
Journal of Algebra 439 (2015) 417–437
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The A + XB[X ] construction from Prüfer 

v-multiplication domains

Gyu Whan Chang
Department of Mathematics Education, Incheon National University,
Incheon 406-772, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 March 2015
Available online xxxx
Communicated by Kazuhiko Kurano

MSC:
13A15
13F05
13F20

Keywords:
A + XB[X] construction
PvMD
Generalized GCD domain
Multiplicative set of ideals

Let A ⊆ B be an extension of integral domains, X be an 
indeterminate over B, and R = A + XB[X]. We prove that 
if B is t-flat over A, then R is a PvMD if and only if A is 
a PvMD and B = AS for S a t-splitting set of ideals of A. 
We also prove that R is a GGCD domain if and only if A is a 
GGCD domain and B = AS for S a d-splitting set of ideals 
of A. Finally, we use this result to recover that R is a GCD 
domain if and only if A is a GCD domain and B = AS for 
some splitting set S of A.
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0. Introduction

Let D be an integral domain, qf(D) be the quotient field of D, S be a (saturated) 
multiplicative set of D, X be an indeterminate over D, and D(S) = D + XDS [X]; 
so D[X] ⊆ D(S) ⊆ D +XK[X], where K = qf(D). In particular, if S is the set of units 
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of D (resp., S = D \ {0}), then D(S) = D[X] (resp., D(S) = D + XK[X]). We plan to 
include, in Sections 0.1 and 0.2, a sufficient introduction to the terminology used in this 
paper and in this introduction. If needed the readers may read Sections 0.1 and 0.2 first, 
for a better understanding.

Let T =
⊕

n∈N
Rn be a nontrivial graded integral domain graded by N, the monoid 

of nonnegative integers. Then T is a Prüfer domain if and only if R0 is a Prüfer domain 
and T ∼= R0 + yK0[y], where K0 = qf(R0) and y is an indeterminate over R0 [15, 
Proposition 3.4]. This type of integral domains were first studied in [13] where the authors 
proved that D(S) is a GCD domain if and only if D is a GCD domain and GCD(d, X)
exists in D(S) for all 0 �= d ∈ D. They also studied several ring-theoretic properties (for 
example, Bezout domain, Prüfer domain, v-domain, PvMD) of the ring D + XK[X]. 
Later, in [29], it was shown that D(S) is a GCD domain if and only if D is a GCD 
domain and S is a splitting set of D. Also, in [2], the authors proved that D(S) is a 
PvMD (resp., GGCD domain) if and only if D is a PvMD (resp., GGCD domain) and 
S is a t-splitting (resp., d-splitting) set of D.

Let A ⊆ B be an extension of integral domains, X be an indeterminate over B, and 
R = A + XB[X]. It is known that if R is a PvMD, then B is an overring of A [6, 
Proposition 2.6(1)] and that R is a GCD domain if and only if A is a GCD domain and 
B = AS for S a splitting set of A [6, Theorem 2.10]. In this paper, we study when R is 
a PvMD or a GGCD domain; hence, by [6, Proposition 2.6(1)], we may assume that B
is an overring of A. (An overring of A means a ring between A and the quotient field 
of A.) We begin with a study of a t-splitting set of ideals, in Section 1. Let S be a 
multiplicative set of ideals of A. In Section 2, we show that if S is a t-splitting set of 
ideals and A is a PvMD, then A + XAS[X] is a PvMD; moreover, if B is t-flat over A, 
then R a PvMD implies that A is a PvMD and B = AS for S a t-splitting set of ideals 
of A. Finally, in Section 3, we first define the notion of d-splitting sets of ideals and give 
a nice characterization of d-splitting sets of ideals. We then prove that R is a GGCD 
domain if and only if A is a GGCD domain and B = AS for S a d-splitting set of ideals 
of A. We use this result to recover Anderson and El Abidine’s result [6, Theorem 2.10]
that R = A + XB[X] is a GCD domain if and only if A is a GCD domain and B = AS

for some splitting set S of A.

0.1. Star operations and related notations

Let D be an integral domain with quotient field K. Let F(D) be the set of nonzero 
fractional ideals of D, i.e., I ∈ F(D) if I is a nonzero D-submodule of K with dI ⊆ D

for some 0 �= d ∈ D. For I ∈ F(D), let I−1 = {x ∈ K | xI ⊆ D}, Iv = (I−1)−1, 
It =

⋃
{Jv | J ⊆ I and J ∈ F(D) is finitely generated}, and Id = I. It is well known and 

easy to show that if ∗ = v, t, or d, then (aD)∗ = aD, (aI)∗ = aI∗, I ⊆ I∗, I ⊆ J implies 
I∗ ⊆ J∗, and (I∗)∗ = I∗ for all 0 �= a ∈ K and I, J ∈ F(D).

More generally, a mapping ∗ of F(D) into F(D) is called a star-operation on D if for 
all 0 �= a ∈ K and I, J ∈ F(D), the following conditions are satisfied:
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(1) (aD)∗ = aD and (aI)∗ = aI∗,
(2) I ⊆ I∗; I ⊆ J implies I∗ ⊆ J∗, and
(3) (I∗)∗ = I∗.

Given a star operation ∗ on D, one can construct a new star operation ∗f by setting 
I∗f =

⋃
{J∗ | J ⊆ I and J ∈ F(D) is finitely generated} for all I ∈ F(D). A star 

operation ∗ on D is said to be of finite type if ∗f = ∗. Obviously, (∗f )f = ∗f , and hence 
∗f is of finite type. An I ∈ F(D) is called a ∗-ideal if I∗ = I, and we say that a ∗-ideal 
is a maximal ∗-ideal if it is maximal among proper integral ∗-ideals of D. Let ∗-Max(D)
denote the set of maximal ∗-ideals of D. It may happen that ∗-Max(D) = ∅ even though 
D is not a field (for example, if D is a rank-one nondiscrete valuation domain, then 
v-Max(D) = ∅). However, it is well known that ∗f -Max(D) �= ∅ when D is not a field; 
a maximal ∗f -ideal is a prime ideal; each prime ideal minimal over a ∗f -ideal is a ∗f -ideal; 
and I∗f =

⋂
P∈∗f -Max(D) I

∗fDP for all I ∈ F(D). We know that if ∗ is any star operation 
on D, then Id ⊆ I∗f ⊆ I∗ ⊆ Iv and I∗f ⊆ It for all I ∈ F(D). An I ∈ F(D) is said to be 
∗-invertible if (II−1)∗ = D. It is well known that I is ∗f -invertible if and only if I∗f is of 
finite type and IDP is principal for all P ∈ ∗f -Max(D) [21, Proposition 2.6]. We say that 
D is a Prüfer ∗-multiplication domain (P∗MD) if every nonzero finitely generated ideal 
of D is ∗f -invertible. Hence, PdMDs are just the Prüfer domains. An integral domain D
is a GCD domain if aD ∩ bD is principal for all 0 �= a, b ∈ D, while D is a generalized 
GCD domain (GGCD domain) if aD ∩ bD is invertible for all 0 �= a, b ∈ D. Clearly,

GCD domain ⇒ GGCD domain ⇒ PvMD.

Let T (D) be the group of t-invertible fractional t-ideals of D under the t-multiplication 
I∗J = (IJ)t, and let Inv(D) (resp., Prin(D)) be its subgroup of invertible (resp., nonzero 
principal) fractional ideals of D. Then Cl(D) = T (D)/Prin(D), called the class group 
of D, is an abelian group and Pic(D) = Inv(D)/Prin(D), the Picard group of D, is a 
subgroup of Cl(D). Clearly, if each maximal ideal of D is a t-ideal (e.g., in a Prüfer 
domain), then Cl(D) = Pic(D). It is well known that D is a GCD domain (resp., GGCD 
domain) if and only if D is a PvMD and Cl(D) = 0 (resp., Cl(D) = Pic(D)). For basic 
properties of star operations, see [19, §32].

