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This paper is the continuation of the work in [14]. In that 
paper we generalized the definition of W -graph ideal in the 
weighted Coxeter groups, and showed how to construct a 
W -graph from a given W -graph ideal in the case of unequal 
parameters.
In this paper we study the duality and the full W -graph for 
a given W -graph ideal. We show that there are two modules 
associated with a given W -graph ideal, they are connected by 
a duality map. The full W -graph includes all the W -graph 
data determined by the dual and contragredient representa-
tions. Our construction closely parallels that of Kazhdan and 
Lusztig [6,10,11], which can be regarded as the special case 
J = ∅. It also generalizes the work of Couillens [2], Deodhar
[3,4], and Douglass [5], corresponding to the parabolic case.
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Introduction
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✩ The work is supported by China NSFC Grant 11271239.
E-mail address: yyin@mail.shufe.edu.cn.
http://dx.doi.org/10.1016/j.jalgebra.2015.12.021
0021-8693/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2015.12.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:yyin@mail.shufe.edu.cn
http://dx.doi.org/10.1016/j.jalgebra.2015.12.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2015.12.021&domain=pdf


378 Y. Yin / Journal of Algebra 453 (2016) 377–399
In [9] Howlett and Nguyen introduced the concept of a W -graph ideal in (W, �L) with 
respect to a subset J of S, where �L is the left weak Bruhat order on W . They showed 
that a W -graph can be constructed from a given W -graph ideal, and a Kazhdan–Lusztig 
like algorithm was obtained.

In [14] we generalized the definition of W -graph ideal in the Coxeter groups with a 
weight function L, we showed that a W -graph can also be constructed from a given 
W -graph ideal.

In this paper we continue the work in [14], it grows out of our attempt to understand 
the “full W -graph” for a given W -graph ideal. We show that, if J is an arbitrary subset 
of S then there exist a pair of dual modules M(EJ , L) and M̃(EJ , L) (denoted by M and 
M̃) associated with a given W -graph ideal EJ , they are connected by a duality map, this 
in turn leads to the construction of the dual W -graph bases. Generally DJ , the set of 
distinguished left coset representatives of WJ in W , is a W -graph ideal with respect to J
and also with respect to ∅, and Couillens, Deodhar and Douglass’s parabolic analogues 
of the Kazhdan–Lusztig construction are recovered (see Couillens [2], Deodhar [3,4] and 
Douglass [5]). In particular, W itself is a W -graph ideal with respect to ∅, and the “full” 
W -graph obtained is the Kazhdan–Lusztig W -graph for the regular representation of 
H (W ) (as defined in [6]).

Inspired by Lusztig’s work [11, Ch. 10], we can construct the W -graph bases for each 

of the H -modules HomA(M, A) and HomA(M̃, A) (denoted by M̂ and ˆ̃
M respectively), 

where A is the ring of “generalized Laurent polynomials in q”.
The paper is organized as follows. In Section 1 we present some basic concepts and 

facts concerning the weighted Coxeter groups, Hecke algebras and W -graphs. In Sec-
tion 2, we recall the concept of W -graph ideal. In Section 3, we show a duality theorem 
for the W -graph ideals.

In Section 4 we study in general the W -graphs for the modules M̂ and ˆ̃
M .

In Section 5, we prove, in the case W is finite, an inversion formula that relates the 
two versions of the relative Kazhdan–Lusztig polynomials. In the last section we give 
some examples and remarks.

1. Preliminaries

Let W be a Coxeter group, with generating set S. In this section, we briefly recall 
some basic concepts concerning the general multi-parameter framework of Lusztig [10,
11], which introduces a weight function into Coxeter groups and their associated Hecke 
algebras on which all the subsequent constructions depend.

We denote by � : W → N = {0, 1, 2, · · · } the length function on W with respect to S. 
Let � denote the Bruhat order on W .

In this section we follow the conventions in [1,8]. Let Γ be the totally ordered abelian 
group which will be denoted additively, the order on Γ will be denoted by �. Let {L(s) |
s ∈ S} ⊆ Γ be a collection of elements such that L(s) = L(t) whenever s, t ∈ S are 
conjugate in W . This gives rise to a weight function
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L : W −→ Γ

in the sense of Lusztig [10,11]; we have L(w) = L(s1) + L(s2) + · · · + L(sk) where 
w = s1s2 · · · sk(si ∈ S) is a reduced expression for w ∈ W . We assume throughout that

L(s) � 0

for all s ∈ S. (If Γ = Z and L(s) = 1 for all s ∈ S, then this is the original “equal 
parameter” setting of [6].)

Let R ⊆ C be a subring and A = R[Γ] be a free R-module with basis {qγ | γ ∈ Γ}
where q is an indeterminant. (The basic constructions in this section are independent of 
the choice of R and so we could just take R = Z.) The flexibility of R will be useful once 
we consider the representations of W . There is a well-defined ring structure on A such 
that qγqγ′ = qγ+γ′ for all γ, γ′ ∈ Γ. We denote 1 = q0 ∈ A. If a ∈ A we denote by aγ the 
coefficient of a on qγ so that a =

∑
γ∈Γ aγq

γ . If a �= 0 we define the degree of a as the 
element of Γ equal to

deg(a) = max{γ | aγ �= 0}

by convention (see [1]), we set deg 0 = −∞. So deg : A → Γ ∪ {−∞} satisfies deg(ab) =
deg(a) + deg(b).

Let H = H (W, S, L) be the generic Hecke algebra corresponding to (W, S) with 
parameters {qL(s) | s ∈ S}. Thus H has an A-basis {Tw | w ∈ W} and the multiplication 
is given by the rules

TsTw =
{
Tsw if �(sw) > �(w)
Tsw + (qL(s) − q−L(s))Tw if �(sw) < �(w).

(1)

Let Γ�γ0 = {γ ∈ Γ | γ � γ0} and denote by A�γ0 (or R[Γ�γ0 ]) the set of all R-linear 
combinations of terms qγ where γ � γ0. The notations Aγ>γ0 , Aγ�γ0 , Aγ<γ0 have a 
similar meaning.

