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Let R = k[x1, . . . , xn] be a polynomial ring over a prefect 
field of positive characteristic. Let I be an equi-dimensional 
ideal in R and let J be a generic link of I in S = R[uij ]c×r. 
We describe the parameter test submodule of S/J in terms 
of the test ideal of the pair (R, I) when a reduction of I
is a complete intersection or almost complete intersection. 
As an application, we deduce a criterion for when S/J has 
F -rational singularities in these cases. We also compare the 
F -pure threshold of (R, I) and (S, J).
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1. Introduction

Let R = k[x1, . . . , xn] be a polynomial ring over a field of positive characteristic. Let 
I = (f1, . . . , fr) be an equi-dimensional ideal in R of height c, where equi-dimensional 
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means that all associated primes of I have the same height [15]. We can define a regular 
sequence g1, . . . , gc in S = R[uij ]c×r via gi := ui1f1 + · · · + uirfr, where the uij are 
variables over S. Then J = (g1, . . . , gc) : I is called a generic link of I in S = R[uij ]. The 
study of generic linkage has attracted considerable attention and has been developed 
widely from both algebraic and geometric points of view [11], [12], [4], [5], [16].

In contrast to the quick and deep development of singularity theories in the past 
decades, much less has been known about the behaviors of singularities under generic 
linkage. A special case is a result of Chardin and Ulrich [4] which says that if R/I is 
a complete intersection and has rational (resp. F -rational) singularities, then a generic 
link S/J also has rational (resp. F -rational singularities). This result in characteristic 
zero has been vastly extended in recent work of Niu [16], which is our main motivation 
for this research.

Theorem 1.1 (Theorem 1.1 in [16]). Let J be a generic link of a reduced and equidimen-
sional ideal I in S = R[uij ] and assume that the characteristic of k is 0. We have

(1) ωGR
S/J

∼= J (R, Ic) · (S/J), where ωGR
S/J denotes the Grauert–Riemenschneider canon-

ical sheaf of S/J and J (R, Ic) denotes the multiplier ideal of the pair (R, Ic),
(2) lct(S, J) ≥ lct(R, I). In particular, if the pair (R, Ic) is log canonical, then the pair 

(S, Jc) is also log canonical.

This result gives a nice criterion for a generic link to have rational singularities in 
characteristic 0. It also has applications to bounding the Castelnuovo–Mumford regu-
larity of projective varieties [16, Corollary 1.2]. Since test ideals and F -pure thresholds 
are characteristic p analogues of multiplier ideals and log canonical thresholds (cf. [2]
and [13]), it is natural to ask whether analogues of Theorem 1.1 hold for test ideals and 
F -pure thresholds. Our main result is the following, which partially extends Theorem 1.1
to characteristic p and generalizes [4, Theorem 3.13] in characteristic p.

Theorem 1.2 (Theorem 3.3, Corollary 4.4). Let J be a generic link of an equi-dimensional 
ideal I in S = R[uij ] and assume the characteristic of k is p > 0.

(1) Suppose I is reduced and that a reduction of I is a complete intersection or an almost 
complete intersection. Then τ(ωS/J) ∼= τ(R, Ic) · (S/J), where τ(ωS/J) denotes the 
parameter test submodule and τ(R, Ic) denotes the test ideal of the pair (R, Ic).

(2) Suppose that a reduction of I is a complete intersection. Then fptS(J) ≥ fptR(I). 
In particular, if the pair (R, Ic) is F -pure, then the pair (S, Jc) is also F -pure.

This paper is organized as follows: in Section 2 we recall and prove some basic result 
for F -singularities and test ideals; in Section 3 we give a description of the parameter 
test submodule of S/J in terms of the test ideal of the pair (R, I), when a reduction of 
I is a complete intersection or an almost complete intersection. This generalizes earlier 



196 L. Ma et al. / Journal of Algebra 505 (2018) 194–210
results in [4]. In Section 4 we compare the F -pure threshold of the pairs (S, J) and (R, I)
when a reduction of I is a complete intersection.
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2. F -singularities and test ideals

In this section we collect some basic definitions of F -singularities and test ideals and 
prove a characteristic p > 0 analogue of Ein’s Lemma in [16], which will be used in later 
sections.

Let R be a Noetherian commutative ring of characteristic p > 0. We will use F e
∗R to 

denote the target of the e-th Frobenius endomorphism F e : R r �→rp
e

−−−−→ R, i.e. F e
∗R is an 

R-bimodule, which is the same as R as an abelian group and as a right R-module, that ac-
quires its left R-module structure via the e-th Frobenius endomorphism F e : R r �→rp

e

−−−−→ R. 
When R is reduced, we will use R1/pe to denote the ring whose elements are pe-th roots 
of elements of R. Note that these notations (when R is reduced) F e

∗R and R1/pe are 
used interchangeably in the literature; we will do so in this paper as well assuming no 
confusion will arise.

Remark 2.1. If R is a commutative ring essentially of finite type over a perfect field 
of characteristic p > 0, then R admits a canonical module denoted by ωR. Applying 
HomR(−, ωR) to the e-th Frobenius R → F e

∗R produces an R-linear map

HomR(F e
∗R,ωR) → HomR(R,ωR) = ωR.

Moreover, we have F e
∗ωR

∼= HomR(F e
∗R, ωR) (see [2, Example 2.4] for more details). 

Hence we have a natural R-linear map:

Φe
R : F e

∗ωR
∼= HomR(F e

∗R,ωR) → HomR(R,ωR) = ωR

called the trace map of the e-th Frobenius.
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Example 2.2. When R = k[x1, . . . , xn] is a polynomial ring over a perfect field k of 
characteristic p > 0, we can identify ωR with R, and Φe

R can be identified with the usual 
trace TreR, that is:

TreR(F e
∗ (xi1

1 xi2
2 · · ·xin

n ))

=

⎧⎨
⎩x

i1−(pe−1)
pe

1 x
i2−(pe−1)

pe

2 · · ·x
in−(pe−1)

pe

n , if it−(pe−1)
pe ∈ Z for each t

0, otherwise

In this case HomR(F e
∗R, R) is a cyclic F e

∗R-module generated by TreR. Furthermore, if 
f1, . . . , fc is a regular sequence in R and T = R/(f1, . . . , fc), then we have ([6, Corollary 
on page 465]1)

Φe
T (F e

∗ (−)) = image of TreR(F e
∗ (fpe−1

1 · · · fpe−1
c · −)) in T .

