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We give an example of a Morita algebra A with a tilting 
module T such that the algebra EndA(T ) has dominant 
dimension at least two but is not a Morita algebra. This 
provides a counterexample to a conjecture by Chen and Xi 
from [5].
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Introduction

In this article we assume that all rings are finite dimensional algebras over a field K
and all modules are finitely generated right modules unless stated otherwise. Recall that 
the dominant dimension domdim(M) of a module M with minimal injective coresolu-
tion (Ii) is defined as zero in case I0 is not projective and domdim(M) := sup{n ≥ 0|Ii
is projective for i = 0, 1, ..., n} + 1 otherwise. The dominant dimension of an algebra 
is defined as the dominant dimension of the regular module. It is well known that an 
algebra has dominant dimension at least one if and only if there is a minimal faith-
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ful projective–injective right module eA for some idempotent e of A. All Nakayama 
algebras have dominant dimension at least one and therefore have a minimal faithful 
projective–injective module given by the direct sum of all indecomposable projective–
injective modules, see for example chapter 32 of [1]. For further information on the 
dominant dimension we refer to [10]. In [6] the authors introduced Morita algebras as 
algebras A that are algebras with dominant dimension at least two and a minimal faith-
ful projective–injective module eA such that eAe is selfinjective. Morita algebras contain 
several important classes of algebras such as Schur algebras S(n, r) for n ≥ r or blocks 
of category O and provide a useful generalisation of selfinjective algebras. At the end of 
the article [5] the authors provided three conjectures related to the dominant dimension 
of algebras. Their third conjecture states the following:

Conjecture. Suppose two algebras A and B are derived equivalent. If A is a Morita 
algebra and the dominant dimension of B is at least two then also B is a Morita algebra.

In [5] several special cases of this conjecture were proven. In this article we give a 
counterexample to this conjecture.

Theorem. Let A be the Nakayama algebra with Kupisch series [4,5,4,5] with vertices 
numbered from 0 to 3. Let M be the module e0A ⊕ e1A ⊕ e3A ⊕ e1A/e1J

4. Then A is 
a Morita algebra and M is a tilting module of projective dimension two such that the 
algebra B := EndA(M) is an algebra of dominant dimension equal to 4 that is not a 
Morita algebra.

Note that B is derived equivalent to A, since endomorphism algebras of tilting modules 
are derived equivalent to the original algebra. Therefore, our theorem gives a coun-
terexample to the conjecture. We found the counterexample to the conjecture while 
experimenting with the GAP-package QPA, see [8]. We thank Hongxing Chen and 
Changchang Xi for useful discussions in Stuttgart and Changchang Xi for proofread-
ing and useful suggestions. We are thankful to the anonymous referee for many useful 
comments.

1. Proof of the theorem

In this section we give a proof of the theorem that we group into several smaller 
lemmas. We assume that the reader is familiar with the basics of the representation 
theory of finite dimensional algebras as explained for example in [3] or [2]. We use the 
conventions of [2]. Thus we use right modules and write arrows in quiver algebras from 
left to right. For background on Nakayama algebras and how to calculate projective or 
injective resolutions for modules in such algebras we refer to [7]. All algebras will be 
given by quiver and relations and are connected. Recall that the Kupisch series of a 
Nakayama algebra is just the sequence [a0, a1, ..., ar] when ai denotes the dimension of 
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the indecomposable projective modules corresponding to point i. Let A always be the 
Nakayama algebra with Kupisch series [4,5,4,5]. Thus A is a quiver algebra with a cyclic 
quiver. We assume that the vertices are numbered from 0 to 3. The quiver of A looks as 
follows:

◦0 α ◦1

β

◦3

δ

◦2
γ

.

We denote the idempotents corresponding to the points i by ei and the simple modules 
corresponding to i by Si. By J we denote the Jacobson radical of an algebra.

Lemma 1.1. A is a Morita algebra with dominant dimension equal to two.