We denote by A 	→ A, a 	→ a the automorphism of A induced by the automorphism 
of Γ sending γ to −γ for any γ ∈ Γ. This extends to a ring involution H 	→ H , h 	→ h, 
where

∑
w∈W

awTw =
∑
w∈W

awT
−1
w−1 , aw ∈ A for all w ∈ W,

and

Ts = T−1
s = Ts + (q−L(s) − qL(s)) for all s ∈ S.
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1.1. Definition of W -graph

Definition 1.1. (For equal parameter case see [6]; for general L see [7].) A W -graph for 
H consists of the following data:

(a) a base set Λ together with a map I which assigns to each x ∈ Λ a subset I(x) ⊆ S;
(b) for each s ∈ S with L(s) > 0, a collection of elements

{μs
x,y | x, y ∈ Λ such that s ∈ I(x), s /∈ I(y)};

(c) for each s ∈ S with L(s) = 0 a bijection Λ → Λ, x → s.x. These data are subject to 
the following requirements. First we require that, for any x, y ∈ Λ and s ∈ S where 
μs
x,y is defined, we have

qL(s)μs
x,y ∈ R[Γ>0] and μs

x,y = μs
x,y.

Furthermore, let [Λ]A be a free A-module with basis {by | y ∈ Λ}. For s ∈ S, define an 
A-linear map

ρs(by) =

⎧⎪⎪⎨⎪⎪⎩
bs.y if L(s) = 0;
−q−L(y)by if L(s) > 0, s ∈ I(y);
qL(y)by +

∑
x∈Λ;s∈I(x) μ

s
x,ybx if L(s) > 0, s /∈ I(y).

(2)

Then we require that the assignment Ts 	→ ρs defines a representation of H .

2. W -graph ideals

For each J ⊆ S, let Ĵ = S\J (the complement of J) and define WJ = 〈J〉, the corre-
sponding parabolic subgroup of W . Let HJ be the Hecke algebra associated with WJ . 
As is well known, HJ can be identified with a subalgebra of H .

Let DJ = { w ∈ W | �(ws) > �(w) for all s ∈ J }, the set of minimal coset represen-
tatives of W/WJ . The following lemma is well known.

Lemma 2.1 (Modified). (See [3, Lemma 2.1(iii)].) Let J ⊆ S and s ∈ S, and define

D−
J,s = {w ∈ DJ | �(sw) < �(w) },

D+
J,s = {w ∈ DJ | �(sw) > �(w) and sw ∈ DJ },

D0
J,s = {w ∈ DJ | �(sw) > �(w) and sw /∈ DJ },

so that DJ is the disjoint union D−
J,s ∪D+

J,s ∪D0
J,s. Then sD+

J,s = D−
J,s, and if w ∈ D0

J,s

then sw = wt for some t ∈ J .
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In this section we shall recall [9, Section 5], with some modification.
Let �L denote the left weak (Bruhat) order on W . We say x �L y if and only if y = zx

for some z ∈ W such that �(y) = �(z) + �(x). We also say that x is a suffix of y. The 
following property of the Bruhat order is useful (see [11, Corollary 2.5], for example).

Lemma 2.2. Let y, z ∈ W and let s ∈ S.

(i) Assume that sz < z, then y � z ⇐⇒ sy � z.
(ii) Assume that y < sy, then y � z ⇐⇒ y � sz.

Definition 2.3. If X ⊆ W , let Pos(X) = {s ∈ S | �(xs) > �(x)for allx ∈ X}.

Thus Pos(X) is the largest subset J of S such that X ⊆ DJ . Let E be an ideal in the 
poset (W, �L); that is, E is a subset of W such that every u ∈ W that is a suffix of an 
element of E is itself in E. This condition implies that Pos(E) = S\E = {s ∈ S | s /∈ E}. 
Let J be a subset of Pos(E), so that E ⊆ DJ . In contexts we shall denote by EJ for the 
set E, with reference to J , for each s ∈ S we classify the elements in EJ as follows:

E−
J,s = {w ∈ EJ | �(sw) < �(w) and sw ∈ EJ },

E+
J,s = {w ∈ EJ | �(sw) > �(w) and sw ∈ EJ },

E0,−
J,s = {w ∈ EJ | �(sw) > �(w) and sw /∈ DJ },

E0,+
J,s = {w ∈ EJ | �(sw) > �(w) and sw ∈ DJ\EJ }.

Since EJ ⊆ DJ it is clear that, for each w ∈ EJ , each s ∈ S appears in exactly one 
of the following four sets SA(w) = {s ∈ S | w ∈ E+

J,s}, SD(w) = {s ∈ S | w ∈ E−
J,s}, 

WAJ = {s ∈ S | w ∈ E0,+
J,s } and WDJ = {s ∈ S | w ∈ E0,−

J,s }. We call the elements 
of these sets the strong ascents, strong descents, weak ascents and weak descents of w
relative to EJ and J . In contexts where the ideal EJ and the set J is fixed we frequently 
omit reference to J , writing WA(w) and WD(w) rather than WAJ(w) and WDJ (w). 
We also define the sets of descents and ascents of w by D(w) = SD(w) ∪WD(w) and 
A(w) = SA(w) ∪WA(w).

Remark. It follows from Lemma 2.1 that

WAJ(w) = {s ∈ S | sw /∈ EJ and w−1sw /∈ J },

WDJ(w) = {s ∈ S | sw /∈ EJ and w−1sw ∈ J }.

Since sw /∈ EJ implies that sw > w (given that EJ is an ideal in (W, � L)). Note also 
that J = WDJ(1).

Definition 2.4 (Modified). (See [9, Definition 5.1].) Let (W, S) be a Coxeter group with 
weight function L such that L(s) � 0 for all s ∈ S, H be the corresponding Hecke 
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algebra. The set EJ is said to be a W -graph ideal with respect to J(⊆ S) and L if the 
following hypotheses are satisfied.