Remark 2.3. Let R = k[x1, . . . , xn] be a polynomial ring over a field k of characteristic 
p > 0 and A = R[y1, . . . , ym] be a polynomial ring over R. For each ideal I in R, it is 
well known and straightforward to check that

TreR(F e
∗ (I))A = TreA(F e

∗ (IA)).

Lemma 2.4. Let S → R be a surjection of Noetherian commutative rings of character-
istic p. Assume that both S and R admit canonical module ωS and ωR respectively and 
dimS = dimR. Then

Φe
R = Φe

S |ωR
.

Proof. Under our assumptions, we have ωR = HomS(R, ωS) and the surjection S → R

induces an inclusion ωR = HomS(R, ωS) ↪→ ωS . Consider the following diagram

HomR(F e
∗R,HomS(R,ωS)) HomR(R,HomS(R,ωS)) ∼ HomS(R,ωS)

HomS(F e
∗S, ωS) HomS(S, ωS) ∼

ωS

Note that the top row (resp. the bottom row) induces the trace map Φe
R (resp. Φe

S). To 
prove our lemma, it suffices to prove

1 Fedder’s result [6, Corollary on page 465] assumes that the ring R is a Gorenstein local ring only to 
ensure that HomR(F∗R, R) ∼= F∗R. In our case, R = k[x1, . . . , xn] is a polynomial ring, so HomR(F∗R, R)
is clearly isomorphic to F∗R. Hence Fedder’s result applies in our case.
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(a) the vertical map on the left is an inclusion, and
(b) the diagram commutes.

To prove (a), note that the vertical map on the left can be refined further as

HomR(F e
∗R,HomS(R,ωS)) = HomS(F e

∗R,HomS(R,ωS))

↪→ HomS(F e
∗S,HomS(R,ωS)) since F e

∗S � F e
∗R

↪→ HomS(F e
∗S, ωS) since HomS(R,ωS) ↪→ ωS

To prove (b), note that the commutativity follows directly from the commutativity of

S F e
∗S

R F e
∗R

�

Definition 2.5 (cf. Definition 3.1 in [8] and Definition 2.33 in [2]). Let R be an F -finite 
Noetherian integral domain of characteristic p. The parameter test submodule τ(ωR) is 
the unique smallest nonzero submodule M of ωR such that ΦR(F∗M) ⊆ M . R is called 
F -rational if R is Cohen–Macaulay and τ(ωR) = ωR. Note that this is not the original 
definition of F -rationality, but is known to be equivalent [18].

Definition 2.6 (cf. Definition 3.16 and Theorem 3.18 in [17]). Let R be an F -finite 
Noetherian integral domain of characteristic p. Let I ⊆ R be a nonzero ideal and t ∈ Q≥0. 
We define the test ideal τ(R, It), abbreviated τ(It), to be the unique smallest nonzero 
ideal J ⊆ R such that φ(F e

∗ (I�t(pe−1)�J)) ⊆ J for all e > 0 and all φ ∈ HomR(F e
∗R, R).

Definition 2.7 (cf. Definitions 1.3 and 2.1 and Proposition 2.2 in [21]). Let R be an 
F -finite, local, Noetherian, integral domain of characteristic p. Let I ⊂ R be an ideal 
and t ≥ 0 be a real number.

(1) The pair (R, It) is F -pure if for all large e � 0, there exists an element d ∈ I	t(p
e−1)


such that (F e
∗ d)R ↪→ F e

∗R splits as an R-module homomorphism.
(2) The pair (R, It) is strongly F -regular if for every c 	= 0 there exists e ≥ 0 and 

d ∈ I�tp
e� such that F e

∗ (cd)R ↪→ F e
∗R splits as an R-module homomorphism.

(3) The F -pure threshold fptR(I) of (R, I) is sup{s ∈ R≥0| the pair (R, Is) is F -pure}, 
and when R is strongly F -regular, we also have fptR(I) = sup{s ∈ R≥0| the pair
(R, Is) is strongly F -regular}.

Remark 2.8. Note that when R is local, (R, It) is strongly F -regular if and only if 
τ(It) = R. Indeed, suppose (R, It) is strongly F -regular. Pick a nonzero element c ∈ J



L. Ma et al. / Journal of Algebra 505 (2018) 194–210 199
and take e � 0 and d ∈ I�tp
e� satisfying the conditions of strong F -regularity for c, and 

let φ : F e
∗R → R be a map such that φ(F e

∗ (cd)) = 1. Then

φ(F e
∗ (I�t(p

e−1)�J)) ⊇ φ(F e
∗ (I�tp

e�J)) = R,

and so τ(It) = R.
On the other hand, if τ(It) = R, 0 	= c ∈ R, and a ∈ I�t�, then there exists e ≥ 0 and 

φ : F e
∗R → R such that φ(F e

∗ (I�t(pe−1)�acR)) = R. Let b ∈ I�t(p
e−1)� and f ∈ R such that 

φ(F e
∗ (c(abf))) = 1. Then we are done once we note that abf ∈ I�t�I�t(p

e−1)� ⊆ I�tp
e�.

We will need the following important description of test ideals:

Theorem 2.9 (cf. Proof of Theorem 3.18 in [17]). With the notations as in Definition 2.6, 
for any nonzero a ∈ τ(It), we have:

τ(It) =
∑
e≥0

∑
φ

φ(F e
∗ (aI�t(p

e−1)�))

where the inner sum runs over all φ ∈ HomR(F e
∗R, R).