0.2. Multiplicative sets and multiplicative sets of ideals

Let S be a saturated multiplicative set of an integral domain D, and let N(S) = {0 �=
a ∈ D | (a, s)v = D for all s ∈ S}. We say that S is a splitting set if each nonzero d ∈ D

can be written as d = st for some s ∈ S and t ∈ N(S). Let ∗ = t or d. Then S is called 
a ∗-splitting set if, for each 0 �= d ∈ D, we have dD = (IJ)∗, where I and J are ideals of 
D with I∗ ∩ sD = sI∗ for all s ∈ S and J∗ ∩ S �= ∅. The notions of ∗-splitting sets were 
introduced in [2] in order to study when D + XDS [X] is a PvMD or a GGCD domain.
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Let S be a multiplicative set of ideals of D, sp(S) = {I | I is an ideal of D and 
J ⊆ I for some J ∈ S}, and S⊥ be the set of ideals I of D with (I + A)t = D for all 
A ∈ S. Then DS = {x ∈ K | xI ⊆ D for some I ∈ S} is an overring of D called the 
S-transform of D or a generalized transform of D. Clearly, S⊥ = sp(S⊥) = sp(S)⊥ and 
DS = Dsp(S). For basic properties of generalized transforms of D, see [10]. As in [18], 
we say that S is v-finite if for each I ∈ S, there is a nonzero finitely ideal J of D such 
that Jv ∈ sp(S) and Jv ⊆ It. Following [12], we say that S is a t-splitting set of ideals
if each nonzero d ∈ D can be written as dD = (IJ)t for some I ∈ sp(S) and J ∈ S⊥. 
Clearly, S is t-splitting if and only if sp(S) is t-splitting, if and only if S⊥ is t-splitting 
[12, Proposition 2]. Also, if S is a multiplicative set of D, then S := {aD | a ∈ S} is a 
v-finite multiplicative set of ideals such that DS = DS, and S is a t-splitting set if and 
only if S is a t-splitting set of ideals.

1. t-Splitting set of ideals and t-flatness

Let D be an integral domain, K = qf(D), and S be a multiplicative set of ideals of D. 
We begin this section by recalling a nice characterization of t-splitting sets of ideals.

Proposition 1.1. (See [12, Proposition 5].) Let S be a multiplicative set of ideals of D. 
Then S is t-splitting if and only if S is v-finite and dDS ∩ D is t-invertible for all 
0 �= d ∈ D.

For an ideal I of D, let IS = {x ∈ K | xJ ⊆ I for some J ∈ S}. It is easy to see 
that IS is an ideal of DS and IDS ⊆ IS. Let T be a multiplicative set of D, and let 
F = {ADT | A ∈ S}. Clearly, F is a multiplicative set of ideals of DT . We next show 
that if S is v-finite, then (DT )F = (DS)T .

Proposition 1.2. Let S be a v-finite multiplicative set of ideals of D (e.g., S is t-splitting), 
T be a multiplicative set of D, and F = {ADT | A ∈ S}.

(1) (ADS)t = DS for all A ∈ S.
(2) DS is t-flat over D, i.e., (DS)M = DM∩D for every M ∈ t-Max(DS).
(3) If J is a t-ideal of DS, then J = ((J ∩D)DS)t = ((J ∩D)tDS)t.
(4) (DT )F = (DS)T .
(5) If S is t-splitting, then F is a t-splitting set of ideals of DT .

Proof. (1) Since S is v-finite, there exists a nonzero finitely generated ideal B of D such 
that Bv ⊆ At and Bv ∈ sp(S). Hence, x ∈ (BDS)−1 ⇔ xB ⊆ DS, ⇒ xBB1 ⊆ D

for some B1 ∈ S because B is finitely generated, ⇒ xBt(B1)t ⊆ (xBB1)t ⊆ D, 
⇒ x ∈ DS. Thus, (BDS)−1 = DS or (BDS)t = (BDS)v = DS, and since Bt ⊆ At, 
we have DS = (BDS)t ⊆ (BtDS)t ⊆ (AtDS)t = (ADS)t ⊆ DS (see [21, Lemma 3.4]
for the last equality). Therefore, (ADS)t = DS.
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(2) Let Q be a maximal t-ideal of DS, and put Q ∩ D = P . Then A � P for all 
A ∈ sp(S) by (1), and thus Q = PS and (DS)Q = DP [10, Theorem 1.1].

(3) If x ∈ J , then xA ⊆ J ∩ D for some A ∈ S. Hence, x ∈ xDS = x(ADS)t =
(xADS)t ⊆ ((J ∩D)DS)t. The reverse containment is clear. The second equality is from 
[21, Lemma 3.4].

(4) (⊆) Let 0 �= β ∈ (DT )F. Then βADT ⊆ DT for some A ∈ S, and since S is 
v-finite, there is a finitely generated ideal J of D such that Jv ⊆ At and Jv ∈ sp(S). 
Note that βJ ⊆ β(JDT ) ⊆ β(JvDT )t ⊆ β(AtDT )t = β(ADT )t ⊆ DT . Since J is finitely 
generated, there exists an s ∈ T such that βsJ ⊆ D, and so βsJv ⊆ D. Hence, βs ∈ DS, 
and thus β ∈ (DS)T . (⊇) Let α ∈ DS and s ∈ T . Then αA ⊆ D for some A ∈ S, and 
hence αsADT ⊆ DT and ADT ∈ F. Thus, αs ∈ (DT )F.

(5) Let 0 �= α ∈ DT . Then αDT = aDT for some a ∈ D, and since S is t-splitting, 
aD = (AB)t for some A ∈ sp(S) and B ∈ S⊥. Hence, αDT = (AB)tDT = ((AB)DT )t =
((ADT )(BDT ))t, where the second equality follows because AB is t-invertible. Note 
that ADT ∈ sp(F). Also, if C ∈ F, then C = C1DT for some C1 ∈ S; hence DT ⊇
(C + BDT )t = (C1DT + BDT )t = ((C1 + B)DT )t = ((C1 + B)tDT )t = DT (cf. [21, 
Lemma 3.4] for the third equality). Thus, BDT ∈ F⊥. Therefore, F is a t-splitting set of 
ideals of DT . �
Corollary 1.3. Let S be a t-splitting set of ideals of D, and let Λ = {P ∈ t-Max(D) |
(PDS)t � DS}.

(1) t-Spec(DS) = {PS | P ∈ t-Spec(D) and A � P for all A ∈ S}.
(2) (PDS)t = PS and PS ∈ t-Max(DS) for all P ∈ Λ.
(3) t-Max(DS) = {PS | P ∈ Λ}.

Proof. (1) (⊆) Let Q be a prime t-ideal of DS, and set P = Q ∩D. Then Q = (PDS)t =
(PtDS)t by Proposition 1.2(3), and hence P = Q ∩ D ⊇ PtDS ∩ D ⊇ Pt; so Pt = P . 
If A ⊆ P for some A ∈ S, then Q ⊇ (PDS)t ⊇ (ADS)t = DS by Proposition 1.2(1), 
a contradiction. Thus, A � P for all A ∈ S, and hence Q = (PDS)t = PS [10, 
Theorem 1.1]. (⊇) Let P be a prime t-ideal of D such that A � P for all A ∈ S. Then 
P ∈ S⊥, and hence P = (PDS)t ∩ (PDS⊥)t = (PDS)t ∩ DS⊥ = (PDS)t ∩ D by 
Proposition 1.2(1) and [12, Proposition 8]. So (PDS)t = PS [12, Lemma 11], and thus 
PS is a prime t-ideal of DS.

(2) If P ∈ Λ, then A � P for all A ∈ S by Proposition 1.2(1), and thus, by the proof 
of (⊇) of (1) above, (PDS)t = PS. Also, by (1), PS ∈ t-Max(DS).

(3) Let Q be a maximal t-ideal of DS. Then Q = ((Q ∩D)DS)t = ((Q ∩D)tDS)t by 
Proposition 1.2(3), and hence Q ∩D is a t-ideal of D. Note that A � Q ∩D for all A ∈ S; 
so Q = (Q ∩D)S [10, Theorem 1.1]. Let P be a maximal t-ideal of D with Q ∩D ⊆ P . 
Then Q ∩D ∈ S⊥ implies P ∈ S⊥, and thus Q = (Q ∩ Q)S ⊆ PS and PS is a t-ideal 
by (1). Therefore, Q = PS and P ∈ Λ. The reverse containment is from (2) above. �
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Corollary 1.4. Let S be a t-splitting set of ideals of D. If P is a prime t-ideal of D
containing some A ∈ S, then (DS)D\P = K.

