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For finitely generated modules M and N over a Gorenstein 
local ring R, one has depth M+depth N = depth(M ⊗R N) +
depthR, i.e., the depth formula holds, if M and N are 
Tor-independent and Tate homology T̂ori(M, N) vanishes for 
all i ∈ Z. We establish the same conclusion under weaker 
hypotheses: if M and N are G-relative Tor-independent, then 
the vanishing of T̂ori(M, N) for all i � 0 is enough for the 
depth formula to hold. We also analyze the depth of tensor 
products of modules and obtain a necessary condition for the 
depth formula in terms of G-relative homology.
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1. Introduction

In this paper, R is a commutative Noetherian local ring with unique maximal ideal m
and residue field k, and R-modules are tacitly assumed to be finitely generated.
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In 1961 Auslander [2, 1.2] proved a natural extension of the classical Auslander–
Buchsbaum formula. He showed that, if M has finite projective dimension (e.g., R is 
regular) and M and N are Tor-independent modules, i.e., TorRi (M, N) = 0 for all i � 1, 
then the following remarkable equality holds:

depthR N = depthR(M ⊗R N) + pdR M. (1)

Notice, for the special case where N = R, equality (1) recovers the Auslander–
Buchsbaum formula, i.e., depthR R = depthR M + pdR M .

In 1994 Huneke and Wiegand established an important consequence of Tor-
independence. They showed equality (1) holds for Tor-independent modules M and N
over complete intersection rings R (even if M does not necessarily have finite projective 
dimension) provided that pdR M is replaced by depthR R − depthR M . More precisely, 
Huneke and Wiegand [16, 2.5] proved that, if R is a complete intersection and M and 
N are Tor-independent modules, then one has:

depthR M + depthR N = depthR R + depthR(M ⊗R N). (2)

The equality in (2) is dubbed the depth formula by Huneke and Wiegand in [15].
The depth formula is an important tool to study depth of tensor products of modules 

as well as that of complexes [18]. For example if M and N are maximal Cohen–Macaulay 
modules (i.e., depthR M = depthR N = dimR) and the depth formula holds, then R
must be Cohen–Macaulay and M ⊗R N is maximal Cohen–Macaulay. In general it is an 
open question, even over Gorenstein rings, whether or not the depth formula holds for 
all Tor-independent modules.

There are quite a few extensions of the aforementioned result of Huneke and Wiegand 
in the literature; see for example [13]. A substantial generalization in this direction is due 
to Christensen and Jorgensen: if M has finite G-dimension in the sense of Auslander and 
Bridger [3] (e.g., R is Gorenstein), then the vanishing of Tate homology T̂orRi (M, N) for 
all i ∈ Z (e.g., M has finite projective dimension) is a sufficient condition for the derived 
depth formula to hold; see [12, 2.3]. Noting that the derived depth formula coincides with 
the depth formula for Tor-independent modules M and N , we observe:

1.1. Theorem. (Christensen and Jorgensen; see [12, 5.3]) Let M and N be R-modules 
such that M has finite G-dimension. Then the depth formula holds, i.e., depthR M +
depthR N = depthR(M ⊗R N) + depthR, provided the following conditions hold.

(i) T̂orRi (M, N) = 0 for all i ∈ Z.
(ii) TorRi (M, N) = 0 for all i � 1.

The main aim of this article is to obtain a new condition that is sufficient for the depth 
formula to hold. A new tool we use is the G-relative homology GTorR∗ (M, N) which has 
been defined and studied by Avramov and Martsinkovsky [7], and Iacob [17]; see 2.3 for 
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the definition of relative homology. We seek to find out how the vanishing of G-relative 
homology relates to depth of tensor products of modules. One of the consequences of our 
main argument, Theorem 2.4, is an extension of Theorem 1.1. More precisely we obtain 
the following result in Corollary 3.6.

1.2. Theorem. Let M and N be R-modules such that M has finite G-dimension. Then 
the depth formula holds provided the following conditions hold.

(i) T̂orRi (M, N) = 0 for all i � 0.
(ii) GTorRi (M, N) = 0 for all i � 1.

