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1. Introduction

In this paper we deal with the property of strong F -regularity as well as the detection 
of an explicit generating morphism (in the sense of Lyubeznik [24]) for certain local 
cohomology modules. As the main application of our results, we recover, in a quite 
simple way, the fact that the determinantal ring A defined by the maximal minors of an 
n × (n − 1) generic matrix over a perfect field of prime characteristic p ≥ 5 is strongly 
F -regular, a result that was proved, in more generality, first by Hochster and Huneke 
[16] and later by Bruns and Conca [3] via completely different methods.

It is worth mentioning that Conca and Herzog [6], also Glassbrenner and Smith [12], 
proved that certain types of ladder determinantal rings are strongly F -regular (hence 
F -rational and F -pure as well). Moreover, the F -purity of Hankel determinantal rings 
has been verified in [7].

The central tool given in the present paper, Theorem 4.4, is an effective test for 
the strong F -regularity of a (non-Gorenstein) Cohen–Macaulay reduced complete local 
domain A of dimension at least 2 and prime characteristic. This result is a direct con-
sequence of [11, Theorem 2.3(4)], but we provide a simpler alternative proof. We apply 
it in the case where A is the determinantal ring defined by the minors of order 2 of 
a 3 × 3 generic symmetric matrix over a field of characteristic 2 or 3 (Example 4.7). 
In Example 4.8 we illustrate that the result may fail if we relax the main hypothesis. 
Furthermore, we show in Example 4.9 that the converse of our theorem is not true.

Another main result, Proposition 5.4, gives an explicit generating morphism for the 
local cohomology module

H2
In−1(X)(k[[X]])

where X is an n ×(n −1) matrix of indeterminates over a field k of positive characteristic, 
for any n ≥ 2. Furthermore, in Remark 5.5 we show that an adaptation of the proof also 
yields a generating morphism for the module

H3
In−1(X)+In−2(X′)(k[[X]])

whenever n ≥ 3, where X ′ is the submatrix formed by the first n − 2 rows of X. The 
study of local cohomology supported at determinantal ideals has been a major topic of 
research under various viewpoints (see for example [25], [29], [30] and [33]). Our result 
is interesting in its own in view of Lyubeznik’s theory [24], and moreover it will serve as 
a crucial ingredient in the main application obtained in this paper, regarding the strong 
F -regularity of certain rings. More precisely, from Theorem 4.4 and Remark 5.5 we derive, 
in Corollary 5.6, a new and quite simple proof of the well-known fact mentioned in the 
first paragraph: the generic determinantal ring k[[X]]/In−1(X) is strongly F -regular if 
the ground field k is perfect and of characteristic ≥ 5.

We close the paper with a few observations and questions on the extension of our 
methods to the case of arbitrary (not necessarily maximal) minors as well as to other 
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types of determinantal rings, such as those defined by minors of a generic symmetric
matrix. While the structure result given in Proposition 5.4 and the related fact observed 
in Remark 5.5 are no longer valid in these situations, it would be interesting to explore 
adapting our methods with a view to tackling these new cases.

2. Preliminaries: notions and methods in prime characteristic

In this section we provide a brief review on the main concepts and methods in positive 
characteristic that we will use in this paper. Unless explicitly stated otherwise, by the 
term ring we shall mean, in the entire paper, Noetherian commutative unital ring.

Let A be a ring of prime characteristic p. For an integer e ≥ 0, let fe : A → A be the 
eth Frobenius endomorphism of A, i.e., the function fe(a) = aq for a ∈ A and q = pe.

Given an ideal a ⊂ A, we denote by a[q] the ideal generated by the qth powers of all 
elements of a. Clearly, if a = (x1, . . . , xn) then

a[q] = (xq
1, . . . , x

q
n).

Definition 2.1. The tight closure of an ideal a ⊆ A is the ideal a∗ consisting of x ∈ A

such that cxq ∈ a[q] for some c ∈ A not in a minimal prime of A, and all large q = pe.

It turns out that a∗ is an ideal satisfying a ⊆ a∗ = (a∗)∗, and a is said to be tightly 
closed if a = a∗. For details on this closure operation we refer to [14] and [17].