Proof. The projective–injective indecomposable A-modules are e1A and e3A. Thus the 
minimal faithful projective–injective A-module is eA with e = e1 + e3 and we have that 
eAe is the symmetric Nakayama algebra with Kupisch series [3, 3]. The minimal injective 
coresolution of e0A is as follows:

0 → e0A → e3A → e3A → e3A/e3J
4 → 0. (∗)

As e3A is projective–injective and e3A/e3J
4 is not projective but injective, e0A has 

dominant dimension equal to two. The minimal injective coresolution of e2A looks as 
follows:

0 → e2A → e1A → e1A → e1A/e1J
4 → 0. (∗∗)

As e1A is projective–injective and e1A/e1J
4 is not projective but injective, e2A has 

dominant dimension equal to two. Since the dominant dimension of an algebra is equal to 
the minimum of the dominant dimensions of the indecomposable projective modules, we 
conclude that A has dominant dimension equal to two and thus is a Morita algebra. �

Now let M := e0A ⊕ e1A ⊕ e3A ⊕ e1A/e1J
4. Recall that a tilting module is a module 

T over an algebra Λ that has finite projective dimension and ExtiΛ(T, T ) = 0 for all i > 0
such that the regular module Λ has a finite coresolution in add(T ).

Lemma 1.2. M is a tilting A-module of projective dimension two.

Proof. Note that M has three indecomposable projective modules as direct summands 
where only e0A is not injective, and one indecomposable injective non-projective module, 
namely e1A/e1J

4. The following minimal projective resolution of e1A/e1J
4 shows that 

the projective dimension of M is equal to two:
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0 → e2A → e1A → e1A → e1A/e1J
4 → 0.

Now the exact sequence (∗∗) in the proof of Lemma 1.1 shows that A has a coresolution 
in add(M). What is left to show is that ExtiA(M, M) = 0 for i = 1 and i = 2 because 
M has projective dimension 2. Note that Ω1(M) = e1J

4 ∼= S1. We have Ext1A(M, M) =
Ext1A(e1A/e1J

4, e0A) and Ext2A(M, M) = Ext1A(Ω1(M), M) = Ext1A(S1, e0A). Note 
that in general for a simple module S and a module N over an algebra Λ, we have 
Ext1Λ(S, N) = 0 iff the socle of I1(N) does not have S as a direct summand when (Ii(N))
denotes a minimal injective coresolution of N , see for example [4] corollary 2.5.4. This 
gives us that Ext1A(S1, e0A) = 0 when looking at the minimal injective coresolution of 
e0A in (∗) in the proof of Lemma 1.1. Now we show that Ext1A(e1A/e1J

4, e0A) = 0. 
Look at the following short exact sequence:

0 → e1J
4 → e1A → e1A/e1J

4 → 0.

We apply the functor HomA(−, e0A) to this short exact sequence and obtain the follow-
ing exact sequence:

0 → HomA(e1A/e1J
4, e0A) → HomA(e1A, e0A) → HomA(S1, e0A)

→ Ext1A(e1A/e1J
4, e0A) → 0.

This gives us that Ext1A(e1A/e1J
4, e0A) = 0 iff dim(HomA(e1A, e0A)) =

dim(HomA(e1A/e1J
4, e0A)) + dim(HomA(S1, e0A)), which is true since

dim(HomA(e1A, e0A)) = 1 and dim(HomA(e1A/e1J
4, e0A)) = 1 but dim(HomA(S1,

e0A)) = 0. This proves that ExtiA(M, M) = 0 for all i > 0 and thus that M is a tilting 
module of projective dimension two. �

Now let B := EndA(M) be the endomorphism ring of M .

Lemma 1.3. B is a Nakayama algebra given by quiver and relations with Kupisch series 
[4, 4, 5, 5].