Proof. Let F = {ADP | A ∈ S}. Then F is a t-splitting set of ideals of DP and 
(DS)D\P = (DP )F by Proposition 1.2(4) and (5). If (DP )F �= K, then there is a 
nonzero prime ideal P0 of D such that ((P0DP )((DP )F))t is a maximal t-ideal of (DP )F
by Corollary 1.3. Clearly, P ∈ sp(S), and hence P0 ∈ sp(S) [12, Proposition 10]; so 
P0DP ∈ sp(F), and by Proposition 1.2(1), ((P0DP )((DP )F))t = (DP )F, a contradiction. 
Therefore, (DS)D\P = K. �
Corollary 1.5. If S is a t-splitting set of ideals of a valuation domain D, then DS = D

or K.

Proof. Let M be the maximal ideal of D. If A � M for all A ∈ S, then S = {D}, 
and hence DS = D. Next, if A ⊆ M for some A ∈ S, then DS = (DS)D\M = K by 
Corollary 1.4. �
Corollary 1.6. (Cf. [29, Lemma 1.1].) Let D be a nontrivial valuation domain, V be an 
integral domain with D � V , and X be an indeterminate over V . Then the following 
statements are equivalent.

(1) D + XV [X] is a PvMD.
(2) V = K.
(3) D + XV [X] is a Bezout domain.
(4) D + XV [X] is a GCD domain.

Proof. (1) ⇒ (2) By [6, Proposition 2.6(i)], V is an overring of D, and since D is 
a valuation domain, V = DQ for some prime ideal Q of D. Let S = D \ Q. Then 
D+XV [X] = D+XDS [X], and hence S is a t-splitting set of D [2, Theorem 2.5]. Thus, 
V = K by Corollary 1.5.

(2) ⇒ (3) This follows directly from [13, Corollary 4.13] because a valuation domain 
is a Bezout domain.

(3) ⇒ (4) ⇒ (1) Clear. �
For 0 �= α ∈ K, let (D : α) = {x ∈ D | xα ∈ D}; so (D : α) is an ideal of D. Clearly, 

flat overrings of an integral domain D are t-flat over D. The next result is a t-flatness 
analogue of the fact that an overring T of D is flat over D if and only if there is a 
multiplicative set S of ideals of D such that T = DS and AT = T for all A ∈ S [10, 
Theorem 1.3], if and only if (D : α)T = T for all 0 �= α ∈ T [27, Theorem 1]. Although 
this result is already known, we give a new proof because the proof is used in the proof 
of Theorem 3.5.
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Theorem 1.7. (See [24, Proposition 2.5].) If T is an overring of D, then the following 
statements are equivalent.

(1) T is t-flat over D.
(2) There is a multiplicative set S of ideals of D such that T = DS and (AT )t = T for 

all A ∈ S.
(3) ((D : α)T )t = T for all 0 �= α ∈ T .

Proof. (1) ⇒ (3) Let M be a maximal t-ideal of T . Then TM = DM∩D, and hence 
(D : α)TM = (D : α)DM∩D = (DM∩D : αDM∩D) = DM∩D = TM . Thus, T ⊇ ((D :
α)T )t ⊇

⋂
M∈t-Max(T )(D : α)TM =

⋂
M∈t-Max(T ) TM = T (cf. [21, Proposition 2.8(3)] for 

the second containment), and so ((D : α)T )t = T .
(3) ⇒ (2) Let S be the multiplicative set of ideals of D generated by {(D : α) | 0 �=

α ∈ T}. Clearly, if A ∈ S, then (AT )t = T by (3). Also, T ⊆ DS. For the reverse 
containment, let x ∈ DS. Then xA ⊆ D for some A ∈ S, and thus x ∈ xT = x(AT )t =
(xAT )t ⊆ Tt = T . Therefore, T = DS.

(2) ⇒ (1) Let M be a maximal t-ideal of T , and put P = M ∩ D. Then A � P

for all A ∈ S because (AT )t = T . Hence, by [10, Theorem 1.1], M = PS and TM =
(DS)PS

= DP . Thus, T is t-flat over D. �
The next result is a t-flat overring analogue of the fact that if T is a flat overring of D, 

then (IT )−1 = I−1T for every nonzero finitely generated ideal I of D.

Corollary 1.8. Let T be a t-flat overring of D. If I is a nonzero finitely generated ideal 
of D, then (IT )−1 = (I−1T )t.

Proof. Clearly, (I−1T )t ⊆ (IT )−1. For the reverse containment, let 0 �= α ∈ (IT )−1. 
Then αI ⊆ αIT ⊆ T = DS for some multiplicative set S of ideals of D by Theorem 1.7. 
Since I is finitely generated, αIA ⊆ D for some A ∈ S. Let Q be a maximal t-ideal of T . 
Then TQ = DQ∩D, and since (AT )t = T by Theorem 1.7, ADQ∩D = DQ∩D. Hence, 
αIDQ∩D = αIADQ∩D ⊆ DQ∩D, and so α ∈ (IDQ∩D)−1 = I−1DQ∩D = I−1TQ ⊆
(I−1T )tTQ. Hence, α ∈

⋂
Q∈t-Max(T )(I−1T )tTQ = (I−1T )t. Thus, (IT )−1 ⊆ (I−1T )t. �

An extension ring T of D is said to be t-linked over D if I−1 = D for I a nonzero finitely 
generated ideal of D implies (IT )−1 = T . Clearly, t-flat overrings of D are t-linked over D
by Corollary 1.8. Also, it is known that the integral closure of a Noetherian domain D
is t-linked over D (cf. [17, Lemma 4.5]). The notion of t-linkedness was introduced in 
[16] in order to obtain a PvMD analogue of a characterization of Prüfer domains [14, 
Theorem 1] that D is a Prüfer domain if and only if each overring of D is integrally 
closed.

Another nice characterization of Prüfer domains is as follows: D is a Prüfer domain 
if and only if each overring of D is flat [27], if and only if each overring of D is an 
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invertible generalized transform of D [10, Theorem 1.5]. (An overring T of D is an 
invertible generalized transform of D if T = DS for S a multiplicative set of ideals 
consisting entirely of invertible ideals.) As a t-operation analogue, we will say that S is 
a t-invertible multiplicative set of ideals of D if for each A ∈ S, there is a t-invertible 
ideal I of D such that It ⊆ At and It ∈ sp(S). An overring D1 of D is a t-invertible 
generalized transform of D if D1 = DS for some t-invertible multiplicative set S of 
ideals of D. Clearly, t-splitting sets of ideals are t-invertible [12, Proposition 2] and a 
t-invertible multiplicative set of ideals is v-finite.

Theorem 1.9. The following statements are equivalent.

(1) D is a PvMD.
(2) Each t-linked overring of D is a PvMD.
(3) Each t-linked overring of D is integrally closed.
(4) Each t-linked overring of D is t-flat over D.
(5) Each t-linked overring of D is a t-invertible generalized transform of D.
(6) Each t-linked valuation overring of D is a t-invertible generalized transform of D.
(7) DP is a valuation domain for each maximal t-ideal P of D.

Proof. (1) ⇒ (2) Let R be a t-linked overring of D, K = qf(D), and cD(h) (resp., cR(h)) 
be the fractional ideal of D (resp., R) generated by the coefficients of a polynomial 
h ∈ K[X]. Note that if 0 �= f ∈ D[X] with cD(f)v = D, then cR(f)v = (cD(f)R)v = R

because R is t-linked over D. Hence, there exists a set Δ of prime t-ideals of D such that 
R =

⋂
P∈Δ DP , i.e., R is a subintersection of D [21, Theorem 3.8]. Thus, R is a PvMD 

[25, Proposition 5.1].
(2) ⇒ (3) Clear.
(3) ⇔ (1) [16, Theorem 2.10].
(1) ⇔ (4) [24, Proposition 2.10].
(1) ⇒ (5) Let D1 be a t-linked overring of D. Then D1 =

⋂
DPα

, where {Pα} is a set 
of prime t-ideals of D [21, Theorem 3.8]. Note that if 0 �= x ∈ K and P is a prime ideal 
of D, then x ∈ DP if and only if (D : x)DP = DP . Hence, x ∈ D1 if and only if x ∈ DPα

for all α, if and only if (D : x) � Pα for all α.
Let S be the multiplicative set of ideals of D generated by {(D : x) | 0 �= x ∈ D1}. 