Let us remark that the hypotheses of Theorem 1.2 are in general weaker than those 
of Theorem 1.1: Jorgensen and Şega [20, 4.1] constructed modules M and N with 
T̂orRi (M, N) = 0 for all i � 0, GTorRi (M, N) = 0 for all i � 1 and T̂orRi (M, N) �= 0
for all i � 2; see Example 3.4. Moreover relative homology vanishes more frequently 
than absolute homology. For example, if M is totally reflexive, i.e., M has G-dimension 
zero, then GTorRi (M, N) = 0 for all i � 1; see 2.3. In particular this establishes, by 
Theorem 1.2, if M is totally reflexive and T̂orRi (M, N) = 0 for all i � 0, then the depth 
formula holds, i.e., in this setting, depthR N = depthR(M ⊗R N).

We record preliminary results in section 2 and give a proof of Theorem 1.2 in 
section 3; see Corollary 3.1. Section 3 is also devoted to other applications of our ar-
gument. For example we analyze the depth of G-relative homology modules and obtain 
a necessary condition for the depth formula to hold; see Theorem 3.10. As another 
application, we obtain a class of rings over which absolute homology and G-relative 
homology behave differently. This leads us to the content of the next result; see also 
Corollary 3.15.

1.3. Proposition. Assume R is a two-dimensional Gorenstein normal local domain. If I
is an ideal of R, then GTorRi (I, I) = 0 for all i � 1. In particular, if R is not regular, 
then GTorRi (m, m) = 0 �= TorRi (m, m) for all i � 1.

2. A G-relative derived depth formula

We start by recalling several definitions and terminology from [3,7,17]. Throughout 
we use homological notation for complexes of R-modules.

2.1. We say that a complex is acyclic if it has zero homology. A morphism of complexes 
that induces an isomorphism in homology is marked by the symbol ‘�’.

The soft truncation below at n of a complex T , denoted by T⊃n, is the complex defined 
as
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(T⊃n)i =

⎧⎪⎪⎨⎪⎪⎩
Ti for i > n ,

Ker(Tn → Tn−1) for i = n ,

0 for i < n .

The depth of a complex T of R-modules is defined as:

depthR T = inf{i ∈ Z | H−i(RHomR(k, T )) �= 0}.

Here k is the residue field of R, and the derived Hom complex, RHomR(k, T ), can be 
computed by using a DG-injective resolution T �−−→ I in the sense of [5]. We note that 
depthR 0 = ∞.

2.2. (Tate homology). An acyclic complex T of free R-modules is called totally acyclic
if the dual complex HomR(T, R) is acyclic. An R-module G is called totally reflexive if 
there exists such a totally acyclic complex T with G ∼= Coker(T1 → T0).

The G-dimension of an R-module M , written G-dimR M , is the minimal length 
of a resolution of M by totally reflexive modules (for the zero-module it is −∞). If 
G-dimR M < ∞, then one has the Auslander–Bridger formula; see [3, 4.13(b)].

G-dimR M + depthR M = depthR

A complete resolution of an R-module M is a diagram

T
τ−−→ P

�−−→ M,

where P �−−→ M is a projective resolution, T is a totally acyclic complex of free 
R-modules, and τi is an isomorphism for i 	 0. An R-module has finite G-dimension if 
and only if it has a complete resolution; moreover, if a module has a complete resolution, 
then it has one with τ surjective; see [7, 3.1].

Let M be an R-module with a complete resolution T → P → M . For an R-module N , 
Tate homology of M and N is defined as

T̂orRi (M,N) = Hi(T ⊗R N) for i ∈ Z .

2.3. (Relative homology). A sequence η of R-modules is called G-proper if the induced 
sequence HomR(G, η) is exact for every totally reflexive R-module G.

A G-proper resolution of an R-module M is a resolution L �−−→ M by totally reflexive 
R-modules such that the augmented resolution L+ is a G-proper sequence. Every module 
of finite G-dimension has a G-proper resolution L �−−→ M , even one with Li projective 
for all i > 0 and Li = 0 for i > G-dimR(M); see [7, 3.1].