Remark 2.10. With the notations as in Definition 2.6, the following holds ([3, 3.3])

τ(It) =
∑
e≥0

∑
φ∈HomR(F e

∗R,R)

φ(F e
∗ (dI�tp

e�)) (2.10.1)

where d is a big test element (which is just a nonzero element in τ(R) = τ(R, I0)).
If R = k[x1, . . . , xn] is a polynomial ring over a perfect field k of characteristic p > 0, 

then one can set d = 1 in (2.10.1) and HomR(F e
∗R, R) is a cyclic F e

∗R-module generated 
by TreR as discussed earlier. Hence by (2.10.1),

τ(It) =
∑
e≥0

∑
φ∈HomR(F e

∗R,R)

φ(F e
∗ (aI�t(p

e−1)�))

=
∑
e≥0

TreR(F e
∗ (aI�t(p

e−1)�)), for any a ∈ τ(It)

=
∑
e≥0

∑
φ∈HomR(F e

∗R,R)

φ(F e
∗ (I�tp

e�))

=
∑
e≥0

TreR(F e
∗ (I�tp

e�))

Remark 2.11. With the notations as in Definition 2.5, one can show that if Ra′ is regular, 
then for every sufficiently large power a of a′, τ(ωR) =

∑
e Φe

R(F e
∗ (a · ωR)). This can be 

proved by a similar argument as [19, Lemma 3.6, Lemma 3.8] so we omit the details.
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The following result from [19] will also be used. These results were originally proved 
in [13] and [9], and they hold as long as R is F -finite. We will only state the version of 
these results that we need.

Lemma 2.12 (cf. Theorem 6.9 in [19]). Let R be an integral domain essentially of finite 
type over a perfect field of characteristic p > 0 and let I, J ⊆ R be nonzero ideals and 
t ∈ R≥0.

(1) If J is a reduction of I, then τ(It) = τ(J t).
(2) If J is generated by r elements, then τ(Jr) = Jτ(Jr−1).

We are ready to prove the characteristic p > 0 analogue of Ein’s Lemma in [16]:

Lemma 2.13 (Ein’s Lemma in characteristic p > 0). Let R be an integral domain es-
sentially of finite type over a perfect field of characteristic p > 0 and let I ⊆ R be an 
equi-dimensional and unmixed ideal of codimension c. If τ(Ic−1) = R, then τ(Ic) = I. 
In particular, if R is strongly F -regular and (R, Ic) is F -pure, then τ(Ic) = I.

Proof. The lemma will follow from the following two inclusions:

τ(Ic) ⊆ I. (2.13.1)

Iτ(It−1) ⊆ τ(It) for all t ≥ 1. (2.13.2)

Indeed, if τ(Ic−1) = R, then I = Iτ(Ic−1) ⊆ τ(Ic) ⊆ I, and so we have equality 
throughout.

Proof of (2.13.1). Since inclusion is a local condition, we may assume that R is local 
with maximal ideal m. By replacing R by R[x]mR[x], we may assume that R has infinite 
residue field: it is straightforward to check that τ(Ic)R[x]mR[x] = τ((IR[x]mR[x])c). Now 
let p be a minimal prime of I. Since I is equi-dimensional, dimRp = c. Hence IRp has 
a reduction J ⊆ IRp generated by c elements. Therefore, since test ideals localize,

τ(Ic)Rp = τ((IRp)c) = τ(Jc) = Jτ(Jc−1) ⊆ J ⊆ IRp.

Since every associated prime of I is minimal, this inclusion holds for all associated primes 
of I, hence it holds globally, i.e. τ(Ic) ⊆ I. �
Proof of (2.13.2). This should be well known to experts in the field; we opt to provide a 
proof here since we could not locate a proper reference. Let t ∈ R≥1, and pick 0 	= a ∈
τ(It). Then

Iτ(It−1) = I
∑∑

φ
(
F e
∗

(
aI�(t−1)(pe−1)�

))

e≥0 φ
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=
∑
e≥0

∑
φ

φ
(
F e
∗

(
aI [pe]I�(t−1)(pe−1)�

))

⊆
∑
e≥0

∑
φ

φ
(
F e
∗

(
aIp

e

I�(t−1)(pe−1)�
))

=
∑
e≥0

∑
φ

φ
(
F e
∗

(
aIp

e+�(t−1)(pe−1)�
))

⊆
∑
e≥0

∑
φ

φ
(
F e
∗

(
aI�t(p

e−1)�
))

= τ(It),

where the inner sum runs over all φ ∈ HomR(F e
∗R, R) and the last inclusion following 

from the fact that

pe + �(t− 1)(pe − 1)� = �pe + (t− 1)(pe − 1)� = �t(pe − 1) + 1� > �t(pe − 1)�. �
For the last statement, if (R, Ic) is F -pure, then the F -pure threshold of I is at least c. 

Since the F -pure threshold is the supremum of those values t for which (R, It) is strongly 
F -regular when R is strongly F -regular [21, Proposition 2.2], we have that (R, Ic−1) is 
strongly F -regular. This means that τ(Ic−1) = R by Remark 2.8, and hence the first 
statement of the lemma tells us τ(Ic) = I. �
3. F -rationality under generic linkage

In this section, we investigate how F -singularities (e.g. F -purity, F -rationality, etc) 
behave under a generic linkage. To this end, we will also consider the behaviors of test 
ideals under a generic linkage. We begin with recalling the definition of a generic link.

Definition 3.1. Let R = k[x1, . . . , xn] be a polynomial ring over a perfect field of positive 
characteristic. Let I be an equi-dimensional and unmixed ideal of R of height c. Fix a 
generating set {f1, . . . , fr} of I. Let (uij), 1 ≤ i ≤ c, 1 ≤ j ≤ r, be a c × r matrix of 
variables. Consider c elements g1, . . . , gc in S = R[uij ] defined by

gi := ui1f1 + ui2f2 + · · · + uirfr

for 1 ≤ i ≤ c. Then J = (g1, . . . , gc) : (IS) is called the first generic link of I with respect 
to {f1, . . . , fr} (we also call S/J the generic link of R/I with respect to {f1, . . . , fr}).