(i) There exists an A-free H -module M(EJ , L) possessing an A-basis

B = {Γw|w ∈ EJ},

for any s ∈ S and any w ∈ EJ we have

TsΓw =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Γsw + (qL(s) − q−L(s))Γw if w ∈ E−
J,s,

Γsw if w ∈ E+
J,s,

−q−L(s)Γw if w ∈ E0,−
J,s ,

qL(s)Γw −
∑

z∈EJ
z<w

rsz,wΓz if w ∈ E0,+
J,s ,

(3)

for some polynomials rsz,w ∈ qL(s)A>0.
(ii) The module M(EJ , L) admits an A-semilinear involution α 	→ α satisfying Γ1 = Γ1

and hα = hα for all h ∈ H and α ∈ M(EJ , L).

An obvious induction on �(w) shows that Γw = TwΓ1 for all w ∈ EJ .

Definition 2.5. (See [9, Definition 5.2].) If w ∈ W and EJ = {u ∈ W | u �L w} is 
a W -graph ideal with respect to some J ⊆ S then we call w a W -graph determining 
element.

Remark. It has been verified in [9, Section 5] that if W is finite then wS, the maximal 
length element of W , is a W -graph determining element with respect to ∅ and dJ , the 
minimal length element of the left coset wSWJ , is a W -graph determining element with 
respect to J and also with respect to ∅.

The W -graph for a given W -graph ideal EJ , carries a representation. In this paper 
we show that the “dual” and “contragredient” representations are also determined by 
the W -graph data, which form the “the full W -graph” structures.

3. Duality theorem for W -graph ideals

Let (W, S) be a Coxeter group with weight function L such that L(s) � 0 for all s ∈ S, 
H be the corresponding Hecke algebra. There exists an algebra map Φ : H → H given 
by Φ(qL(s)) = qL(s) for all s ∈ S, and Φ(Tw) = εwTw, where the bar is the standard 
involution in H and εw := (−1)�(w). Further, Φ2 = Id and Φ commutes with the bar 
involution.
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3.1. Duality theorem

We now give an equivalent definition of a W -graph ideal, and the associated module 
is denoted by M̃(EJ , L). The following theorem essentially provides the duality between 
the two set ups.

Theorem–Definition 3.1.

(I) With the above notations, let the set EJ be a W -graph ideal with respect to J(⊆ S)
and L, then the following hypotheses are satisfied.
(i) There exists an A-free H -module M̃(EJ , L) possessing an A-basis

B̃ = {Γ̃w|w ∈ EJ},

for any s ∈ S and any w ∈ EJ we have

TsΓ̃w =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Γ̃sw + (qL(s) − q−L(s))Γ̃w if w ∈ E−
J,s,

Γ̃sw if w ∈ E+
J,s,

qL(s)Γ̃w if w ∈ E0,−
J,s ,

−q−L(s)Γ̃w +
∑

z∈EJ
z<w

r̃sz,wΓ̃z if w ∈ E0,+
J,s ,

(4)

where r̃sz,w = εzεwrsz,w ∈ q−L(s)A<0.
(ii) The module M̃(EJ , L) admits an A-semilinear involution α̃ 	→ α̃ satisfying 

Γ̃1 = Γ̃1 and hα̃ = hα̃ for all h ∈ H and α̃ ∈ M̃(EJ , L).
(II) There exists a unique map η : M(EJ , L) → M̃(EJ , L) such that

(i) η(Γ1) = Γ̃1;

(ii) η(hΓ) = Φ(h)η(Γ), for all h ∈ H and Γ ∈ M(EJ , L)

(i.e., η is Φ-linear). Further, it has the following properties:
(a) η commutes with the involution on M(EJ , L) and M̃(EJ , L).
(b) η is one-to-one onto and the inverse θ of η, satisfies properties (i) and (ii) of η.

Proof. For w ∈ EJ , define η(Γw) = εwΓ̃w. Extend η to the whole of M(EJ , L) by 
Φ-linearity. Let s ∈ S. Then we have,

η(TsΓw) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η[Γsw + (qL(s) − q−L(s))Γw] if w ∈ E−
J,s,

η(Γsw) if w ∈ E+
J,s,

η(−q−L(s)Γw) if w ∈ E0,−
J,s ,

η(qL(s)Γw −
∑

z∈EJ rsz,wΓz) if w ∈ E0,+
J,s ,

(5)
z<w
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which equals to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εswΓ̃sw + (qL(s) − q−L(s))εwΓ̃w if w ∈ E−
J,s,

εswΓ̃sw if w ∈ E+
J,s,

−q−L(s)εwΓ̃w if w ∈ E0,−
J,s ,

qL(s)εwΓ̃w −
∑

z∈EJ
z<w

rsz,wεzΓ̃z if w ∈ E0,+
J,s ,

(6)

for some polynomials rsz,w ∈ qL(s)A>0. On the other hand

Φ(Ts)η(Γw) = −TsεwΓ̃w

= (−1)�(w)+1TsΓ̃w

= (−1)�(w)+1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Γ̃sw + (qL(s) − q−L(s))Γ̃w if w ∈ E−
J,s,

Γ̃sw if w ∈ E+
J,s,

qL(s)Γ̃w if w ∈ E0,−
J,s ,

−q−L(s)Γ̃w −
∑

z∈EJ
z<w

r̃sz,wΓ̃z if w ∈ E0,+
J,s .

It is easy to check that these two expressions give the same result, and this shows that 
η(TsΓw) = Φ(Ts)η(Γw). It is also easy to see that η(hΓw) = Φ(h)η(Γw) for all h ∈ H

and Γw ∈ M(EJ , L).
If η′ is another map satisfying properties (i) and (ii), then

η′(Γw) = η′(TwΓ1) = Φ(Tw)Γ̃1 = εwTwΓ̃1 = εwTwΓ̃1 = εwΓ̃w.

It is now clear that η′ = η.
To prove statement (a), observe that for any Γ ∈ M(EJ , L), there exists h ∈ H such 

that Γ = hΓ1. Thus

η(Γ) = η(hΓ1) = Φ(h)Γ̃1 = Φ(h)Γ̃1 = Φ(h)Γ̃1 = η(hΓ1) = η(Γ).