Let M be an R-module with a G-proper resolution L �−−→ M . Any two G-proper 
resolutions of M are homotopy equivalent; see [7, 4.3]. For an R-module N , we set
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M ⊗GL
R N = L⊗R N.

Note that M ⊗GL
R N is unique up to isomorphism in the derived category over R. The 

G-relative homology of M and N is defined as

GTorRi (M,N) = Hi(M ⊗GL
R N) for i ∈ Z.

The following facts will be used several times:

(i) Assume G-dimR(M) < ∞. Then GTorRi (M, N) = 0 for all i > G-dimR(M). Further-
more, if GTorRi (M, N) = 0 for all i � 1, then M ⊗GL

R N � M ⊗R N .
(ii) If pdR(M) < ∞, then GTorRi (M, N) ∼= TorRi (M, N) for all i ≥ 0.

2.4. Theorem. Let M be an R-module of finite G-dimension. For every R-module N with 
T̂orRi (M, N) = 0 for all i � 0, there is an equality

depthR M + depthR N = depthR + depthR(M ⊗GL
R N).

Proof. We can assume that M is non-zero, otherwise both sides of the equality are ∞. 
Choose a complete resolution T τ−−→ P

�−−→ M with τ surjective, and set K = Ker τ . 
The exact sequence 0 → K → T → P → 0 is degree-wise split, and so the next sequence 
is exact as well,

0 −→ K ⊗R N −→ T ⊗R N −→ P ⊗R N −→ 0.

There is a degree-wise split exact sequence 0 → Σ−1L → T⊃−1 → P → 0 such that 
L �−−→ M is a G-proper resolution; see [7, 3.8]. Consider the exact sequence

0 −→ Σ−1L⊗R N −→ T⊃−1 ⊗R N −→ P ⊗R N −→ 0.

The assumption that T̂orRi (M, N) vanishes for all i � 0 ensures that the embedding 
T⊃−1 ⊗R N → T ⊗R N is a quasi-isomorphism. Consider the following commutative 
diagram with exact rows:

0 Σ−1L⊗R N T⊃−1 ⊗R N

�

P ⊗R N 0

0 K ⊗R N T ⊗R N P ⊗R N 0

It yields a quasi-isomorphism Σ−1L⊗R N → K ⊗R N . Let N �−−→ I be an injective 
resolution; the induced morphism ΣK ⊗R N → ΣK ⊗R I is a quasi-isomorphism, as K
is a complex of projective modules; see [10, 2.14]. As K is a bounded above, ΣK ⊗R I

is a bounded above complex of injective modules. Hence the composite
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L⊗R N
�−−→ ΣK ⊗R N

�−−→ ΣK ⊗R I

is a DG-injective resolution, so one has

depthR(M ⊗GL
R N) = inf{i ∈ Z | H−i(HomR(k,ΣK ⊗R I)) �= 0} .

The first isomorphism below follows from [12, 1.1], and the second uses that the R-action 
on HomR(k, I) factors through k,

HomR(k,ΣK ⊗R I) ∼= HomR(k, I) ⊗R ΣK ∼= HomR(k, I) ⊗k (k ⊗R ΣK) .

Now the Künneth formula and the definition of depth yield

depthR(M ⊗GL
R N) = depthR N + inf{i | H−i(k ⊗R ΣK) �= 0} .

For N = R, the equality reads depthR M = depthR + inf{i | H−i(k ⊗R ΣK) �= 0}, and 
the desired equality follows. �
3. Applications of Theorem 2.4

We give three main applications of Theorem 2.4. The first one is Theorem 1.2, which 
we advertised in the introduction; see Corollary 3.1. Our second application is a necessary 
condition for the depth formula in terms of the vanishing of G-relative homology; see The-
orem 3.10. This application, in particular, gives a class of rings over which GTorRi (I, I)
vanishes for all ideals I and for all positive integers i; see Corollary 3.15. As a final ap-
plication of Theorem 2.4, in Corollary 3.18, we prove a G-relative version of Jorgensen’s 
dependency formula [19, 2.2].

A proof of Theorem 1.2. The next corollary is advertised as Theorem 1.2 in the intro-
duction.

