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In [9] Howlett and Nguyen introduced the concept of a W-graph ideal in (W, <;,) with
respect to a subset J of S, where <y, is the left weak Bruhat order on W. They showed
that a W-graph can be constructed from a given W-graph ideal, and a Kazhdan-Lusztig
like algorithm was obtained.

In [14] we generalized the definition of W-graph ideal in the Coxeter groups with a
weight function L, we showed that a W-graph can also be constructed from a given
W-graph ideal.

In this paper we continue the work in [14], it grows out of our attempt to understand
the “full W-graph” for a given W-graph ideal. We show that, if J is an arbitrary subset
of S then there exist a pair of dual modules M (E;, L) and M(EJ, L) (denoted by M and
M ) associated with a given W-graph ideal E;, they are connected by a duality map, this
in turn leads to the construction of the dual W-graph bases. Generally D, the set of
distinguished left coset representatives of W; in W, is a W-graph ideal with respect to J
and also with respect to (), and Couillens, Deodhar and Douglass’s parabolic analogues
of the Kazhdan-Lusztig construction are recovered (see Couillens [2], Deodhar [3,4] and
Douglass [5]). In particular, W itself is a W-graph ideal with respect to @), and the “full”
W-graph obtained is the Kazhdan—Lusztig W-graph for the regular representation of
(W) (as defined in [6]).

Inspired by Lusztig’s work [11, Ch. 10], we can construct the W-graph bases for each
of the ##-modules Hom (M, A) and HomA(]Tj, A) (denoted by M and M respectively),
where A is the ring of “generalized Laurent polynomials in ¢”.

The paper is organized as follows. In Section 1 we present some basic concepts and
facts concerning the weighted Coxeter groups, Hecke algebras and W-graphs. In Sec-
tion 2, we recall the concept of W-graph ideal. In Section 3, we show a duality theorem
for the W-graph ideals.

In Section 4 we study in general the W-graphs for the modules M and M.

In Section 5, we prove, in the case W is finite, an inversion formula that relates the
two versions of the relative Kazhdan—Lusztig polynomials. In the last section we give
some examples and remarks.

1. Preliminaries

Let W be a Coxeter group, with generating set S. In this section, we briefly recall
some basic concepts concerning the general multi-parameter framework of Lusztig [10,
11], which introduces a weight function into Coxeter groups and their associated Hecke
algebras on which all the subsequent constructions depend.

We denote by £: W — N =1{0,1,2,---} the length function on W with respect to S.
Let < denote the Bruhat order on W.

In this section we follow the conventions in [1,8]. Let T be the totally ordered abelian
group which will be denoted additively, the order on I' will be denoted by <. Let {L(s) |
s € S} C T be a collection of elements such that L(s) = L(t) whenever s,¢ € S are
conjugate in W. This gives rise to a weight function



Y. Yin / Journal of Algebra 453 (2016) 377-399 379

L:W —T

in the sense of Lusztig [10,11]; we have L(w) = L(s1) + L(s2) + --- + L(sr) where
w= 8189 Sk(s; € 5) is a reduced expression for w € W. We assume throughout that

L(s)=20

forall s € S. (f T = Z and L(s) = 1 for all s € S, then this is the original “equal
parameter” setting of [6].)

Let R C C be a subring and A = R[] be a free R-module with basis {¢” | v € T'}
where ¢ is an indeterminant. (The basic constructions in this section are independent of
the choice of R and so we could just take R = Z.) The flexibility of R will be useful once
we consider the representations of W. There is a well-defined ring structure on A such
that ¢7¢"" = ¢?* for all 7,7 € T'. We denote 1 = ¢° € A. If a € A we denote by a., the
coefficient of a on ¢” so that a = nyer arq". If a # 0 we define the degree of a as the
element of I' equal to

deg(a) = maz{y | a, # 0}

by convention (see [1]), we set deg0 = —o0. So deg : A — I' U {—o0} satisfies deg(ab) =
deg(a) + deg(b).

Let s = (W, S,L) be the generic Hecke algebra corresponding to (W, S) with
parameters {¢“(®) | s € S}. Thus . has an A-basis {T}, | w € W} and the multiplication
is given by the rules

Ts Tw =

{Tsw if ((sw) > £(w) O

Tow + (¢%) — g~ EONT,  if £(sw) < £(w).

Let I'soy = {y € T'| v = 70} and denote by A>,, (or R[I'>,,]) the set of all R-linear
combinations of terms ¢” where v > 79. The notations Ays~,, Ay<qe, Ay<y, have a
similar meaning.

We denote by A — A, a — @ the automorphism of A induced by the automorphism
of T sending v to —v for any v € T'. This extends to a ring involution .# — ¢, h + h,
where

Z aw Ty = Z @Tuj,ll, ay € A for allw e W,
weWw weWw

and

To=T; ' =T, + (¢ — ¢*®) for all s € S.