Remark 3.2. It is well known that under the above assumptions, if I is reduced, then 
IS and J are geometrically linked, i.e., IS = (g1, . . . , gc) : J and IS ∩ J = (g1, . . . , gc). 
Moreover, J is actually a prime ideal of height c [10, 2.6].

The following theorem is our main technical result in this section.
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Theorem 3.3. With the notation as in Definition 3.1, assuming I is reduced, we have

(1) τ(ωS/J) ⊆ τ(Ic) · (S/J);
(2) If I has a minimal reduction generated by at most c + 1 elements, then τ(ωS/J) ⊇

τ(Ic) · (S/J); hence τ(ωS/J) = τ(Ic) · (S/J) in this case.

Our proof of Theorem 3.3(2) requires considering different sets of generators of I. 
A priori, a generic link (S, J) depends on the choice of generators. The following lemma 
guarantees that the statement in Theorem 3.3(2) is independent of the choice of gener-
ators of I. Its proof follows the same line as the proof of [11, Proposition 2.11].

Lemma 3.4. Let Λ1 and Λ2 be two sets of generators of I and let (S1, J1) and (S2, J2) be 
generic links of I with respect to Λ1 and Λ2 respectively. Then τ(ωS1/J1) ⊇ τ(Ic) ·(S1/J1)
iff τ(ωS2/J2) ⊇ τ(Ic) · (S2/J2).

Proof. By considering Λ1 ∪ Λ2, we can assume that Λ1 ⊆ Λ2. By induction on the 
difference between the cardinality of Λ1 and Λ2, we may assume that Λ2 has one 
more element than Λ1, i.e. we may assume that Λ1 = {f1, . . . , fr} and Λ2 = Λ1 ∪
{fr+1}.

Denote the height of I by c. Let {uij | 1 ≤ i ≤ c, 1 ≤ j ≤ r + 1} be indeterminates 
over R. Set S1 = R[uij ]1≤i≤c,1≤j≤r and S2 = R[uij ]1≤i≤c,1≤j≤r+1. For i = 1, . . . , c, 
set

gi := ui1f1 + · · · + uirfr

and

hi := ui1f1 + · · ·ui,r+1fr+1.

Then J1 = ((g1, . . . , gc) :S IS) is the first generic link of I with respect to Λ1 and 
J2 = ((h1, . . . , hc) :S2 IS2) is the first generic link of I with respect to Λ2.

It is clear that S2 = S1[u1,r+1, . . . , uc,r+1]. Since fr+1 ∈ I, we must have that fr+1 =∑r
j=1 ajfj for some aj ∈ R. Let ϕ : S2 → S2 be the automorphism given by the linear 

change of variables

uij �→ uij + ui,r+1aj

for 1 ≤ i ≤ c and 1 ≤ j ≤ r and

ui,r+1 �→ ui,r+1

for 1 ≤ i ≤ c.
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We claim that ϕ(J1S2) = J2 and we reason as follows. For i = 1, . . . , c, we have that

ϕ(gi) =
r∑

j=1
(uij + ui,r+1aj)fj =

r∑
j=1

uijfj + ui,r+1

r∑
j=1

ajfj

=
r∑

j=1
uijfj + ui,r+1fr+1 = hi.

Now since S1 ↪→ S2 is a faithfully flat extension, we have that

J1S2 = ((g1, . . . , gc) :S1 IS1)S2 = ((g1, . . . , gc)S2 :S2 IS2),

and hence

ϕ(J1S2) = ϕ((g1, . . . , gc)S2 :S2 IS2) = (ϕ(g1, . . . , gc)S2 :S2 ϕ(IS2))

= ((h1, . . . , hc) :S2 IS2) = J2.

Let Sϕ
2 denote the S1-algebra that is the same as S2 as a ring and whose S1-module 

structure is induced by S1 ↪→ S2
ϕ−→ S2. Then we have shown that J1 ⊗S1 S

ϕ
2 = J2 and 

hence S1/J1 ⊗S1 S
ϕ
2 = S2/J2. Combining Remarks 2.3 and 2.11, one can check that

τ(ωS1/J1) ⊗S1 S
ϕ
2 = τ(ωS1/J1 ⊗S1 S

ϕ
2 )

where the right-hand side is precisely τ(ωS2/J2). Our lemma follows immediately since 
Sϕ

2 is faithfully flat over S1. �
The following lemma is also needed in the proof of Theorem 3.3.

Lemma 3.5. Let c, r be positive integers such that c = r or c = r−1. Let β = (β1, . . . , βr)
be an element of Nr, where N is the set of non-negative integers. Assume 

∑
i βi =

c(pe − 1). Then there exist c elements α1, ..., αc in Nr such that:

(1) each αi has at most two nonzero entries;
(2) the sum of the entries of each αi is pe − 1;
(3) βj =

∑
i αij, where αi = (αi1, . . . , αir).

Proof. We will induce on r. If c = r = 1, then β = (pe − 1) and we let α1 = β. If 
c = 1, r = 2, we have β = (β1, β2) where β1 + β2 = pe − 1 and we can let α1 = (β1, β2)
and again (1)–(3) hold.

If c = r and β1 = · · · = βc = pe − 1, then we can set αi to be the vector with pe − 1
at i-th spot and 0 elsewhere. Otherwise, there must be a βi < pe − 1. Without loss of 
generality, we assume that βr < pe − 1.
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We claim that βj ≥ pe − 1 − βr for some j between 1 and r − 1, and we reason as 
follows. If c = r, then there must be a j such that βj > pe−1, and hence βj ≥ pe−1 −βr. 
Now assume that c = r− 1. Suppose βi < pe − 1 − βr for all i ≤ r− 1, as then we would 
have:

r∑
i=1

βi < (r − 1)(pe − 1 − βr) + βr ≤ (r − 2)(pe − 1 − βr) + (pe − 1) ≤ (r − 1)(pe − 1)

= c(pe − 1)

which contradicts the assumption that 
∑r

i=1 βi = c(pe − 1). So, there is a j between 1
and r − 1 such that βj ≥ pe − 1 − βr.