3.1. Corollary. Let M and N be R-modules. Assume M has finite G-dimension. Then the 
depth formula holds provided the following:

(i) T̂orRi (M, N) = 0 for all i � 0.
(ii) GTorRi (M, N) = 0 for all i � 1.

Proof. Since GTorRi (M, N) = 0 for all i � 1, one has M ⊗GL
R N � M ⊗R N ; see 2.3(i) 

Hence it follows from Theorem 2.4 that the depth formula holds. �
Recall that, if M is totally reflexive, then GTorRi (M, N) = 0 for all i � 1. So one has 

the following special case of Corollary 3.1:
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3.2. Corollary. Let M be a totally reflexive R-module. If N is an R-module such that 
T̂orRi (M, N) = 0 for all i � 0, then depthR N = depthR(M ⊗R N).

We give an example to show that the assumption of vanishing of all negative Tate 
homology in Corollary 3.2 cannot be removed in general.

3.3. Example. Let R = C[[x, y] ]/(xy), M = R/(x) and N = R/(y). Then M is totally 
reflexive and depthR N = 1 �= 0 = depthR(M ⊗R N). Note one has T̂orRi (M, N) ∼= k for 
all even and negative integers i.

The next example shows the vanishing of negative and positive Tate homology are two 
distinct conditions in general. In particular it points out that there are settings for which 
Theorem 1.2 applies while the result of Christensen and Jorgensen, namely Theorem 1.1, 
does not.

3.4. Example. It follows from a result of Jorgensen and Şega [20, 4.1] that there exists an 
artinian Gorenstein local ring R and finitely generated R-modules M and N such that

T̂orRi (M,N)
{

= 0 for i > 0
�= 0 for i < 0.

Let T → P → M be a complete resolution of M . Applying (−)∗ = HomR(−, R), one 
obtains:

(T ⊗R N)∗ ∼= HomR(T,N∗) ∼= HomR(HomR(T ∗, R), N∗) ∼= T ∗ ⊗R N∗. (3.4.1)

The first and the third isomorphisms of (3.4.1) follow from the adjointness and the Hom 
evaluation, respectively; see [8, II.5.2 and VI.5.2]. On the other hand the second isomor-
phism in (3.4.1) holds since T is a complex of finitely generated projective R-modules. 
Now set Y = N∗ and let X be the Auslander transpose of M , i.e., X = Coker(T ∗

0 → T ∗
1 ). 

In view of (3.4.1), for all i ∈ Z, one has the following isomorphisms:

Hi(T ∗ ⊗R N∗) ∼= Hi((T ⊗R N)∗) ∼= (H−i(T ⊗R N))∗ ∼= T̂orR−i(M,N)∗. (3.4.2)

Consequently one deduces from (3.4.2) that:

T̂orRi (X,Y ) = Hi−1(T ∗ ⊗R N∗) ∼= T̂orR−i+1(M,N)∗ =
{
�= 0 for i > 1
= 0 for i < 1.

One can obtain a slightly modified version of Corollary 3.1 in case T̂orRi (M, N) van-
ishes for all i � G-dimR(M). To establish this we need a result of Iacob [17], who showed 
absolute, relative, and Tate homology fit together in an exact sequence.
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3.5. (Iacob [17, thm. 1]) Let M be an R-module of finite G-dimension. For every 
R-module N there is an exact sequence:

· · · −→ GTorR2 (M,N) −→ T̂orR1 (M,N) −→ TorR1 (M,N) −→ GTorR1 (M,N) −→ 0.

3.6. Corollary. Let M and N be R-modules. Assume M has finite G-dimension g. Assume 
further the following conditions hold:

(i) T̂orRi (M, N) = 0 for all i � g.
(ii) If g � 1, assume TorRi (M, N) = 0 for all i = 1, . . . , g.

Then depthR M + depthR N = depthR + depthR(M ⊗R N).

