tail of this arrow. If a,, is source positive
(resp. negative) then so is al, (smgg they are parallel). So if a,, is source positive,
i1 < Jm—1 < r(m(am)), and if it is source negative, jm—1 = Bu,_, — Jm + 1, and
Jhe1 = Bay_y — Jh + 1, 16, 401 > jm—1. The argument of the analogous statement

when + is target positive and above is replaced with below is similar.
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The statement is thus proven for paths of length one. Suppose now the lemma holds
for the path 4 = a;nam—1...a2, and consider the path v = (an, ...a2)a; (which we
assume again to be target negative, and j/, < j.,). By inductive assumption, there is
a path 4’ parallel to 4 with ¢(3') = v;? and h(y') = vﬁ’: If 4 is source positive (resp.
negative), then v;.”f is above (resp. below) 11;11. In either case, a; is of opposite target
sign (since a1, as must be of different colors given they both contain vfll, and the sign
function of arrows of different color incident to the same vertex must differ). Supposing
7 is source positive, then, a; is target negative. Therefore, by the base case, there is
an arrow a} parallel to a; with h(a}) = v;?, which is above or below v7! according to
whether v was source positive or negative (which is equivalent to a; being source positive
or negative). The arguments for the analogous cases are similar. O

Lemma 1 can be iterated in an important way. Namely, suppose that we have paths
inI’

p p
v? ~——— 'UQ,:O v@/, A~ 'U?,O
J1 4 Jo
T1 1
Vi Yji

such that p, p’ are parallel, and ¢, ¢’ are parallel. Suppose that we would like to know
whether the order of jg relative to jj, is the same as that of j; relative to ji. The order
is reversed if and only if €(p,xz9) = €(g,21). Indeed, we need only count the number
of times that order is reversed, which is an occurrence of e(x, h*x) = €(*, tx) where x is
either p or ¢, so that even parity overall implies preservation of order, and odd implies
reversal. But e(p,y1) = —€(q,y1), so modulo two, this count is the same as the number
of sign changes in {e(p,xo), €(¢,21)}. This can be iterated again for longer sequences of
paths.

We will also need some facts relating the rank functions to various configurations
appearing in I'.

Lemma 2. Let T'(8,r) be an up-and-down graph, and consider the following configuration

Let ¢(a;) = a and c(b;) = b.
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a. Suppose vj € S*(T) (resp. T*(T') ). Thenr(ag)+r(b2) > By (resp. (ar)+r(b1) > By).

b. If v§ is incident to only one arrow of color a (say), then r(b1) +7(b2) < Be.

c. There is an isolated vertex v} in T if and only if min{r(a1) + r(bg)} + min{r(az) +
r(b1)} < By (in particular, there are neither 2-sources nor 2-targets at y).

Proof. We will illustrate (a). If v¥ is a 2-source, then it is contained in an arrow f¢2
and an arrow f%2. Let us take €(y,c(az)) = 1 = —e(y, c¢(bz)). Then by definition of T,
j <r(az) and j > By —r(be) + 1,50 r(az) +r(b2) > By +1. O

Finally, we state a consequence for monochromatic paths of length three and the rank
function.

Lemma 3. Suppose that r is a mazximal rank function for 3, and agzasay is a monochro-
matic path in Q, with h(a;) = x;. Then at least one of the two equalities r(ay) + r(az) =
Bz, and r(az2) + r(as) = Bz, must hold.

Proof. Suppose neither equality holds. Since r is a rank function, r(a1) + r(az) < Ba,
and 7(az2) 4+ r(a3) < Bi,. Notice that the rank function r’ defined by r'(as) = r(az) + 1
and 7/(b) = r(b) otherwise is a rank function, and clearly 7’ > r, contradicting maximal-
ity. O

4. Main theorem

Theorem 1. Fiz A = kQ/I. a triangular gentle algebra with coloring ¢, a dimension
vector 3, and a mazimal rank function r. Let B(T'(58,r)) be the set of band components
in I, and pick ©, € as before. Then we have the following:

mod(4,8,r) = |J GL(B)M(B,rA)
A€(k*)B

In particular M (8,7, ) is the generic module in mod(A, 3,7).

Notice in particular that if there are no bands, the irreducible component is an orbit
closure. The proof of the theorem relies heavily on the following theorem, whose proof
will constitute the remainder of this article.

