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In this article, we construct the generic modules in each 
irreducible component of variety of β-dimensional modules of 
a triangular gentle algebra. The construction is completely 
combinatorial and allows for determination of canonical 
decomposition of irreducible components as well as calculation 
of the dimension of the higher self-extension spaces for generic 
modules.
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Introduction

Consider mod(kQ, β), the variety of β-dimensional modules over a path algebra kQ. 
A decomposition β = β(1) + . . . + β(s) of β into smaller dimension vectors is called 
the canonical decomposition of β if there exists an open subset U ⊂ mod(kQ, β) for 
which every module V ∈ U has direct sum decomposition V = V (1) ⊕ . . . ⊕ V (s)
where V (i) is indecomposable of dimension β(i) for each i. It was originally Kac who 
introduced this concept and showed that such a canonical decomposition (necessarily 
unique) exists for any dimension vector β. Later, Schofield [11] and Derksen and Weyman
[5] gave independent algorithms for determining the canonical decomposition of a given 
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dimension vector for any quiver Q, although a description of the corresponding open set 
U remains out of reach. The modules in this set will be called generic in this article.

For quivers with relations, the situation is more intricate. Module varieties need not be 
irreducible, so one needs to consider the canonical decomposition of a dimension vector 
and describe the generic modules with respect to a given irreducible component. While 
it is generally difficult to describe the irreducible components of module varieties, this 
problem can be solved for a certain class of zero-relation algebras, namely triangular 
gentle algebras.

In this article, we give an algorithm to describe the set U in irreducible components 
of module varieties for triangular gentle algebras. In particular, we construct, for each 
irreducible component of a module variety for a gentle algebra, a graph referred to as an 
up-and-down graph. From each such graph, a family of representations is constructed, and 
it is shown that the union of the orbits of these special representations is dense within 
the irreducible component. In particular, the up-and-down graph allows one to read 
the generic decomposition of, and describe the generic modules within any irreducible 
component. Its connected components count the indecomposable direct summands of 
the generic modules, and the type of each connected component (either a chain or cycle) 
describes the type of the corresponding indecomposable direct summand (as a string or 
band). This work is a generalization of Kraśkiewicz and Weyman (see [10]), in which the 
generic modules for the algebras A(n) are constructed.

In [8], it is shown that for a quiver Q and dimension vector β, a decomposition 
β = β(1) + . . . + β(s) is the canonical decomposition of β if and only if β(i) are Schur 
roots (i.e., the generic module in mod(kQ, β(i)) is indecomposable) and there are no 
extensions between the generic modules of dimensions β(i) and β(j) for i �= j. This result 
(with some modifications, recalled in Section 4) was extended to module varieties of finite 
dimensional associative algebras by Crawley-Boevey and Schröer in [3]. Furthermore (see 
[6,12]), if a β-dimensional module admits no self extensions, then its GL(β) orbit is open 
in its irreducible component. Thus the criterion used to determine the generic modules 
has interesting connections with tilting theory.

In the author’s joint work with Calin Chindris [1], the generic modules (specifically, 
those which are band modules) herein described are put to use in showing that fields 
of rational invariants for irreducible components of modules varieties for gentle algebras 
are rational fields. In particular, the combinatorics of these specific modules, as well as 
their explicit projective presentations provide for simple construction of semi-invariant 
functions on the irreducible components. Ratios of semi-invariant functions of the same 
weight are rational invariants, and by evaluating on the set of generic modules it is pos-
sible to show that the rational invariants so-constructed are algebraically independent.

The paper is laid out as follows. In Section 1, the pertinent definitions are recalled, 
including the notion of a gentle algebra, quiver morphisms, and module varieties, con-
cluding with the parametrization of irreducible components of module varieties for gentle 
algebras. In Section 2, we give the combinatorial construction of the generic modules, 
followed by a collection of some of their important properties in Section 3. Section 4
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contains a statement of the two main theorems, the first asserting genericity of the mod-
ules constructed, and the second presenting the dimensions of various extension spaces. 
In Section 5, a minimal projective resolution of the modules is constructed and utilized 
to calculate the dimensions of the extension spaces referred to in the theorem from the 
previous section, thereby proving said theorem. Finally, in Section 6, the projective res-
olution is used to calculate the dimensions of spaces of higher self-extensions for the 
generic modules.

1. Preliminary definitions

Fix an algebraically closed field k = k. A quiver Q = (Q0, Q1) is a pair consisting of 
a set of vertices Q0 and arrows Q1. We denote by ta (resp. ha) the tail (resp. head) of 
the arrow a. A path p in Q is a sequence of arrows asas−1 . . . a1 such that hai = tai+1
for i = 1, . . . , s − 1. A (finite-dimensional) representation V of Q is a pair ({Vx}x∈Q0 ,

{Va : Vta → Vha}a∈Q1) where Vx are (finite-dimensional) vector spaces, and Va are linear 
maps. A morphism of representations ϕ : V → W is a linear map ϕx : Vx → Wx for each 
vertex x ∈ Q0 such that for each arrow a ∈ Q1 the following square commutes:

Vta

Va

ϕta

Wta

Wa

Vha ϕha
Wha

The vector dimV with (dimV )x = dimVx is referred to as the dimension vector of V . 
The category of finite-dimensional representations of Q with morphisms so-defined is 
denoted by repQ.

The path algebra kQ of Q is the algebra whose basis consists of the set of paths p in Q
(including the length-zero paths concentrated at each vertex) with multiplication defined 
by concatenation of paths. We denote by mod(kQ) the category of finitely generated left 
kQ-modules, and remark that the categories mod(kQ) and repQ are equivalent.

Given a two-sided ideal I of kQ, we call the pair (Q, I) a bound quiver. A represen-
tation V of a bound quiver (Q, I) is a representation of Q such that for ρ ∈ I, Vρ = 0
(here Vρ is the composition of the linear maps on the arrows of ρ, in the order prescribed 
by the path). The category rep(Q,I) of (finite-dimensional) representations of the bound 
quiver is equivalent to mod(kQ/I), so we will make no distinction speaking of modules 
or representations.

Definition 1. A finite-dimensional k-algebra A is called gentle if it admits a presentation 
kQ/I satisfying the following properties:

• each vertex in Q is the source of at most two arrows, and the target of at most two 
arrows;
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• for any arrow b ∈ Q1, there is at most one arrow a ∈ Q1 with hb = ta and ab /∈ I, 
and at most one arrow c ∈ Q1 such that hc = tb and bc /∈ I;

• for any arrow b ∈ Q1, there is at most one arrow a ∈ Q1 with hb = ta such that 
ab ∈ I, and at most one arrow c ∈ Q1 with hc = tb such that ab ∈ I;

• I is generated by paths of length 2.

The geometry of module varieties for gentle algebras can be best understood by rec-
ognizing them as products of varieties of complexes. This is achieved by “coloring” the 
quiver. A coloring c of Q is a surjective set map c : Q1 → S, with S some finite set of ele-
ments (whose elements are called colors) satisfying the property that the arrows in c−1(s)
form a directed path in Q. Given a coloring c of Q, we denote by Ic the ideal generated 
by products of consecutive monochromatic arrows: Ic = 〈ba | ha = tb and c(a) = c(b)〉. 
The bound quiver (Q, Ic) will often be denoted (Q, c). It can be easily shown that if 
kQ/I is a triangular gentle algebra (i.e., Q contains neither loops nor oriented cycles), 
then there is a coloring c on Q such that I = Ic (see [2]).