In the definition above, one might need to choose different elements c to test whether 
x ∈ a∗. However, under mild conditions on the ring A (cf., e.g., [15, Theorem 6.20]), 
there exist elements c ∈ A not in a minimal prime of A for which x ∈ a∗ if and only 
if cxq ∈ a[q] for all q = pe. These elements c are called test elements, and the ideal 
they generate is the test ideal of A. One can weaken the condition on c and demand it 
satisfies the condition x ∈ a∗ if and only if cxq ∈ a[q] for all q = pe only for parameter 
ideals a: these elements are called parameter test elements, and the ideal they generate 
is the parameter test ideal of A.

Given an A-module M , we can give it a new A-module structure via fe. To this end, 
let F e

∗M stand for the additive Abelian group M , with elements denoted by F e
∗a, a ∈ M , 

and endow F e
∗M with the A-module structure given by aF e

∗m = F e
∗ a

pe

m.

Definition 2.2 (cf. [16] and [15, Section 5]). The ring A is said to be:

(a) strongly F -regular, if for each non-zero c ∈ A, the A-linear map A → F e
∗A sending 

1 to F e
∗ c splits for all large e;

(b) weakly F -regular, if every ideal in A is tightly closed;
(c) F -rational, if every parameter ideal in every localization of A is tightly closed;
(d) F -pure, if for all A-modules M , the map f ⊗A 1 : A ⊗A M → F 1

∗A ⊗M is injective.
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It is well-known that (a) ⇒ (b) ⇒ (c), (b) ⇒ (d) (cf. [10]), and, if A is local, (c) implies 
that A is a Cohen–Macaulay normal domain (cf. [15]).

Note that when A has test-elements, (b) is equivalent to the test ideal of A being 
the unit ideal, and that (c) is equivalent to the parameter test ideal of A being the unit 
ideal.

Given any A-linear map g : M → F e
∗M , we have an additive map g̃ : M → M obtained 

by identifying F e
∗M with M . We point out that g̃ is not A-linear; instead, it satisfies 

g̃(am) = ap
e

g̃(m) for all a ∈ A and m ∈ M . We call additive maps with this property 
eth Frobenius maps. Conversely, a Frobenius map h : M → M defines an A-linear map 
M → F e

∗M given by m 	→ F e
∗h(m).

To keep track of Frobenius maps we introduce the following skew-polynomial ring. 
Let A[Θ; fe] be the free A-module 

⊕
i≥0 AΘi, and give A[Θ; fe] the structure of a ring 

by defining the (non-commutative) product (aΘi)(bΘj) = abp
eiΘi+j (see [23, Chapter 1]

for a more general version of this construction). Now an eth Frobenius map g̃ on an 
A-module M corresponds to an A[Θ; fe]-module structure on M where the action of Θ
on M is given by Θm = g̃(m) for all m ∈ M .

A crucial set of tools in the prime characteristic toolkit are the Frobenius functors
which we now define. For any A-module M and e ≥ 1, we can extend scalars and 
obtain the F e

∗A-module F e
∗A ⊗A M . If we now identify the rings A and F e

∗A, we obtain 
the A-module A ⊗R M where for a, b ∈ A and m ∈ M , a(b ⊗ m) = ab ⊗ m and 
ap

e

b ⊗ m = b ⊗ am, and we denote this module by F e
A(M). Clearly, homomorphisms 

M → N induce A-linear maps F e
A(M) → F e

A(M) and thus we obtain the eth Frobenius 
functors F e

A(−). When the ring A is regular, a classical result due to Kunz (cf. [22]), 
which we shall use tacitly in this paper, states that the functor F e

A(−) is exact. A useful 
consequence is that in this case, if a ⊂ A is an ideal, then the A-modules A/a and A/a[p]

possess the same set of associated primes (cf. [18, Proposition 21.11]).
An eth Frobenius map g : M → M gives rise to an A-linear map g : F e

R(M) → M

defined by g(r ⊗m) = rg(m); this is well-defined since for all a, b ∈ A and m ∈ M ,

g(ap
e

b⊗m) = ap
e

bg(m) = bg(am) = g(b⊗ am).