S
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1.1. Definition of W -graph

Definition 1.1. (For equal parameter case see [6]; for general L see [7].) A W-graph for
S consists of the following data:

(a) a base set A together with a map I which assigns to each z € A a subset I(x) C 5
(b) for each s € S with L(s) > 0, a collection of elements

{1z, | 7,y € A such that s € I(z),s ¢ I(y)};

(c) for each s € S with L(s) = 0 a bijection A — A,z — s.x. These data are subject to
the following requirements. First we require that, for any z,y € A and s € S where
sy, is defined, we have

qL(S)/’L;,y € R[F>0] and l’(’;,y = :U/i:,y'

Furthermore, let [A]4 be a free A-module with basis {b, | y € A}. For s € S, define an
A-linear map

bs.y if L(s) =0;
ps(by) = § =g~ +Wb, if L(s) > 0,5 € I(y); (2)
*Wb, + D vensel(x) Haybe 1 L(s) > 0,5 ¢ I(y).

Then we require that the assignment T — ps defines a representation of 7.
2. W-graph ideals

For each J C S, let J = S\J (the complement of .J) and define W = (.J), the corre-
sponding parabolic subgroup of W. Let J#; be the Hecke algebra associated with W;.
As is well known, 7 can be identified with a subalgebra of 7.

Let Dy = {w e W | £(ws) > {(w) for all s € J}, the set of minimal coset represen-
tatives of W/W ;. The following lemma is well known.

Lemma 2.1 (Modified). (See [3, Lemma 2.1(iii)].) Let J C S and s € S, and define
Dj, = {we Dy | l(sw) < f(w) },
DIS ={weDy|{l(sw)>Ll(w)and sw € Dy},
Dg,s ={we Dy |{l(sw)>Ll(w) and sw ¢ Dy},

so that D is the disjoint union D U DIS U Dg)s. Then SD}:S =Dj,, and if we Dg)s
then sw = wt for somet € J.
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In this section we shall recall [9, Section 5], with some modification.

Let <1, denote the left weak (Bruhat) order on W. We say x <, y if and only if y = zx
for some z € W such that £(y) = £(z) + £(x). We also say that x is a suffiz of y. The
following property of the Bruhat order is useful (see [11, Corollary 2.5], for example).

Lemma 2.2. Let y,z € W and let s € S.

(i) Assume that sz < z, then y < z < sy < z.
(ii) Assume that y < sy, then y < z < y < sz.

Definition 2.3. If X C W, let Pos(X) = {s € S| {(zs) > {(z)for allz € X}.

Thus Pos(X) is the largest subset J of S such that X C D;. Let E be an ideal in the
poset (W, <p); that is, E is a subset of W such that every « € W that is a suffix of an
element of E is itself in E. This condition implies that Pos(E) = S\E ={s € S| s ¢ E}.
Let J be a subset of Pos(E), so that E C D ;. In contexts we shall denote by E; for the
set E, with reference to J, for each s € S we classify the elements in E; as follows:

E;,={wekE;|[{(sw w) and sw € Ej },

()
Ej, ={weE;|{(sw)>{(w) and sw € E; },
{(w) and sw ¢ Dy},
()

Eg:;:{wEEJMsw

(
(
(
(

EOJ:jz{wEEJ|€sw w) and sw € D;\E; }.

Since E; C Dy it is clear that, for each w € E;, each s € S appears in exactly one
of the following four sets SA(w) = {s € S | w € EIS},SD(w) ={seS|lwekE;}
WAy ={seS|we Egj} and WDy ={se€ S|we¢ Eg:} We call the elements
of these sets the strong ascents, strong descents, weak ascents and weak descents of w
relative to E; and J. In contexts where the ideal E; and the set J is fixed we frequently
omit reference to J, writing WA(w) and W D(w) rather than WA ;(w) and WD j(w).
We also define the sets of descents and ascents of w by D(w) = SD(w) U W D(w) and
A(w) = SA(w) UWA(w).

Remark. It follows from Lemma 2.1 that

WAj(w)={s€S|sw¢gE;andw *sw¢J},
WD(w)={s€S|sw¢gE;and w 'swecJ}

Since sw ¢ E; implies that sw > w (given that E; is an ideal in (W, < L)). Note also
that J = WD,(1).

Definition 2.4 (Modified). (See |9, Definition 5.1].) Let (W, S) be a Coxeter group with
weight function L such that L(s) > 0 for all s € S, 5 be the corresponding Hecke
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algebra. The set E; is said to be a W-graph ideal with respect to J(C S) and L if the
following hypotheses are satisfied.

(i) There exists an A-free ##-module M (E;, L) possessing an A-basis
B={T'y|lweE,}

for any s € S and any w € E; we have

Tow + (¢%®) — g~ 6N, ifw e Ej.
_ Tiw ifw e E;S, 5
YT ) —¢ L, if we By, ®)

. 0,
¢"eT,, — ZZ%EJ rs e ifwe BT,
z<w

for some polynomials 5, € ¢%(9) A-q.
(ii) The module M (Ey, L) admits an A-semilinear involution « + @ satisfying T'; = I'y
and ha = ha for all h € # and o € M(E;, L).

An obvious induction on ¢(w) shows that I, = T,,T'; for all w € E ;.

Definition 2.5. (See [9, Definition 5.2].) If w € W and Ejy = {u € W | v < w} is
a W-graph ideal with respect to some J C S then we call w a W-graph determining
element.

Remark. It has been verified in [9, Section 5] that if W is finite then wg, the maximal
length element of W, is a W-graph determining element with respect to §) and dy, the
minimal length element of the left coset wgW, is a W-graph determining element with
respect to J and also with respect to (.