Set αc := (0, . . . , 0, pe − 1 − βr, 0, . . . , βr) where pe − 1 − βr appears in the j-th spot. 
Consider

(β1, . . . , βj−1, βj − (pe − 1 − βr), βj+1, . . . , βr−1).

This is an element of Nr−1 such that the sum of its entries is (c − 1)(pe − 1). By our 
induction hypotheses, there are γ1, . . . , γc−1 ∈ Nr−1 that satisfy (1), (2), and (3). For 
1 ≤ i ≤ c − 1, setting αi be γi with a 0 added to the end completes the proof of our 
lemma. �
Proof of Theorem 3.3. By Remark 3.2, J is a minimal prime of (g1, . . . , gc). Hence once 
we identify

ωS/J = HomS/(g1,...,gc)(S/J, S/(g1, . . . , gc)) = ((g1, . . . , gc) : J) · (S/J) = I · (S/J),

we know from Lemma 2.4 that

Φe
S/J (F e

∗ (−)) = Φe
S/(g1,...,gc)(F

e
∗ (−))|ωS/J

= TreS(F e
∗ (gp

e−1
1 · · · gpe−1

c · −))|I·(S/J).

Next we notice that for every 1 ≤ k ≤ r, (S/J)fk ∼= Rfk [uij |j 	= k] is regular. Hence for 
N � 0, fN

k is a test element for S/J . Thus by Remark 2.11, we have:

τ(ωS/J) =
∑
e≥0

Φe
S/J(F e

∗ (fN
k · ωS/J)) =

∑
e≥0

TreS(F e
∗ (gp

e−1
1 · · · gpe−1

c · fN
k · IS)) · (S/J)

(3.5.1)

Since fk ∈ I and R is regular, by Remark 2.10, for N � 0 we also have:

τ(Ic) · (S/J) =
∑
e≥0

TreR(F e
∗ ((f1, . . . , fr)c(p

e−1) · fN
k ·R)) · (S/J) (3.5.2)

When we expand gp
e−1

1 · · · gpe−1
c , it is easy to see from (3.5.1) that τ(ωS/J) can be 

generated by elements of the form
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TreS

(
F e
∗

((
pe − 1

α11, . . . , α1r

)
· · ·

(
pe − 1

αc1, . . . , αcr

)
fβ1
1 fβ2

2 · · · fβr
r

∏
1≤i≤c

1≤j≤r

u
αij

ij · fN
k · s

·
∏

1≤i≤c

1≤j≤r

u
γij

ij

))
(3.5.3)

where 0 ≤ αij ≤ pe − 1, βj =
∑c

i=1 αij , 
∑r

j=1 βj = c(pe − 1) and s ∈ I. By definition of 
the trace map, this is equal to

∏
1≤i≤c

1≤j≤r

u
αij+γij−(pe−1)

pe

ij

· TreR

(
F e
∗

((
pe − 1

α11, . . . , α1r

)
· · ·

(
pe − 1

αc1, . . . , αcr

)
fβ1
1 fβ2

2 · · · fβr
r · fN

k · s
))

where αij+γij−(pe−1)
pe denotes 0 if αij +γij 	≡ −1 mod pe. But it is clear that this element 

is in τ(Ic) · S by expression (3.5.2). This proves (1).
Next we prove (2). By Lemma 3.4 we can assume that Ĩ = (f1, . . . , fc+1) is a reduction 

of I (the case that I has a reduction generated by c elements is similar). Hence by the 
arguments above, we have that, for 1 ≤ k ≤ c and N � 0,

τ(Ic) · (S/J) = τ(Ĩc) · (S/J) =
∑
e≥0

TreR(F e
∗ ((f1, . . . , fc+1)c(p

e−1) · fN+1
k ·R)) · (S/J)

Given a generator fβ1
1 · · · fβc+1

c+1 of (f1, . . . , fc+1)c(p
e−1), we can find α1, . . . , αc ∈ Nc+1

satisfying the conclusion of Lemma 3.5. Then
∏

1≤i≤c

1≤j≤c+1

(uijfj)αij =
∏

1≤i≤c

1≤j≤c+1

u
αij

ij

∏
1≤j≤c+1

f
βj

j

appears with coefficient 
(

pe−1
α11,...,α1,c+1

)
· · ·

(
pe−1

αc1,...,αc,c+1

)
in the product gp

e−1
1 · · · gpe−1

c . Be-
cause each multinomial coefficient 

(
pe−1

αi1,...,αi,c+1

)
=

(
pe−1
αiji

)
for some ji by Lemma 3.5 (1)–

(2), they are nonzero in k.
Each αij is less than pe, so let

s′ =

⎛
⎜⎝ ∏

1≤i≤c

1≤j≤c+1

u
pe−1−αij

ij

⎞
⎟⎠

⎛
⎜⎝ ∏

1≤i≤c

c+2≤j≤r

upe−1
ij

⎞
⎟⎠ .

Then TreS(F e
∗ (− ·s′)) sends 

∏
1≤l≤n xpe−1

l

∏
1≤i≤c

1≤j≤c+1
u
αij

ij to 1 and all other basis elements 
to 0. Hence,
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TreS(F e
∗ (gp

e−1
1 · · · gpe−1

c · fN+1
k · s′ ·R))

= TreS

⎛
⎜⎝F e

∗

⎛
⎜⎝(

pe − 1
α11, . . . , α1,c+1

)
· · ·

(
pe − 1

αc1, . . . , αc,c+1

)
·

∏
1≤i≤c

1≤j≤r

upe−1
ij

c+1∏
j=1

f
βj

j · fN+1
k R

⎞
⎟⎠
⎞
⎟⎠

= TreR

⎛
⎝F e

∗

⎛
⎝c+1∏

j=1
f
βj

j · fN+1
k ·R

⎞
⎠
⎞
⎠ .