Theorem 2. Suppose that A = (\y), v = (1) € (k*)B are two vectors with no common
entries (i.e., \y # vy for allb # b € B), and r is a mazimal rank function. Choose
B(T(B,r)), ©, € as before. Then

dimExtllcQ/Iu(M(ﬁ,r,A),M(ﬁ,r,g)) =0. (1)
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Furthermore, if T'(3,7) consists of a single band component, for any A € (k*)!

. ; 1 dfi=1
dlmExt}CQ/Ic(M(ﬂm,)\),M(B,r,)\)):{0 i1
Let us prove Theorem 1 assuming Theorem 2.

Proof of Theorem 1. Suppose that M(S3,r,A) = @._, M(B(i),r(i), (7)) is the inde-
composable decomposition of M (3,7, \) arising from the decomposition of T'(5,r) into
connected components (A is no longer underlined in the decomposition since each of the
components is at worst a band, and so has only one parameter). Let us recall a result of
Crawley-Boevey and Schroer. Suppose that C(i) C mod(kQ/I, 5(i)) are irreducible com-
ponents for some collection of dimension vectors 8(i), i = 1,...,t, and denote by § the
sum » . 3(i). Define by C(1) ®@...® C(t) the subset of mod(A, 3) given by the set of all
GL(p) orbits of direct sums M (1)®...® M (t) with M (i) € C(i). Then C(1) @ ... ® C(t)
is an irreducible component of mod(A, 3) if and only if exty (C(i), C(5)) = 0 for all i # j
(see [3, Theorem 1.2]). Here extl(C(i),C(j)) denotes min{dim Ext! (M, M’) | M €
C@),M € C®)}

To apply this theorem, then, we need only show that [J,)cx- GL(8(¢))M (B(7),
r(i), A(2)) is dense within mod(A, 8(i),r(i)). When M (5(i),r(i), A(7)) is an indecom-
posable string (that is, there is no parameter \(7)), Eq. (1) of Theorem 2 shows that

Extyy (M (8(i), (), M (B(i),7(i))) = 0.

Therefore by Gabriel 7], M(5(4),r(7)) has an open orbit. In particular mod(A4, 5(3),
r(i)) = GL(B(#))M (5(i), r(i)). Now assume that M (S(i),r(i), A(i)) is an indecomposable
band module, and let us abbreviate this module by M,. Following Kraft [9, 2.7], there
is an embedding

T, (mod(A, B(i), (1)) /Tar, (GL(B(0)) M) < Extiy (M, M»)

where Ty (X) denotes the tangent space to M inside of X. By Eq. (2), the dimension of
the target space is 1, so

dim Thy, (mod(A, (), 7(4))) — dim Thy, (GL(B(3)) M) < 1.

The crucial fact is that mod(A4,S(i),r(¢)) is smooth at M. This is so because
mod(A, B(i),r(4)) is isomorphic to a product of varieties of complexes taken along each
full colored path. Under a particular choice of this isomorphism, M) is the image of
the product of complexes which have dense orbits in their varieties, which are therefore
smooth. As a result we have that

dim(mod(A, 8(i), r(i))) — dim GL(8(:)) My < 1.
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If the difference is 0, we are done. Otherwise, the difference is one, so GL(8(i)) M, is a
codimension one subvariety. Now it is clear that ¢ : k* x GL(8(7)) — mod(A, 8(i), (7))
given by (A, g) + gM, is an injective regular morphism, so Uy ez GL(B(0)) My =
mod(A, B(¢),r(4)). This concludes the proof. O

In order to prove Theorem 2, we construct an explicit projective resolution of the
representations M (8,7, ).

5. Minimal projective resolution

To construct the projective resolution in the most general way possible, we will need a
fair bit of notation. In order to balance this need, let us fix the quiver @, the coloring c,
the sign function e, the function O, and the parameters r and 5. We write M, for
the representation M(Q, ¢, 3,7,¢,),0). Denote by S°(T') the set of isolated vertices in
['(B,r). For each vertex v§ € T2(T), we have two distinguished paths T (v§) and I~ (v})
defined by the following two conditions:

i. tl‘s(v;ﬁ) is a source in I
ii. €(w,c(a)) = where f is the arrow in l‘;(v;-”) terminating at vf.