The W-graph for a given W-graph ideal E;, carries a representation. In this paper
we show that the “dual” and “contragredient” representations are also determined by
the W-graph data, which form the “the full W-graph” structures.

3. Duality theorem for W-graph ideals

Let (W, S) be a Coxeter group with weight function L such that L(s) > 0 forall s € S,
€ be the corresponding Hecke algebra. There exists an algebra map ® : 5 — J# given
by ®(¢“)) = ¢*©) for all s € S, and ®(T,,) = €,T, where the bar is the standard
involution in J# and €, := (—1)“®). Further, ®*> = Id and ® commutes with the bar
involution.
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3.1. Duality theorem

We now give an equivalent definition of a W-graph ideal, and the associated module
is denoted by M (E ;, L). The following theorem essentially provides the duality between
the two set ups.

Theorem—Definition 3.1.

(I) With the above notations, let the set Ej be a W-graph ideal with respect to J(C S)
and L, then the following hypotheses are satisfied.
(i) There exists an A-free 5€-module M (E;, L) possessing an A-basis

B = {T'|w e E,},

forany s € S and any w € E; we have

Tyw + (g7 — g~ EONT, if weEj,,

» Ty if we EJS,

T.T, = _ 4
o q“)T,, ifweES, @
—q YO0y + Yeer, 75,0, ifwe EGT,

z<w ’

where 75, = ezeurs, € ¢ H A,
(ii) The module M(EJ,L) admits an A-semilinear involution & — & satisfying
f_lzfl and ha = ha for all h € A ani& € M(EJ,L),
(IT) There exists a unique map n: M(E;, L) — M(E;, L) such that

(i) n(T1) =Ty
(it) n(hT) = ®(h)n(T), for all h € S and T € M(E;, L)
(i.e., n is ©-linear). Further, it has the following propeit/z'es:

(a) n commutes with the involution on M(E;, L) and M(E , L).
(b) n is one-to-one onto and the inverse 0 of n, satisfies properties (i) and (ii) of 1.

Proof. For w € E;, define n(I',) = ewﬁ. Extend 1 to the whole of M(E;, L) by
®-linearity. Let s € S. Then we have,

NCsw + (¢" (=) — q_L(s))Fw] ifwe E;,
(Tsw) ifwe EJ57
n(—qHTy,) ifweE)],
U(QL(S ZZEEJ T 2wl ) ifwe E?]::r’

3

W(Tsrw) =
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which equals to

6sw]-—‘sw + (qL(é) - q_L(S))ewi lf w e Els’

€swl sw ifwe E-}—757 (6)
_ = . 0,—
—q L®)e, Ty twek; ,
= = . 0
q"®e, Ty — ZZEEJ [ if we EJ:;
z<w

for some polynomials 5, € ¢“(*) ALo. On the other hand

Tow+ (¢4 —q LT, ifwe By,

TCsw ifweET |
_ (_1)£(w)+1 _ J,s
gt T, if weEy,,
—q LTy, — Y.cp, 75,0, if we EGT.
z<w ’

It is easy to check that these two expressions give the same result, and this shows that
N(TsTw) = ©(Ts)n(Ty,). Tt is also easy to see that n(hl'y,) = ®(h)n(Ty,) for all h € 2
and Iy, € M(Ey, L).

If 7’ is another map satisfying properties (i) and (ii), then

77/<F’w) = n/(Twrl) = (b(Tw)fl = €wT‘_wfl = 6wT‘wfl = Ewa-

It is now clear that ' = n.
To prove statement (a), observe that for any I' € M (E, L), there exists h €  such
that I' = hI'y. Thus

n(T) = n(Al1) = ®(h)Ty = ®(A)T; = ®(R)T; = n(hLy) = n(T).

This proves (a).
We interchange the roles of these two modules to obtain a map

Q:M(E(],L)%M(E.},L)

such that 0(fw) = e, L. It is easy to check that § and 7 are inverses of each other. This
proves (b). O
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Corollary 3.2. If R, , and ﬁmy are the polynomials given by the formula

r,= Y R.,l.T,= Y R.,T.

zeE s zeE

then

Ry y = €xeyRy y.

Proof. Apply the function 7 to both sides of the formula for I', and use the fact that n

commutes with the involution and then use the formula for fy We omit the details. O
The above result can also be proved by the following recursive formulas.

Lemma 3.3. (See [1/, Prop. 4.1].) Let x, y € E;. If s € S is such that y € Ej, then

Rep sy ifr €Ej,,
R, = R sy + () —¢"R, o, ifx € E],

—q")R, o, ifz € EY,

¢ " Ry sy ifv e By

Similarly we have

Lemma 3.4. Let x, y € E;. If s € S is such that y € E7 _ then

Rz sy if v € Ej,

I L R AL
§ ¢ EOR, ifz e By,
"R, ifv € BYT.

We have the further properties of R, ,,.