1.1. Quiver morphisms

Let Γ and Q be quivers. A morphism of quivers π : Γ → Q is a pair of maps π0 :
Γ0 → Q0 and π1 : Γ1 → Q1 such that π commutes with taking heads and tails of arrows. 
That is, π0(ha) = h(π1(a)) and π0(ta) = t(π1(a)). A morphism of quivers π gives rise to 
a pushforward map π∗ : repΓ → repQ defined by

(π∗(V ))x =
⊕

y∈π−1(x)

Vy

(π∗(V ))a =
∑

b∈π−1(a)

Vb

For a quiver Γ, denote by 1Γ the representation of Γ with (1Γ)x = k for each x ∈ Q0

and for each a ∈ Q1, the map (1Γ)a : 1 	→ 1 is simply multiplication by the unit. When Γ
is an orientation of the diagram An, the module π∗(1Γ) is called a string module. Alter-
natively, suppose that the connected components of Γ are orientations of the diagrams 
An and Ãn. Let B be the set of connected components of type Ãn, and for each b ∈ B

pick an arrow Θ′(b) in said component. For any λ = (λb) ∈ (k∗)B , denote by λΓ the 
representation of Γ with (λΓ)x = k and

(λΓ)a : 1 	→
{
λb if a = Θ′(b) for some b ∈ B

1 otherwise.

If Γ consists of a single connected component of type Ãn, then the modules π∗(λΓ) are 
called band modules.
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1.2. Module varieties

Let A = kQ/I be a bound quiver algebra, and β ∈ Z
Q0
≥0 be a dimension vector 

for Q. We denote by mod(A, β) the variety of β-dimensional A-modules, which we view 
as a closed subvariety of 

∏
a∈Q1

Homk(kβta , kβha). Notice that in general (if I �= 0) 
these varieties need not be irreducible. While it can be quite difficult to determine these 
irreducible components, when I = Ic for some coloring, this can be accomplished.

Suppose now that I = Ic for some coloring c of Q. A rank function r for β is a map 
r : Q1 → Z≥0 such that r(a) ≤ min{βta, βha} and r(a) + r(b) ≤ βx whenever a and 
b are arrows with ha = tb = x and c(a) = c(b). A rank function is called maximal if 
it is so with respect to the coordinate-wise partial order, namely r ≤ r′ if and only if 
r(a) ≤ r′(a) for all a ∈ Q1. Denote by mod(A, β, r) the closed subvariety of mod(A, β)
consisting of modules V for which rankVa ≤ r(a).

Proposition 1. (See [2].) With all assumptions as above, the collection of subvarieties 
mod(A, β, r) for r maximal constitutes the complete list of irreducible components of 
mod(A, β).

The proof is essentially a corollary of the work of De Concini and Strickland [4] in 
which they show that irreducible components of varieties of complexes are parameterized 
by maximal ranks. We then notice that the module varieties mod(A, β) are products of 
varieties of complexes taken along each individual color. Details can be found in the 
article [2].

2. Up-and-down modules

For the remainder of the article, fix a triangular gentle algebra A = kQ/I and a color-
ing c : Q1 → S for which I = Ic. For each dimension vector β and each rank sequence r, 
we construct a module (or family of modules) in mod(A, β, r). This construction was 
inspired by the combinatorics arising from the calculation of the rings of semi-invariant 
functions in k[mod(A, β, r)].

Let X denote the set of pairs (x, s) ∈ Q0 × S such that there is an arrow of color s
incident to x. Notice that since A is a gentle algebra, there are at most two elements in X
with first coordinate x for any x ∈ Q0. A function ε : X → {±1} is called a sign function
for A if ε(x, s) = −ε(x, s′) when s �= s′. We now introduce the main combinatorial object.

Definition 2. Let Γ(Q, c, β, r, ε) be the quiver with vertices {vxi | x ∈ Q0, i = 1, . . . , βx}
and arrows {fa

j | a ∈ Q1, j = 1, . . . , r(a)} where

tfa
j =

{
vtaj if ε(ta, c(a)) = 1
vta if ε(ta, c(a)) = −1
βta−j+1
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hfa
j =

{
vhaβha−j+1 if ε(ha, c(a)) = 1
vhaj if ε(ha, c(a)) = −1

The quiver Γ(Q, c, β, r, ε) is referred to as the up-and-down graph.

When the quiver and coloring are understood, they will be suppressed from the no-
tation. There is an obvious morphism of quivers π : Γ(β, r, ε) → Q with π(vxi ) = x and 
π(fa

i ) = a. By abuse of notation, we will write c(fa
i ) = c(a) but note that it does not 

induce a coloring on Γ(β, r, ε) since the arrows of a single color may comprise more than 
a single path.

Remark 1. Notice that each vertex in Γ(β, r, ε) is incident to at most two arrows, which 
must be of different colors, so the connected components of Γ(β, r, ε) are orientations of 
An and Ãn. We call these components strings and bands, respectively.

Recall that a sink (resp. source) in Q is a vertex which is not a tail (resp. not a 
head) of any arrow in Q. As before, denote by B = B(Γ) the set of band components of 
Γ(β, r, ε). For each b ∈ B, chose a vertex Θ(b) ∈ Γ(β, r, ε) which is a sink contained in B. 
Denote by Θ′(b) the arrow in Γ(β, r, ε) with h(Θ′(b)) = Θ(b) and ε(Θ(b), c(Θ′(b))) = −1, 
which is guaranteed to exist since a sink in a band component is necessarily the head of 
two arrows.

Definition 3. Fix the notation above. For any λ ∈ (k∗)B , the up-and-down module 
M(Q, c, β, r, ε, λ, Θ) ∈ mod(kQ, β) is defined to be the module π∗(λΓ(β,r,ε)). As usual, 
we write M(β, r, ε, λ, Θ) when the quiver and coloring are understood.

Example 1. Consider the quiver below with coloring indicated by type of arrow:

Let us say that the color of the arrow �i is � in the above picture (so, for example, 
c(a1) = c(a2) = a). Let β, r be the pair depicted in the following diagram:
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and ε−1(1) = {(1, g), (2, p), (3, g), (4, b), (5, b), (6, p)} (so ε−1(−1) is the complement 
in X). Then Γ(Q, c, β, r, ε) takes the following form:

For example, we know there are three arrows labeled fa1
1 , fa1

2 , fa1
3 , with t(fa1

1 ) = v1
3 and 

h(fa1
1 ) = v2

1 since ε(1, r) = −1 = ε(2, r).

Proposition 2. The representation M(Q, c, β, r, ε, λ, Θ) is a representation of (Q, Ic), so 
can be identified with a module (which we denote in the same way) over A. In particular, 
it is a direct sum of string and band modules.

Proof. Abbreviate the module by M . Let exi denote the basis element of Mx corre-
sponding to the vertex vxi . We need only demonstrate that if a, b ∈ Q1 are arrows with 
ha = tb = x and c(a) = c(b), Mb ◦Ma = 0. Suppose ε(x, c(a)) = 1. Then the image of 
Ma is precisely the span of the basis elements exi for which βx − r(a) + 1 ≤ i ≤ βx, while 
the kernel of Mb is precisely the span of the elements exi for which r(b) ≤ i ≤ βx. Since 
r is a rank sequence, r(b) ≤ βx− r(a) +1, so kerMb ⊃ imageMa. When ε(x, c(a)) = −1, 
the proof is essentially the same. That M is a direct sum of string and band modules is 
directly seen from Remark 1. �

In the subsequent sections, we will fix once-and-for-all a gentle algebra kQ/Ic (with 
associated coloring c), as well as a sign function ε, and distinguished function Θ for each 
up-and-down graph. We may therefore write Γ(β, r) and M(β, r, λ) without reference to 
these fixed elements.