In the special case where M is an Artinian module over a complete regular ring, this 
gives a way to define a “Matlis-dual which keeps track of Frobenius” functor, which we 
describe next.

Henceforth in this paper we adopt the following notation.

Notation 2.3. Let (R, m) be a d-dimensional complete regular local ring of prime char-
acteristic p and let A be its quotient by an ideal I ⊂ R. We will denote E = ER(R/m)
and EA = EA(A/mA) = annE I, the injective hulls of the residue fields of R and A, 
respectively. The Matlis dual functor HomR(−, E) will be denoted (−)∨.
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A crucial ingredient for the construction that follows is the fact that for both Ar-
tinian and Noetherian R-modules M , there is a natural identification of F e

R(M)∨ with 
F e
R(M∨) ([24, Lemma 4.1]) and henceforth we identify these tacitly. A map of Artinian 

R[Θ; fe]-modules ρ : M → N yields a commutative diagram

F e
R(M)

F e
R(ρ)

1⊗Θ

F e
R(N)

1⊗Θ

M
ρ

N

and an application of the Matlis dual gives the commutative diagram

N∨ ρ∨

1⊗Θ∨

M∨

1⊗Θ∨

F e
R(N)∨

F e
R(ρ∨)

F e
R(M)∨

Define Ce to be the category of Artinian R[Θ; fe]-modules, and De to be the category 
whose objects are R-linear maps N → F e

R(N) for Noetherian R-modules N , where 
morphisms in De are commutative diagrams

N
ϕ

ξ

M

ζ

F e
R(N)

F e
R(ϕ)

F e
R(M)

(1)

The construction above yields a contravariant functor Δe : Ce → De, and this functor is 
exact [2, Chapter 10]. Furthermore, an application of the Matlis dual to (1) yields

F e
R(M∨)

F e
R(ϕ∨)

ζ∨

F e
R(N∨)

ξ∨

M∨ ϕ∨

N∨

(2)

which can be used to equip M∨ and N∨ with R[Θ; fe]-module structures given by Θm =
ζ∨(1 ⊗m) and Θn = ξ∨(1 ⊗n), respectively. With these structures, ϕ∨ is R[Θ; fe]-linear. 
This construction yields an exact contravariant functor Ψe : De → Ce. Now, after the 
identification of the double Matlis dual (−)∨∨ with the identity functor on Artinian and 
Noetherian R-modules, the compositions Ψe ◦Δe and Δe ◦Ψe yield the identity functors 
on Ce and De, respectively (cf. [19] for details). In this sense, we can think of Δe as the 
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Matlis-dual that keeps track of a given Frobenius map. It will be useful in the proof of 
Proposition 3.3.

In this paper, we will focus our attention on a specific family of Artinian modules with 
Frobenius maps, namely, the local cohomology modules Hdim R

m (R) ∼= E and Hj
m(A), as 

well as their submodules and homomorphic images. Recall that for any ideal J in a 
commutative ring S of prime characteristic, the Frobenius map f : S → S induces a 
Frobenius map Hi

J(S) → Hi
J(S) (cf. [18, Chapter 21]), and when J is a maximal ideal, 

these local cohomology modules are Artinian.
Finally, we recall some of the constructions introduced in Lyubeznik [24]. An R-module 

M together with an isomorphism θ : M → FR(M) is called an F -module with structural 
isomorphism θ. If M is a finitely generated R-module and φ : M → FR(M) is R-linear, 
we obtain the following F -module as a direct limit

M = lim
−→

(M φ−→ FR(M) FR(φ)−−−−→ F 2
R(M) F 2

R(φ)−−−−→ · · · )

We call such an F -module an F -finite F -module with generating morphism φ (if φ is 
injective, we call φ a root of M).