Lemma 3.5. If y € Egs_ then we have

_qiL(S)Rsx,y me € Eisv

Ry y =
—qL(s)Rsm’y ifxe E;S.
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Ify € onj then we have

"Ry, ifreE],,
q_L(S)st,y ifr e EIS

Proof. If y € EJS then
.1, = —¢ *1,

Applying involution bar on both sides. On the left hand side we have

Tsry = Ts y = [Ts + (q_L(S) - qL(S)] Z R:E,yl—‘r
zeE

while the right hand side is —¢=2()T', = —¢"(*) > wcr, Beyla
Comparing the coefficients of I';, in the two expressions, we get the result. The proof
for the case y € EOJ': is similar with the above. O

3.2. Dual bases for the modules M(Ey, L) and M(EJ, L)

Recall [14, Th. 4.4] that the invariants in M(E;, L) (respectively J\NJ(EJ, L)) form
a free A-module with a basis {Cy, | w € E;} (respectively {C, | w € Ey}), where
= > P,.T, and C,, = > Py,wF‘
yeE, yeE,
Using the map 6, we obtain a dual basis {C), | w € E,} for the invariants in
M(E,, L). Analogously, using the map n we obtain the dual basis { C), | w € E; } for
the invariants in M (E;, L).

More precisely, we have:

Proposition 3.6. Let C/, = 6(C,), C,, = 1(Cy). Then

a) The J-module M(Ej;, L) has a unique basis { C! | w € E;} such that C’ =C),
(a) vique w

forallw € Ey, and C), = eyPy wly, for some elements Py w € Aso with the
yeE,

following properties:

(al) Py =0 if y £ w;

(a2) Py =1;

(a3) Pyw has zero constant term if y # w and

Pyw—Pyw= > RyoPew for anyy<uw.

y<zLw
z€E 5
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(b) Analogously, the module M(E;, L) has another basis { Cl, | w € B}, where C!, =

> &Py uly.
yeE,

Proof.
C, =0( Z Pyoly) = Z 6yPy,wF—y
yeE, yEE;

Hence, C!, = 6(C,,) = 6(C,,) = §(C,,) = C/, and the result follows. O

Theorem 3.7. The bases C and C’, give the module M (Ej, L) the structures of a W -graph
module such that

") C, + Cy, + > ms,C. ifs € SA(v),

z€E j,52<2<v

T,C, = _q_L(S)Cv ZfS € D(U)7 (7)
FOC, Y m,C. if s € WA(v),

zeE j,5z2<z<v

¢ HIC, +CL Y mi,CL s € SA(),

zeE j,s2<z<v
T,C, = qL(s)C; if s € D(v), (8)
— MO+ Y me,Cl if s € WA(v).

z€E j,s2<z<v

The formulas for T5C,, see [14, Th. 4.7]. The formulas for T;C! are obtained
by 0(TC,).

3.8. Inversion

For y,w € E;, we write the matrix P = (P,,,,), where P, ,, are E j-relative Kazhdan—
Lusztig polynomials. The formula for C,, in [14, Th. 4.4] may be written as

Co, =Ty + Z Pl
yeE

and inverting this gives

Tw=Cu+ Y QuuC,y

yeE,;

where the elements @, ., (defined whenever y < w) are given recursively by
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Qy,w = _Py,w - Z Qy,sz,w (9)

z€E |ly<z<w
An Ej-chain is a sequence ¢ : 2o < 21 < -+ < zp(n = 1) of elements in E;, we set
U)=nand Pr =P,, ,, Py 2, - - Ps,_, 2. 20 is called the initial element of ¢ and z, is

called the final element of . For y < w, let 7(y, w) denote the set of all E j-chains with y
as the initial element and w as the final element.

The following results are inspired by Lusztig [11, Ch. 10] and [12]. For the sake of
completeness we attach the proof.

Proposition 3.8. For any y,w € E; we have
Qu= Y (DR
Cer(y,w)

We have Qy. € Ao with the following properties:

(al) Qy,w =0ify ?( w;
(a2) Quw =1.

Proof. If /(w) — {(y) = 1, by Eq. (9) we have Q.. = —P, .. The statement is true.
Applying induction on ¢(w) —£€(y) > 1. For any z € E;, y < z < w, in the sum of Eq. (9)
we use the induction hypothesis.

Qy,z = Z (_1)€(<,)PC/

¢'er(y,z)

We have

Quuw = —Pyuw — Z (—l)é(c/)PQ‘/Pz,w

¢'eT(y,2)

- Y ()R

CeT(y,w)

where the sequence ¢ = (y,w)(€ 7(y,w)) is with £(¢) = 1 and (', w)(€ 7(y,w)) with
the length £(¢’) + 1. The listed properties of s are by Eq. (9). The result is proved. O

We define
Q;,w = 6yEUJC?y,w

If P is a property we set 6p = 1 if P is true and 6p = 0 if P is false. We write d,
instead of d;—,.
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Proposition 3.9. For any y,w € E; we have Q) ,, =" . <, w ;,zéz,w'
Proof. The triangular matrices Q = (Qy,w), P = (Py,w), R = (Ry,w») are related by
PQ=QP=1,P=RP RR=RR=1

where the bar involution over a matrix is the matrix obtained by applying to each entry.
We deduce that

QP =1=QP =QRP

Multiplying on the right by @ and using the fact PQ = 1 we deduce Q@ = QR. This
gives

Q=QR

Let S be the matrix whose (y, w)-entry is €8, ,,. We have S? = 1. Note that Q' = SQS.
By Corollary 3.2 we have R = SRS. Hence

Q' = 5QS = S(QR)S = SQS - SRS = Q'R
The result follows. O

4. W-graphs for the modules M and M

Denote by M := M(E;, L) and M := M(Ey, L). Let M := Homu (M, A) and M :=
Hom (M, A).
Define an left #-module structure on M by

hf(m) = f(hm) (with f € M,m € M,h € ).