3. Properties of up-and-down graphs

The goal will be to show that when r is a maximal rank function for β, the module 
M(β, r, ε, λ) is generic. The proof of this assertion employs homological considerations, 
most importantly calculation of the dimensions of Ext1A(M, M). This requires a pro-
jective resolution and various combinatorial data about these modules. We first collect 
some technical definitions and notation.
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A vertex vxj in Γ(β, r) is said to be above (resp. below) vxj′ if j > j′ (resp. j < j′). 
As in Example 1, we will depict the up-and-down graphs in the plane in such a way 
that above and below are literal. We denote by S(Γ) and T (Γ) the set of sources and 
sinks in Γ(β, r), respectively. A source (resp. sink) incident to exactly i arrows will be 
called an i-source (resp. i-target), and the sets of these vertices will be denoted by Si(Γ)
and T i(Γ) respectively. (This only defines four potentially non-empty sets, S1, S2, T 1, T 2

since Γ(β, r) contains only strings and bands.)
Let us call two paths γ, γ′ in Γ(β, r) parallel if π(γ) = π(γ′) (here we define the 

path π(γ) to be the one obtained by applying the quiver morphism π to the sequence of 
arrows in γ). A path γ = amam−1 . . . a1 in Γ(β, r) is called target positive (resp. target 
negative) if ε(ham, c(am)) = 1 (resp. −1), and source positive (resp. source negative) if 
ε(ta1, c(a1)) = 1 (resp. −1). The following lemma is utilized to determine the relative 
ordering of vertices on either end of parallel paths.

Lemma 1. Suppose that γ is a path in Γ(β, r), h(γ) = vxj and t(γ) = vyi . Then the 
following hold.

a. If γ is target negative, and vxj′ is above vxj , then there is a path γ′ parallel to γ with 
h(γ′) = vxj′ . Furthermore, t(γ′) is above (resp. below) t(γ) if and only if γ is source 
positive (resp. negative).

b. Dually, if γ is target positive, and vxj′ is below vxj , then there is a path γ′ parallel to 
γ with h(γ′) = vxj′ . In this case, t(γ′) is above (resp. below) t(γ) if and only if γ is 
source positive (resp. negative).

c. If γ is source positive (resp. negative) and vyi′ is above (resp. below) vyi , then there is 
a path γ′ parallel to γ.

Proof. To any path γ = amam−1 . . . a1 in Γ, we can associate a sequence of pairs

((j0, x0), . . . , (jm, xm))

such that h(ai) = vxi
ji

and t(a1) = vx0
j0

. Notice that if γ, γ′ are two parallel paths, then 
for each i, the coordinates xi coincide (since π commutes with taking heads and tails of 
arrows).

Suppose now that γ is target negative, and vxm

j′m
is above vxm

jm
. In particular, j′m <

jm ≤ r(π(am)), so by definition of Γ, there is an arrow a′m ∈ Γ1 with h(a′m) = vxm

j′m
that is parallel to am. Denote by vxm−1

j′m−1
the tail of this arrow. If am is source positive 

(resp. negative) then so is a′m (since they are parallel). So if am is source positive, 
j′m−1 < jm−1 ≤ r(π(am)), and if it is source negative, jm−1 = βxm−1 − jm + 1, and 
j′m−1 = βxm−1 − j′m + 1, i.e., j′m−1 > jm−1. The argument of the analogous statement 
when γ is target positive and above is replaced with below is similar.
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The statement is thus proven for paths of length one. Suppose now the lemma holds 
for the path γ̃ = amam−1 . . . a2, and consider the path γ = (am . . . a2)a1 (which we 
assume again to be target negative, and j′m < jm). By inductive assumption, there is 
a path γ̃′ parallel to γ̃ with t(γ̃′) = vx1

j′1
and h(γ̃′) = vxm

j′m
. If γ̃ is source positive (resp. 

negative), then vx1
j′1

is above (resp. below) vx1
j1

. In either case, a1 is of opposite target 
sign (since a1, a2 must be of different colors given they both contain vx1

j1
, and the sign 

function of arrows of different color incident to the same vertex must differ). Supposing 
γ̃ is source positive, then, a1 is target negative. Therefore, by the base case, there is 
an arrow a′1 parallel to a1 with h(a′1) = vx1

j′1
, which is above or below vx1

j1
according to 

whether γ was source positive or negative (which is equivalent to a1 being source positive 
or negative). The arguments for the analogous cases are similar. �

Lemma 1 can be iterated in an important way. Namely, suppose that we have paths 
in Γ

vyi
p

q

vx0
j1

vx1
j1

vyi′
p′

q′

vx0
j′0

vx1
j′1

such that p, p′ are parallel, and q, q′ are parallel. Suppose that we would like to know 
whether the order of j0 relative to j′0 is the same as that of j1 relative to j′1. The order 
is reversed if and only if ε(p, x0) = ε(q, x1). Indeed, we need only count the number 
of times that order is reversed, which is an occurrence of ε(�, h�) = ε(�, t�) where � is 
either p or q, so that even parity overall implies preservation of order, and odd implies 
reversal. But ε(p, y1) = −ε(q, y1), so modulo two, this count is the same as the number 
of sign changes in {ε(p, x0), ε(q, x1)}. This can be iterated again for longer sequences of 
paths.

We will also need some facts relating the rank functions to various configurations 
appearing in Γ.

Lemma 2. Let Γ(β, r) be an up-and-down graph, and consider the following configuration 
in Q:

a1

x

b2

a2

b1

Let c(ai) = a and c(bi) = b.
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a. Suppose vxj ∈ S2(Γ) (resp. T 2(Γ)). Then r(a2) +r(b2) > βy (resp. r(a1) +r(b1) > βy).
b. If vxj is incident to only one arrow of color a (say), then r(b1) + r(b2) < βx.
c. There is an isolated vertex vyj in Γ if and only if min{r(a1) + r(b2)} + min{r(a2) +

r(b1)} < βy (in particular, there are neither 2-sources nor 2-targets at y).

Proof. We will illustrate (a). If vyj is a 2-source, then it is contained in an arrow fa2

and an arrow f b2 . Let us take ε(y, c(a2)) = 1 = −ε(y, c(b2)). Then by definition of Γ, 
j ≤ r(a2) and j ≥ βy − r(b2) + 1, so r(a2) + r(b2) ≥ βy + 1. �

Finally, we state a consequence for monochromatic paths of length three and the rank 
function.

Lemma 3. Suppose that r is a maximal rank function for β, and a3a2a1 is a monochro-
matic path in Q, with h(ai) = xi. Then at least one of the two equalities r(a1) + r(a2) =
βx1 and r(a2) + r(a3) = βx2 must hold.

Proof. Suppose neither equality holds. Since r is a rank function, r(a1) + r(a2) < βx1

and r(a2) + r(a3) < βx2 . Notice that the rank function r′ defined by r′(a2) = r(a2) + 1
and r′(b) = r(b) otherwise is a rank function, and clearly r′ > r, contradicting maximal-
ity. �
4. Main theorem

Theorem 1. Fix A = kQ/Ic a triangular gentle algebra with coloring c, a dimension 
vector β, and a maximal rank function r. Let B(Γ(β, r)) be the set of band components 
in Γ, and pick Θ, ε as before. Then we have the following:

mod(A, β, r) =
⋃

λ∈(k∗)B
GL(β)M(β, r, λ)

In particular M(β, r, λ) is the generic module in mod(A, β, r).

Notice in particular that if there are no bands, the irreducible component is an orbit 
closure. The proof of the theorem relies heavily on the following theorem, whose proof 
will constitute the remainder of this article.