Proof. The case where g = 0 is Corollary 3.2. Hence assume g � 1. Since T̂orRi (M, N) = 0
for all i � g, it follows from 3.5 that GTorRi (M, N) ∼= TorRi (M, N) for all i = 1, . . . , g. 
Therefore, by the hypothesis, one has GTorRi (M, N) = 0 for all i = 1, . . . , g. This shows 
GTorRi (M, N) = 0 for all i � 1, and result follows from Corollary 3.1. �

In passing we record a different proof of Corollary 3.6 that does not make use of our 
results:

An alternative proof of Corollary 3.6: We argue by induction on g. Assume g = 0. 
Then G-dimR(TrM) = 0, where TrM is the (Auslander’s) transpose of M . The following 
isomorphisms hold for all i � 0; see [4, 4.4.7].

T̂orRi (M,N) ∼= Êxt
−i−1
R (M∗, N)

∼= Êxt
−i+1
R (TrM,N)

∼= Ext−i+1
R (TrM,N).

(3.6.1)

By [3, 2.6], there is an exact sequence of the form:

Ext1R(TrM,N) ↪→ M ⊗R N −→ HomR(M∗, N) � Ext2R(TrM,N) (3.6.2)

In view of the hypothesis, it follows from (3.6.1) and (3.6.2) that there exists an iso-
morphism M ⊗R N ∼= HomR(M∗, N) and ExtiR(M∗, N) = 0 for all i � 1. Hence the 
assertion follows from [1, 4.1] and the Auslander–Bridger formula.

Next assume g � 1. There is an exact sequence of the form:

0 −→ M −→ P −→ X −→ 0 (3.6.3)

where G-dimR(X) = 0 and pdR(P ) = G-dimR(M) = g < ∞; see [11, 3.3]. There-
fore depthR P = depthR M . Moreover, since T̂orRi (P, N) = 0 for all i ∈ Z, it follows 
from (3.6.3) that T̂orRi (M, N) ∼= T̂orRi+1(X, N) for all i ∈ Z. This implies T̂orRi (X, N) = 0
for all i � g. So, by the case where g = 0, we conclude depthR N = depthR(X ⊗R N). 
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Furthermore, as T̂orRi (X, N) ∼= TorRi (X, N) for all i � 1, we have TorRi (X, N) = 0 for 
all i = 1, . . . , g. Thus it follows from (3.6.3) that TorRi (P, N) = 0 for all i � 1, and the 
next equality holds; see [2, 1.2] (or 3.9).

depthR P + depthR N = depthR + depthR(P ⊗R N). (3.6.4)

It now suffices to see depthR(P ⊗RN) = depthR(M⊗RN). The sequence (3.6.3) induces 
the exact sequence:

0 −→ M ⊗R N −→ P ⊗R N −→ X ⊗R N −→ 0. (3.6.5)

We have depthR(P⊗RN) = depthR N−pdR(P ) by (3.6.4). This shows that depthR(P⊗R

N) < depthR(N) = depthR(X ⊗R N). Using the depth lemma with (3.6.5), we see 
depthR(P ⊗R N) = depthR(M ⊗R N).

A necessary condition for the depth formula. Necessary conditions for the depth formula 
via the vanishing of absolute homology have been studied previously; see [9, 1.2]. In The-
orem 3.10 we obtain such a necessary condition that makes use of G-relative homology. 
As a consequence, we prove in Corollary 3.15 that G-relative homology of proper ideals 
vanishes diametrically opposed to absolute homology over two dimensional Gorenstein 
normal domains. First we record some preliminaries.

3.7. (Avramov and Martsinkovsky [7]) Let 0 → M ′ → M → M ′′ → 0 be a G-proper 
sequence of R-modules of finite G-dimension. For every R-module N there is an exact 
sequence:

· · · → GTorRi+1(M ′′, N) → GTorRi (M ′, N) → GTorRi (M,N) → GTorRi (M ′′, N) →

· · · → GTorR1 (M ′′, N) → M ′ ⊗R N → M ⊗R N → M ′′ ⊗R N → 0.