If M is an Artinian R[Θ; f ]-module, there is a natural R-linear map αM : FR(M) → M , 
given by αm(r⊗m) = rΘm with Matlis dual map α∨

M : M∨ → FR(M)∨ ∼= FR(M∨). We 
can now define the Lyubeznik functor as

HR,A(M) = lim
−→

(M∨ α∨
M−−→ FR(M∨) FR(α∨

M )−−−−−→ F 2
R(M∨) F 2

R(α∨
M )−−−−−→ · · · )

which is an exact, contravariant functor from the category of Artinian R[Θ; f ]-modules 
to the category of F -finite F -modules. Notice that M∨ is finitely generated over R[Θ; f ], 
as the Matlis dual of an Artinian module satisfies the ascending chain condition and 
hence is finitely generated.

3. Generating morphisms of local cohomology modules

In this section we will further assume that the ring A = R/I is reduced, Cohen–
Macaulay of dimension d ≥ 1, and will write h = height I. Our objective is to describe 
some generating morphisms for Hh

I (R), the only non-vanishing local cohomology module 
with support at I (cf. [28, Proposition III.4.1]).

First we recall a basic fact:

Lemma 3.1 ([4, Proposition 3.3.18]). Let B be a Cohen–Macaulay ring having a canonical 
module ωB. If B is generically Gorenstein then ωB can be identified with an ideal K ⊂ B. 
For any such identification, either K has height 1 (in which case B/K is Gorenstein) or 
K = B.
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Since our ring A is Cohen–Macaulay and reduced (hence, generically Gorenstein), 
Lemma 3.1 implies that the canonical module ω = ωA of A can be identified with an 
ideal Ω/I ⊂ A, for a suitable ideal Ω ⊃ I which has height h + 1 if Ω 
= R.

We also invoke the following observation:

Lemma 3.2 ([26, Example 3.7]). If (B, n) is a complete Cohen–Macaulay local ring of 
dimension b ≥ 1 and prime characteristic, then the B-module of all Frobenius maps 
on Hb

n(B) is free of rank 1, generated by the natural map induced by the Frobenius 
endomorphism of B.

Next we produce a result that will be extremely useful in the sequel, in particular 
for our Theorem 4.4 (where we give a criterion of strong F -regularity). Further details, 
even in more generality, can be found in [1, Subsection 3.4.2], [21, Subsection 5.3] and 
[24, Section 4], but we supply a proof herein for the reader’s convenience.

Proposition 3.3. Assume that d ≥ 1.

(i) We can identify Hd
m(A) = annE(I)/ annE(Ω);

(ii) The R-module of all Frobenius maps on Hd
m(A) is isomorphic to

((I [p] : I) ∩ (Ω[p] : Ω))/I [p]

(iii) Under the isomorphism in (ii), the natural Frobenius map on annE(I)/ annE(Ω)
is given (up to a unit) by uT , where T is the natural Frobenius map on E, 
u ∈ (I [p] : I) ∩ (Ω[p] : Ω), and the image of u in ((I [p] : I) ∩ (Ω[p] : Ω))/I [p] gener-
ates this module.

Proof. The inclusion ω ⊂ A is compatible with the Frobenius endomorphism f : A → A, 
and the natural short exact sequence

0 −→ ω −→ A −→ A/ω −→ 0

induces an exact sequence of A[Θ; f ]-modules

Hd−1
m (A) −→ Hd−1

m (A/ω) −→ Hd
m(ω) −→ Hd

m(A) −→ Hd
m(A/ω).

Since A is Cohen–Macaulay, Hd−1
m (A) = 0, and also Hd

m(A/ω) = 0 as dim(A/ω) < d (or 
trivially if ω = A). Moreover, we can identify Hd

m(ω) = EA = annE(I). Since A/ω ∼= R/Ω
is Gorenstein (cf. [4, Proposition 3.3.11(b)]), we get that Hd−1

m (A/ω) is the injective hull 



26 M. Katzman, C.B. Miranda-Neto / Journal of Algebra 525 (2019) 19–41
of the residue field of A/ω, hence the annihilator of Hd−1
m (A/ω) is ω = Ω/I, and we may 