Theorem 2. Suppose that λ = (λb), ν = (νb) ∈ (k∗)B are two vectors with no common 
entries (i.e., λb �= νb′ for all b �= b′ ∈ B), and r is a maximal rank function. Choose 
B(Γ(β, r)), Θ, ε as before. Then

dim Ext1kQ/I (M(β, r, λ),M(β, r, ν)) = 0. (1)

c
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Furthermore, if Γ(β, r) consists of a single band component, for any λ ∈ (k∗)1

dim ExtikQ/Ic(M(β, r, λ),M(β, r, λ)) =
{

1 if i = 1
0 if i > 1 (2)

Let us prove Theorem 1 assuming Theorem 2.

Proof of Theorem 1. Suppose that M(β, r, λ) =
⊕t

i=1 M(β(i), r(i), λ(i)) is the inde-
composable decomposition of M(β, r, λ) arising from the decomposition of Γ(β, r) into 
connected components (λ is no longer underlined in the decomposition since each of the 
components is at worst a band, and so has only one parameter). Let us recall a result of 
Crawley-Boevey and Schröer. Suppose that C(i) ⊂ mod(kQ/I, β(i)) are irreducible com-
ponents for some collection of dimension vectors β(i), i = 1, . . . , t, and denote by β the 
sum 

∑
i β(i). Define by C(1) ⊕ . . .⊕C(t) the subset of mod(A, β) given by the set of all 

GL(β) orbits of direct sums M(1) ⊕ . . .⊕M(t) with M(i) ∈ C(i). Then C(1) ⊕ . . .⊕ C(t)
is an irreducible component of mod(A, β) if and only if ext1A(C(i), C(j)) = 0 for all i �= j

(see [3, Theorem 1.2]). Here ext1A(C(i), C(j)) denotes min{dim Ext1A(M, M ′) | M ∈
C(i), M ′ ∈ C(j)}.

To apply this theorem, then, we need only show that 
⋃

λ(i)∈k∗ GL(β(i))M(β(i),
r(i), λ(i)) is dense within mod(A, β(i), r(i)). When M(β(i), r(i), λ(i)) is an indecom-
posable string (that is, there is no parameter λ(i)), Eq. (1) of Theorem 2 shows that

Ext1A(M(β(i), r(i)),M(β(i), r(i))) = 0.

Therefore by Gabriel [7], M(β(i), r(i)) has an open orbit. In particular mod(A, β(i),
r(i)) = GL(β(i))M(β(i), r(i)). Now assume that M(β(i), r(i), λ(i)) is an indecomposable 
band module, and let us abbreviate this module by Mλ. Following Kraft [9, 2.7], there 
is an embedding

TMλ
(mod(A, β(i), r(i)))/TMλ

(GL(β(i))Mλ) ↪→ Ext1A(Mλ,Mλ)

where TM (X) denotes the tangent space to M inside of X. By Eq. (2), the dimension of 
the target space is 1, so

dimTMλ
(mod(A, β(i), r(i))) − dimTMλ

(GL(β(i))Mλ) ≤ 1.

The crucial fact is that mod(A, β(i), r(i)) is smooth at Mλ. This is so because 
mod(A, β(i), r(i)) is isomorphic to a product of varieties of complexes taken along each 
full colored path. Under a particular choice of this isomorphism, Mλ is the image of 
the product of complexes which have dense orbits in their varieties, which are therefore 
smooth. As a result we have that

dim(mod(A, β(i), r(i))) − dim GL(β(i))Mλ ≤ 1.
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If the difference is 0, we are done. Otherwise, the difference is one, so GL(β(i))Mλ is a 
codimension one subvariety. Now it is clear that ϕ : k∗ × GL(β(i)) → mod(A, β(i), r(i))
given by (λ, g) 	→ gMλ is an injective regular morphism, so 

⋃
λ(i)∈k∗ GL(β(i))Mλ =

mod(A, β(i), r(i)). This concludes the proof. �
In order to prove Theorem 2, we construct an explicit projective resolution of the 

representations M(β, r, λ).

5. Minimal projective resolution

To construct the projective resolution in the most general way possible, we will need a 
fair bit of notation. In order to balance this need, let us fix the quiver Q, the coloring c, 
the sign function ε, the function Θ, and the parameters r and β. We write Mλ for 
the representation M(Q, c, β, r, ε, λ, Θ). Denote by S0(Γ) the set of isolated vertices in 
Γ(β, r). For each vertex vxj ∈ T 2(Γ), we have two distinguished paths l+(vxj ) and l−(vxj )
defined by the following two conditions:

i. tlδ(vxj ) is a source in Γ;
ii. ε(x, c(a)) = δ where fa

j is the arrow in lδ(vxj ) terminating at vxj .

Consider a vertex vxj ∈ S1, and let fa
j′ be the arrow incident to vxj . Denote by [vxj ]0 the 

arrow in Q1 \a with t[vxj ]0 = x, if it exists. Similarly, consider vxj ∈ T 1, and fa
j′ the arrow 

incident to vxj . Denote by [vxj ]0 the arrow in Q1 with t[vxj ]0 = x and c([vxj ]0) �= c(a). 
In either case, we define [vxj ]i inductively by the conditions that h[vxj ]i−1 = t[vxj ]i and 
c([vxj ]i−1) = c([vxj ]i).

Finally, if vxj ∈ S0 is an isolated vertex, for δ ∈ {−1, 1} we denote by [vxj ]δ0 the arrow 
(if it exists) defined by the conditions t[vxj ]δ0 = x and ε(x, c([vxj ]δ0)) = δ. Recursively 
define [vxj ]δi to be the arrow with t[vxj ]δi = h[vxj ]δi−1 and c([vxj ]δi ) = c([vxj ]δi−1). (For ease of 
notation, we will often write δ = + or − in lieu of 1, −1, respectively.)

For any vertex vxj in Γ, we will write P (vxj ) for the indecomposable projective left 
A-module P (x), which is the projective cover of the simple module with support at the 
vertex x. If any of the arrows [vxj ]i or [vxj ]δi fails to exist, we simply write ∅ in lieu of 
an arrow. In this case, if P (h[vxj ]i) or P (h[vxj ]δi ) appears in the projective resolution it is 
taken to be the zero object in mod(A).

We are now ready to build the terms of the projective resolution of the representa-
tion Mλ. For i ≥ 0, define the modules Fi(Mλ) as follows:

F0(Mλ) =
⊕

vx
j a source in Γ

P (vxj )

F1(Mλ) =
⊕

vx∈T 2

P (vxj ) ⊕
⊕

vx∈S1∪T 1

P (h[vxj ]0) ⊕
⊕

vx∈S0

(
P (h[vxj ]+0 ) ⊕ P (h[vxj ]−0 )

)

j j j
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Fi(Mλ) =
⊕

vx
j ∈S1∪T 1

P (h[vxj ]i−1) ⊕
⊕

vx
j ∈S0

(
P (h[vxj ]+i−1) ⊕ P (h[vxj ]−i−1)

)
i > 1

We will define the maps ∂(Mλ)i : Fi+1(Mλ) → Fi(Mλ) component-wise in the fol-
lowing way. The symbol δ can stand either for +1 or −1.

∂(Mλ)0 Write Λ(vxj ) = λb if vxj = Θ(b) for some b ∈ B and Λ(vxj ) = 1 otherwise. When 
vxj ∈ T 2(Γ), the component of ∂(Mλ)0 from P (vxj ) to P (vyi ) is defined by

⎧⎨
⎩

Λ(vxj )π(l+(vxj )) if vyi = t(l+(vxj ))
−π(l−(vxj )) if vyi = t(l−(vxj ))
0 otherwise

If vxj ∈ S1 (in particular, vxj is a source) the component of ∂(Mλ)0 from 
P (h[vxj ]0) to P (vxj ) is simply multiplication by the arrow [vxj ]0. When vxj ∈ T 1, 
let p be the longest path in Γ terminating at vxj , whose tail t(p) := vyi is by 
necessity a source. Then the component of ∂(Mλ)0 from P (h[vxj ]0) to P (vyi )
is defined by multiplication by the path p · [vxj ]0. Finally, when vxj ∈ S0, the 
component of ∂(Mλ)0 from P (h[vxj ]δ0) to P (vxj ) is multiplication by the arrow 
[vxj ]δ0. All other components not defined in this paragraph are then taken to be 
zero.