We define a bar operator M — M by f(m) = f(m) (with f € M, m € M); in f(m) the
lower bar is that of M and the upper bar is that of A.

h f(m) = nf(m) = f(hm) = f(km) = f(hm) =R - f(m).

Hence we have h- f = h- f for f € M, h € A.
In the following contexts we focus on the module M , and usually omit the analogous
details for M.

4.1. The basis ofM

We firstly introduce two bases for the module M. For any z € E; we define I,eM
by fz(Fw) =0, for any w € E;. Then B =: {f‘z;z € E;} is an A-basis of M.
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Further, for any z € E; we define D, € M by D,(Cy) = 0, for any w € E;. Then
D :={D.;z € E;} is an A-basis of M.
Obviously we have

D, = Z Qz,yfy

yeE;,2<y

An equivalent definition of the basis element D,, € M is

Dz(ry) = Qz,y

for all y € E;. In fact, we have

Dz(Cw) = Dz Z ]Dy,wry) = Z Qz,ypy,w = 62,11)

yeEE, yeE

Lemma 4.1. For any y € E; we have

Iy= > Ryulw.

weE y,y<w

Proof. For any = € E; we have

Ly (Ty) =Ty (Ty)

= fy( Z R a:F ) = 5y<zRy T = 6y<m Y, T

FS DY R

= > Ryuiul,) O

weE j,y<w

Theorem 4.2. The -module M(Ej, L) has a unique basis { D, | z € E;} such that

D, =D, forallz€ By, and D, = Y Qz7yfy, for some elements Q. , € Aso with
yeE,
the following properties:

(al) Q.y=0if 2z L y;
(a2) Qz7z = 17'

(a3) Q.4 has zero constant term if z #y and

Qz,y - Qz,y = Z Qz,sz,yfor any z <y.

zLr<y
z€E

The proof is very similar with that of [11, Th. 5.2]. It uses induction on £(w) — £(y),
the equation Q@ = QR in Proposition 3.9 and Lemma 4.1, and the fact:
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If =3 .<cocy Qs uRay then f = —f. We omit further details of the proof.

yeE,
The (left) ascent set of z € E is

A(z):{s€S|zeE;SUE?,:j

Theorem 4.3. Let s € S and assume that L(s) > 0. The basis elements

{D,|z€E,;}
give M the structure of a W-graph module such that

—¢ "D, +D..+ Y mi,Dy
z<u,s€A(u)

T.D, = qL(S>DZ

—q D, + > m? o, Du
z<u,s€A(u)

Proof. In the case s € SD(z), TsD,(Cy) = D,(T;C,,) gives

Dz(qL(S)Cw + Cow + Z mfc,w

zeE j,sx<x<w

TSDZ(Cw): Dz(_q_L(s)Cw)
Dz(qL(S)Cw + Z m;,wcf)

zeE j,sx<x<w

z€E j sx<z<w

if s € SD(z),

if s € A(z),
if s € WD(z).

C,) ifse SA(w),

if s € D(w),
if s € WA(w),

6z,sw + Z m;’wéz’z if s e SA(?,U)7

—q 95, if s € SD(w),
B 0 if s € WD(w),
> my 0z if s € WA(w),
z€E ;,sc<r<w
Ozsw M3 00 if 5 € SA(w),
—q 5, if s € SD(w),
"o if s € WD(w),
M2 ,0z<w if s € WA(w),
(Dsz+ > mi,Dy)(Cy) ifseSA(w),
2<u,u€E}
—¢"9)D,(Cy) if s € SD(w),
"o if s € WD(w),
> mi,Dy(Cy) if s € WA(w).

0,+
z<u,u€Ey ]

391
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Hence, we obtain

T.D:(Cu) = (=g "D+ Do+ D7 m2,Du)(Cu)
z<u,s€A(u)

for all w € E;. The desired formula follows.
In other cases the computation is similar with the above, we omit the details. O

The following is by [14, Prop. 4.8].
Corollary 4.4. For s € S with L(s) =0, z € E;, we have

D,, ifse SD(z) orse SA(z),
T@Dz - *Dz ZfS € WD(Z),
D, if s € WA(z).

4.2. The D’-basis for M

Theorem 4.5. The -module M(Ej, L) has a unique basis { D | z € E;} such that

D, =D’ forallz€Ey, and D, = . eyéz,yfy, where @Zy € Aso, are the analogous
yeE,

elements in the case of M.

"D+ D+ S mi,D., ifseSD(z),
z<u,s€A(u)

I.D. = { —¢ "D, if s € A(2), (11)

DL+ Y mi,D, if s € WD(z).
z<u,s€A(u)

For a given W-graph ideal E;, two pairs of dual bases C,C’ and D, D’ provide the
“full W-graph” bases.

4.8. The module M (D, L)

Set Ej := Dy. If Dy is regarded as a W-graph ideal with respect to () (see the remark
on Deodhar’s construction, in Section 6), we have

Lemma 4.6. The modules M (D, L) and M(Dy, L) are identical.