write Hd−1
m (A/ω) = annE(Ω). It follows a short exact sequence

0 −→ annE(Ω) −→ annE(I) −→ Hd
m(A) −→ 0 (3)

where the injection is an inclusion. This gives (i).
An application of the functor Δ1 described in Section 2 to the short exact sequence 

of R[Θ; f ]-modules (3) yields a short exact sequence in D1

0 Ω/I

u

R/I

u

R/Ω

u

0

0 Ω[p]/I [p] R/I [p] R/Ω[p] 0

(4)

where the vertical maps are multiplication by some u ∈ R. In order for these maps 
to be well-defined, we must have u ∈ (I [p] : I) ∩ (Ω[p] : Ω). Since Ω/I must contain a 
non-zero-divisor, the left-most vertical map is zero if and only if u ∈ I [p]. Conversely, 
given any u ∈ R that makes (4) commute, an application of the functor Ψ1 will endow the 
modules in (3) with an R[Θ; f ]-module structure making the maps there R[Θ; f ]-linear.

As for (iii), Lemma 3.2 shows that the natural Frobenius map on Hd
m(A) generates 

the module of all Frobenius maps on Hd
m(A). �

Remark 3.4. From the proof above and the well-known description of Hh
I (R) as the 

F -module HR,A(Hd
m(A)), it follows that if u ∈ R is such that its image modulo I [p] gen-

erates the cyclic module ((I [p] : I) ∩(Ω[p] : Ω))/I [p], then the (well-defined) multiplication 
map

Ω/I
·u−→ Ω[p]/I [p]

is isomorphic to a generating morphism of Hh
I (R). See [24, Example 4.8].

4. A general criterion of strong F -regularity

As in the previous section, we let A = R/I be a Cohen–Macaulay reduced ring of 
dimension d ≥ 1 (if d = 0 then A is simply a field), where (R, m) is a formal power series 
ring over a field k of characteristic p > 0. We let Ω/I be a canonical ideal of A.

In accordance with standard terminology, we say that a radical ideal J ⊃ I defines 
the singular locus of A if Sing(A) = V (J) in Spec(R), i.e., for a prime ideal p ⊃ I, the 
local ring Ap/I is regular if and only if p � J . In particular, J = m if and only if A is 
regular on the punctured spectrum, i.e., Ap/I is regular for every prime p 
= m. In order 
to produce such an ideal explicitly, at least when the field k is perfect, we may simply 
resort to the classical method by means of (formal) derivatives, namely, if J stands for 
the Jacobian matrix of some (in fact, any) set of generators of I, then the ideal
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√
Ih(J ) + I

does the job, where h is the height of I and Ih(J ) is the ideal generated by the subde-
terminants of J of order h. This standard method will be employed later in the proof 
of Corollary 5.6.

We consider three more definitions (details on the first two notions can be found, 
under different terminology, in [19]).

Definition 4.1. Fix some v ∈ R. An ideal L ⊂ R is said to be v-compatible if vL ⊂ L[p].

Note that L is v-compatible if and only if annE(L) is invariant under vT , where 
T : E → E is the natural Frobenius map. In this case, the map

R/L
·v−→ R/L[p]

is well-defined. For instance, if u ∈ R stands for an element whose image in R/I [p]

generates the cyclic module ((I [p] : I) ∩ (Ω[p] : Ω))/I [p] (see Proposition 3.3) then, clearly, 
I and Ω – as well as (0) and R – are u-compatible ideals.

Definition 4.2. Fix some v ∈ R. Given an ideal L ⊂ R, the 
v-closure of L, denoted L�v , 
is the smallest v-compatible ideal that contains L. When there is no ambiguity as to the 
element v, we simplify L�v to L�.

The 
v-closure of an ideal L in a polynomial ring or a power series ring exists (cf. 
[19, Section 5]). From Definition 4.2 we get that if (R, m) is local and vL � m[p], then 
L�v = R.

Next we recall a key ingredient in the proof of Theorem 4.4.