In particular,

TreR

⎛
⎝F e

∗

⎛
⎝c+1∏

j=1
f
βj

j · fN+1
k ·R

⎞
⎠
⎞
⎠ · (S/J)

= TreS(F e
∗ (gp

e−1
1 · · · gpe−1

c · fN
k · fks′R)) · (S/J) ⊆ τ(ωS/J)

for every generator 
∏c+1

j=1 f
βj

j of (f1, . . . , fc+1)c(p
e−1), where the second inclusion follows 

from expression (3.5.1). Therefore we have

τ(Ic) · (S/J) = τ(Ĩc) · (S/J)

=
∑
e≥0

TreR(F e
∗ ((f1, . . . , fc+1)c(p

e−1) · fN+1
k ·R)) · (S/J)

⊆ τ(ωS/J). �
Remark 3.6. The proof of Theorem 3.3 (2) requires the minimal reduction be generated 
by at most c +1 elements. If not, then we are not in the case of Lemma 3.5 and it may be 
the case that there are always at least three nonzero entries in some αi. Consequently, 
multinomial coefficients must be taken into consideration.

Corollary 3.7. With the notation as in Definition 3.1 and the assumptions as in Theo-
rem 3.3 (2), τ(ωS/J) = ωS/J if and only if τ(Ic) = I. In particular, S/J has F -rational 
singularities if and only if S/J is Cohen–Macaulay and τ(Ic) = I.

Proof. If τ(Ic) = I, then Theorem 3.3 immediately implies τ(ωS/J) = ωS/J .
Conversely, assume that τ(Ic) 	= I and τ(ωS/J) = ωS/J . Since τ(Ic) is always con-

tained in I by (2.13.1), at least one of the generators of I is not in τ(Ic), say f1. From 
Theorem 3.3, we can see that τ(Ic)S + J = IS + J ; hence f1 ∈ τ(Ic)S + J . Thus, there 
are elements a ∈ τ(Ic)S and b ∈ J such that f1 = a + b. (Note that b 	= 0.) Then we 
have f1 − a ∈ J which implies that (f1 − a)f1 ∈ (g1, . . . , gc). However, this is impossible 
because of the degrees in the uij . This is a contradiction.

The last assertion is clear because S/J is F -rational if and only if S/J is Cohen–
Macaulay and τ(ωS/J) = ωS/J . �
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Corollary 3.8. With the notation as in Definition 3.1 and the assumptions as in The-
orem 3.3 (2), if the pair (R, Ic) is F -pure and R/I is Cohen–Macaulay, then S/J
is F -rational. In particular, if R/I is an F -pure complete intersection, then S/J is 
F -rational.

Proof. By Lemma 2.13, (R, Ic) is F -pure implies τ(Ic) = I. The first statement thus 
follows from Corollary 3.7. Finally, it is well known that when R/I is an F -pure complete 
intersection, the pair (R, Ic) is F -pure. This follows from a Fedder type criterion ([20, 
Lemma 3.9] and others). �

We can recover [16, Corollary 3.4] in the complete intersection and almost complete 
intersection cases.

Corollary 3.9. Let I = (f1, . . . , fr) be an ideal of C[x1, . . . , xn] and let c be the codimen-
sion of I. Let S and J be in Definition 3.1. Assume that r ≤ c +1. Then S/J has rational 
singularities if and only if S/J is Cohen–Macaulay and I (Ic) = I, where I (Ic) is the 
multiplier ideal of Ic.

Proof. By [18] and [7], S/J has rational singularities if and only if its reduction (S/J)p
is F -rational for all p � 0. It is easy to see that, for p � 0, the reduction Jp of J is a 
generic link of the reduction Ip of I. Hence, S/J has rational singularities if and only 
if (S/J)p is Cohen–Macaulay and τ(Icp) = Ip for p � 0 by Corollary 3.7. On the other 
hand, it was proved in [13] that I (Ic)p = τ(Icp) for all p � 0. Therefore, we have S/J
has rational singularities if and only if (S/J)p is Cohen–Macaulay and I (Ic)p = Ip for 
p � 0. This completes the proof. �
4. Behavior of F -pure threshold under generic linkage

In this section we investigate behaviors of F -pure thresholds under generic linkages. 
We begin with an easy lemma.

Lemma 4.1. Let R = k[x1, . . . , xn] be a polynomial ring over a perfect field of character-
istic p and I be an equi-dimensional and unmixed ideal of R. Let Λ1 and Λ2 be 2 sets of 
generators of I and let (Si, Ji) be the generic link with respect to Λi (i = 1, 2). Then

fptS1
(J1) = fptS2

(J2).

Proof. As in the proof of Lemma 3.4, we can assume that Λ1 = {f1, . . . , fr} and 
Λ2 = {f1, . . . , fr, fr+1}. Let ϕ and Sϕ

2 be the same as in the proof of Lemma 3.4. It 
is straightforward to check that

τ(J t
1) ⊗S1 S

ϕ
2 = τ(J t

2)

for each nonnegative real number t. Our lemma follows immediately. �



208 L. Ma et al. / Journal of Algebra 505 (2018) 194–210
Remark 4.2. Let k ⊆ K be an extension of perfect fields and let R = k[x1, . . . , xn] and 
T = K[x1, . . . , xn]. Since HomR(R1/pe

, R) and HomT (T 1/pe

, T ) are generated by the 
same projection, we have τR(It) = τT ((IT )t) (cf. [1, Remark 2.18]).

Theorem 4.3. Let R = k[x1, . . . , xn] be a polynomial ring over a perfect field of char-
acteristic p and I be an equi-dimensional and unmixed ideal of height c in R. As-
sume that I = (f1, . . . , fs) and that I has a reduction Ĩ generated by r elements. Let 
S = R[uij ]1≤i≤c,1≤j≤s be a polynomial ring over R. For 1 ≤ i ≤ c, let

gi = ui1f1 + ui2f2 + . . . + uisfs.