Consider a vertex v € St and let 5 be the arrow incident to v§. Denote by [v}]o the
arrow in Qq \a with t[vf]o = =, if it exists. Similarly, consider v§ € T, and 5, the arrow

incident to v§. Denote by [v]o the arrow in @1 with t[vf]o = = and ¢([v j]o) # c(a).
In either case, we define [vx]l inductively by the cond1t10ns that h[vf];—1 = t[v]]; and
c([vfli-1) = e[vf]o)-

Finally, if v§ € S is an isolated vertex, for § € {—1,1} we denote by [v] 218 the arrow

(if it exists) deﬁned by the conditions t[v} 218 = x and e(x, c([vj]g)) 5. Recursively
define [v7]? to be the arrow with t[v7]? = h[ 19_1 and ¢([v]9) = ¢([vf]9_,). (For ease of
notatlon, we will often write § = + or — in heu of 1, -1, respectlvely)

For any vertex v? in I', we will write P( ) for the indecomposable projective left

J
A-module P(x), which is the projective cover of the simple module with support at the

vertex z. If any of the arrows [v}

an arrow. In this case, if P(h[vf];) or P(h[v} ]9) appears in the projective resolution it is

Ji or [v 9”](S fails to exist, we simply write @ in lieu of

taken to be the zero object in mod(A).
We are now ready to build the terms of the projective resolution of the representa-
tion M. For i > 0, define the modules F;(M)) as follows:

.
vj

Fi(My) = P P @ Phlil)e @ (PHL]]) @ P(hlil))

vieT? vFesStuT?! vFeSso

a source in I
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F(M)= @ Phlfli-)e @ (POl @ Phvi]iy)) i>1
vPeStuT! vies?

We will define the maps 9(My); : Fiy1(My) — F;(M,) component-wise in the fol-
lowing way. The symbol § can stand either for +1 or —1.

A(My)o| Write A(vf) = Xy if vF = O(b) for some b € B and A(v}) = 1 otherwise. When
v € T*(T), the component of d(My)o from P(v}) to P(v}) is defined by

At (vf))  if vf =t(*(v]))
(7 (vf)) if vf = ¢(I7(v]))
0 otherwise

If vj € St (in particular, vf is a source) the component of 9(My)o from
P(h[ 7o) to P(v}) is simply multiplication by the arrow [v}]o. When v§ € T,
let p be the longest path in I' terminating at v}, whose tail t(p) := v} is by
necessity a source. Then the component of B(M,\) from P(h[vf]o) to P(v))
is defined by multiplication by the path p - [vf]o. Finally, when vf € S0, the
component of d(My)o from P(h[v] 18 to P (v ) is multiplication by the arrow
[vf]g. All other components not deﬁned in thls paragraph are then taken to be
Z€T0.

O(My);| For i > 0, we define O(My); : Fit1(M))it1 — Fi(M)); component-wise as
well. For vf € ST UT", we take the component of d(My)o from P(h[vf];) to
P(h[vf]i- 1) to be multiplication by [v];. When v € S°, take the component of
O(My)o from P(h[v] 1%) to P(h[v] ]9 1) to be multlphcatlon by [v} ]9 As before,

all other components not deﬁned herein are taken to be zero.

Finally, it is quite natural to define a morphism ¢ : Fo(My) — M) in the following
way. Fix a basis for each of the one-dimensional vector spaces (Ar)vz, and denote by
ef the basis element in (M) ), corresponding to 1 in this space. If v} is a source, then
we define £(e) of the generator e of P(v}) to be e and extend A- hnearly In partlcular
given a path p in @ starting at = cons1dered as an element of P(vf), e(p) = (My),e
So if there is a path p’ in I' with 7(p’) = p and tp’ = v}, then e(p) A(p)e! € (MA)
(where e is the basis element of M) corresponding to the vertex v} := hp’ and A(p) is
defined by p if p passes through ©'(b) for some band b) and 1 0therw1se.

Proposition 3. The complex

O(Mx)1 9(Mx)o

.—>F2(MA) FI(MA) Fo(MA)E—>MA—>O

is a minimal projective resolution of My in mod(A).

Proof. First, the surjectivity of € is clear. M is a finitely generated module generated by
the elements ef which are sources, and e~ *(ef) contains a generator of P(v¥).



190 A.T. Carroll / Journal of Algebra 437 (2015) 177-201

To show that F, is a complex, note that there are two types of elements in the image
of dy. Suppose v} € T*(T'), let py =T (v¥) and p_ =1~ (v}), and vfj =tpy, vl =tp_.
If o7 = O(b), then (¢ 0 dp)(v]) = e (T (v])) — w(~(v§))) = )\b(MA),T(er)(e?j) -
(Mx)r(p_y(€]") = Ape? — Xped = 0. If v¥ is not O(b) for any band, then the calculation

is the same with A, replaced by 1.