Lemma 4.3 (De Stefani–Núñez–Betancourt [8]). Let B be an excellent local ring of posi-
tive characteristic and satisfying S2 (e.g., if B is Cohen–Macaulay). Suppose that B has 
a canonical ideal K such that B/K is F -rational. Then, B is strongly F -regular.

The theorem below gives a sufficient condition for the strong F -regularity of our 
d-dimensional local ring A = R/I with canonical ideal Ω/I (we maintain the setup and 
notation as in the beginning of the section).

Theorem 4.4. Suppose that Ω 
= R and d ≥ 2. Let J ⊂ R define the singular locus of R/Ω. 
If

J(Ω[p] : Ω) � m[p]

then A is strongly F -regular.
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Proof. This theorem is a consequence of [11, Theorem 2.3(4)], and what follows is a 
simple alternative proof.

By Lemma 3.1, the ring A/ω � R/Ω is Gorenstein of dimension d − 1 ≥ 1. By Propo-
sition 3.3, there is an element v ∈ R whose image in R/Ω[p] generates (Ω[p] : Ω)/Ω[p] as a 
cyclic module. In order to prove the theorem, it suffices to show that R/Ω is F -rational, 
according to Lemma 4.3.

Note that the main hypothesis implies that (Ω[p] : Ω) � m[p] and Fedder’s Cri-
terion ([9, Theorem 1.12]) shows that R/Ω is F -pure and in particular F -injective 
([9, Lemma 3.3]) and reduced ([9, p. 464]).

Since R/Ω is Gorenstein, the ring itself is a canonical module. With this choice of R/Ω
as a canonical module, we can now use [19, Theorem 8.2] to compute the parameter-
test-ideal of R/Ω as the image of τ = (cR + Ω)�v in R/Ω, where the image of c in R/Ω
is a parameter-test-element.

Let P1, . . . , Ps be the minimal primes of Ω; [20, Proposition 2.1] shows that these are 
v-compatible ideals as well. We deduce that

Pi(Ω[p] : Ω) = Pi(v + Ω[p]) ⊆ P
[p]
i + Ω[p] ⊆ m[p]

for all 1 ≤ i ≤ s, and hence the hypothesis implies that there exists a c ∈ J not in any Pi

such that c(Ω[p] : Ω) � m[p]. But since the localization (R/Ω)c is regular, c has a power 
whose image in R/Ω is a test-element (cf., e.g., [15, Theorem 6.20]). Also, since R/Ω is 
F -injective, its parameter-test-ideal is radical (cf., e.g., [31, Corollary 4.6]) and c itself 
is then a parameter-test-element.

Using c with these properties we obtain τ = (cR+ Ω)�v = (cR)�v + Ω�v = R, the last 
equality following from the fact that vc /∈ m[p]. �
Corollary 4.5. Assume that Ω 
= R = k[[x1, . . . , xn]], and that R/Ω is regular on the 
punctured spectrum. If d ≥ 2 and

Ω[p] : Ω � (m[p], (x1 · · ·xn)p−1)

then A is strongly F -regular.

Proof. In this situation we have J = m, and, moreover, as x1, . . . , xn is a regular se-
quence, m[p] : m = (m[p], (x1 · · ·xn)p−1). Now the result follows from Theorem 4.4. �
Remark 4.6. Fedder’s criterion of F -purity (cf. [9, Theorem 1.12]) states that the ring 
A = R/I is F -pure if and only if I [p] : I � m[p]. Since strong F -regularity is known to 
imply F -purity (see Section 2), Theorem 4.4 yields in particular that A is F -pure.
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Example 4.7. Set A = R/I = k[[x, y, z, w, s, t]]/I2(φ), where the field k has characteristic 
p = 2 or p = 3, and φ is the generic symmetric matrix

φ =

⎛⎜⎝ x w t

w y s

t s z

⎞⎟⎠ .

The ring A is a 3-dimensional Cohen–Macaulay normal domain with canonical ideal 
Ω/I = (Q + I)/I, where Q can be taken as the ideal generated by the variables from the 
first row of φ (cf. [13]), so that

Ω = Q + I = (x, w, t, yz − s2).