This proves (a).
We interchange the roles of these two modules to obtain a map

θ : M̃(EJ , L) → M(EJ , L)

such that θ(Γ̃w) = εwΓw. It is easy to check that θ and η are inverses of each other. This 
proves (b). �
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Corollary 3.2. If Rx,y and R̃x,y are the polynomials given by the formula

Γy =
∑
x∈EJ

Rx,yΓx, Γ̃y =
∑
x∈EJ

R̃x,yΓ̃x

then

Rx,y = εxεyR̃x,y.

Proof. Apply the function η to both sides of the formula for Γy and use the fact that η
commutes with the involution and then use the formula for Γ̃y. We omit the details. �

The above result can also be proved by the following recursive formulas.

Lemma 3.3. (See [14, Prop. 4.1].) Let x, y ∈ EJ . If s ∈ S is such that y ∈ E−
J,s then

Rx,y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Rsx,sy if x ∈ E−
J,s,

Rsx,sy + (q−L(s) − qL(s))Rx,sy if x ∈ E+
J,s,

−qL(s)Rx,sy if x ∈ E0,−
J,s ,

q−L(s)Rx,sy if x ∈ E0,+
J,s .

Similarly we have

Lemma 3.4. Let x, y ∈ EJ . If s ∈ S is such that y ∈ E−
J,s then

R̃x,y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R̃sx,sy if x ∈ E−
J,s,

R̃sx,sy + (q−L(s) − qL(s))R̃x,sy if x ∈ E+
J,s,

q−L(s)R̃x,sy if x ∈ E0,−
J,s ,

−qL(s)R̃x,sy if x ∈ E0,+
J,s .

We have the further properties of Rx,y.

Lemma 3.5. If y ∈ E0,−
J,s then we have

Rx,y =

⎧⎨⎩−q−L(s)Rsx,y if x ∈ E−
J,s,

−qL(s)Rsx,y if x ∈ E+
J,s.
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If y ∈ E0,+
J,s then we have

Rx,y =

⎧⎨⎩qL(s)Rsx,y if x ∈ E−
J,s,

q−L(s)Rsx,y if x ∈ E+
J,s.

Proof. If y ∈ E0,−
J,s then

TsΓy = −q−L(s)Γy

Applying involution bar on both sides. On the left hand side we have

TsΓy = TsΓy = [Ts + (q−L(s) − qL(s)]
∑
x∈EJ

Rx,yΓx

while the right hand side is −q−L(s)Γy = −qL(s) ∑
x∈EJ

Rx,yΓx.
Comparing the coefficients of Γx in the two expressions, we get the result. The proof 

for the case y ∈ E0,+
J,s is similar with the above. �

3.2. Dual bases for the modules M(EJ , L) and M̃(EJ , L)

Recall [14, Th. 4.4] that the invariants in M(EJ , L) (respectively M̃(EJ , L)) form 
a free A-module with a basis { Cw | w ∈ EJ } (respectively { C̃w | w ∈ EJ }), where 
Cw =

∑
y∈EJ

Py,wΓy and C̃w =
∑

y∈EJ

P̃y,wΓ̃y.

Using the map θ, we obtain a dual basis { C′
w | w ∈ EJ } for the invariants in 

M(EJ , L). Analogously, using the map η we obtain the dual basis { C̃′
w | w ∈ EJ } for 

the invariants in M̃(EJ , L).
More precisely, we have:

Proposition 3.6. Let C′
w = θ(C̃w), C̃′

w = η(Cw). Then

(a) The H -module M(EJ , L) has a unique basis { C′
w | w ∈ EJ } such that C′

w = C′
w

for all w ∈ EJ , and C′
w =

∑
y∈EJ

εyP̃y,wΓy, for some elements P̃y,w ∈ A�0 with the 

following properties:
(a1) P̃y,w = 0 if y � w;
(a2) P̃w,w = 1;
(a3) P̃y,w has zero constant term if y �= w and

P̃y,w − P̃y,w =
∑

y<x�w
x∈EJ

R̃y,xP̃x,w for any y < w.
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(b) Analogously, the module M̃(EJ , L) has another basis { C̃′
w | w ∈ EJ }, where C̃′

w =∑
y∈EJ

εyPy,wΓ̃y.

Proof.

C′
w = θ(

∑
y∈EJ

P̃y,wΓ̃y) =
∑
y∈EJ

εyP̃y,wΓy

Hence, C′
w = θ(C̃w) = θ(C̃w) = θ(C̃w) = C′

w and the result follows. �
Theorem 3.7. The bases C and C′, give the module M(EJ , L) the structures of a W -graph 
module such that

TsCv =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
qL(s)Cv + Csv +

∑
z∈EJ ,sz<z<v

ms
z,vCz if s ∈ SA(v),

−q−L(s)Cv if s ∈ D(v),

qL(s)Cv +
∑

z∈EJ ,sz<z<v

ms
z,vCz if s ∈ WA(v),

(7)

TsC′
v =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−q−L(s)C′

v + C′
sv +

∑
z∈EJ ,sz<z<v

ms
z,vC′

z if s ∈ SA(v),

qL(s)C′
v if s ∈ D(v),

−q−L(s)C′
v +

∑
z∈EJ ,sz<z<v

ms
z,vC′

z if s ∈ WA(v).

(8)

The formulas for TsCv, see [14, Th. 4.7]. The formulas for TsC′
v are obtained 

by θ(TsC̃v).

3.3. Inversion

For y, w ∈ EJ , we write the matrix P = (Py,w), where Py,w are EJ -relative Kazhdan–
Lusztig polynomials. The formula for Cw in [14, Th. 4.4] may be written as

Cw = Γw +
∑
y∈EJ

Py,wΓy

and inverting this gives

Γw = Cw +
∑
y∈EJ

Qy,wCy

where the elements Qy,w (defined whenever y < w) are given recursively by
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Qy,w = −Py,w −
∑

z∈EJ |y<z<w

Qy,zPz,w (9)

An EJ -chain is a sequence ζ : z0 < z1 < · · · < zn(n � 1) of elements in EJ , we set 
�(ζ) = n and Pζ = Pz0,z1Pz1,z2 · · ·Pzn−1,zn . z0 is called the initial element of ζ and zn is 
called the final element of ζ. For y < w, let τ(y, w) denote the set of all EJ -chains with y

as the initial element and w as the final element.
The following results are inspired by Lusztig [11, Ch. 10] and [12]. For the sake of 

completeness we attach the proof.