∂(Mλ)i For i > 0, we define ∂(Mλ)i : Fi+1(Mλ)i+1 → Fi(Mλ)i component-wise as 
well. For vxj ∈ S1 ∪ T 1, we take the component of ∂(Mλ)0 from P (h[vxj ]i) to 
P (h[vxj ]i−1) to be multiplication by [vxj ]i. When vxj ∈ S0, take the component of 
∂(Mλ)0 from P (h[vxj ]δi ) to P (h[vxj ]δi−1) to be multiplication by [vxj ]δi . As before, 
all other components not defined herein are taken to be zero.

Finally, it is quite natural to define a morphism ε : F0(Mλ) → Mλ in the following 
way. Fix a basis for each of the one-dimensional vector spaces (λΓ)vx

j
, and denote by 

exj the basis element in (Mλ)x corresponding to 1 in this space. If vxj is a source, then 
we define ε(e) of the generator e of P (vxj ) to be exj and extend A-linearly. In particular, 
given a path p in Q starting at x considered as an element of P (vxj ), ε(p) = (Mλ)pexj . 
So if there is a path p′ in Γ with π(p′) = p and tp′ = vxj , then ε(p) = Λ(p)eyi ∈ (Mλ)y
(where eyi is the basis element of Mλ corresponding to the vertex vyi := hp′ and Λ(p) is 
defined by λb if p passes through Θ′(b) for some band b) and 1 otherwise.

Proposition 3. The complex

. . . → F2(Mλ) ∂(Mλ)1−−−−−−→ F1(Mλ) ∂(Mλ)0−−−−−−→ F0(Mλ) ε−→ Mλ → 0

is a minimal projective resolution of Mλ in mod(A).

Proof. First, the surjectivity of ε is clear. M is a finitely generated module generated by 
the elements exj which are sources, and ε−1(exj ) contains a generator of P (vxj ).
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To show that F• is a complex, note that there are two types of elements in the image 
of ∂0. Suppose vxj ∈ T 2(Γ), let p+ = l+(vxj ) and p− = l−(vxj ), and vy+

i+
= tp+, vy−

i−
= tp−. 

If vxj = Θ(b), then (ε ◦ ∂0)(vxj ) = ε(λbπ(l+(vxj )) − π(l−(vxj ))) = λb(Mλ)π(p+)(e
y+
i+

) −
(Mλ)π(p−)(e

y−
i−

) = λbe
x
j − λbe

x
j = 0. If vxj is not Θ(b) for any band, then the calculation 

is the same with λb replaced by 1.
For the other types of vertices, we have specifically chosen arrows [vxj ]δ0 which act 

trivially on the basis element in Mλ corresponding to vxj , so the composition with ε will 
indeed yield zero. Furthermore, [vxj ]δi ◦ [vxj ]δi−1 = 0 since both have the same color. Thus, 
the sequence is indeed a complex.

Now we consider exactness at F0(Mλ). As above, if vxj is a vertex in Γ, let exj denote 
the basis element of Mλ corresponding to 1 in the one-dimensional vector space at the 
vertex vxj in (λΓ). Thus, the collection {exj : vxj ∈ Γ0} forms a basis for Mλ. Recall that 
P (vxj ) has a basis consisting of paths p in Q, not containing subpaths that are in the 
ideal I, with tp = x. We will write these elements as (p, vxj ) to emphasize the projective 
from which they came. Call such a pair (p, vxj ) compatible if in π−1(p), there is a path q
such that tq = vxj (and incompatible otherwise). Notice that ε(p, vxj ) �= 0 if and only if 
(p, vxj ) is compatible. This is clear, since

ε(p, vxj ) = (Mλ)pexj =
{

Λ(p)eyi if hq = vyi , tq = vxj for some path q in Γ
0 otherwise

and Λ(p) �= 0. Let (p, vxj ) be incompatible. Let p′ be the initial subpath of maximal 
length of p such that (p′, vxj ) is compatible, which is guaranteed to exist since vxj itself 
is a (lazy) path in Γ. Denote by vyi the head of this subpath. We distinguish two cases. 
If vyi ∈ S0 ∪ S1 ∪ T 1, then [vyi ]δ0p′ is still a subpath of p for one choice of δ, where we 
also include the potential that δ does not appear, as in the case of vyi ∈ T 1. This holds 
since the only other concatenable arrow would extend p′ to an element of the ideal I
by definition of a gentle algebra. Thus, p = p′′[vyi ]δ0p′, which is in the image P (h[vyi ]δ0)
under ∂(Mλ)0. On the other hand, suppose that vyi ∈ T 2, and let a be the next arrow 
in p after p′ (i.e., ap′ is still a subpath of p). By abuse of notation, we will write vyi for 
the generator of P (vyi ). Recall that ∂(Mλ)0 : vyi 	→ Λ(p)π(l+(vyi )) − π(l−(vyi )). Assume 
without loss of generality that p′ = π(l+(vyi )) (it must be one of the two paths). Then 
∂(Mλ)0 : a 	→ Λ(p)ap′ − 0 since aπ(l−(vyi )) must be in the ideal I, again by definition of 
the gentle algebra. Since Λ(p) �= 0, we have that all incompatible pairs (p, vxj ) are in the 
image of ∂(Mλ)0.

Let τ be a linear combination of compatible paths 
∑

γ(p,vx
j )(p, vxj ).

ε(τ) =
∑

(p,vx
j ) compatible
vx
j ∈S(Γ)

γpε(p, vxj )

=
∑

γ(p,vx)(Mλ)pexj
j
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For each path p in Q in the above sum, there is a unique path q ∈ π−1(p) defined by 
the property that tq = vxj . Take vyi = hq, so that (Mλ)pexj = Λ(p)eyi where Λ(p) = λb if 
p contains the arrow π(Θ(b′)) for some band b, and 1 otherwise. When vxj and vyi are as 
above, we will write vxj ≤p vyi as a relation. Therefore, we can rewrite the sum above by 
collecting coefficients of the eyi as follows:

ε(τ) =
∑
vy
i

⎛
⎝ ∑

(p,vx
j ):vx

j ≤pv
y
i

γ(p,vx
j )Λ(p)

⎞
⎠ eyi

Since the eyi form a basis of Mλ, the coefficients in the above expansion must equal 
zero. Again we distinguish two cases: either one or two arrows terminate at vyi . If there 
is only one arrow, then there is exactly one compatible pair (p, vxj ) with vxj ≤p vyi , so 
γ(p,vx

j ) = 0. If there are two such arrows, then the paths l−(vyi ) := p− and l+(vyi ) :=
p+ are the unique paths in Γ terminating at vyi and starting at a source, v− and v+, 
respectively. Thus, we have Λ(p−)γ(p−,v−) = −Λ(p+)γ(p+,v+) = 0. In particular, τ has 
the summand

γ(p+,v+)(p+, v+) + γ(p−,v−)(p−, v−) =
γ(p+,v+)

Λ(p−) (Λ(p−) · (p+, v+) − Λ(p+) · (p−, v−)) .