It is easy to see that the ring R/Ω is regular on the punctured spectrum. Furthermore, 
as in this case Ω is a complete intersection, we can express v simply as the (p − 1)th 
power of the product of the generators of Ω. Explicitly,

v =
{

xyzwt + xwts2, p = 2
x2y2z2w2t2 + x2yzw2t2s2 + x2w2t2s4, p = 3.

Since xyzwt (resp. x2y2z2w2t2) lies outside the monomial ideal m[2] (resp. m[3]), we get

v /∈
{

(m[2], xyzwts), p = 2
(m[3], (xyzwts)2), p = 3.

By Corollary 4.5, A is strongly F -regular.

Next, we illustrate that our main hypothesis, J(Ω[p] : Ω) � m[p], cannot be relaxed; in 
particular, it cannot be weakened to the condition Ω[p] : Ω � m[p].

Example 4.8. Consider the 2-dimensional Cohen–Macaulay reduced ring A = R/I =
k[[x, y, z, w, s]]/I2(ψ), where the field k has characteristic 2 and ψ is given by

ψ =
(

x y y s

w w z x

)
.

A canonical ideal for A is ω = Ω/I, where Ω = (x, w, s, yz). Therefore v = xyzws, and

J (Ω[2] : Ω) = m (Ω[2], v) ⊂ m[2].

According to [19, Section 9], the ring A is not F -rational, hence it cannot be strongly 
F -regular. Notice, however, that since v /∈ m[2] we have

Ω[2] : Ω � m[2].
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This latter property yields, at least, that A is F -pure. Indeed, Fedder’s criterion gives 
that R/Ω � A/ω is F -pure, and hence so is A itself, according to [27, Theorem 3.4].

Finally, we show that the converse of Theorem 4.4 is not true, with a suitable choice 
of a canonical ideal.

Example 4.9. Let B = S/L = k[x, y, z, w]/I2(ϕ) where k has characteristic p = 3 and ϕ
is the matrix

ϕ =
(
x2 y w

z x2 y − w

)
.

The ring B is a 2-dimensional (non-Gorenstein) Cohen–Macaulay normal domain, which, 
according to [32, Proposition 4.3], is F -regular in the sense that all of its localizations 
are weakly F -regular.

Notice that B is graded with the grading inherited from the polynomial ring S given 
by deg(x) = 1, deg(y) = deg(z) = deg(w) = 2. But F -regular F -finite positively graded 
rings are known to be strongly F -regular ([32, Theorem 2.2(5)]). It follows that B is 
strongly F -regular and hence so is its completion A = B̂ = R/LR = k[[x, y, z, w]]/I2(ϕ)
(see, e.g., [26, Proof of Theorem 4.1, page 3163]). However, noticing that Ω/LR is a 
canonical ideal of A, where Ω = (x4, y, w) ⊂ R (a complete intersection), we claim that

Ω[3] : Ω ⊆ m[3]

which will readily illustrate that the converse of our result fails for this choice of Ω. This 
is clear, since in this case we have Ω[3] : Ω = (Ω[3], v), where

v = x8y2w2 ∈ m[3].

We can also consider the related question as to whether J(Ω[3e] : Ω) � m[3e] for some 
e ≥ 2. The answer is negative, since Ω[3e] : Ω ⊆ m[3e] for all e ≥ 2. Indeed, Ω[3e] : Ω =
(Ω[3e], ve), where

ve = x4(3e−1)y3e−1z3e−1

which lies in m[3e] since 4(3e − 1) > 3e.

5. Generic determinantal rings defined by maximal minors

We begin this section with a quick recap about determinantal rings defined by (max-
imal) minors of a matrix of indeterminates over a field. Complete details on the subject 
can be found in Bruns–Vetter [5] (cf. also Bruns–Herzog [4, Section 7.3]).
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We fix a formal power series ring R = k[[X]] over a field k, where X = (xij)n×(n−1)
is a matrix of indeterminates, for some n ≥ 2. Let

I = In−1(X)

be the ideal of R generated by the maximal minors of X, i.e., its subdeterminants of 
order n − 1. It is convenient to write generators explicitly,

I = (G1, . . . , Gn)

where Gi is the minor which does not involve the ith row. By [5, Theorem 2.1] the ideal 
I is a perfect prime ideal of height 2 (indeed, reordering the Gi’s and adjusting their 
signs if necessary, X itself turns out to be a Hilbert–Burch matrix for I) and, whenever 
i 
= j, the set {Gi, Gj} is a maximal R-sequence contained in I.