Proof. For any basis element T, of M (D, L) and element T, of M(Dy, L), we have
Tsfw(ry) = IA‘w(Tsl—‘y)
L(s —L(s
=0,ep> Sy + (=) — gL >)5yeD;135w,y +0yept Ow,sy

+ qL(s)éyEDg’séw,y
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L(s —L(s
= 5w€D}i555w’y + (q ®) — q ( ))6w€D186w,y + 6w€Dzsésw,y
+ qL(S)éwED?LS&wﬂJ

A

_ (%ED;stw +(gh) — q*L(S))%eD;SfU’ +0,eps Lsw

L(s)(swEDf}sf‘w)(Fy)
hence we have
Iow ifwe DIS,
Tl = { Tow + (g2 — g LD, ifw e Dy,
qL(S)f‘w ifwe D973

The result follows. O

Corollary 4.7. The s¢-module M(Dy,L) has basis {D, | z € Dy}, where D, =
ZyeDJ,z<y Q,yL'y. This basis gives the structure of W-graph module such that

—¢ LD, +D,, + 3 ms D, if z€ Dj,,
TsD, = z<u,u€D} UDY

¢~ D, if z€ Dy ,UDY,.
5. In the case W is finite

Let (W, S) be a finite Coxeter system and wg be the longest element in W. Define
the function 7: W — W by m(w) = wowwo, it satisfies 7(S) = S and it extends to a
C-algebra isomorphism 7: C[W] — C[W]. We denote by so = m(s). For s € S we have
L(wg) = L(wps) + £(s) = £(m(s)) + £(m(s)wp), hence

L(wo) = L(wgs) + L(s) = L(w(s)) + L(mw(s)wg) = L(w(s)) + L(wgs)

so that L(nw(s)) = L(s). It follows that L(w(w)) = L(w) for all w € W and that we have
an A-algebra automorphism 7 : 7 —— J where 7(Ty) = Ty () for any w € W.

Lemma 5.1. The #-modules M and M have basis I'™ = {Twofw | weEy} and I™ =
{Twol"w | w € Es} respectively. Furthermore, n(Ty,Lw) = ewOwTwoF

Proof. Since the involution is square 1 and T, is invertible in #, the statement follows.
Moreover
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Still, we focus primarily on the module M and omit the analogous details for M ,
unless it is needed. For any w € E; we denote by w’ := wow and I'}, := TwoLop-

Remark. Note that, generally woE; # E ;. In the following contexts, the set woE; will

be just used as the index set for the objects involved.
Direct computation gives the following multiplication rules for the basis I'".

Fgw/Jr(q L(s )fq*L(S))Fa/ 1fw€EJS,

gow/ if w S E;S7
Tl = —q LT, if we EY;

L(s)m S0 ™
q ( )Fw’ - ZZ’GU)OEJ Tw’,z/Fz’ if we EJ s

w' <z’

S0 _ s = ,—L(s
where roy =713, €4q () A .

Lemma 5.2. For any y' € woE s there exist coefficients RY, € A, defined for ' € woEy,
such that I’_’yf, = Zx'eon, R%, L5 If RE,  # 0 then x’ < y'; particularly Ry, =1

The proof is trivial.
We have further properties of R%

Lemma 5.3. If ¢/ € onOJ:; then we have

- SO)RSM o ifr e wEy,,
z’ vy’ i
R L w i €wE] ..
Ify € wOEg’: then we have
R g MEIRT L ifal € woES,,
@y’ .
L(SO)RZM g ifr e wOEIS.

Proof. The proof is similar with that of Lemma 3.5. O

5.1. The basis C™ for M

The elements R, ,, where w',y € wyEy, lead to the construction of another set of

elements Pj, . and the following basis of M (E,, L).
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Theorem 5.4.

(1) The s-module M(E;, L) has a unique basis { C7, | y' € woE; } such thatC_Z, =Cy,

forally" € woEy, and Cj, = 3 Pr, I7,, for some elements Py, , € Axo
w' €woE s ’ ’
with the following properties:
(al) Py, =0 ifw' £y
(a2) Py =1;
(a3) Py, has zero constant term if y' # w' and
Py~ Py = Z Ry, . Pp for any w' <y
w' <z’ <y’
' cwoE s

(2) We have the analogous version for the J€-module M(EJ, L).

The proof is very similar to that of [10, Section 2].

Lemma 5.5. For y,w € E;. We have

() y<pw<=w' <py;

(ll) R;;/7y/ = Ry’w; R‘g)’,y’ = Ry,w;
(iii) for any w',y’ € woE s and w' <y’ we have
T _ E U
Pw/7y/ - Pm/’y/Rw’w’
w' <z’ <y’
z' €woE s
Nﬂ- i Nﬂ_ —_—
Pw/,y/ - E Px’,y’RZE,w
w'<a' <y’
2’ cwoE s

Proof. (i) is obvious. We prove (ii) by induction on ¢(w). If £(w) = 0 then w = 1. We
have R, 1 = d,1. Now Ry, . = 0 unless wyg <z woy. On the other hand we have
woy <1 wo. Hence Rgo,woy = 0 unless woy = wy, that is y = 1 in which case it is 1. The

desired equality holds when ¢(w) = 0. Assume that ¢(w) > 1. We can find s € S such
that sw < w.