Clearly, D1 ⊆ DS. For the reverse containment, let x ∈ DS. Then xA ⊆ D for some 
A ∈ S, and since (D : x) � Pα for all α, we have A � Pα. Hence x ∈

⋂
xDPα

=⋂
xADPα

⊆
⋂

DPα
= D1. Thus, D1 = DS. Also, since D is a PvMD, (D : x) is 

t-invertible, and thus each ideal in S is t-invertible.
(5) ⇒ (6) Clear.
(6) ⇒ (7) Let P be a maximal t-ideal of D. Then there is a valuation overring V of 

D with maximal ideal M such that M ∩D = P . So DP ⊆ VM = V , and, in particular, 
V is t-linked over D. Hence, V = DS for some t-invertible multiplicative set S of 
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ideals of D. Clearly, S is v-finite, and so V is t-flat over D by Proposition 1.2(2). Thus, 
V = VM = DM∩D = DP .

(7) ⇒ (1) [21, Theorem 3.2]. �
We end this section with a PvMD analogue of the fact that an integrally closed domain 

D is a Prüfer domain if and only if (IT )−1 = I−1T for every overring T of D and a 
nonzero finitely generated ideal I of D [9, Corollary 4.3].

Corollary 1.10. An integrally closed domain D is a PvMD if and only if (IT )−1 = (I−1T )t
for every t-linked overring T of D and a nonzero finitely generated ideal I of D.

Proof. (⇒) This follows directly from Corollary 1.8 because a t-linked overring of a 
PvMD is t-flat by Theorem 1.9. (⇐) By Theorem 1.9, it suffices to show that T is inte-
grally closed. Let K = qf(D), and let 0 �= f, g ∈ K[X]. Then cD(fg)v = (cD(f)cD(g))v
[19, Proposition 34.8] because D is integrally closed. Hence, by assumption, cT (fg)−1 =
(cD(fg)−1T )t = ((cD(f)cD(g))−1T )t = ((cD(f)cD(g))T )−1 = (cT (f)cT (g))−1, and thus 
cT (fg)v = (cT (f)cT (g))v. Thus, T is integrally closed [26, Lemme 1]. �
2. Prüfer v-multiplication domains

Let A ⊆ B be an extension of integral domains, X be an indeterminate over B, and 
R = A + XB[X]. Let

• Λ = {P ∈ t-Max(A) | (PB)t � B},
• Λ′ = {P ∈ t-Max(A) | (PB)t = B}.

Clearly, Λ ∩Λ′ = ∅ and Λ ∪Λ′ = t-Max(A). In this section, we study the PvMD property 
of R when B = AS, where S is a multiplicative set of ideals of A. (We usually use D
instead of A when B = AS.)

Lemma 2.1. Let R = A + XB[X] and I be a nonzero ideal of A.

(1) (IR)−1 = I−1 + X(IB)−1[X].
(2) Let S be a multiplicative set of ideals of A, and suppose that B = AS.

(a) If I is finitely generated or a v-ideal of finite type, then (IR)−1 = I−1 +
X(I−1)S[X].

(b) If I is t-invertible, then (IR)v = Iv + X(Iv)S[X] = Iv + X(IAS)v[X].

Proof. (1) By [7, Lemma 2.1], (IR)−1 = I−1 ∩ (IB)−1 + X(IB)−1[X], and since I−1 ⊆
(IB)−1, we have (IR)−1 = I−1 + X(IB)−1[X].

(2) Note that (IS)−1 = (IAS)−1 = (I−1)S (cf. [21, Lemma 3.4]). Hence, (a) follows 
directly from (1). For (b), note that (IR)−1 = I−1 + X(I−1)S[X] by (1), (IAS)v =
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((I−1)S)−1 = (Iv)S because I is t-invertible, I−1 ⊆ (I−1)S, and Iv ⊆ (Iv)S. Thus, 
(IR)v = (I−1 + X(I−1)S[X])−1 = Iv + X(Iv)S[X] = Iv + X(IAS)v[X]. �
Theorem 2.2. If D is a PvMD and S is a t-splitting set of ideals of D, then R =
D + XDS[X] is a PvMD.

Proof. Let Q be a maximal t-ideal of R. If Q ∩ D = (0), then RD\{0} = K[X], and 
thus RQ = (RD\{0})QD\{0} is a rank-one discrete valuation domain. Next, assume that 
Q ∩ D �= (0), and put P = Q ∩ D. If I is a nonzero finitely generated subideal of P , 
then I is t-invertible, and so by Lemma 2.1, Iv + X(Iv)S[X] = (IR)v ⊆ Qt = Q. 
Hence, Iv ⊆ Q ∩D = P . Thus, Pt = P , and by assumption, DP is a valuation domain. 
Note that RD\P = DP + X(DS)D\P [X], and because S is a t-splitting set of ideals, by 
Proposition 1.2(5) and Corollary 1.5, (DS)D\P = DP or K. Thus, RD\P = DP [X] or 
DP + XK[X].

Case 1. If RD\P = DP + XK[X], then RD\P is a Bezout domain by Corollary 1.6, 
and thus RQ = (RD\P )QD\P is a valuation domain.

Case 2. Assume RD\P = DP [X]; equivalently, (DS)D\P = DP . If X ∈ Q, then 
(XDS[X])2 = X(XDS[X]) ⊆ Q, and since Q is a prime ideal, XDS[X] ⊆ Q. Hence, 
Q = P +XDS[X]. Since (DS)D\P = DP , by Corollary 1.4 J ′ � P for all J ′ ∈ S; hence 
there is a finitely generated ideal I of D such that I ∈ S⊥ and I ⊆ P because S is 
t-splitting. Let u ∈ (I, X)−1. Then uI ⊆ R and uX ∈ R; so u ∈ DS[X]. Hence, there is 
a J ∈ S such that u(0)J ⊆ D. If u(0) = 0, then u ∈ R. If u(0) �= 0, then u(0)I ⊆ D, and 
so u(0)(I +J) = u(0)I +u(0)J ⊆ D ⇒ u(0) ∈ u(0)D = u(0)(I +J)t = (u(0)(I +J))t ⊆
Dt = D ⇒ u ∈ R. Thus, (I, X)−1 = R, and hence R = (I, X)v ⊆ Q � R, 
a contradiction. Thus, X /∈ Q, and since Q is a maximal t-ideal, (Q, X)t = R. Let 
T = {Xn | n ≥ 0}. We claim that QT is a t-ideal. If not, there are some f1, . . . , fm ∈ Q

such that (f1, . . . , fm, X)v = R and ((f1, . . . , fm)−1)T = ((f1, . . . , fm)T )−1 = RT . 
Hence, if z ∈ (f1, . . . , fm)−1, then z ∈ RT ⇒ zXk ∈ R for some k ≥ 1, 
⇒ z ∈ (f1, . . . , fm, Xk)−1 = R (the equality follows because (f1, . . . , fm, X)v = R). 
Thus, (f1, . . . , fm)−1 = R, and so R = (f1, . . . , fm)v ⊆ Q, a contradiction. Hence, QT is 
a t-ideal of RT . Note that DS is a PvMD; so RT = DS[X, X−1] is a PvMD. Thus, 
RQ = (RT )QT

is a valuation domain, and eventually QD\P = PDP [X]. �
In [6, Proposition 2.6(ii)], the authors gave a necessary condition for R = A +XB[X]

to be a PvMD when B is flat over A. We next give in Theorem 2.4 a necessary and 
sufficient condition for R = A + XB[X] to be a PvMD when B is t-flat over A.

Lemma 2.3. Let I be a nonzero finitely generated ideal of A and R = A + XB[X].