Now if vxi is not of the form Θ(b), then Λ(p−) = Λ(p+) = 1, while if vxi is of the form 
Θ(b), then Λ(p+) = λb and Λ(p−) = 1, so in either case the above element is in the 
image of ∂(Mλ)0, namely it is the image of γ(p+,v+)

Λ(p−) vyi .
Finally, we note that each component of ∂(Mλ)i is in the Jacobson radical of A, so 

F• is indeed minimal. �
Now that we have a projective resolution of Mλ, we will apply the functor 

HomA(−, Mν) to it and calculate the dimensions of the extension groups. Recall that 
the module Mν is the pushdown of a module νΓ, which assigns to each vertex vxi
the one dimensional vector space k, and π∗(λΓ)x =

⊕
j=1,...,βx

k. In this way, we 
can take {vxj : j = 1, . . . , βx} to be the corresponding basis of (Mν)x. Furthermore, 
Hom(Px, Mν) ∼= (Mν)x, so for each vxj let us denote the basis of HomA(P (vxj ), Mν) by 
{vxj � vxj′ : j′ = 1, . . . , βx}, and write Mν(vxj ) as shorthand for this space to indicate 
the projective from which it arose. The space HomA(P (h[vxj ]δi ), Mν) will be denoted by 

Mν([vxj ]δi ), and its basis by {vxj � v
h[vx

j ]δi
j′ : j′ = 1, . . . , βh[vx

j ]δi }. The benefit of this 
cumbersome notation is that one can keep track of the projective in the first step 
of the resolution that is responsible for the appearance of these particular basis ele-
ments.

Applying HomA(−, Mν) to the resolution then yields the complex

C0
Hom(∂0,Mν)−−−−−−−−−→ C1

Hom(∂1,Mν)−−−−−−−−−→ C2
Hom(∂2,Mν)−−−−−−−−−→ . . . (3)
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where

C0 =
⊕

vx
j a source in Γ

Mν(vxj )

C1 =
⊕

vx
j ∈T 2

Mν(vxj ) ⊕
⊕

vx
j ∈S1∪T 1

Mν([vxj ]i) ⊕
⊕

vx
j ∈S0

(
Mν([vxj ]+0 ) ⊕Mν([vxj ]−0 )

)

Ci =
⊕

vx
j ∈S1∪T 1

Mν([vxj ]i−1) ⊕
⊕

vx
j ∈S0

(
Mν([vxj ]+i−1) ⊕Mν([vxj ]−i−1)

)
i > 1

In order to calculate the homology of this complex, we construct a graph EXT whose 
vertices correspond to the fixed basis described above. We partition the vertices into 
subsets EXT(i) for i ≥ 0 which we call levels, whose vertices correspond to the basis 
of Ci.

Definition 4. Let EXT(l) be the sets defined as:

EXT(0) := {vxj � vxj′ : vxj a source in Γ, j′ = 1, . . . , βx}

EXT(1) := {vxj � vxj′ : vxj ∈ T 2, j′ = 1, . . . , βx}

∪ {vxj � v
h[vx

j ]0
j′ : vxj ∈ S1 ∪ T 1, j′ = 1, . . . , βh[vx

j ]0}

∪ {vxj � v
h[vx

j ]t0
j′ : vxj ∈ S0, j′ = 1, . . . , βh[vx

j ]t0 , t = −,+}

EXT(l) := {vxj � v
h[vx

j ]l−1
j′ : vxj ∈ T 1 ∪ S1, j′ = 1, . . . , h[vxj ]l−1}

∪ {vxj � v
h[vx

j ]tl−1
j′ : vxj ∈ S0, j′ = 1, . . . , βh[vx

j ]tl−1
, t = +,−} l > 1

The graph EXT is, by definition, the digraph with vertices 
⋃

l≥0 EXT(l) and arrows 
vxi � vyj → vx

′

i′ � vy
′

j′ if the coefficient of vx′

i′ � vy
′

i′ in

Hom(∂(Mλ)l,Mν)(vxi � vyj )

is non-zero. In particular arrows that start in level EXT(l) end in level EXT(l + 1). It 
will be convenient to label such an arrow by said coefficient.

The digraph EXT can be thought of as the graph of each map Hom(∂(Mλ)l, Mν). 
In order to show that there is no homology in the first degree, we need to collect some 
properties of this graph.

5.1. Properties of the EXT graph

The absence of homology in the first degree will follow from a number of considera-
tions. First we show that there are no isolated vertices at level EXT(1), each vertex in 
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this level is then shown to be incident to at most two arrows. This breaks the kernel of 
Hom(∂(Mλ)l, Mν) into pieces which lie in strings or bands, and then these components 
are shown to be surjective.

Proposition 4. Let EXT be the graph given above. Then we have the following:

E1: There is an arrow

EXT(0) � vxj � vxj′ → vyi � vyi′ ∈ EXT(1)

if vxj ∈ S2, vyi ∈ T 2 such that vxj
p−→ vyi and vxj′

p′
−−→ vyi′ are parallel paths in Γ.

E2: Suppose vyi ∈ T 1, vxj = l±(vyi ), and p is the path from vxj to vyi . Then there is an 
edge

EXT(0) � vxj � vxj′ → vyi � vy
′

i′ ∈ EXT(1)

if there is a path vxj′
p′
−−→ vy

′

i′ in Γ with π(p′) = [vyi ]0π(p). Furthermore, there is an 
arrow

EXT(l) � vxj � v
h[vy

i ]l−1
j′ → vyi � v

h[vy
i ]l

i′ ∈ EXT(l + 1)

if in Γ there is an edge vh[vy
i ]l−1

i′
a−→ v

h[vy
i ]l

j′ such that π(a) = [vyi ]l.
E3: Similarly, if vyi ∈ S1, then there is an edge

EXT(0) � vyj � vyj′ → vyi � v
h[vy

i ]0
i′ ∈ EXT(1)

if there is an edge vyj′
a−→ v

h[vy
i ]0

i′ with π(a) = [vyj ]0. Furthermore, an arrow

EXT(l) � vxj � v
h[vx

j ]l−1
j′ → vxj � v

h[vx
j ]l

i′ ∈ EXT(l + 1)

if there is an edge v
h[vx

j ]l−1
j′

a−→ v
h[vx

j ]l
i′ in Γ with π(a) = [vxj ]l.

E4: Finally, if vxj is an isolated vertex in Γ, then there are arrows

EXT(0) � vxj � vxj′ → vxj � v
h[vx

j ]±0
i′ ∈ EXT(1)

EXT(l) � vxj � v
h[vx

j ]±l−1
j′ → vxj � v

h[vx
j ]±l

i′ ∈ EXT(l + 1)

if there is an arrow v
h[vx

j ]±l−1
j′

a−→ v
h[vx

j ]±l
i′ in Γ with π(a) = [vxj ]±l (here we take 

h[vxj ]±−1 = x).

Lemma 4. There are no isolated vertices in level EXT(1).
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Proof. Suppose vxj � vxj′ ∈ EXT(1) (that is, vxj ∈ T 2). If j′ < j (resp. j′ > j), take p to 
be the path from vyi := lp−(vxj ) (resp. vyi := lp+(vxj )) to vxj . Then by Lemma 1 there is 
a path p′ terminating at vxj′ parallel to p. Denote by vyi′ = tp′. Then there is an arrow 
vyi � vyi′ → vxj � vxj′ by property E1 of Proposition 4.