In the case (a) y € EJ . By the induction hypothesis we have

Ry = Rayow = R, —RT = RT

WoSW,WoSY SoWowW,SowWoyY Wow,woy
In the case (b) y € Eis. Using Lemma 3.3, by the induction hypothesis we have

Ryﬂu = Rsy,sw + (q_L(S) - qL(S))Ryysw
—R" + (q—L(So) _ qL(So))RTr

W SW, W0 SY W SW,WoY
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_ DT —L(s L s T
Rsow ,S0Yy’ + (q (#0) ( 0))R5 w’,y’
o T —L(s L s T
Rsow ,S0Yy’ + (q (s0) ( 0))Rw ,S0Y’
== RZ}/ y’
In the case (¢) y € EY% Js - Using Lemma 3.5 and Lemma 5.3, by the induction hypothesis
we have
L L L 7
Ry,w =—-q (S)Ry,sw (SO)RwO(sw),woy (SO)RSOw Yy’
_ . L(so)(_,,—L(s0) prm _ pm
=g (=q "Ry, ) = Ry

Case (d) y € Egj Using Lemmas 3.5 and 5.3, by the induction hypothesis we have

Ryw=q "Ry =q R ., =RL .

sow’,y
(iii) follows (ii). O
Proposition 5.6. For any y,w € Ej we have Qy . = eyew . (Analogously Qy w =
eyewly )

Proof. We argue by induction on ¢(w) — £(y) > 0. If £(w) — ¢(y) = 0 we have y = w and
both sides are 1. Assume that £(w) — £(y) > 0. Subtracting the identity in Lemma 5.5
(iii) from that in Proposition 3.8 and using induction hypothesis, we obtain

EyEu)Qy,w - P£/7y/ = Eyery,w - P£/7y/
The right hand side is in A~; since it is fixed by the involution bar, it is 0. O
More precisely, we have the following inversion formulas

Corollary 5.7. In the above situation,
~ .
E 6w(€sz,sz/,zl - 593771},
zeEj,z<z<w

D T
E EU)EZPZ,ZPu}/’z/ = 6:6,’(1)

zeBE j,z<z<w

for all x,w € Ej.

Corollary 5.8. Assume that W is finite. We set Ej := D and use the above notations. Let
D and C™ be the bases of M(Dy, L), let D and C™ be the analogous bases for M(Dy, L).
For any z € Dy we have
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TwoDz = Ewoza(égioz) and Twoﬁz = 6'“’0277((7171:02)’

where n and 0 are the maps described in Theorem—Definition 3.1 (replacing Ey by D).

Proof. By the proposition we have

= Z Qz,yFy = Z Ezfyﬁqzoy,wgzry'

yeED s yeD

The equality D, = D, gives D, = ¢, > yen, e, Pr T',. Hence

wWoY,Wo 2

J— s T
Tw,D.=¢€, E ewaOy’woszOFy

yeD,
iy
—ewoz E : ewoy woy wozrwoy
yeD,
_ T
- Ewoze(cwoz) g

6. Some remarks
6.1. An example: the dual Solomon modules

In this subsection, let (W,.S) be a finite Coxeter group system. Assume that L(s) > 0
for all s € S. In [14] we introduced the A-free #-module #°C,,,CY, , which is called
the Solomon module (see [13]) with respect to J and L, and where

ng = €wy Z quL(ww*’)Twzew‘]q wy) Z €wq Lw Tw;

weW weW s
=Y g MIT, =g M) Y gH T,
weW ; weW ;

that is, C’jﬂj is the C’-basis element corresponding to w j, the maximal length element
of W3, or c-basis element corresponding to w; (see [11, Corollary 12.2]). C,,, is the
C-basis element corresponding to w.

In [14] we showed that #'Cy,C;,  has basis { T,Cw,Cy,, | @ € Fy}, where Fy =
Eywy; and E; = Dy N D ;. This ba81s admits the multlphcation rules listed in the
Definition 2.4, and Fy is a W—graph ideal with respect to J and weight function L.

Similarly, the J#-module 2#C;, Cy, , has basis { T,Cy, Cy, | x € Fy }. We can easily
prove that this basis admits the multiplication rules listed in the Theorem—Definition 3.1.
We call this the dual module of J#'Cy,C, .
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6.2. The Kazhdan—Lusztig construction

Assume that J = 0. Then D; = W and the sets WD j(w) and WA (w) are empty
for all w e W.

If L(s) > 0 (for all s € S), both modules M(E;, L) and M(E;, L) have A-basis
(X | w € Ey) such that,

_— Xow if £(sw) > £(w)
s Xow + (¥ — g7 L)X, if £(sw) < L(w),

where the elements X, stand for I';, or fw. If we let X, = T, for all w € W, then both
modules are the regular module 57 with weight function L. Thus we can recover some
of Lusztig’s results (for example, see [11, Chs. 5-6, Chs. 10-11]) for the regular case.

6.3. Deodhar’s construction: the parabolic case

Let J be an arbitrary subset of S and L(s) =1 for all s € S, we can now turning to
Deodhar’s construction.