Then fptS(g1, . . . , gc) ≥ c
r fptR(I).

Proof. By Lemma 4.1, we can add the generators of Ĩ to those of I and then assume that 
Ĩ = (f1, . . . , fr). Since Ĩ is a reduction of I, it follows from [21, Proposition 2.2(6)] that 
fptR(I) = fptR(Ĩ). Hence it suffices to show that τR(Ĩt) = R implies τS((g1, . . . , gc)

ct
r ) =

S for a positive real number t. To this end, assume that τR(Ĩt) = R. By Remark 4.2, we 
may assume that k is algebraically closed.

We wish to show that τS((g1, . . . , gc)
ct
r ) = S. Suppose otherwise and we seek a con-

tradiction. There is a maximal ideal m of S such that τS((g1, . . . , gc)
ct
r ) ⊆ m. Since k

is algebraically closed, we can write m = (x1 − a1, . . . , xn − an, u11 − b11, . . . , ucr − bcr)
for some ai, bij ∈ k. Set n = (x1 − a1, . . . , xn − an). Since τR(Ĩt) = R, there exist an 
integer e, an R-linear map φ ∈ HomR(R1/pe

, R), and nonnegative integers α1, . . . , αr

with 
∑

i αi = �tpe� such that φ(fα1/p
e

1 · · · fαr/p
e

r ) /∈ n.
At this point we show that each fj ∈ n, and therefore αj ≤ pe − 1 for all j. Indeed, 

let e ≥ 1 such that pe ≥ c/(c − t) and let ψ : S1/pe → S send the basis element 
u

(pe−1)/pe

1j u
(pe−1)/pe

2j · · ·u(pe−1)/pe

cj to 1 and all other basis elements xa�/p
e

� u
bij/p

e

ij to 0. 
Now f c

j g
pe−1
1 gp

e−1
2 · · · gpe−1

c ∈ (g1, · · · , gc)�(ct/r)p
e�, because (ct/r)pe ≤ tpe ≤ c(pe − 1). 

Therefore

f c
j = ψ(fc/pe

j u
(pe−1)/pe

1j u
(pe−1)/pe

2j · · ·u(pe−1)/pe

cj f
c(pe−1)/pe

j )

= ψ(fc/pe

j g
(pe−1)/pe

1 g
(pe−1)/pe

2 · · · g(pe−1)/pe

c )

⊆ ψ(((g1, · · · , gc)�(ct/r)p
e�)1/p

e

) ⊆ m

by our choice of ψ and the assumption that τS((g1, . . . , gc)
ct
r ) ⊆ m. It follows that 

fj ∈ m ∩R = n.
Without loss of generality, we may assume that α1 ≥ α2 ≥ · · · ≥ αr. Consequently,

α1 + · · · + αc ≥
⌈ c
r
(α1 + · · · + αr)

⌉
=

⌈ c
r
�tpe�

⌉
≥

⌈ c
r
tpe

⌉

Let φα = φ(fαc+1/p
e

c+1 · · · fαr/p
e

r · −), i.e. pre-multiplication by fαc+1/p
e

c+1 · · · fαr/p
e

r fol-
lowed by the application of φ. It is clear that φα : R1/pe → R is an R-linear map and 
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that φα(fα1/p
e

1 · · · fαc/p
e

c ) /∈ n. We can extend φα to an S-linear map ψα : R1/pe [uij ] →
S = R[uij ] that sends each uij to itself and restricts to φα on R1/pe .

It is clear that S1/pe = R1/pe [u1/pe

ij ] is a free R1/pe [uij ]-module with a basis 
{
∏

0≤bij≤pe−1 u
bij/p

e

ij }. Let πα : R1/pe [u1/pe

ij ] → R1/pe [uij ] be the projection that sends 
u
α1/p

e

11 · · ·uαc/p
e

cc to 1 and all other basis element to 0.

Let θα be the composition of S1/pe πα−−→ R1/pe [uij ] 
ψza−−−→ S. It is clear that θα is 

S-linear. By the construction of πα, it is straightforward to check that

θa(gα1/p
e

1 · · · gαc/p
e

c ) = θα((u11f1)α1/p
e · · · (uccfc)αc/p

e

) = φ(fα1/p
e

1 · · · fαr/p
e

r ).

Since φ(fα1/p
e

1 · · · fαr/p
e

r ) in R but not in n = (x1 − a1, . . . , xn − an), we must have

φ(fα1/p
e

1 · · · fαr/p
e

r ) /∈ m = (x1 − a1, . . . , xn − an, u11 − b11, . . . , ucr − bcr),

a contradiction to the assumption that τS((g1, . . . , gc)
ct
r ) ⊆ m (note that gα1

1 · · · gαc
c ∈

(g1, . . . , gc)�
ct
r pe�). �

We have some immediate corollaries.

Corollary 4.4. Let R = k[x1, . . . , xn] be a polynomial ring over a perfect field of charac-
teristic p and I be an equi-dimensional and unmixed ideal of height c in R. Let J be a 
generic link of I in S = R[uij ]. The following hold:

(1) If I has a reduction generated by r elements, then fptS(J) ≥ c
r fptR(I).

(2) If I has a reduction generated by c elements, in particular if I is a complete inter-
section, then fptS(J) ≥ fptR(I).

(3) fptS(J) ≥ c
n fptR(I) (note n = dim(R)).

Proof. To prove (1), note that since (g1, . . . , gc) ⊆ J , we have fptS(J) ≥ fptS(g1, . . . , gc). 
Theorem 4.3 then completes the proof.

(2) is an immediate consequence of (1).
(3) By Remark 4.2, passing to the algebraic closure of k doesn’t affect fptR(I) and 

fptS(J). Hence we can assume that k is algebraically closed and hence is infinite. [14, 
Theorem] asserts that each ideal I admits a reduction generated by n elements. We are 
done by (1). �
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[1] Manuel Blickle, Mircea Mustaţǎ, Karen E. Smith, Discreteness and rationality of F -thresholds, 
Michigan Math. J. 57 (2008) 43–61, Special volume in honor of Melvin Hochster.