(1) If P ∈ Λ′, then (PR)t = P + XB[X] and (PR)t ∈ t-Max(R).
(2) IR is t-invertible if and only if IB is t-invertible and there exists F ⊆ II−1, 

a nonzero finitely generated ideal of A such that F−1 ∩B = A.
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Proof. (1) Let 
∑

be the set of (F, G) such that F ⊆ P (resp., G ⊆ PB) is a nonzero 
finitely generated ideal of A (resp., B) with F ⊆ G. Then, by [8, Lemma 2.8],

(PR)t = (
⋃

(F,G)∈
∑

(F−1 ∩G−1)−1) ∩ (PB)t + X(PB)t[X]

= (
⋃

(F,G)∈
∑

(F−1 ∩G−1)−1) ∩B + XB[X]

= (
⋃

(F,G)∈
∑

(F−1 ∩G−1)−1) + XB[X],

where the last equality follows because (F−1 ∩ G−1)−1 ⊆ A for all (F, G) ∈
∑

. Let 
(F, G) ∈

∑
. Since (PB)t = B, there is a nonzero finitely generated ideal G′ of B such 

that G ⊆ G′ ⊆ PB and (G′)−1 = B. Hence, (F−1 ∩ G−1)−1 ⊆ (F−1 ∩ (G′)−1)−1 =
(F−1 ∩B)−1, and as (F, G′) ∈

∑
, we have

⋃

(F,G)∈
∑

(F−1 ∩G−1)−1 =
⋃

(F,G)∈
∑

(F−1 ∩B)−1.

Note that if (FB)−1 = B, then F−1 ⊆ B because x ∈ F−1 ⇒ xF ⊆ A ⇒ xFB ⊆ B ⇒
x ∈ xB = x(FB)v = (xFB)v ⊆ Bv = B; hence if F ′ is a nonzero finitely generated 
ideal of A with F ′ ⊆ P and (F ′B)v = B, then (F−1 ∩ B)−1 ⊆ ((F + F ′)−1 ∩ B)−1 =
(F + F ′)v ⊆ Pt = P for any nonzero finitely generated ideal F of A with F ⊆ P . So 
P = Pt =

⋃
∑ Fv ⊆

⋃
∑(F−1 ∩B)−1 ⊆ P . Therefore, (PR)t = P + XB[X].

Next, let Q be a maximal t-ideal of R with (PR)t ⊆ Q. Clearly, P ⊆ Q ∩ A. If 
P �= Q ∩ A, then (Q ∩ A)t = A and ((Q ∩ A)B)t = B. Hence, there is a nonzero 
finitely generated ideal I of A such that I ⊆ Q ∩ A, Iv = A, and (IB)v = B. Note 
that (IR)−1 = I−1 + X(IB)−1[X] by Lemma 2.1(1); so (IR)−1 = A + XB[X], and 
thus R = (IR)v ⊆ Qt = Q, a contradiction. Hence, Q ∩ A = P . Let f = a + Xg ∈ Q

where a ∈ A and g ∈ B[X]. Since P + XB[X] ⊆ Q, we have a ∈ Q ∩ A = P , and hence 
f = a + Xg ∈ P + XB[X]. Thus, Q = P + XB[X] = (PR)t.

(2) This is an immediate consequence of [8, Lemma 3.8]. �
Theorem 2.4. Let R = A + XB[X], and assume that B is t-flat over A. Then R is a 
PvMD if and only if A is a PvMD and B = AS for S a t-splitting set of ideals of A.

Proof. (⇐) Theorem 2.2.
(⇒) Claim 1. A is a PvMD, and hence B is also a PvMD by Theorem 1.9 because B

is t-flat (hence t-linked) over A. (For this, let I be a nonzero finitely generated ideal of A. 
Then IB is t-invertible by Lemma 2.3(2); hence B = ((IB)(IB)−1)t = ((IB)(I−1B)t)t =
((IB)(I−1B))t = ((II−1)B)t (see Corollary 1.8 for the second equality). This implies 
that II−1 � P for all P ∈ Λ. Also, (IR)−1 = I−1 + X(IB)−1[X] by Lemma 2.1(1), 
and hence (IR)(IR)−1 = II−1 + XI(IB)−1[X] + XI−1(IB)[X] + X2(IB)(IB)−1[X] ⊆
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II−1 + XB[X] ⊆ R. Thus, (II−1 + XB[X])t = R, and so if P ∈ Λ′, then II−1 � P

because (PR)t = P + XB[X] � R by Lemma 2.3(1). Therefore, II−1 � P for all 
P ∈ t-Max(A), and so (II−1)t = A.)

Let S be the multiplicative set of ideals of A generated by {(A : α) | 0 �= α ∈ B}.
Claim 2. B = AS. (Clearly, B ⊆ AS because α(A : α) ⊆ A for each 0 �= α ∈ B. 

For the reverse containment, we first show that (IB)t = B for all I ∈ S. To do 
this, it suffices to show that ((A : α)B)t = B for all 0 �= α ∈ B. If M is a maxi-
mal t-ideal of B, then BM = AM∩A because B is t-flat over A; so α ∈ B ⊆ AM∩A

implies (A : α)BM = (A : α)AM∩A = (AM∩A : αAM∩A) = AM∩A = BM . Thus, 
((A : α)B)t =

⋂
M∈t-Max(B)(A : α)BM =

⋂
M∈t-Max(B) BM = B [21, Theorem 3.5] be-

cause B is a PvMD by Claim 1. Hence, if 0 �= β ∈ AS, then βI ⊆ A for some I ∈ S, 
and thus β ∈ βB = β(IB)t = (βIB)t ⊆ B.)

Next, we show that S is t-splitting. By Proposition 1.1, we only have to show that S
is v-finite and dAS ∩A is t-invertible for each 0 �= d ∈ A.

Claim 3. S is v-finite. (Note that A is a PvMD by Claim 1; so (A : α) is a t-invertible 
t-ideal for all 0 �= α ∈ B, and thus (A : α) is of finite type. Hence, S is v-finite because 
S is generated by {(A : α) | 0 �= α ∈ B}.)

Claim 4. dAS ∩ A is t-invertible for each 0 �= d ∈ A. (Note that ((d, X)R)−1 =
(d−1A ∩ B) + XB[X]; so if we let I = d−1A ∩ B, then I is a fractional ideal of A, 
((d, X)R)−1 = I + XB[X], and ((d, X)R)v = (I−1 ∩ B) + XB[X] [7, Lemma 2.1]. 
Note that A ⊆ I, and so I−1 ⊆ A and ((d, X)R)v = I−1 + XB[X]. Hence, R =
(((d, X)R)−1((d, X)R)v)t ⊆ (II−1 + XB[X])t ⊆ R, and so (II−1 + XB[X])t = R. By 
Lemma 2.3(1), II−1 � P for all P ∈ Λ′. Next, if P ∈ Λ, then AP is a valuation domain 
and RA\P = AP + XBA\P [X] is a PvMD, and since (PB)t � B implies BA\P �= K, 
we have RA\P = AP + XAP [X] = AP [X] by Corollary 1.6. Hence, AP [X] = RA\P =
((d, X)RA\P )v = ((d, X)R)vRA\P = (I−1 + XB[X])RA\P (the third equality follows 
because (d, X)R is t-invertible), and thus I−1AP = AP . Also, IAP = AP because 
A ⊆ I ⊆ B and BA\P = AP . Thus, (II−1)AP = (IAP )(I−1AP ) = AP which means 
II−1 � P . Therefore, (II−1)t = A. Thus, I = d−1A ∩ B = d−1A ∩ AS, and so dI =
dAS ∩A is t-invertible.) �

It is known that if S is a multiplicative set of ideals of D, then DS is t-linked over D
[16, Proposition 2.2], and since a t-linked overring of a PvMD is t-flat, by Theorems 2.2
and 2.4, we have

Corollary 2.5. Let S be a multiplicative set of ideals of a PvMD D, and let R = D +
XDS[X]. Then R is a PvMD if and only if S is a t-splitting set of ideals.

Let A ⊆ B be an extension of integral domains. It is known that Iv ⊆ (IB)v for any 
nonzero finitely generated ideal I of A if and only if It ⊆ (IB)t for any nonzero ideal I
of A [11, Proposition 1.1].
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Lemma 2.6. Let S be a multiplicative set of ideals of D, R = D + XDS[X], and 
K = qf(D).