For the other types of vertices, we have specifically chosen arrows [v;?’]‘S which act

trivially on the basis element in M) corresponding to v}, so the composition with & will

indeed yield zero. Furthermore, [vf]f ° [v;»”]il = 0 since both have the same color. Thus,

the sequence is indeed a complex.
Now we consider exactness at Fo(M)). As above, if vf is a vertex in T', let €] denote
the basis element of M), corresponding to 1 in the one-dimensional vector space at the

vertex vf in (Ar). Thus, the collection {e} : v} € I'g} forms a basis for M. Recall that

P(vf) has a basis consisting of paths p in @, not containing subpaths that are in the

ideal I, with tp = x. We will write these elements as (p, v;”) to emphasize the projective
x

+) compatible if in 7~ 1(p), there is a path q

such that t¢ = v§ (and incompatible otherwise). Notice that (p,v§) # 0 if and only if

from which they came. Call such a pair (p,v

T

(p,v) is compatible. This is clear, since

e(p.v?) = (My)pe? = {A(p)ef if hq :'v;’/,tq = v} for some path ¢ in T
0 otherwise
and A(p) # 0. Let (p,v}) be incompatible. Let p’ be the initial subpath of maximal
length of p such that (p',vf) is compatible, which is guaranteed to exist since v} itself
is a (lazy) path in I". Denote by v! the head of this subpath. We distinguish two cases.
If v/ € SOU ST UT?, then [v/]3p’ is still a subpath of p for one choice of §, where we
also include the potential that § does not appear, as in the case of v} € T*!. This holds
since the only other concatenable arrow would extend p’ to an element of the ideal I
by definition of a gentle algebra. Thus, p = p”[v¥]3p’, which is in the image P(h[v{]3)
under d(My)o. On the other hand, suppose that v¥ € T2, and let a be the next arrow
in p after p’ (i.e., ap’ is still a subpath of p). By abuse of notation, we will write v} for
the generator of P(v}). Recall that d(My)o : v — A(p)m(I*(v))) — 7(I~ (v))). Assume
without loss of generality that p’ = 7(I7(v!)) (it must be one of the two paths). Then
I(My)o : a— A(p)ap’ — 0 since am(I™ (v{)) must be in the ideal I, again by definition of
the gentle algebra. Since A(p) # 0, we have that all incompatible pairs (p, v]“) are in the
image of 9(My)o.
Let 7 be a linear combination of compatible paths Zv(pm;s)(p, vY).

cn= S pepd)

(p,v;”) compatible
vy eS(T)

= Z V(p.v?) (MA):Dejw'
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For each path p in @ in the above sum, there is a unique path ¢ € 7=*(p) defined by
the property that tq = v}. Take v} = hq, so that (My),ef = A(p)e] where A(p) = Xy if
p contains the arrow 7(O(b')) for some band b, and 1 otherwise. When v§ and v are as
above, we will write v} <, vY as a relation. Therefore, we can rewrite the sum above by
collecting coefficients of the ¢! as follows:

e(r) =Y Yo YeenAD) | €

(pv3):v3 <po¥

Since the e! form a basis of M), the coefficients in the above expansion must equal
zero. Again we distinguish two cases: either one or two arrows terminate at v}. If there
is only one arrow, then there is exactly one compatible pair (p, vg”) with v7 <, vY, so
V(p,wr) = 0. If there are two such arrows, then the paths I~ (v}) := p_ and I*(v}) :=
p+ are the unique paths in I' terminating at v and starting at a source, v_ and v,
respectively. Thus, we have A(p_)yp_ vy = —A(P+)V(p, ) = 0. In particular, 7 has
the summand

Vips o) P V4) + Voo oy (p—v=) = % (A(p=) - (p+,v4) — Alps) - (p—,v-)).

Now if v¥ is not of the form O(b), then A(p_) = A(p+) = 1, while if v7 is of the form

O(b), then A(py) = Ay and A(p—) = 1, so in either case the above element is in the

image of (M, )o, namely it is the image of %vf.