Proposition 3.8. For any y, w ∈ EJ we have

Qy,w =
∑

ζ∈τ(y,w)

(−1)�(ζ)Pζ

We have Qy,w ∈ A�0 with the following properties:

(a1) Qy,w = 0 if y � w;
(a2) Qw,w = 1.

Proof. If �(w) − �(y) = 1, by Eq. (9) we have Qy,w = −Py,w. The statement is true. 
Applying induction on �(w) −�(y) � 1. For any z ∈ EJ , y < z < w, in the sum of Eq. (9)
we use the induction hypothesis.

Qy,z =
∑

ζ′∈τ(y,z)

(−1)�(ζ
′)Pζ′

We have

Qy,w = −Py,w −
∑

ζ′∈τ(y,z)

(−1)�(ζ
′)Pζ′Pz,w

=
∑

ζ∈τ(y,w)

(−1)�(ζ)Pζ

where the sequence ζ = (y, w)(∈ τ(y, w)) is with �(ζ) = 1 and (ζ ′, w)(∈ τ(y, w)) with 
the length �(ζ ′) +1. The listed properties of Q′s are by Eq. (9). The result is proved. �

We define

Q′
y,w = εyεwQy,w

If P is a property we set δP = 1 if P is true and δP = 0 if P is false. We write δx,y
instead of δx=y.
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Proposition 3.9. For any y, w ∈ EJ we have Q′
y,w =

∑
z;y�Lz�Lw Q′

y,zR̃z,w.

Proof. The triangular matrices Q = (Qy,w), P = (Py,w), R = (Ry,w) are related by

PQ = QP = 1, P = RP,RR = RR = 1

where the bar involution over a matrix is the matrix obtained by applying ̄ to each entry. 
We deduce that

QP = 1 = QP = QRP

Multiplying on the right by Q and using the fact PQ = 1 we deduce Q = QR. This 
gives

Q = QR

Let S be the matrix whose (y, w)-entry is εyδy,w. We have S2 = 1. Note that Q′ = SQS. 
By Corollary 3.2 we have R = SR̃S. Hence

Q′ = SQS = S(QR)S = SQS · SRS = Q′R̃

The result follows. �
4. W -graphs for the modules M̂ and ˆ̃

M

Denote by M := M(EJ , L) and M̃ := M̃(EJ , L). Let M̂ := HomA(M, A) and ˆ̃
M :=

HomA(M̃, A).
Define an left H -module structure on M̂ by

hf(m) = f(hm) (with f ∈ M̂,m ∈ M,h ∈ H ).

We define a bar operator M̂ 	→ M̂ by f(m) = f(m) (with f ∈ M̂, m ∈ M); in f(m) the 
lower bar is that of M and the upper bar is that of A.

h · f(m) = hf(m) = f(hm) = f(hm) = f(hm) = h · f(m).

Hence we have h · f = h · f for f ∈ M̂ , h ∈ H .
In the following contexts we focus on the module M̂ , and usually omit the analogous 

details for ˆ̃
M .

4.1. The basis of M̂

We firstly introduce two bases for the module M̂ . For any z ∈ EJ we define Γ̂z ∈ M̂

by Γ̂z(Γw) = δz,w for any w ∈ EJ . Then B̂ =: {Γ̂z; z ∈ EJ} is an A-basis of M̂ .
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Further, for any z ∈ EJ we define Dz ∈ M̂ by Dz(Cw) = δz,w for any w ∈ EJ . Then 
D := {Dz; z ∈ EJ} is an A-basis of M̂ .

Obviously we have

Dz =
∑

y∈EJ ,z<y

Qz,yΓ̂y.

An equivalent definition of the basis element Dw ∈ M̂ is

Dz(Γy) = Qz,y

for all y ∈ EJ . In fact, we have

Dz(Cw) = Dz

∑
y∈EJ

Py,wΓy) =
∑
y∈EJ

Qz,yPy,w = δz,w

Lemma 4.1. For any y ∈ EJ we have

Γ̂y =
∑

w∈EJ ,y�w

Ry,wΓ̂w.

Proof. For any x ∈ EJ we have

Γ̂y(Γx) = Γ̂y(Γx)

= Γ̂y(
∑

x′∈EJ ,x′�x

Rx′,xΓx′) = δy�xRy,x = δy�xRy,x

=
∑

w∈EJ ,y�w

Ry,wΓ̂w(Γx) �

Theorem 4.2. The H -module M̂(EJ , L) has a unique basis { Dz | z ∈ EJ } such that 
Dz = Dz for all z ∈ EJ , and Dz =

∑
y∈EJ

Qz,yΓ̂y, for some elements Qz,y ∈ A�0 with 

the following properties:

(a1) Qz,y = 0 if z � y;
(a2) Qz,z = 1;
(a3) Qz,y has zero constant term if z �= y and

Qz,y −Qz,y =
∑

z�x<y
x∈EJ

Qz,xRx,yfor any z < y.

The proof is very similar with that of [11, Th. 5.2]. It uses induction on �(w) − �(y), 
the equation Q = QR in Proposition 3.9 and Lemma 4.1, and the fact:
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If f =
∑

z�x<y
y∈EJ

Qz,xRx,y then f = −f . We omit further details of the proof.

The (left) ascent set of z ∈ EJ is

A(z) = {s ∈ S | z ∈ E+
J,s ∪ E0,+

J,s }

Theorem 4.3. Let s ∈ S and assume that L(s) > 0. The basis elements

{Dz | z ∈ EJ}

give M̂ the structure of a W -graph module such that

TsDz =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−q−L(s)Dz + Dsz +

∑
z<u,s∈A(u)

ms
z,uDu if s ∈ SD(z),

qL(s)Dz if s ∈ A(z),

−q−L(s)Dz +
∑

z<u,s∈A(u)
ms

z,uDu if s ∈ WD(z).