(1) Iv ⊆ (IR)v for any nonzero finitely generated ideal I of D.
(2) (IR)v ∩K = Iv for any nonzero finitely generated fractional ideal I of D.
(3) (IR)t ∩K = It for any nonzero fractional ideal I of D.

Proof. (1) By Lemma 2.1(1), (IR)−1 = I−1 + X(IDS)−1[X], and hence Iv(IR)−1 =
IvI

−1 + XIv(IDS)−1[X]. Note that (IvDS)t = (IDS)t [21, Lemma 3.4(3)] since I is 
finitely generated; so

Iv(IDS)−1 = (IvDS)(IDS)−1 ⊆ ((IvDS)(IDS)−1)t
= ((IvDS)t(IDS)−1)t = ((IDS)t(IDS)−1)t
= ((IDS)(IDS)−1)t ⊆ DS.

Hence, Iv(IR)−1 ⊆ D + XDS[X] = R, and thus Iv ⊆ (IR)v.
(2) and (3) These follow directly from (1) and [11, Lemma 1.3] because R ∩K = D. �
An integral domain D is said to be of finite t-character if each nonzero nonunit of D

is contained in at most a finite number of maximal t-ideals. As in [20], we say that D
is a ring of Krull type if D is a locally finite intersection of essential valuation overrings 
of D; equivalently, D is a PvMD of finite t-character. A ring of Krull type is called 
an independent ring of Krull type if no two distinct maximal t-ideals contain a nonzero 
prime ideal.

In [3, Section 2], the authors studied when D(S) = D + XDS [X] is a ring (resp., 
an independent ring) of Krull type. We next give in Corollary 2.8 a ring of Krull type 
property of R = D +XDS[X]. For this, we first study the set of maximal t-ideals of R.

Lemma 2.7. Let S be a multiplicative set of ideals of D and R = D +XDS[X]. Assume 
that D and R are both PvMDs. Then t-Max(R) = {Q ∈ t-Max(R) | Q ∩D = (0)} ∪{P +
XDS[X] | P ∈ Λ′} ∪ {P + X(PDS)t[X] | P ∈ Λ}.

Proof. (⊇) Let P be a maximal t-ideal of D. If (PDS)t = DS, then (PR)t = P +
XDS[X] is a maximal t-ideal of R by Lemma 2.3. Next, assume (PDS)t � DS. Note 
that each nonzero finitely generated subideal of PR is contained in IR for some finitely 
generated ideal I ⊆ P of D. So if we let f(P ) be the set of nonzero finitely generated 
subideals of P , then

(PR)t =
⋃

{(IR)v | I ∈ f(P )}

=
⋃

{Iv + X(IDS)v[X] | I ∈ f(P )}

= P + X(PDS)t[X] � R,
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where the second equality follows from Lemma 2.1(2). Hence, there is a maximal t-ideal Q
of R with (PR)t ⊆ Q. By Lemma 2.6, Q ∩D = P because P ⊆ Q and P ∈ t-Max(D). Note 
that (PDS)t � DS implies I � P for all I ∈ S by Proposition 1.2; so DP = (DS)PS

[10, Theorem 1.1(4)], and since DP is a valuation domain, (DS)D\P = DP and RD\P =
DP +X(DS)D\P [X] = DP [X]. Since R is a PvMD, QD\P is a maximal t-ideal of RD\P . 
Clearly, QD\P ∩DP = PDP , and hence QD\P = PDP [X] [21, Lemma 4.1] and X /∈ Q. 
Let T = {Xk | k ≥ 0}. Then QT is a maximal t-ideal of RT = DS[X, X−1], because 
R is a PvMD and X /∈ Q. Note that S is t-splitting by Corollary 2.5 and P is a 
maximal t-ideal of D; hence (PDS)t is a maximal t-ideal of DS by Corollary 1.3, and 
so (PDS)t[X, X−1] is a maximal t-ideal of RT (cf. [21, Proposition 2.2, Lemmas 3.17 
and 4.1]). Also, since X(PDS)t[X] ⊆ Q, we have QT = (PDS)t[X, X−1]. Thus, Q =
QT ∩R = (PDS)t[X, X−1] ∩R = P + X(PDS)t[X] = (PR)t.

(⊆) Let Q be a maximal t-ideal of R with Q ∩ D �= (0). Put Q ∩ D = P . Since 
(PR)t ⊆ Q, we have Pt � D by Lemma 2.6, and D being a PvMD implies Pt = P . Also, 
since Q is homogeneous [5, Theorem 1.2], Q ⊆ P +XDS[X]. Let P0 be a maximal t-ideal 
of D with P ⊆ P0. If (P0DS)t = DS, then (P0R)t = P0 + XDS[X] by Lemma 2.3(1), 
and since Q is a maximal t-ideal, Q = P0 + XDS[X] and P = P0. Next, assume that 
(P0DS)t � DS. Then RD\P0 = DP0 [X] (see the proof of (⊇) above) and QD\P0 is a 
maximal t-ideal of RD\P0 . Note that P0DP0 [X] is a unique maximal t-ideal of RD\P0

that does not contract to zero; hence QD\P0 = P0DP0 [X]. This means that P0 = P and 
Q = (PR)t = P + X(PDS)t[X]. �
Corollary 2.8. Let S be a multiplicative set of ideals of D and R = D + XDS[X]. If D
is a PvMD, then

(1) R is a ring of Krull type if and only if D is a ring of Krull type, S is a t-splitting 
set of ideals, and |Λ′| < ∞.

(2) R is an independent ring of Krull type if and only if D is an independent ring of 
Krull type, S is a t-splitting set of ideals, and |Λ′| ≤ 1.

Proof. (1) Let K = qf(D). Then RD\{0} = K[X] is a principal ideal domain, and hence 
the finite t-characterness of R is completely determined by {Q ∈ t-Max(R) | Q ∩D �= (0)}. 
Note that XDS[X] is a prime ideal of R. Thus, by Lemma 2.7, R is of finite t-character 
if and only if D is of finite t-character and |Λ′| < ∞. Hence, the result follows directly 
from Corollary 2.5.

(2) This can be proved by an argument similar to the proof of (1) above. �
Let X1(D) be the set of height-one prime ideals of an integral domain D. It 

is well known that if D is a Krull domain, then X1(D) = t-Max(D), and hence 
D =

⋂
P∈X1(D) DP . Also, D is a Krull domain if and only if, for each 0 �= d ∈ D, 

dD = (P e1
1 · · ·P ek

k )t, where each Pi is a height-one prime ideal of D and ei ≥ 1 is an 
integer [22, Theorem 3.9].
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Lemma 2.9. If S is a multiplicative set of ideals of a Krull domain D, then S is a 
t-splitting set of ideals.

Proof. Let X be the set of height-one prime ideals of D that are contained in sp(S). So if 
0 �= d ∈ D, then dD = ((P e1

1 · · ·P ek
k )t(Qk1

1 · · ·Qkn
n )t)t for some Pi ∈ X, Qj ∈ X1(D) \X, 

and positive integers ei and kj , because D is a Krull domain. Clearly, (P e1
1 · · ·P ek

k )t ∈
sp(S) and (Qk1

1 · · ·Qkn
n )t ∈ S⊥. Thus, S is a t-splitting set of ideals. �

Let S be a multiplicative set of ideals of a Krull domain D. It is clear that if we let 
S′ be the multiplicative set of ideals generated by X1(D) ∩ sp(S), then sp(S) = sp(S′), 
and hence DS = DS′ , Λ′ = X1(D) ∩ sp(S), and Λ = X1(D) \ sp(S).

Corollary 2.10. Let D be a Krull domain.

(1) R = D + XDS[X] is a PvMD.
(2) R is a ring of Krull type if and only if |Λ′| < ∞.
(3) R is an independent ring of Krull type if and only if |Λ′| ≤ 1.