Finally, we note that each component of d(M,); is in the Jacobson radical of A, so
F, is indeed minimal. O

Now that we have a projective resolution of M), we will apply the functor
Homu(—, M,) to it and calculate the dimensions of the extension groups. Recall that
the module M, is the pushdown of a module v, which assigns to each vertex v}
the one dimensional vector space k, and m.(Ar). = @;_; 5, k. In this way, we
can take {v} : j = 1,...,8;} to be the corresponding basis of (M, ),. Furthermore,

Hom(P;, My) = (My)q, so for each v let us denote the basis of Hom4 (P(vf), M,) by

{vf W% " = 1,...,8;}, and write M,(v]) as shorthand for this space to indicate

the projective from which it arose. The space Hom(P(h[v}])), M,) will be denoted by
[“f]g /

MK([’U;-E](-;), and its basis by {v} X v?/ sy = 1,...,ﬂh[vm}. The benefit of this

1
cumbersome notation is that one can keep track of the projective in the first step

of the resolution that is responsible for the appearance of these particular basis ele-
ments.
Applying Hom 4 (—, M,)) to the resolution then yields the complex

Hom(dy,My) Hom(d1,My) Hom(d2,My)

Co

Ch Cs
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where

Co = P M, (v%)

x

vj a source inI"
Ci= P Mmehe @ Mil)e @ (M(fl]) e M(v]]))
vFeT? vFestuT?! vreso
Ci= @ M(vli)e @ (Mvjli)) e M([vf]; ) i>1
vPesStuT! vPeSs?

In order to calculate the homology of this complex, we construct a graph EXT whose
vertices correspond to the fixed basis described above. We partition the vertices into
subsets EXT(¢) for ¢« > 0 which we call levels, whose vertices correspond to the basis
of Cz

Definition 4. Let EXT(!) be the sets defined as:

EXT(0) := {v] Mo}, : vf asourcein T, j'=1,...,0,}
EXT(1) := {vj Kol : of €T?, j' =1,...,0:}
U {vf &'U;L,[vj]o S SstuTtt, j'=1,...  Bhjwr]o }

h[v¥]E
U {U_;D X vj/[”] lo

: sz' € Soa j/ = 13"'aﬂh[v§”]63 t= 77+}
EXT(l) = {o} Rolr ' s of e TYUSY, §' =1, hfo?]io1}
hlvflioy 0 i _ _
U{vf Ruy, 7770 vf € 87, j = L. Bupsyp_y t=+4,—-} I>1
The graph EXT is, by definition, the digraph with vertices {J;5, EXT(l) and arrows
vf Ko — v% ® ’U;l,l if the coefficient of v X vf,/ in

Hom(9(M)i, M) (vi B vY)

is non-zero. In particular arrows that start in level EXT(!) end in level EXT(l + 1). It
will be convenient to label such an arrow by said coefficient.

The digraph EXT can be thought of as the graph of each map Hom(9(My);, M,).
In order to show that there is no homology in the first degree, we need to collect some
properties of this graph.

5.1. Properties of the EXT graph

The absence of homology in the first degree will follow from a number of considera-
tions. First we show that there are no isolated vertices at level EXT(1), each vertex in
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this level is then shown to be incident to at most two arrows. This breaks the kernel of
Hom(O(M) )i, M,) into pieces which lie in strings or bands, and then these components
are shown to be surjective.

Proposition 4. Let EXT be the graph given above. Then we have the following:
E1l: There is an arrow
EXT(0) > vj Koj — vf Mo} € EXT(1)

if vy € 82, v) € T such that v} Ly oY and vf, L v} are parallel paths in T.
E2: Suppose v} € T', v§ = I£(vY), and p is the path from vf to v]. Then there is an

?

edge

EXT(0) 3 vf Kv%, — oY Kol € EXT(1)
if there is a path v}, r, vf,/ in T with ©(p") = [v!]om(p). Furthermore, there is an
arrow

EXT(l) 3 v¥ R o)

Jl

_ hv?
1—)’[)?&’0-[’01]l

il

€ EXT( + 1)

if in T there is an edge vz[viy]l’l 2 U?,[viy]l such that m(a) = [vY];.

E3: Similarly, if v € S, then there is an edge

[v?]

EXT(0) > v¥ KoY, — v Koj, " € EXT(1)

h[v!]o

if there is an edge v}, <= vy, with m(a) = [v{]o. Furthermore, an arrow

3]

EXT(l) 3 v} Kol '™ o Ko € EXT(I+1)
. . h[’v;’]l_1 a h[v?]l . . z
if there is an edge v, vy, in I with m(a) = [v];.

E4: Finally, if v§ is an isolated vertex in I', then there are arrows

h[v?]E
i/

hlv?]E

T h[vj]it—l x
EXT(I) > vj Kvy, — vj My,

EXT(0) > vj Ko}, — vj K € EXT(1)

€ EXT(I + 1)

. . h[v®)E R[v*]F
if there is an arrow v, °'7' 2 I

§ i i in T with n(a) = [vf]li (here we take
hlvf]=, = ).