(10)

Proof. In the case s ∈ SD(z), TsDz(Cw) = Dz(TsCw) gives

TsDz(Cw) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dz(qL(s)Cw + Csw +

∑
x∈EJ ,sx<x<w

ms
x,wCx) if s ∈ SA(w),

Dz(−q−L(s)Cw) if s ∈ D(w),

Dz(qL(s)Cw +
∑

x∈EJ ,sx<x<w

ms
x,wCx) if s ∈ WA(w),

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δz,sw +
∑

x∈EJ ,sx<x<w

ms
x,wδz,x if s ∈ SA(w),

−q−L(s)δz,w if s ∈ SD(w),

0 if s ∈ WD(w),∑
x∈EJ ,sx<x<w

ms
x,wδz,x if s ∈ WA(w),

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δz,sw + ms
z,wδz<w if s ∈ SA(w),

−q−L(s)δz,w if s ∈ SD(w),

0 if s ∈ WD(w),

ms
z,wδz<w if s ∈ WA(w),

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Dsz +
∑

z<u,u∈E+
J,s

ms
z,uDu)(Cw) if s ∈ SA(w),

−q−L(s)Dz(Cw) if s ∈ SD(w),

0 if s ∈ WD(w),∑
z<u,u∈E0,+

ms
z,uDu(Cw) if s ∈ WA(w).
J,s
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Hence, we obtain

TsDz(Cw) = (−q−L(s)Dz + Dsz +
∑

z<u,s∈A(u)

ms
z,uDu)(Cw)

for all w ∈ EJ . The desired formula follows.
In other cases the computation is similar with the above, we omit the details. �
The following is by [14, Prop. 4.8].

Corollary 4.4. For s ∈ S with L(s) = 0, z ∈ EJ , we have

TsDz =

⎧⎪⎪⎨⎪⎪⎩
Dsz if s ∈ SD(z) or s ∈ SA(z),
−Dz if s ∈ WD(z),
Dz if s ∈ WA(z).

4.2. The D′-basis for M̂

Theorem 4.5. The H -module M̂(EJ , L) has a unique basis { D′
z | z ∈ EJ } such that 

D′
z = D′

z for all z ∈ EJ , and D′
z =

∑
y∈EJ

εyQ̃z,yΓ̂y, where Q̃z,y ∈ A�0, are the analogous 

elements in the case of M̃ .

TsD
′
z =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qL(s)D′

z + D′
sz +

∑
z<u,s∈A(u)

ms
z,uD

′
u if s ∈ SD(z),

−q−L(s)D′
z if s ∈ A(z),

qL(s)D′
z +

∑
z<u,s∈A(u)

ms
z,uD

′
u if s ∈ WD(z).

(11)

For a given W -graph ideal EJ , two pairs of dual bases C, C′ and D, D′ provide the 
“full W -graph” bases.

4.3. The module M̂(DJ , L)

Set EJ := DJ . If DJ is regarded as a W -graph ideal with respect to ∅ (see the remark 
on Deodhar’s construction, in Section 6), we have

Lemma 4.6. The modules M̂(DJ , L) and M(DJ , L) are identical.

Proof. For any basis element Γ̂w of M̂(DJ , L) and element Γy of M(DJ , L), we have

TsΓ̂w(Γy) = Γ̂w(TsΓy)

= δy∈D−
J,s

δw,sy + (qL(s) − q−L(s))δy∈D−
J,s

δw,y + δy∈D+
J,s

δw,sy

+ qL(s)δy∈D0 δw,y

J,s
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= δw∈D+
J,s

δsw,y + (qL(s) − q−L(s))δw∈D−
J,s

δw,y + δw∈D−
J,s

δsw,y

+ qL(s)δw∈D0
J,s

δw,y

= (δw∈D+
J,s

Γ̂sw + (qL(s) − q−L(s))δw∈D−
J,s

Γ̂w + δw∈D−
J,s

Γ̂sw

+ qL(s)δw∈D0
J,s

Γ̂w)(Γy)

hence we have

TsΓ̂w =

⎧⎪⎪⎨⎪⎪⎩
Γ̂sw if w ∈ D+

J,s,
Γ̂sw + (qL(s) − q−L(s))Γ̂w if w ∈ D−

J,s,
qL(s)Γ̂w if w ∈ D0

J,s.

The result follows. �
Corollary 4.7. The H -module M(DJ , L) has basis {Dz | z ∈ DJ}, where Dz =∑

y∈DJ ,z<y Qz,yΓy. This basis gives the structure of W -graph module such that

TsDz =

⎧⎪⎨⎪⎩
−q−L(s)Dz + Dsz +

∑
z<u,u∈D+

J,s∪D0
J,s

ms
z,uDu if z ∈ D−

J.s,

qL(s)Dz if z ∈ D+
J,s ∪D0

J,s.

5. In the case W is finite

Let (W, S) be a finite Coxeter system and w0 be the longest element in W . Define 
the function π : W → W by π(w) = w0ww0, it satisfies π(S) = S and it extends to a 
C-algebra isomorphism π : C[W ] 	−→ C[W ]. We denote by s0 = π(s). For s ∈ S we have 
�(w0) = �(w0s) + �(s) = �(π(s)) + �(π(s)w0), hence

L(w0) = L(w0s) + L(s) = L(π(s)) + L(π(s)w0) = L(π(s)) + L(w0s)

so that L(π(s)) = L(s). It follows that L(π(w)) = L(w) for all w ∈ W and that we have 
an A-algebra automorphism π : H 	−→ H where π(Tw) = Tπ(w) for any w ∈ W .

Lemma 5.1. The H -modules M and M̃ have basis Γπ = {Tw0Γw | w ∈ EJ} and Γ̃π =

{Tw0 Γ̃w | w ∈ EJ} respectively. Furthermore, η(Tw0Γw) = εw0wTw0 Γ̃w.