3.8. Remark. Assume M is an R-module of finite G-dimension. It follows from [7, 3.1]
and [7, 4.1] that there is a G-proper exact sequence

0 → L → X → M → 0, (3.8.1)

where pdR(L) < ∞ and G-dimR(X) = 0, i.e., X is totally reflexive. Hence 3.7 and (3.8.1)
yield the long exact sequence:

· · · → GTorRi (L,N) → GTorRi (X,N) → GTorRi (M,N) → · · · . (3.8.2)

Note that GTorRi (X, N) = 0 and TorRi (L, N) ∼= GTorRi (L, N) for all i � 1; see 2.3(i,ii). 
Therefore, by (3.8.2), the following isomorphisms hold:

TorRi (L,N) ∼= GTorRi (L,N) ∼= GTorRi+1(M,N) for all i � 1, (3.8.3)
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and we have the following exact sequence:

0 → GTorR1 (M,N) → L⊗R N → X ⊗R N → M ⊗R N → 0. � (3.8.4)

3.9. (Auslander [2, 1.2]) Let M and N be R-modules such that M has finite projective 
dimension. Set q = sup{i | TorRi (M, N) �= 0}. If depthR TorRq (M, N) ≤ 1 or q = 0, then 
the following equality holds:

depthR M + depthR N = depthR + depthR TorRq (M,N) − q.

3.10. Theorem. Let M and N be R-modules such that M has finite G-dimension. Assume 
that the following conditions hold:

(i) depthR GTorRi (M, N) ∈ {0, ∞} for all i � 1.
(ii) depthR M + depthR N = depthR + depthR(M ⊗R N).

Then GTorRi (M, N) = 0 for all i � 1.

Proof. Set g = G-dimR(M). There is nothing to prove if g = 0 so we may assume g � 1; 
see 2.3(i). It follows from the depth lemma and (3.8.1) that g = pdR L + 1. Also note, 
by (ii), one has:

g − depthR N = − depthR(M ⊗R N). (3.10.1)

We will first prove GTorRi (M, N) = 0 for all i � 2. Consequently, if g = 1, there is 
nothing to prove. Hence assume g � 2.

Set w = sup{i ∈ Z | TorRi (L, N) �= 0} and suppose w �= 0. As w � pdR L = g − 1 and 
TorRw(L, N) ∼= GTorRw+1(M, N), one has from (i) that depthR TorRw(L, N) = 0. Now 3.9
applied to the pair (L, N) yields:

w = pdR L− depthR N = g − depthR N − 1. (3.10.2)

Now (3.10.1) and (3.10.2) give w = − depthR(M ⊗R N) − 1 < 0, i.e., a contradiction. So 
w = 0 and hence GTorRi (M, N) = 0 for all i � 2 by (3.8.3).

Next we will prove GTorR1 (M, N) = 0. Suppose GTorR1 (M, N) �= 0. Note, by (i), 
one has depthR GTorR1 (M, N) = 0. Thus one concludes from (3.8.4) that depthR(L ⊗R

N) = 0. As w = 0, the pair (L, N) satisfies the depth formula of 3.9, and this yields 
depthR N = pdR L = g − 1, i.e., depthR N − g = −1. Therefore, by (3.10.1), one has 
depthR(M ⊗R N) = −1, i.e., a contradiction. Consequently GTorR1 (M, N) must vanish 
and this finishes the proof. �

The following is an immediate consequence of Theorem 3.10.
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3.11. Corollary. Let M and N be nonzero R-modules such that the depth formula holds, 
i.e., depthR M+depthR N = depthR+depthR(M ⊗R N). If M has finite G-dimension g

and GTorRi (M, N) has finite length for all i = 1, . . . , g, then GTorRi (M, N) = 0 for all 
i � 1.

We note next that G-relative homology localizes. This allows us to give another nec-
essary condition for the depth formula; see Corollary 3.13.

3.12. Remark. Let M be an R-module of finite G-dimension and let N be an R-module. 
Then GTorRi (M, N)p ∼= GTorRp

i (Mp, Np) for all primes p and all i ∈ Z. To see this, let p be 
a prime ideal that is in the support of M and N . Let L �−−→ M be a G-proper resolution 
of M such that Li is projective for all i � 1 and Li = 0 for all i 	 0. For all i � 1, the 
syzygy Coker((Li+1)p → (Li)p) is a module of finite projective dimension, so that Lp

�−−→
Mp is a G-proper resolution of Mp by [10, 2.1]. The localization isomorphism for G-relative 
homology now follows from the standard isomorphism (L⊗R N)p ∼= Lp ⊗Rp

Np.