Lemma 4. There are no isolated vertices in level EXT(1).
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Proof. Suppose v§ Xvf, € EXT(1) (that is, vf € T?). If ' < j (resp. j' > j), take p to

€T

be the path from v} := lp (v§) (resp. v} := IpT(v})) to v§. Then by Lemma 1 there is
a path p’ terminating at v}, parallel to p. Denote by vY, = tp’. Then there is an arrow
v} Mo, — v} Koj, by property E1 of Proposition 4.

Suppose now that v} € T! and [v%]o exists, so that v§ X v?,[v; lo € EXT(1). Assume
without loss of generality that e(z,c[vf]o) = 1 and e(h[v ””]0, c([v§lo)) = —1. Let p be

the path of maximum length terminating at v¥, and ¢tp = v? (which is a source in T').
Let [vf]-1 be the arrow (if it exists) with c([ vi]-1) = ¢([v]]o) and h[vi]-1 = z. By

Lemma 2(b), r([vf]-1) +r([vF]o) < Be, SO by Lemma 3, r([vf]o) + r([vf]1) = Bhpws)o- In
[v5]o

is the head of an arrow f4 vilo (if 7* < r([v§lo) < j) or the tail of an
hlvflo .
with

. h
particular, v i

arrow f 711 otherwise. In the former case, there is a path p’ terminating at v

h[vilo

m(p') = [vf]om(p), so that there is an arrow v M ¢p’ — vf Ky’ . In the latter case,

there is an arrow v} X vj,[ ilo — vf X hfloils

hlvilo

An analogous proof shows that if vj € St then vj X v is not isolated.

Finally, suppose that vj is an isolated vertex in I' such that at least one of [v;”](jf

exists (otherwise there is no vertex with first component v§ in EXT(1)). Consider v§ X

V2 E
v;,[ i ¢ IEX']I‘( ), and let [v] 1%, be the arrow in Q; such that (] j}il) = c([v}]o) and
h[v§ 7%, = z. From Lemma 2( ), T([v] 71E) + r([v] #1%) < Ba, so according to Lemma 3,
P 18) + r((0g]F) = Bygeps. Thus, vh/[ %
fli ¥, In the former case, v X ¢ 15 FCRNN vi Ky,

hlv® :E
latter case, v X vj,[ iy — vf X R s in EXT. O

is either contained in an arrow fI%! o or

Hlole is an arrow in EXT, and in the

The following lemma shows that EXT splits into string and band components, and
that the band components occur between levels EXT(0) and EXT(1).

Lemma 5. All vertices in EXT(1) and EXT(2) are contained in at most two arrows. All

vertices labeled vy &v?,[vj]l for1 >0 (and therefore all vertices in level EXT(I) forl >1)
are contained in at most one arrow.
Proof. Recall from property E2 of Proposition 4 that vj X v?,[vj]o

either with v X v Y, or v X v ,[, ih

shares an arrow

(exclusively) whenever vj is either isolated or a
one- bource/target Otherw1se suppose that v} € T2, and consider the vertex G vj
If v} K of, — vf Kof, then vf = t1°(v]) (for some § € {+,—}) and there is a path p in
I' parallel to tl‘s( ]) terminating at v}, in I'. For each ¢ there is only one such path, so

indeed the bound holds. O

A particular consequence of the preceding lemmas is that the kernel of the map
Hom(9(M)y)1, M,) is spanned by the basis elements corresponding to the vertices in
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EXT(1) which are not contained in an arrow to EXT(2). As a result of Lemma 4, none of
these are isolated, so we need only show that the restriction of the map to the subspace
spanned by those elements who are contained in an arrow from EXT(1) is surjective. Via
this restriction, we can consider the string and band components of this graph separately,
first showing that the string components correspond to surjections, and then that the
band components do.

Lemma 6. No string component in EXT has both endpoints in EXT(1).

Proof. Suppose that there is a string in EXT with one endpoint ’U;—EOO X v;(,)" € EXT(1)
and containing the substring

’

X,
v Kol —— v Kup
1 2] Jo Jo

T

’
Y2 Y2 1 1
iy My ——= vy Koy,

Ug/n @ U;{/,n > :
n n
\ ) ;
v Mo
In

In

(%

where v X th € EXT(0) and v’ Mo}/ € EXT(1). We need only show that the string
does not end at ’U;: X v;”,". By definition of the digraph EXT, we must have paths

?/1
7
1 @ Jo

" \M\ilw\\le

Yn
in

in I'. We break the consideration into four cases, depending on the type of the vertices

v}”{f , v;n If @ is the color of the arrow in a path p starting or ending at the vertex z € T,

we will write e(z,p) for the sign €(z, a).
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Case 1:

Case 2:
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v¥™ € T?. In particular, there are paths in I’

Suppose vj U5

for which p; and ¢; are parallel to p; and g;, respectively. Since vi" is a 2-target,
one of l*( ") orl” ( ™) exists and is not py, let us call this go; similarly there
is a path ¢ 7é Do Wthh is one of I (v}?) or 1™ (vj?).