Proof. Since the involution is square 1 and Tw0 is invertible in H , the statement follows.
Moreover

η(Tw0Γw) = Φ(Tw0)η(Γw) = εw0Tw0εwΓ̃w = εw0wTw0 Γ̃w. �
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Still, we focus primarily on the module M and omit the analogous details for M̃ , 
unless it is needed. For any w ∈ EJ we denote by w′ := w0w and Γπ

w′ := Tw0Γw.

Remark. Note that, generally w0EJ �= EJ . In the following contexts, the set w0EJ will 
be just used as the index set for the objects involved.

Direct computation gives the following multiplication rules for the basis Γπ.

Ts0Γπ
w′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Γπ
s0w′ + (qL(s) − q−L(s))Γπ

w′ if w ∈ E+
J,s,

Γπ
s0w′ if w ∈ E−

J,s,

−q−L(s)Γπ
w′ if w ∈ E0,−

J,s ,

qL(s)Γπ
w′ −

∑
z′∈w0EJ

w′<z′

rs0w′,z′Γπ
z′ if w ∈ E0,+

J,s ,

where rs0w′,z′ = rsz,w ∈ q−L(s)A<0.

Lemma 5.2. For any y′ ∈ w0EJ there exist coefficients Rπ
x′,y′ ∈ A, defined for x′ ∈ w0EJ , 

such that Γπ
y′ =

∑
x′∈w0EJ

Rπ
x′,y′Γπ

x′ . If Rπ
x′,y′ �= 0 then x′ � y′; particularly Rπ

y′,y′ = 1.

The proof is trivial.
We have further properties of Rπ

x′,y′ .

Lemma 5.3. If y′ ∈ w0E0,−
J,s then we have

Rπ
x′,y′ =

⎧⎨⎩−qL(s0)Rπ
s0x′,y′ if x′ ∈ w0E−

J,s,

−q−L(s0)Rπ
s0x′,y′ if x′ ∈ w0E+

J,s.

If y′ ∈ w0E0,+
J,s then we have

Rπ
x′,y′ =

⎧⎨⎩q−L(s0)Rπ
s0x′,y′ if x′ ∈ w0E−

J,s,

qL(s0)Rπ
s0x′,y′ if x′ ∈ w0E+

J,s.

Proof. The proof is similar with that of Lemma 3.5. �
5.1. The basis Cπ for M

The elements Rπ
w′,y′ , where w′, y′ ∈ w0EJ , lead to the construction of another set of 

elements Pπ
w′,y′ and the following basis of M(EJ , L).
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Theorem 5.4.

(1) The H -module M(EJ , L) has a unique basis { Cπ
y′ | y′ ∈ w0EJ } such that Cπ

y′ = Cπ
y′

for all y′ ∈ w0EJ , and Cπ
y′ =

∑
w′∈w0EJ

Pπ
w′,y′Γπ

w′ , for some elements Pπ
w′,y′ ∈ A�0

with the following properties:
(a1) Pπ

w′,y′ = 0 if w′ � y′;
(a2) Pπ

y′,y′ = 1;
(a3) Pπ

w′,y′ has zero constant term if y′ �= w′ and

Pπ
w′,y′ − Pπ

w′,y′ =
∑

w′<x′�y′

x′∈w0EJ

Rπ
w′,x′P

π
x′,y′ for any w′ < y′.

(2) We have the analogous version for the H -module M̃(EJ , L).

The proof is very similar to that of [10, Section 2].

Lemma 5.5. For y, w ∈ EJ . We have

(i) y �L w ⇐⇒ w′ �L y′;
(ii) Rπ

w′,y′ = Ry,w; R̃π
w′,y′ = R̃y,w;

(iii) for any w′, y′ ∈ w0EJ and w′ < y′ we have

Pπ
w′,y′ =

∑
w′�x′�y′

x′∈w0EJ

Pπ
x′,y′Rx,w,

P̃π
w′,y′ =

∑
w′�x′�y′

x′∈w0EJ

P̃π
x′,y′R̃x,w

Proof. (i) is obvious. We prove (ii) by induction on �(w). If �(w) = 0 then w = 1. We 
have Ry,1 = δy,1. Now Rπ

w0,w0y = 0 unless w0 �L w0y. On the other hand we have 
w0y �L w0. Hence Rπ

w0,w0y = 0 unless w0y = w0, that is y = 1 in which case it is 1. The 
desired equality holds when �(w) = 0. Assume that �(w) � 1. We can find s ∈ S such 
that sw < w.

In the case (a) y ∈ E−
J,s. By the induction hypothesis we have

Ry,w = Rsy,sw = Rπ
w0sw,w0sy = Rπ

s0w0w,s0w0y = Rπ
w0w,w0y

In the case (b) y ∈ E+
J,s. Using Lemma 3.3, by the induction hypothesis we have

Ry,w = Rsy,sw + (q−L(s) − qL(s))Ry,sw

= Rπ
w sw,w sy + (q−L(s0) − qL(s0))Rπ

w sw,w y
0 0 0 0
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= Rπ
s0w′,s0y′ + (q−L(s0) − qL(s0))Rπ

s0w′,y′

= Rπ
s0w′,s0y′ + (q−L(s0) − qL(s0))Rπ

w′,s0y′

= Rπ
w′,y′

In the case (c) y ∈ E0,−
J,s . Using Lemma 3.5 and Lemma 5.3, by the induction hypothesis 

we have

Ry,w = −qL(s)Ry,sw = −qL(s0)Rπ
w0(sw),w0y

= −qL(s0)Rπ
s0w′,y′

= −qL(s0)(−q−L(s0)Rπ
w′,y′) = Rπ

w′,y′ .

Case (d) y ∈ E0,+
J,s . Using Lemmas 3.5 and 5.3, by the induction hypothesis we have

Ry,w = q−L(s)Ry,sw = q−L(s0)Rπ
s0w′,y′ = Rπ

w′,y′ .

(iii) follows (ii). �
Proposition 5.6. For any y, w ∈ EJ we have Qy,w = εyεwP̃

π
w′,y′ . (Analogously Q̃y,w =

εyεwP
π
w′,y′ .)