3.13. Corollary. Let M and N be R-modules such that M has finite G-dimension. Assume 
Mp is a totally reflexive Rp-module for all prime ideals p �= m. If the depth formula holds, 
i.e., depthR M + depthR N = depthR+ depthR(M ⊗R N), then GTorRi (M, N) = 0 for 
all i � 1.

Proof. For each prime ideal p �= m, we have GTorRi (M, N)p ∼= GTorRp

i (Mp, Np) = 0
for all i � 1; see 2.3. Therefore depthR GTorRi (M, N) ∈ {0, ∞} for all i � 1. Hence the 
result follows from Theorem 3.10. �

The torsion submodule �RM of an R-module M is the kernel of the natural homo-
morphism M → Q(R) ⊗R M , where Q(R) is the total quotient ring of R. M is said to 
have torsion if �RM �= 0, and said to be torsion-free if �RM = 0.

3.14. Theorem. Let R be a two-dimensional Gorenstein normal local domain. If I and J
are ideals of R, and I ⊗R J has torsion, then GTorRi (I, J) = 0 for all i � 1.

Proof. One may assume I is nonzero. Notice that R has positive depth, so one has 
depthR I � 1. If depthR I = 2, then I is totally reflexive, and GTorRi (I, J) = 0 for all 
i � 1; see 2.3. Thus one may assume depthR I = 1. Similarly one may also assume J is 
a nonzero ideal of depth one.

Notice, by Remark 3.12, GTorRi (I, J) has finite length for all i � 1. Hence, to establish 
the required conclusion, it suffices to prove, by Theorem 3.10, that the depth formula 
for (I, J) holds, i.e., it suffices to prove depthR(I ⊗R J) = 0.

Set T = I ⊗R J and suppose depthR T �= 0. For a prime ideal p of R that has 
height one, Ip and Jp are maximal Cohen–Macaulay modules over the regular ring Rp, 
and hence both Ip and Jp are free. Thus one has depthRp

Tp ≥ min{1, dimRp} for all 
prime ideals p of R. Now let x be a non-zero divisor on R. Suppose x is contained in 
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the set of zero-divisors of T . Then x ∈ q for some associated prime q of T , and hence 
0 = depthRq

Tq ≥ min{1, dimRq}. This shows q is a minimal prime ideal of R and yields 
a contradiction since q contains a non-zero divisor. So x is a non-zero divisor on T . In 
other words T is torsion-free. This gives a contradiction to our assumption that T has 
torsion. Therefore depthR T = 0. �

Tensor products of finitely generated nonzero modules tend to have torsion in general. 
Therefore – thanks to Proposition 3.14 – examples of ideals I and J for which GTorR∗ (I, J)
vanish are abundant. In particular one has:

3.15. Corollary. Let R be a two-dimensional Gorenstein normal local domain. If I is an 
ideal of R, then GTorRi (I, I) = 0 for all i � 1. In particular, if R is not regular, one has 
GTorRi (m, m) = 0 �= TorRi (m, m) for all i � 1.

Proof. One may assume I �= 0. If I ⊗R I is torsion-free, then I ⊗R I ∼= I2 so, by counting 
the minimal number of generators of I, one can see that I must be principal, i.e., I ∼= R; 
see [16, page 467]. Thus one may assume I ⊗R I has torsion. In that case the result 
follows from Theorem 3.14. �

Corollary 3.15 can be used to show GTorR∗ (I, I) = 0 �= TorR∗ (I, I) for some nonmaximal 
ideals I. We give such an example next.

3.16. Example. Let R = C[[x, y, z] ]/(xy−z2) and let I = (x, z) be the ideal of R generated 
by x and z. Note R is a two-dimensional Gorenstein normal local domain that is not 
regular, so one has GTorRi (I, I) = 0 for all i � 1; see Corollary 3.15. If TorRn (I, I) = 0 for 
some nonnegative integer n, then TorRi (I, I) = 0 for all i � n, and this forces I to have 
finite projective dimension; see [16, 5.1] and [15, 1.9]. However R/I ∼= C[[y] ], and hence 
depthR R/I = 1 and depthR I = 2, i.e., I is maximal Cohen–Macaulay. Therefore I does 
not have finite projective dimension, and so TorRi (I, I) �= 0 for all i � 0.