Suppose now that vxj ∈ T 1 and [vxj ]0 exists, so that vxj � v
h[vx

j ]0
j′ ∈ EXT(1). Assume 

without loss of generality that ε(x, c[vxj ]0) = 1 and ε(h[vxj ]0, c([vxj ]0)) = −1. Let p be 
the path of maximum length terminating at vxj , and tp = vyi (which is a source in Γ). 
Let [vxj ]−1 be the arrow (if it exists) with c([vxj ]−1) = c([vxj ]0) and h[vxj ]−1 = x. By 
Lemma 2(b), r([vxj ]−1) + r([vxj ]0) < βx, so by Lemma 3, r([vxj ]0) + r([vxj ]1) = βh[vx

j ]0 . In 

particular, vh[vx
j ]0

j′ is the head of an arrow f
[vx

j ]0
j′ (if j′ ≤ r([vxj ]0) < j) or the tail of an 

arrow f [vx
j ]1 otherwise. In the former case, there is a path p′ terminating at vh[vx

j ]0
j′ with 

π(p′) = [vxj ]0π(p), so that there is an arrow vyi � tp′ → vxj � v
h[vx

j ]0
j′ . In the latter case, 

there is an arrow vxj � v
h[vx

j ]0
j′ → vxj � hf [vx

j ]1 .
An analogous proof shows that if vxj ∈ S1, then vxj � v

h[vx
j ]0

j′ is not isolated.
Finally, suppose that vxj is an isolated vertex in Γ such that at least one of [vxj ]±0

exists (otherwise there is no vertex with first component vxj in EXT(1)). Consider vxj �
v
h[vx

j ]±0
j′ ∈ EXT(1), and let [vxj ]±−1 be the arrow in Q1 such that c([vxj ]±−1) = c([vxj ]0) and 
h[vxj ]±−1 = x. From Lemma 2(c), r([vxj ]±−1) + r([vxj ]±0 ) < βx, so according to Lemma 3, 

r([vxj ]±0 ) + r([vxj ]±1 ) = βh[vx
j ]±0

. Thus, vh[vx
j ]±0

j′ is either contained in an arrow f [vx
j ]±0 or 

f [vx
j ]±1 . In the former case, vxj � tf [vx

j ]±0 → vxj � v
h[vx

j ]±0
j′ is an arrow in EXT, and in the 

latter case, vxj � v
h[vx

j ]±0
j′ → vxj � hf [vx

j ]±1 is in EXT. �
The following lemma shows that EXT splits into string and band components, and 

that the band components occur between levels EXT(0) and EXT(1).

Lemma 5. All vertices in EXT(1) and EXT(2) are contained in at most two arrows. All 
vertices labeled vxj � v

h[vx
j ]l

j′ for l ≥ 0 (and therefore all vertices in level EXT(l) for l > 1) 
are contained in at most one arrow.

Proof. Recall from property E2 of Proposition 4 that vxj � v
h[vx

j ]0
j′ shares an arrow 

either with vxj � vxj′′ or vxj � v
h[vx

j ]1
j′′ (exclusively) whenever vxj is either isolated or a 

one-source/target. Otherwise, suppose that vxj ∈ T 2, and consider the vertex vxj � vxj′ . 
If vyi � vyi′ → vxj � vxj′ , then vxi = tlδ(vxj ) (for some δ ∈ {+, −}) and there is a path p in 
Γ parallel to tlδ(vxj ) terminating at vxj′ in Γ. For each δ there is only one such path, so 
indeed the bound holds. �

A particular consequence of the preceding lemmas is that the kernel of the map 
Hom(∂(Mλ)1, Mν) is spanned by the basis elements corresponding to the vertices in 
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EXT(1) which are not contained in an arrow to EXT(2). As a result of Lemma 4, none of 
these are isolated, so we need only show that the restriction of the map to the subspace 
spanned by those elements who are contained in an arrow from EXT(1) is surjective. Via 
this restriction, we can consider the string and band components of this graph separately, 
first showing that the string components correspond to surjections, and then that the 
band components do.

Lemma 6. No string component in EXT has both endpoints in EXT(1).

Proof. Suppose that there is a string in EXT with one endpoint vx
′
0

j0
� v

x′
0

j′0
∈ EXT(1)

and containing the substring

vy1
i1

� vy1
i′1

vx0
j0

� v
x′
0

j′0

vy2
i2

� vy2
i′2...

vx1
j1

� v
x′
1

j′1

... ...
vyn

in
� vyn

i′n

vxn
jn

� v
x′
n

j′n

where vyt

it
� vyt

i′t
∈ EXT(0) and vxt

jt
� vxt

j′s
∈ EXT(1). We need only show that the string 

does not end at vxn
jn

� vxn

j′n
. By definition of the digraph EXT, we must have paths

vy1
i1

p0

q1
vx0
j0

vy1
i1

p0

q1
vx1
j1

...

vyn

in

qn
vxn
jn

in Γ. We break the consideration into four cases, depending on the type of the vertices 
vx0
j0
, vx

′
n

jn
. If a is the color of the arrow in a path p starting or ending at the vertex z ∈ Γ, 

we will write ε(z, p) for the sign ε(z, a).
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Case 1: Suppose vx0
j0
, vxn

jn
∈ T 2. In particular, there are paths in Γ

vy1
i′1

p′
0

q′1
vx0
j′0

vy1
i′1

p′
0

q′1
vx1
j′1

...

vyn

i′n

q′n
vxn

j′n

for which p′i and q′i are parallel to pi and qi, respectively. Since vxn
jn

is a 2-target, 
one of l+(vxn

jn
) or l−(vxn

jn
) exists and is not pn, let us call this q0; similarly there 

is a path q0 �= p0 which is one of l+(vx0
j0

) or l−(vx0
j0

).
Suppose first that j′0 < j0. If vx0

j′0
is above vx0

j0
, then ε(x0, p0) = −1. Otherwise, 

by Lemma 1, there would exist a path q′0 terminating at vx0
j′0

parallel to q0, so 
by definition tq0 � tq′0 → vx0

j0
�vx0

j′0
would be an arrow in EXT, contradicting the 

assumption that this vertex is an endpoint of the string.
Now suppose that vxn

j′n
is below vxn

jn
, so ε(xn, qn) = ε(xn, q′n) = −1 (by applying 

induction and Lemma 1), and so ε(xn, pn) = 1. Again, applying the lemma, 
there is a path p′n parallel to pn terminating at vxn

j′n
, thus an arrow tpn � tp′n →

vxn
jn

� vxn

j′n
, the latter vertex is not the other endpoint of string.

The argument follows similarly for different possibilities for i′0, i′n relative to 
i0, in.

Case 2: Suppose now that vx0
j0

∈ T 2 and vxn
jn

∈ T 1. Given that vxn
jn

� v
x′
n

j′n
, Proposition 4

E2 implies the existence of an arrow a ∈ Γ1 with h(a) = v
x′
n

j′n
and π(a) = [vxn

jn
]1. 

Denote by vxn

(j′n)− = t(a). In particular, π(q′n) = π(aqn).
Furthermore, since vx0

j0
∈ T 2, there exists a longest non-trivial path q0 distinct 

from p0 with head vx0
j0

(in particular, with ε(q0, x0) = −ε(p0, x0)).
Suppose that j′0 < j0. In this case, ε(q0, x0) = 1 (otherwise there would be a path 

q′0 with π(q0) = π(q′0) and hq′0 = v
x′
0

j′0
giving rise to a second arrow → vx0

j0
�v

x′
0

j′0
in 

EXT, a contradiction). Therefore, by definition, ε(p0, x0) = −1. Now we iterate 
Lemma 1: suppose, for example, that (j′n)− < jn, i.e., the orientation has been 
preserved, so ε(qn, xn) = 1. But since aqn is a path, we must have ε(a, xn) = −1, 
implying the existence of a path a′ parallel to a with ta′ = vxn

jn
, contradicting the 

assumption that vxn
jn

∈ T 1. If (j′n)− > jn, the argument is replicated changing 
signs, again yielding a contradiction.
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If j′0 > j0, then ε(q0, x0) = −1. Again, by definition, ε(p0, x0) = 1 and the same 
argument is replicated changing the signs to yield a contradiction.