Proof. We argue by induction on �(w) − �(y) � 0. If �(w) − �(y) = 0 we have y = w and 
both sides are 1. Assume that �(w) − �(y) > 0. Subtracting the identity in Lemma 5.5
(iii) from that in Proposition 3.8 and using induction hypothesis, we obtain

εyεwQy,w − P̃π
w′,y′ = εyεwQy,w − P̃π

w′,y′

The right hand side is in A>0; since it is fixed by the involution bar, it is 0. �
More precisely, we have the following inversion formulas

Corollary 5.7. In the above situation,∑
z∈EJ ,x�z�w

εwεzPx,zP̃
π
w′,z′ = δx,w;

∑
z∈EJ ,x�z�w

εwεzP̃x,zP
π
w′,z′ = δx,w

for all x, w ∈ EJ .

Corollary 5.8. Assume that W is finite. We set EJ := DJ and use the above notations. Let 
D and Cπ be the bases of M(DJ , L), let D̃ and C̃π be the analogous bases for M̃(DJ , L). 
For any z ∈ DJ we have
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Tw0Dz = εw0zθ(C̃π
w0z) and Tw0D̃z = εw0zη(Cπ

w0z),

where η and θ are the maps described in Theorem–Definition 3.1 (replacing EJ by DJ).

Proof. By the proposition we have

Dz =
∑
y∈DJ

Qz,yΓy =
∑
y∈DJ

εzεyP̃
π
w0y,w0zΓy.

The equality Dz = Dz gives Dz = εz
∑

y∈DJ
εyP̃π

w0y,w0zΓy. Hence

Tw0Dz = εz
∑
y∈DJ

εyP̃π
w0y,w0zTw0Γy

= εw0z

∑
y∈DJ

εw0yP̃
π
w0y,w0zΓ

π
w0y

= εw0zθ(C̃π
w0z) �

6. Some remarks

6.1. An example: the dual Solomon modules

In this subsection, let (W, S) be a finite Coxeter group system. Assume that L(s) > 0
for all s ∈ S. In [14] we introduced the A-free H -module H CwJ

C ′
wĴ

, which is called 
the Solomon module (see [13]) with respect to J and L, and where

CwJ
= εwJ

∑
w∈WJ

εwq
L(wwJ )Tw = εwJ

qL(wJ )
∑

w∈WJ

εwq
−L(w)Tw;

C ′
wĴ

=
∑

w∈WĴ

q−L(wwĴ )Tw = q−L(wĴ )
∑

w∈WĴ

qL(w)Tw,

that is, C ′
wĴ

is the C ′-basis element corresponding to wĴ , the maximal length element 
of WĴ , or c-basis element corresponding to wĴ (see [11, Corollary 12.2]). CwJ

is the 
C-basis element corresponding to wJ .

In [14] we showed that H CwJ
C ′

wĴ
has basis { TxCwJ

C ′
wĴ

| x ∈ FJ }, where FJ =
EJwJ and EJ = DJ ∩ DĴ . This basis admits the multiplication rules listed in the 
Definition 2.4, and FJ is a W -graph ideal with respect to J and weight function L.

Similarly, the H -module H C ′
wJ

CwĴ
has basis { TxC

′
wJ

CwĴ
| x ∈ FJ }. We can easily 

prove that this basis admits the multiplication rules listed in the Theorem–Definition 3.1. 
We call this the dual module of H CwJ

C ′
w .
Ĵ
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6.2. The Kazhdan–Lusztig construction

Assume that J = ∅. Then DJ = W and the sets WDJ(w) and WAJ(w) are empty 
for all w ∈ W .

If L(s) > 0 (for all s ∈ S), both modules M(EJ , L) and M̃(EJ , L) have A-basis 
(Xw | w ∈ EJ) such that,

TsXw =
{
Xsw if �(sw) > �(w)
Xsw + (qL(s) − q−L(s))Xw if �(sw) < �(w),

where the elements Xw stand for Γw or Γ̃w. If we let Xw = Tw for all w ∈ W , then both 
modules are the regular module H with weight function L. Thus we can recover some 
of Lusztig’s results (for example, see [11, Chs. 5–6, Chs. 10–11]) for the regular case.

6.3. Deodhar’s construction: the parabolic case

Let J be an arbitrary subset of S and L(s) = 1 for all s ∈ S, we can now turning to 
Deodhar’s construction.

Set EJ := DJ , then DJ is a W -graph ideal with respect to J , and also it is a W -graph 
ideal with respect with ∅.

In the latter case we have D∅ = W , if w ∈ EJ then

SA(w) = {s ∈ S|sw > w and sw ∈ DJ},

SD(w) = {s ∈ S|sw < w},

WD∅(w) = {s ∈ S|sw /∈ D∅} = ∅,

WA∅(w) = {s ∈ S|sw ∈ D∅ \DJ} = {s ∈ S|sw = wt for some t ∈ J}.

Let HJ be the Hecke algebra associated with the Coxeter system (WJ , J). Let Mψ =
H ⊗HJ

Aψ, where Aψ is A made into an HJ -module via the homomorphism ψ : HJ → A

that satisfies ψ(Tv) = q�(v) for all v ∈ WJ , it is an A-free with basis B = {bw | w ∈ DJ}
defined by bw = Tw ⊗ 1. This corresponds to MJ in [3] in the case u = q (we note that 
this is denoted by M̃J in [4]).

Let Mφ = H ⊗HJ
Aφ, where Aφ is A made into an HJ -module via the homomorphism 

φ : HJ → A that satisfies φ(Tv) = (−q)−�(v) for all v ∈ WJ , again it is an A-free with 
basis B = {bw | w ∈ DJ} defined by bw = Tw ⊗ 1. This corresponds to MJ in [3] in the 
case u = −1 (this is denoted by MJ in [4]).

Our module M(EJ , L) is now essentially reduced to be the module Mψ, while 
M̃(EJ , L) is reduced to be the module Mφ, the only differences being due to our non-
traditional definition of H .

In the case DJ is a W -graph ideal with respect to J , the discussion is similar with 
the above. For more details see [9, Section 8].
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