Proof. By the main theorem of [11], the endomorphism ring of a module over a Nakayama 
algebra which only has indecomposable projective or injective modules as a direct sum-
mands is again a Nakayama algebra. Also note that B is a basic algebra since M is 
a basic module and B has simple modules isomorphic to EndA(Mi)/rad(EndA(Mi)), 
which are one-dimensional modules when Mi denote the indecomposable direct sum-
mands of M . A basic algebra with all simple modules of dimension equal to one is given 
by quiver and relations. We therefore just have to determine the Kupisch series of B. 
We have
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B = EndA(e0A⊕ e1A⊕ e3A⊕ e1A/e1J
4) =

⎛
⎜⎝

e0Ae0 e0Ae1 e0Ae3 e0Je1
e1Ae0 e1Ae1 e1Ae3 e1Je1
e3Ae0 e3Ae1 e3Ae3 e3Je1

(e1A/e1J
4)e0 (e1A/e1J

4)e1 (e1A/e1J
4)e3 (e1A/e1J

4)e1

⎞
⎟⎠ .

Noting that e0Je0 = 0 and (e1J/e1J
4)e1 = 0, the radical of B is then equal to

⎛
⎜⎝

0 e0Ae1 e0Ae3 e0Je1
e1Ae0 e1Je1 e1Ae3 e1Je1
e3Ae0 e3Ae1 e3Je3 e3Je1

(e1A/e1J
4)e0 (e1A/e1J

4)e1 (e1A/e1J
4)e3 0

⎞
⎟⎠ .

We have rad2(B) = rad(B)rad(B) and the multiplication of B gives that the (1,4)-entry 
of rad2(B) is equal to e0Ae1Je1+e0Ae3Je1 = 0. Thus the (1,4)-entry in rad(B)/rad2(B)
is e0Je1, which is non-zero. This gives us that there is an arrow in the quiver of B from 
the first point to the fourth point. Now the projective indecomposable B-modules are 
given by HomA(M, Mi). We have dim(HomA(M, e0A)) = 4, dim(HomA(M, e1A)) = 5, 
dim(HomA(M, e3A)) = 5 and dim(HomA(M, e1A/e1J

4)) = 4 and we see that there is 
an arrow in the quiver of B from a point whose corresponding indecomposable projective 
module has dimension 4 and a point whose corresponding indecomposable projective 
module has dimension 4. This gives us that the Kupisch series can only be [4, 4, 5, 5]. �

After renumbering the vertices of B we may assume that the quiver of the Nakayama 
algebra B with Kupisch series [4,4,5,5] looks as follows:

◦0 a ◦1

b

◦3

d

◦2
c

.

Lemma 1.4. B has dominant dimension equal to 4 but is not a Morita algebra.

Proof. The projective–injective indecomposable B-modules are e1B, e2B and e3B. Thus 
the minimal faithful projective–injective B-module is eB with e = e1+e2+e3. The algebra 
eBe is the Nakayama algebra with Kupisch series [3, 4, 4], which is not selfinjective since 
selfinjective Nakayama algebras have the property that all indecomposable projective 
modules have the same vector space dimension (see for example [9] theorem 6.15 in 
chapter IV). What is left to show it that B has dominant dimension equal to 4. We give 
the minimal injective coresolution of e0B:

0 → e0B → e3B → e3B → e2B → e2B → D(Be1) → 0.
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This shows that e0B has dominant dimension equal to 4 and also that B has dominant 
dimension equal to 4 since the dominant dimension of the regular module equals the 
minimum of the dominant dimensions of the indecomposable projective modules. �

Combining all the results of this section we obtain the following theorem:

Theorem 1.5. Let A be the Nakayama algebra with Kupisch series [4,5,4,5] with vertices 
numbered from 0 to 3. Let M be the module e0A ⊕ e1A ⊕ e3A ⊕ e1A/e1J

4. Then A is 
a Morita algebra and M is a tilting module of projective dimension two such that the 
algebra B := EndA(M) is an algebra of dominant dimension equal to 4 that is not a 
Morita algebra.
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