Case 3: Finally, suppose that both vx0
j0
, vxn

jn
∈ T 1. In this case, we have arrows a0 :=

[vx0
j0

]1 and an := [vxn
jn

]1 in Γ with heads vx
′
0

j′0
and vx

′
n

j′n
, respectively. Denote by 

(j′0)− and (j′n)−, respectively, the lower indices of the tails of these arrows, vx0
(j′0)−

, 
vxn

(j′n)− .
Suppose that (j′0)− < j0. In this case, ε(a0, x0) = 1 (or else vx0

j0
would be the 

tail of an arrow parallel to a0, contradicting its membership in T 1). Since a0p0
is a path, ε(p0, x0) = −1.
If (j′n)− < jn, that is, the order has been preserved, then ε(qn, xn) = 1, and 
since anqn is a path, ε(an, xn) = −1. But this would imply the existence of an 
arrow a′n parallel to an with ta′n = vxn

jn
, contradicting its membership in T 1. 

Similarly, if (j′n)− > jn, the order has been reversed, so ε(qn, xn) = −1 and 
ε(an, xn) = 1, implying existence of the troubling arrow a′n with tail vxn

jn
, again 

a contradiction.
The same argument can be repeated under the assumption (j′0)− > j0 by chang-
ing signs. �

5.1.1. Homology and the EXT graph
The above results can be interpreted in the context of the maps Hom(∂(Mλ)1, Mν)

and Hom(∂(Mλ)0, Mν), which we will denote h1 and h0, respectively. By Lemmas 4
and 5, the kernel of h1 is spanned by the basis elements contained in an arrow whose 
tail is in EXT(0). Finally, Lemma 6 implies that there are only three types of connected 
components of the EXT graph between levels EXT(0) and EXT(1): strings with both 
endpoints in EXT(0), strings with one endpoint in EXT(1) and the other in EXT(0), 
and cycles. On the level of the map h0, strings with both endpoints in EXT(0) show 
that the subspace spanned by those vertices in EXT(1) in such a connected component 
is in the image of h0. Similarly, strings with one endpoint in EXT(0) and one in EXT(1)
represent square blocks of h0 which are either upper- or lower-triangular with non-zero 
diagonal entries (after permutation of the basis elements), so again the subspace spanned 
by the vertices in EXT(1) contained in such connected components is in the image 
of h0.

Therefore, it suffices to show that the restriction of h0 to the subspaces spanned by 
vertices contained in cyclic connected components in EXT(0) and EXT(1) is an isomor-
phism.

Lemma 7. Suppose the connected component Ci of the EXT-graph is cyclic. Then the 
restriction of h0 to Ci is an isomorphism onto its image.

Proof. If Ci is a cyclic connected component, then there are paths pi, qi, p′i, q′i in Γ such 
that pi and p′i are parallel, qi and q′i are parallel, and sit in the following configura-
tion:
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vy1
i1

p0

q1

vx0
j0

vy1
i1

p1

q1

vx1
j1

...

vyn

in

qn

v
xn−1
jn−1

vy1
i′1

p′
0

q′1

vx0
j′0

vy1
i′1

p′
1

q′1

vx1
j′1

...

vyn

i′n

q′n

v
xn−1
j′n−1

In particular, these are bands in Γ of the same shape (possibly the same band, in case 
i′k = ik and j′k = jk). By definition of h1, the matrix of h0 on Ci, projected to its image, 
is of the form

⎡
⎢⎢⎢⎢⎢⎣

1 −λb 0 . . . 0
0 ±1 ±1 . . . 0
0 0 ±1 . . . 0
...

. . .
...

±1 0 . . . . . . ±1

⎤
⎥⎥⎥⎥⎥⎦

where one of the diagonal entries is νb′ (with b′ corresponding to the second band), and 
in each row there is exactly one positive and one negative entry. Adding each column (or 
1/νb′ of the column containing νb′) to its successor, and then the last column to the first 
yields an upper triangular matrix with 1 − λb

νb′
as the first entry, ±1 on all but one other 

diagonal entry, which is νb′ . So the determinant is ±(λb − νb′). By assumption, λ and ν
have no common components, so h0 restricted to Ci is non-singular. �

This concludes the proof of Eq. (1) of Theorem 2. The second part of the theo-
rem is the calculation of Ext1A(Mλ, Mλ) when Mλ is an indecomposable band. Hence, 
λ = (λ) ∈ k1. We have already seen that Mλ has projective dimension one, so 
Hom(F1(Mλ), Mλ) = ker Hom(∂(Mλ)2, Mλ). By assumption, there is only one cyclic 
component of Γ, and therefore only one cyclic component C of the EXT graph. The 
other components represent surjective maps when restricted to the span of the ver-
tices in EXT(1) contained in these components. By the above discussion, h0 restricted 
to C is not an isomorphism with the span of the vertices in EXT(1) contained in the 
band component C (since deth1|C = ±(λ − λ) = 0). However, in this case, the result 
of the column reduction yields an upper triangular matrix with 0 as the first entry, 
and ±1, ±λ as the rest of the diagonal entries. This has rank n − 1, and so indeed 
ker Hom(δ2, Mλ)/ image Hom(∂(Mλ)1, Mλ) is one-dimensional.
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6. Higher extension groups

The graphical representation given above can be used to calculate higher extension 
groups. For each vertex vxj ∈ S1 ∪ T 1, let Xj,x be the complex

(Mλ)x
[vx

j ]1−−−−→ (Mλ)h[vx
j ]1

[vx
j ]2−−−−→ (Mλ)h[vx

j ]2
[vx

j ]3−−−−→ . . . .

Furthermore, if vxj ∈ S0, let X+
j,x be the complex

(Mλ)x
[vx

j ]+1−−−−→ (Mλ)h[vx
j ]+1

[vx
j ]+2−−−−→ (Mλ)h[vx

j ]+2
[vx

j ]+3−−−−→ . . . ,

and analogously for X−
j,x. Let hi(X) be the dimension of the i-th homology space of the 

complex X.

Corollary 1. Let Γ(Q, c, β, r, ε) be an up-and-down graph for kQ/Ic a gentle string algebra. 
Then

dimk ExtiA(M(β, r, λ),M(β, r, ν)) =
∑

vx
j ∈S1∪T 1

hi(Xj,x) +
∑

vx
j ∈S0

(
hi(X+

j,x) + hi(X−
j,x)

)
.

Thus, in order to sound the dimensions of the spaces of higher extensions between the 
generic modules, it suffices to measure the failure of the complexes along a given colored 
path to be exact at various locations.

6.1. Example

We finish by exhibiting the EXT graph for Example 1. Recall that we chose Θ(b) = v6
1

for the band component, taking λ = (λ) ∈ k1. By Proposition 3, the projective resolution 
of the representation in the example is given by

Mλ ← P 3
1 ⊕ P 2

4
∂0←−− P2 ⊕ P3 ⊕ P 2

5 ⊕ P6
∂1←−− P3

where

∂0 =

⎡
⎢⎢⎢⎢⎣
−a1 0 0 0 −λb2g1
0 0 −g1 0 p2a1
0 0 0 g1 0
p1 −g2b1 0 0 0
0 a2p1 b1 0 0

⎤
⎥⎥⎥⎥⎦ ∂1 =

⎡
⎢⎢⎢⎢⎣

0
0
0
g2
0

⎤
⎥⎥⎥⎥⎦

The associated EXT graph is obtained by applying Hom(−, Mν) to the resolution, so we 
have the complex:

(Mν)31 ⊕ (Mν)24
Hom(∂0,Mν)−−−−−−−−−→ (Mν)2 ⊕ (Mν)3 ⊕ (Mν)25 ⊕ (Mν)6

Hom(∂1,Mν)−−−−−−−−−→ (Mν)3
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The EXT graph is depicted below, with the vertices lying in a cyclic component of the 
graph boxed.
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