Proof. Since D is a Krull domain, D is an independent ring of Krull type. Thus, the 
result follows directly from Theorem 2.2, Lemma 2.9, and Corollary 2.8. �
3. Generalized GCD domains

Let D be an integral domain, K = qf(D), and X be an indeterminate over D. In [2, 
Theorem 3.3], it was shown that if S is a multiplicative set of D, then D(S) = D+XDS [X]
is a GGCD domain if and only if D is a GGCD domain and S is a d-splitting set. 
The purpose of this section is to generalize the result of [2, Theorem 3.3] to the ring 
R = A + XB[X] where A ⊆ B is an extension of integral domains. For this, let S be a 
multiplicative set of ideals of D. We will say that S is a d-splitting set of ideals if, for 
each 0 �= d ∈ D, we have dD = IJ for some I ∈ sp(S) and J ∈ S⊥. Clearly, d-splitting 
sets of ideals are t-splitting. Also, if we set S = {sD | s ∈ S}, then S is a d-splitting set 
if and only if S is a d-splitting set of ideals.

We begin this section with a nice characterization of d-splitting sets of ideals (cf. 
Proposition 1.1 for t-splitting sets of ideals).

Proposition 3.1. Let S be a multiplicative set of ideals of D. Then S is d-splitting if and 
only if S is v-finite and dDS ∩D is invertible for all 0 �= d ∈ D.

Proof. (⇒) Let 0 �= d ∈ D. Then dD = IJ for some I ∈ sp(S) and J ∈ S⊥. We note that 
dDS∩D = J . (For if x ∈ dDS∩D, then d−1xI ′ ⊆ D for some I ′ ∈ S. So xI ′ ⊆ dD ⊆ J , 
and since (I ′ + J)t = D, we have x ∈ xD = x(I ′ + J)t = (xI ′ + xJ)t ⊆ Jt = J . For 
the reverse containment, note that dDS = (IJ)DS = (IDS)(JDS) = JDS because 
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I ∈ sp(S) is invertible. Thus, J ⊆ dDS ∩ D.) Thus, dDS ∩ D is invertible. Next, for 
I1 ∈ S, choose 0 �= d ∈ I1, and let the notation be as in the previous paragraph. Then I
is invertible, and hence I = It = (I(J + I1)t)t = (I(J + I1))t ⊆ (I1)t. Thus, S is v-finite.

(⇐) Let 0 �= d ∈ D. Then J := dDS ∩D is invertible and dD ⊆ J ; hence dD = IJ , 
where I = dJ−1, so I is invertible.

Claim 1. I ∈ sp(S). (Note that dDS = (IJ)DS = (IDS)(JDS) = (IDS)(dDS). 
Hence IDS = DS, and thus I ∈ sp(S).)

Claim 2. J ∈ S⊥, i.e., (I ′ +J)t = D for all I ′ ∈ S. (Since S is v-finite and (I ′ +J)t =
((I ′)t + J)t, we may assume that I ′ is a v-ideal of finite type. If x ∈ J−1 ∩ (I ′)−1, 
then x ∈ DS. Hence, xJ ⊆ JDS ∩ D = dDS ∩ D = J , and since J is invertible, 
x ∈ D. Thus, (I ′ + J)−1 = J−1 ∩ (I ′)−1 = D, and since I ′ is of finite type, we have 
(I ′ + J)t = (I ′ + J)v = D.) �

It is known that R = A + XB[X] is flat over A if and only if B is flat over A [7, 
Lemma 3.6]. While we don’t know if the t-flatness analogue holds, we next give the 
t-linkedness analogue.

Lemma 3.2. Let A ⊆ B be an extension of integral domains and R = A +XB[X]. Then 
the following statements are equivalent.

(1) B is t-linked over A.
(2) B =

⋂
P∈t-Max(A) BA\P .

(3) R is t-linked over A.
(4) R =

⋂
P∈t-Max(A) RA\P .

Proof. (1) ⇒ (2) For 0 �= x ∈
⋂

P∈t-Max(A) BA\P , let I = (B : x) ∩ A. Then I � P for 
all P ∈ t-Max(A), and hence It = A. Since B is t-linked over A by (1), B = (IB)t ⊆
((B : x)B)t = (B : x) ⊆ B (see [4, Proposition 2.1] for the first equality), and so 
(B : x) = B. Thus, x ∈ B. The reverse containment is clear.

(2) ⇒ (1) Let P ∈ t-Max(A). If I is a nonzero finitely generated ideal of A such 
that I−1 = A, then I � P , and hence IBA\P = BA\P ; so (IBA\P )−1 = BA\P . Thus, 
BA\P is t-linked over A. Since B =

⋂
P∈t-Max(A) BA\P by (2), B is t-linked over A [4, 

Proposition 2.3(2)].
(1) ⇔ (3) Let I be a nonzero finitely generated ideal of A such that I−1 = A. 

Then (IR)−1 = A + X(IB)−1[X] by Lemma 2.1, and thus (IR)−1 = R if and only if 
(IB)−1 = B.

(3) ⇔ (4) This follows directly from the equivalence of (1) and (2) above. �
Lemma 3.3. Let A ⊆ B be an extension of integral domains and R = A + XB[X]. If R
is a GGCD domain, then

(1) A is a GGCD domain,
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(2) B is t-linked over A, and
(3) B = AS for some multiplicative set S of ideals of A.

Proof. If R is a GGCD domain, then R is a PvMD, and hence B is an overring of A [6, 
Proposition 2.1(1)].

(1) and (2) Let I be a nonzero finitely generated ideal of A. Then (IR)v is invertible 
and (IR)v = (I−1 + X(IB)−1[X])−1 = Iv ∩ (IB)v + X(IB)v[X] by Lemma 2.1 and [7, 
Lemma 2.1]. Hence, R = (IR)v(IR)−1 = (Iv∩(IB)v +X(IB)v[X])(I−1 +X(IB)−1[X]), 
and so A = (Iv ∩ (IB)v)I−1 ⊆ IvI

−1 ⊆ A. Thus, IvI−1 = A. Therefore, A is a GGCD 
domain. Moreover, if I−1 = A, then A = (Iv ∩ (IB)v)I−1 = A ∩ (IB)v ⊆ (IB)v ⊆ B, 
and so (IB)v = B. Thus, B is t-linked over A.

(3) Let P be a maximal t-ideal of A. Then RA\P = AP + XBA\P [X] is a PvMD 
and AP is a valuation domain. Hence, BA\P = AP or qf(A) by Corollary 1.6. Let 
T = {P ∈ t-Max(A) | BA\P = AP }, A1 =

⋂
P∈T AP , and S = {I | I � P for all P ∈ T}. 

Then, by Lemma 3.2, B = A1 since B is t-linked over A by (2). Also, note that A1 = AS. 
(For 0 �= α ∈ A1, let I = (A : α). Then αI ⊆ A and I � P for all P ∈ T , and hence 
α ∈ AS. Thus, A1 ⊆ AS. For the reverse containment, let 0 �= β ∈ AS. Then βJ ⊆ A

for some J ∈ S, and hence β ∈
⋂

P∈T βAP =
⋂

P∈T βJAP ⊆
⋂

P∈T AP = A1. Thus, 
AS ⊆ A1.) Thus, B = AS. �

Let S be a t-splitting saturated multiplicative set of D. It is known that if Cl(D) = 0, 
then S is a splitting set. We next give a multiplicative set of ideals analogue.

Lemma 3.4. Let S be a t-splitting set of ideals of D and S = {a ∈ D | aD = Iv for some 
I ∈ sp(S)}. If Cl(D) = 0, then S is a splitting set of D and DS = DS.

Proof. Let 0 �= d ∈ D. Then dD = (IJ)t for some I ∈ sp(S) and J ∈ S⊥. Clearly, I and 
J are t-invertible, and hence It = aD and Jt = bD for some a, b ∈ D because Cl(D) = 0. 
Hence, dD = (ItJt)t = abD, and so d = uab = (ua)b for some unit u of D. Clearly, 
ua ∈ S and b ∈ N(S). Thus, S is a splitting set of D.

Next, obviously, DS ⊆ DS. For the reverse containment, let 0 �= α ∈ DS. Then 
αI ′ ⊆ D for some I ′ ∈ S. Since S is t-splitting, there is a t-invertible ideal J ′ of D such 
that (J ′)v ∈ sp(S) and (J ′)v ⊆ (I ′)t [12, Proposition 2], and since Cl(D) = 0, we have 
(J ′)v = sD for some s ∈ D. Clearly, s ∈ S and αs ∈ αsD = α(J ′)v ⊆ α(I ′)t ⊆ D. Thus, 
α ∈ DS . �

We next give the main result of this section.