Set Ej := Dy, then D is a W-graph ideal with respect to J, and also it is a W-graph
ideal with respect with (.

In the latter case we have Dy = W if w € E; then

SA(w) = {s € S|sw>w and sw € Dy},
SD(w) = {s € S|sw < w},
WDy(w) = {s € S|sw ¢ Dy} =0,
WAp(w) ={s € S|sw € Dy \ Dy} = {s € S|sw = wt for some t € J}.

Let ) be the Hecke algebra associated with the Coxeter system (W, J). Let My, =
R, Ay, where Ay, is A made into an J¢7-module via the homomorphism ¢ : 77 — A
that satisfies 1(T},) = ¢'™ for all v € Wy, it is an A-free with basis B = {b,, | w € D}
defined by b,, = T\, ® 1. This corresponds to M” in [3] in the case u = ¢ (we note that
this is denoted by M+ in [4]).

Let My = A Q@ , Ay, where Ay is A made into an JZr-module via the homomorphism
¢ : Ay — A that satisfies ¢(T,) = (—¢)~“") for all v € W), again it is an A-free with
basis B = {b,, | w € D;} defined by b,, = T, ® 1. This corresponds to M in [3] in the
case u = —1 (this is denoted by M7 in [4]).

Our module M(Ej;,L) is now essentially reduced to be the module My, while
M(EJ, L) is reduced to be the module My, the only differences being due to our non-
traditional definition of JZ.

In the case D; is a W-graph ideal with respect to J, the discussion is similar with
the above. For more details see [9, Section 8].



Y. Yin / Journal of Algebra 453 (2016) 377-399 399

Acknowledgments
The author wishes to thank the referee for the comments.

References

[1] C. Bonnafe, Two-sided cells in type B in the asymptotic case, J. Algebra 304 (2006) 216-236.

[2] Michele Couillens, Généralisation parabolique des polynomes et des bases de Kazhdan—Lusztig,
J. Algebra 213 (1999) 687-720.

[3] V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazh-
dan-Lusztig polynomials, J. Algebra 111 (2) (1987) 483-506.

[4] V. Deodhar, Duality in parabolic set up for questions in Kazhdan-Lusztig theory, J. Algebra 142
(1991) 201-209.

[5] J. Matthew Douglass, An inversion formula for relative Kazhdan—Lusztig polynomials, Comm. Al-
gebra 18 (1990) 371-387.

[6] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53
(1979) 165-184.

[7] M. Geck, N. Jacon, Representations of Hecke Algebras at Roots of Unity, Algebr. Appl., vol. 15,
Springer-Verlag, 2011.

[8] M. Geck, PyCox: computing with (finite) Coxeter groups and Iwahori-Hecke algebras, arXiv:1201.
5566v2, 2012.

[9] R.B. Howlett, V. Nguyen, W-graph ideals, J. Algebra 361 (2012) 188—-212.

[10] G. Lusztig, Left cells in Weyl groups, in: R.L.R. Herb, J. Rosenberg (Eds.), Lie Group Representa-
tions, I, in: Lecture Notes in Math., vol. 1024, Springer-Verlag, 1983, pp. 99-111.

[11] G. Lusztig, Hecke Algebras with Unequal Parameters, CRM Monogr. Ser., vol. 18, Amer. Math.
Soc., Providence, RI, 2003.

[12] J.Y. Shi, The Laurent polynomials My
357 (2012) 1-19.

[13] L. Solomon, A decomposition of the group algebra of finite Coxeter group, J. Algebra 9 (1968)
220-239.

[14] Y. Yin, W-graphs for Hecke algebras with unequal parameters, Manuscripta Math. 147 (2015)
43-62.

w» in the Hecke algebra with unequal parameters, J. Algebra


http://refhub.elsevier.com/S0021-8693(16)00019-3/bib426F6E6E61666532s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib43s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib43s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib44656F64686172s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib44656F64686172s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib44656F6468617232s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib44656F6468617232s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4D44s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4D44s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4B4Cs1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4B4Cs1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4765636B32s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4765636B32s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4765636B35s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4765636B35s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib486F776C657474s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4C75737A74696731s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4C75737A74696731s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4C75737A74696732s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib4C75737A74696732s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib536869s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib536869s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib536F6C6F6D6F6Es1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib536F6C6F6D6F6Es1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib59696Es1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib59696Es1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib536869s1
http://refhub.elsevier.com/S0021-8693(16)00019-3/bib536869s1

	W-graph ideals and duality
	Introduction
	1 Preliminaries
	1.1 Deﬁnition of W-graph

	2 W-graph ideals
	3 Duality theorem for W-graph ideals
	3.1 Duality theorem
	3.2 Dual bases for the modules M(EJ, L) and M̃(EJ, L)
	3.3 Inversion

	4 W-graphs for the modules M̂ and M̃̂
	4.1 The basis of M̂
	4.2 The D'-basis for M̂
	4.3 The module M̂(DJ, L)

	5 In the case W is ﬁnite
	5.1 The basis Cπ for M

	6 Some remarks
	6.1 An example: the dual Solomon modules
	6.2 The Kazhdan-Lusztig construction
	6.3 Deodhar's construction: the parabolic case

	Acknowledgments
	References