Suppose first that j < jo. If v s above v}y, then e(xg,pg) = —1. Otherwise,
by Lemma 1, there would exmt a path ¢, termmatmg at v ° parallel to qg, so
by definition tgo X tq), — vfoo X v;”(,]" would be an arrow in IEXT contradicting the
assumption that this vertex is an endpoint of the string.

Now suppose that vfi is below vi", s0 €(xy,qn) = €(zn, q;,) = —1 (by applying
induction and Lemma 1), and so €(z,,p,) = 1. Again, applying the lemma,
there is a path p!, parallel to p,, terminating at v;-”:, thus an arrow tp, X tp!, —
vj" X v;f':, the latter vertex is not the other endpoint of string.

The argument follows similarly for different possibilities for i, i/,

relative to
iO; Z"IL' ,
Suppose now that v’ € T? and vin € T'. Given that vir v;/”, Proposition 4

E2 implies the existence of an arrow a € I'y with h(a) = vfi"‘ and 7(a) = [v]"]1.
Denote by v( - = t(a). In particular, 7(q,) = 7(agn)-

Furthermore, since vfoo € T2, there exists a longest non-trivial path gy distinct
from po with head v}? (in particular, with €(go, z0) = —€(po, o))

Suppose that j, < jo. In this case, e(qo7 x9) = 1 (otherwise there would be a path
qf, with 7(qo) = 7(g{) and hg}, = v ./ giving rise to a second arrow — v} IEU /) in
EXT, a contradiction). Therefore, by definition, €(pg,xq) = —1. Now we 1terate
Lemma 1: suppose, for example, that (j/)~ < jn, i.e., the orientation has been
preserved, so €(gn, z,) = 1. But since ag, is a path, we must have €(a, z,,) = —1,
implying the existence of a path o’ parallel to a with ta’ = v;”:, contradicting the
assumption that vj" € Tt If (1)~ > jn, the argument is replicated changing
signs, again yielding a contradiction.
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If 54 > jo, then e(qo, xo) = —1. Again, by definition, €(pg, z¢) = 1 and the same
argument is replicated changing the signs to yield a contradiction.

v e T In this case, we have arrows ag :=

Case 3: Finally, suppose that both vj UG

[vi] and ap, = [vj"]; in T' with heads vj, and v /", respectively. Denote by
( ]0) and (j!)~, respectively, the lower indices of the tails of these arrows, v(j )
vin .

()~

Suppose that (jj)~ < jo. In this case, €(ag, 7o) = 1 (or else v;’ would be the
tail of an arrow parallel to ag, contradicting its membership in 7). Since agpo
is a path, €(pg,xo) = —1.

If (j7)~ < jn, that is, the order has been preserved, then €(g,,z,) = 1, and
since a,qy, is a path, €(a,,x,) = —1. But this would imply the existence of an
arrow a,, parallel to a, with ta; = v, contradicting its membership in Tt

Similarly, if (j/,)~ > jn, the order has been reversed, so €(g,,z,) = —1 and
€(an,x,) = 1, implying existence of the troubling arrow a!, with tail v;c:, again
a contradiction.

The same argument can be repeated under the assumption (j3)~ > jo by chang-

ing signs. O

5.1.1. Homology and the EXT graph

The above results can be interpreted in the context of the maps Hom(9(My )1, M,)
and Hom(9(My)o, M, ), which we will denote hy and hg, respectively. By Lemmas 4
and 5, the kernel of hy is spanned by the basis elements contained in an arrow whose
tail is in EXT(0). Finally, Lemma 6 implies that there are only three types of connected
components of the EXT graph between levels EXT(0) and EXT(1): strings with both
endpoints in EXT(0), strings with one endpoint in EXT(1) and the other in EXT(0),
and cycles. On the level of the map hg, strings with both endpoints in EXT(0) show
that the subspace spanned by those vertices in EXT(1) in such a connected component
is in the image of hg. Similarly, strings with one endpoint in EXT(0) and one in EXT(1)
represent square blocks of iy which are either upper- or lower-triangular with non-zero
diagonal entries (after permutation of the basis elements), so again the subspace spanned
by the vertices in EXT(1) contained in such connected components is in the image
of ho.