[2] Manuel Blickle, Karl Schwede, Kevin Tucker, F -singularities via alterations, Amer. J. Math. 137 (1) 
(2015) 61–109.

[3] Manuel Blickle, Karl Schwede, Shunsuke Takagi, Wenliang Zhang, Discreteness and rationality of 
F -jumping numbers on singular varieties, Math. Ann. 347 (4) (2010) 917–949.

http://refhub.elsevier.com/S0021-8693(18)30151-0/bib426C69636B6C654D757374617461536D6974684469736372655Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib426C69636B6C654D757374617461536D6974684469736372655Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib426C69636B6C65536368776564655475636B6572462D73696E67756C6172695Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib426C69636B6C65536368776564655475636B6572462D73696E67756C6172695Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib426C69636B6C655363687765646554616B6167695A68616E675Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib426C69636B6C655363687765646554616B6167695A68616E675Fs1


210 L. Ma et al. / Journal of Algebra 505 (2018) 194–210
[4] Marc Chardin, Bernd Ulrich, Liaison and Castelnuovo–Mumford regularity, Amer. J. Math. 124 (6) 
(2002) 1103–1124.

[5] David Eisenbud, Craig Huneke, Bernd Ulrich, Heights of ideals of minors, Amer. J. Math. 126 (2) 
(2004) 417–438.

[6] Richard Fedder, F -purity and rational singularity, Trans. Amer. Math. Soc. 278 (2) (1983) 461–480.
[7] Nobuo Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, 

Amer. J. Math. 120 (5) (1998) 981–996.
[8] Nobuo Hara, Geometric interpretation of tight closure and test ideals, Trans. Amer. Math. Soc. 

353 (5) (2001) 1885–1906.
[9] Nobuo Hara, Shunsuke Takagi, On a generalization of test ideals, Nagoya Math. J. 175 (2004) 59–74.

[10] Craig Huneke, Bernd Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (6) (1985) 
1265–1303.

[11] Craig Huneke, Bernd Ulrich, The structure of linkage, Ann. of Math. (2) 126 (2) (1987) 277–334.
[12] Craig Huneke, Bernd Ulrich, Algebraic linkage, Duke Math. J. 56 (3) (1988) 415–429.
[13] Nobuo Hara, Ken-Ichi Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. 

Math. Soc. 355 (8) (2003) 3143–3174 (electronic).
[14] Gennady Lyubeznik, A property of ideals in polynomial rings, Proc. Amer. Math. Soc. 98 (3) (1986) 

399–400.
[15] Hideyuki Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 

vol. 8, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid.
[16] Wenbo Niu, Singularities of generic linkage of algebraic varieties, Amer. J. Math. 136 (6) (2014) 

1665–1691.
[17] Karl Schwede, Test ideals in non-Q-Gorenstein rings, Trans. Amer. Math. Soc. 363 (11) (2011) 

5925–5941.
[18] Karen E. Smith, F -rational rings have rational singularities, Amer. J. Math. 119 (1) (1997) 159–180.
[19] Karl Schwede, Kevin Tucker, A survey of test ideals, in: Progress in Commutative Algebra 2, Walter 

de Gruyter, Berlin, 2012, pp. 39–99.
[20] Shunsuke Takagi, F-singularities of pairs and inversion of adjunction of arbitrary codimension, 

Invent. Math. 157 (1) (2004) 123–146.
[21] Shunsuke Takagi, Kei-ichi Watanabe, On F-pure thresholds, J. Algebra 282 (1) (2004) 278–297.

http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4368617264696E556C726963684C696169736F6E616E64434D726567756C6172697479s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4368617264696E556C726963684C696169736F6E616E64434D726567756C6172697479s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib456973656E62756448756E656B65556C72696368486569676874736F6669645Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib456973656E62756448756E656B65556C72696368486569676874736F6669645Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4665646465724650757265526174s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib48617261526174496D706C69657346526174s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib48617261526174496D706C69657346526174s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4861726147656F6D6574726963696E746572707265746174696F6Es1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4861726147656F6D6574726963696E746572707265746174696F6Es1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4861726154616B6167694F6E47656E6572616C697A6174696F6E54657374696465616C73s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib48756E656B65556C7269636844697669736F72636C61735Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib48756E656B65556C7269636844697669736F72636C61735Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib48756E656B65556C726963685468657374727563747572656F666C696E6B616765s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib48756E656B65556C72696368416C676562726169636C696E6B616765s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib48617261596F736869646147656E6572616C697A656454657374496465616C73s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib48617261596F736869646147656E6572616C697A656454657374496465616C73s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4C797562657A6E696B526564756374696F6E696465616C73696E506F6C795Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4C797562657A6E696B526564756374696F6E696465616C73696E506F6C795Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4D617473756D7572613836s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4D617473756D7572613836s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4E697553696E67756C617269746965736F6667656E657269636C696E6B616765s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib4E697553696E67756C617269746965736F6667656E657269636C696E6B616765s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib5363687765646554657374696465616C73696E6E6F6E512D476F72656E737465696E72696E6773s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib5363687765646554657374696465616C73696E6E6F6E512D476F72656E737465696E72696E6773s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib536D69746846526174496D706C696573526174s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib536368776564655475636B6572417375727665796F6674657374696465616C73s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib536368776564655475636B6572417375727665796F6674657374696465616C73s1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib54616B6167694673696E67756C617269746965736F667061697273615Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib54616B6167694673696E67756C617269746965736F667061697273615Fs1
http://refhub.elsevier.com/S0021-8693(18)30151-0/bib54616B616769576174616E61626546707572657468726573686F6C6473s1

	F-singularities under generic linkage
	1 Introduction
	Acknowledgments
	2 F-singularities and test ideals
	3 F-rationality under generic linkage
	4 Behavior of F-pure threshold under generic linkage
	References