Theorem 3.5. Let A ⊆ B be an extension of integral domains and R = A +XB[X]. Then 
the following statements are equivalent.

(1) R is a GGCD domain.
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(2) A is a GGCD domain and B = AS for S a d-splitting set of ideals of A.
(3) A is a GGCD domain and B = AS for S a t-splitting set of ideals of A.

Proof. (1) ⇒ (2) Note that a GGCD domain is a PvMD; so B is an overring of A [6, 
Proposition 2.6(1)]. Hence, by Lemma 3.3, A is a GGCD domain and B = AS for some 
multiplicative set S of ideals of A. Next, to show that S is d-splitting, it suffices to show 
that dAS ∩A is invertible for each 0 �= d ∈ A and S is v-finite by Proposition 3.1.

Let 0 �= d ∈ A. Then ((d, X)R)−1 = d−1A ∩AS + XAS[X], and hence ((d, X)R)v =
(d−1A ∩ AS)−1 ∩ AS + XAS[X] = (d−1A ∩ AS)−1 + XAS[X] [7, Lemma 2.1]. Put 
I = d−1A ∩AS. Since R is a GGCD domain,

R = ((d,X)R)v((d,X)R)−1

= (I−1 + XAS[X])(I + XAS[X])

= II−1 + XI−1AS[X] + XIAS[X] + X2AS[X].

Hence, II−1 = A, and since dAS ∩A = d−1I, dAS ∩A is invertible.
Next, note that AS is flat (hence t-flat) over A [1, Theorem 5] because A is a GGCD 

domain. So if we let F be the multiplicative set of ideals generated by {(A : α) | 0 �= α ∈
AS}, then AF = AS by the proof of Theorem 1.7. Hence, sp(F) = sp(S). Since A is a 
GGCD domain, (A : α) is invertible for all 0 �= α ∈ AS, and thus for each I ∈ S, It
contains an invertible ideal in sp(S).

(2) ⇒ (3) Clear.
(3) ⇒ (1) Since A is a GGCD domain, A is a PvMD, and hence R is a PvMD by 

Theorem 2.2. Recall that R is a GGCD domain if and only if R is both a PvMD and 
a locally GCD domain, i.e., RM is a GCD domain for all maximal ideals M of R [28, 
Corollary 3.4]; hence it suffices to show that R is a locally GCD domain.

Let M be a maximal ideal of R, and set M∩A = P . If P = (0), then RM = K[X]MK[X]
is a valuation domain, and hence a GCD domain. Next, assume that P �= (0). Then 
RA\P = AP + X(AS)A\P [X]. Note that if we let F = {IAP | I ∈ S}, then (AS)A\P =
(AP )F and F is a t-splitting set of ideals of AP by Proposition 1.2(4) and (5). Let 
T = {α ∈ AP | αAP = (IAP )t for some IAP ∈ sp(F)}. Then (AP )F = (AP )T and T is 
a splitting set of AP by Lemma 3.4 because AP is a GCD domain and F is t-splitting. 
Thus, RA\P is a GCD domain [29, Corollary 1.5]. Hence, RM = (RA\P )MA\P is a GCD 
domain. �

Clearly, a multiplicative set S of D is d-splitting if and only if {sD | s ∈ S} is a 
d-splitting set of ideals. Thus, by Theorem 3.5, we have

Corollary 3.6. (See [2, Theorem 3.3].) Let S be a multiplicative set of D. Then D(S) =
D + XDS [X] is a GGCD domain if and only if D is a GGCD domain and S is a 
d-splitting set.
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Corollary 3.7. Let A ⊆ B be an extension of integral domains and R = A + XB[X]. 
If A is a Prüfer domain, then the following statements are equivalent.

(1) R is a PvMD.
(2) R is a GGCD domain.
(3) B = AS for S a d-splitting set of ideals of A.

Proof. Clearly, Prüfer domain ⇒ GGCD domain ⇒ PvMD. Thus, the result follows 
directly from Theorems 2.4 and 3.5 because each overring of a Prüfer domain is flat 
(hence t-flat). �

A π-domain is a Krull domain in which each height-one prime ideal is invertible. 
Hence, D is a π-domain if and only if, for each 0 �= d ∈ D, dD = P e1

1 · · ·P ek
k for some 

height-one prime ideals Pi of D and integers ei ≥ 1. It is well known that a Krull domain 
D is a π-domain if and only if D is a GGCD domain; a Dedekind domain is a π-domain; 
and the polynomial ring over a π-domain is a π-domain. The next result is a d-splitting 
set of ideals analogue of Lemma 2.9.

Lemma 3.8. If S is a multiplicative set of ideals of a π-domain D, then S is a d-splitting 
set of ideals.

Proof. Let X = X1(D) ∩ sp(S). So if 0 �= d ∈ D, then dD = (P e1
1 · · ·P ek

k )(Qk1
1 · · ·Qkn

n )
for some Pi ∈ X, Qj ∈ X1(D) \ X, and positive integers ei and kj , because D is a 
π-domain. Clearly, P e1

1 · · ·P ek
k ∈ sp(S) and Qk1

1 · · ·Qkn
n ∈ S⊥. Thus, S is a d-splitting 

set of ideals. �
Corollary 3.9. Let A ⊆ B be an extension of integral domains and R = A +XB[X]. If A
is a π-domain, then R is a GGCD domain if and only if B = AS for S a multiplicative 
set of ideals of D.

Proof. This is an immediate consequence of Theorem 3.5 and Lemma 3.8. �
Let S be a splitting set of D, and let S = {sD | s ∈ S}. Note that if 0 �= d ∈ D, then 

d = st for some s ∈ S and t ∈ N(S); hence dD = stD = (sD)(tD). Clearly, sD ∈ S and 
tD ∈ S⊥. Thus, S is a d-splitting set of ideals of D. Conversely, if S is a d-splitting set 
of ideals of D with Cl(D) = 0, then S := {a ∈ D | aD = Iv for some I ∈ sp(S)} is a 
splitting set of D by Lemma 3.4.

Corollary 3.10. (See [6, Theorem 2.10].) Let A ⊆ B be an extension of integral domains 
and R = A +XB[X]. Then R is a GCD domain if and only if A is a GCD domain and 
B = AS for S a splitting set of A.
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Proof. (⇐) [29, Corollary 1.5]. (⇒) Clearly, A is a GCD domain. Also, since a GCD 
domain is a GGCD domain, by Lemma 3.3, B = AS for S a d-splitting set of ideals 
of A. Hence, if we let S = {a ∈ D | aD = Iv for some I ∈ sp(S)}, then, by Lemma 3.4, 
S is a splitting set of D with DS = DS because Cl(A) = 0. �
Remark 3.11. After this article was submitted for publication, the author was told that 
Kim studied when the ring A +XB[X] is a GGCD domain from a different perspective. 
Let S be a multiplicative set of ideals of D. In [23], Kim called S a d-splitting set of 
ideals if for each 0 �= d ∈ D, there are integral ideals I, I ′ of D such that dD = II ′, 
I ∩ J = IJ for all J ∈ S and I ′ ⊇ J ′ for some J ′ ∈ S. He also noted that if DS is 
an invertible generalized transform of D, then S is d-splitting if and only if dDS ∩ D

is invertible for all 0 �= d ∈ D [23, Lemma 3.12], and he proved that if A ⊆ B is an 
extension of integral domains, then R = A +XB[X] is a GGCD domain if and only if A
is a GGCD domain and B = AS for S a d-splitting set of ideals of A [23, Theorem 3.13].

Let DS be an invertible generalized transform of D. Clearly, S is v-finite, and hence 
by Proposition 3.1 and [23, Lemma 3.12], the notion of d-splitting sets of this paper is 
the same as that of Kim’s d-splitting sets. (However, we don’t know if the two notions 
of d-splitting sets are the same in general.) Note that an overring of a GGCD-domain 
is a generalized transform if and only if it is an invertible generalized transform [1, 
Theorem 5]. Hence, the equivalence of (1) and (2) in Theorem 3.5 is the same as Kim’s 
result [23, Theorem 3.13].
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