On Jorgensen’s dependency formula. Let M be an R-module that has finite complete 
intersection dimension [6] (e.g., R is a complete intersection ring). If N is an R-module 
with TorRi (M, N) = 0 for all i 	 0 and q = sup{i | TorRi (M, N) �= 0}, Jorgensen [19, 
2.2] proved an equality, which he referred to as the dependency formula:

q = sup{depthRp − depthRp
Mp − depthRp

Np | p ∈ Supp(M) ∩ Supp(N)}.

Our final application of Theorem 2.4 is a G-relative version of Jorgensen’s dependency 
formula, which we reach in Corollary 3.18.

3.17. Corollary. Let M be an R-module of finite G-dimension and let N be an R-module 
with T̂orRi (M, N) = 0 for all i � 0. Set s = sup{i | GTorRi (M, N) �= 0}. Then the 
following conditions hold:
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(i) depthR M + depthR N � depthR− s.
(ii) depthR M + depthR N = depthR− s if and only if depthR GTorRs (M, N) = 0.
(iii) If s = 0 or depthR GTorRs (M, N) � 1, then one has

depthR M + depthR N = depthR + depthR GTorRs (M,N) − s.

Proof. By the definition of depth and [5, rmk. 1.7.(2)] one has

depthR(M ⊗GL
R N) ≥ inf{i | H−i(M ⊗GL

R N) �= 0} = −s ,

so (i) follows from Theorem 2.4. By noting GTorRs (M, N) = Hs(M ⊗GL
R N), one can see 

that (ii) follows from [14, 1.5.(3)].
Finally if s = 0 or depthR GTorRs (M, N) � 1, then one has

depthR GTorRs (M,N) − s � depthR GTorRi (M,N) − i, for all i � s,

and the formula in (iii) follows from Theorem 2.4 and [18, thm. 2.3]. �
3.18. Corollary. Let M and N be R-modules such that M has finite G-dimension. Set 
m = sup{depthRp − depthRp

Mp − depthRp
Np | p ∈ Supp(M) ∩ Supp(N)} and s =

sup{i | GTorRi (M, N) �= 0}. Then s ≤ m. If furthermore, T̂orRi (M, N) = 0 for all i � 0, 
then s = m.

Proof. There is nothing to prove if G-dimR(M) = 0. So assume s � 1 and 
G-dimR(M) � 1. Let p ∈ AssR(GTorRs (M, N)). Then it follows from (3.8.3) and (3.8.4)
that p ∈ AssR(TorRs−1(L, N)), sup{i | TorRi (L, N) �= 0} = s − 1 and G-dimR(Mp) � 1. 
Using Theorem 3.9 for the pair (Lp, Np), one has

depthRp
Lp + depthRp

Np = depthRp − (s− 1) = depthRp − s + 1. (3.18.1)

Localizing (3.8.1) at p, and noting depthRp
Xp = depthRp > depthRp

Mp, one concludes 
by the depth lemma that depthRp

Lp = depthRp
Mp + 1. Using this equality in (3.18.1), 

one obtains s = depthRp − depthRp
Mp − depthRp

Np. This shows s � m. Now assume 

T̂orRi (M, N) = 0 for all i � 0. Then it follows T̂orRp

i (Mp, Np) = 0 for all prime ideals p
of R, and for all i � 0. This gives, by Remark 3.12 and Corollary 3.17, that

s � sup{i | GTorRp

i (Mp, Np) �= 0} � depthRp − depthRp
Mp − depthRp

Np.

Therefore s � m, and hence s = m holds. �
We do not know whether or not the vanishing of negative Tate homology in Corol-

lary 3.18 is necessary. Hence it seems worth posing the next question.
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3.19. Question. Let M and N be R-modules such that M has finite G-dimension. Set 
m = sup{depthRp − depthRp

Mp − depthRp
Np | p ∈ Supp(M) ∩ Supp(N)} and s =

sup{i | GTorRi (M, N) �= 0}. Then must one have s = m?
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