Therefore, it suffices to show that the restriction of hy to the subspaces spanned by
vertices contained in cyclic connected components in EXT(0) and EXT(1) is an isomor-
phism.

Lemma 7. Suppose the connected component C; of the EXT-graph is cyclic. Then the
restriction of hg to C; is an isomorphism onto its image.

Proof. If C; is a cyclic connected component, then there are paths p;, g;, p}, ¢; in T" such
that p; and p} are parallel, ¢; and ¢, are parallel, and sit in the following configura-
tion:
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Yn Tn_1

in i1 Ui’ B NN N NN ij, .
n—

In particular, these are bands in T' of the same shape (possibly the same band, in case
i}, = iy, and jj, = ji). By definition of hq, the matrix of hy on C;, projected to its image,
is of the form

1 =X 0 ... 0
0 1 £1 ... 0
0 0 1 ... O
+1 0 ... ... £l

where one of the diagonal entries is v (with &’ corresponding to the second band), and
in each row there is exactly one positive and one negative entry. Adding each column (or
1/vy of the column containing vy ) to its successor, and then the last column to the first
yields an upper triangular matrix with 1 — 3‘—:{ as the first entry, &1 on all but one other
diagonal entry, which is vp. So the determinant is (A, — v3). By assumption, A and v
have no common components, so hg restricted to C; is non-singular. 0O

This concludes the proof of Eq. (1) of Theorem 2. The second part of the theo-
rem is the calculation of Ext!(My, My) when My is an indecomposable band. Hence,
A = (A\) € k'. We have already seen that M, has projective dimension one, so
Hom(F1(M)y), M) = ker Hom(0(My )2, My ). By assumption, there is only one cyclic
component of I'; and therefore only one cyclic component C' of the EXT graph. The
other components represent surjective maps when restricted to the span of the ver-
tices in EXT(1) contained in these components. By the above discussion, hg restricted
to C is not an isomorphism with the span of the vertices in EXT(1) contained in the
band component C (since det hi|c = £(A — A) = 0). However, in this case, the result
of the column reduction yields an upper triangular matrix with 0 as the first entry,
and +1, £ as the rest of the diagonal entries. This has rank n — 1, and so indeed
ker Hom(d2, M) )/ image Hom(9(M) )1, M) ) is one-dimensional.



A.T. Carroll / Journal of Algebra 437 (2015) 177-201 199

6. Higher extension groups

The graphical representation given above can be used to calculate higher extension
groups. For each vertex v§ € STUT?!, let X, be the complex

[Uj]3

[v5] [v7]
(My)y —L— (Mp)nppr), —— (Mp)npus], —— -+ -
Furthermore, if v7 € S 0, let X;fz be the complex

il [v715
(My)y —— (jWA)h[v;?]l+

(M)\)h[vm]+ —> ceey

A il2

and analogously for X . Let hi(X) be the dimension of the i-th homology space of the
complex X.

Corollary 1. Let I'(Q, ¢, B, 7, €) be an up-and-down graph for kQ/I. a gentle string algebra.
Then

dimy Exty (M(8,7,0), M(B,r,p) = Y h(Xje)+ D (W(X[,) +h'(X;,).

vieStuT?! vieso

Thus, in order to sound the dimensions of the spaces of higher extensions between the
generic modules, it suffices to measure the failure of the complexes along a given colored
path to be exact at various locations.

6.1. FExample

We finish by exhibiting the EXT graph for Example 1. Recall that we chose ©(b) = v$
for the band component, taking A = () € k'. By Proposition 3, the projective resolution
of the representation in the example is given by

MAFPf@PfﬁP2@P3@P52@P6<iP3

where
—aq 0 0 0 —)\bggl 0
0 0 -1 0 paaq 0
80 = 0 0 0 g1 0 81 = 0
pr —g2b0 0 0 0 92
0 apr b O 0 0

The associated EXT graph is obtained by applying Hom(—, M,) to the resolution, so we
have the complex:

o Hom(8p,M,)

om(01,M,
(Mu)f &) (MI/)4 —_— (Ml,)g (&) (MV)3 (&) (Mu)g D (]\4’/)6 M

(MI/)3
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The EXT graph is depicted below, with the vertices lying in a cyclic component of the
graph boxed.

10g 43
vy X vy
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