We also consider the ideal P ⊂ R defined by

P =
{

R, if n = 2
In−2(X ′), if n ≥ 3

where X ′ is the submatrix consisting of the first n − 2 rows of X if n ≥ 3, and in this 
case P is prime of height 2 as well. Note that (Gn, Gn−1) ⊂ P , and more precisely, there 
is a primary decomposition (Gn, Gn−1) = I ∩P . Furthermore, the canonical ideal of the 
(normal) Cohen–Macaulay domain A = R/I is Ω/I, where

Ω = P + I

which is also a prime ideal (of height 3). It is well-known that A is non-Gorenstein if and 
only if n ≥ 3 (cf. [5, Corollary 2.21]).

5.1. Explicit generating morphism

We maintain the preceding setup and notations, and, as in Sections 3 and 4, we fix 
the hypothesis char(k) = p > 0. Our objective here is to exhibit a generating morphism 
for the top local cohomology module

H2
I (R) = H2

In−1(X)(k[[X]]),

which is of interest in view of Lyubeznik’s theory [24]. Since the “multiplication by u” 
map

Ω/I
·u−→ Ω[p]/I [p]

is isomorphic to a generating morphism of H2
I (R) (cf. Remark 3.4), we are reduced to 

describing u explicitly.
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Before revealing the formula for u, let us write down the calculations if n = 2 and 
n = 3 (stated below as examples). In particular, we will automatically get the base case 
of the induction used in the proof of Proposition 5.4.

Example 5.1. The case n = 2 is easy, and, as mentioned before, is the only situation 
where A is Gorenstein. We have R = k[[x, y]], I = m and Ω = R, so that I [p] : I =
(xp, yp, (xy)p−1) and hence

u = (xy)p−1 = (G2G1)p−1.

Example 5.2. We elaborate Fedder’s computation in [9, Proposition 4.7] and study the 
case n = 3, the first (non-Gorenstein) non-trivial interesting case. Here we have

X =

⎛⎜⎝ x w

y s

z t

⎞⎟⎠
so that I = (G1, G2, G3) = (yt − zs, xt − zw, xs − yw) ⊂ R = k[[X]]. Moreover P =
(x, w), and hence Ω = (G1, x, w). Since P and Ω are complete intersections, P [p] : P =
(xp, wp, (xw)p−1) and Ω[p] : Ω = (Ω[p], (G1xw)p−1). Thus

Ω[p] : Ω = (Gp
1, x

p, wp, (G1xw)p−1) ⊂ (Gp
1) + (P [p] : P ).

Now, pick an arbitrary f ∈ (I [p] : I) ∩ (Ω[p] : Ω). In particular f ∈ Ω[p] : Ω, and, by the 
above inclusion, we can write

f = aGp
1 + e

with a ∈ R and e ∈ P [p] : P . For simplicity, set K = (G3, G2). Since K ⊂ P , we 
have eK ⊂ P [p]. Moreover, since K ⊂ I and f ∈ I [p] : I, we get fK ⊂ I [p]. Thus 
(f − aGp

1)K ⊂ I [p] or, equivalently, eK ⊂ I [p], and hence eK ⊂ I [p] ∩ P [p]. But we know 
that K = I ∩ P , which by the exactness of Frobenius gives

K [p] = I [p] ∩ P [p].

Therefore e ∈ K [p] : K = (K [p], (G3G2)p−1). It follows that there exist b, c, d ∈ R such 
that e = bGp

2 + cGp
3 + d(G3G2)p−1. As f = aGp

1 + e, we finally obtain

f = aGp
1 + bGp

2 + cGp
3 + d(G3G2)p−1 ∈ I [p] + (u), u = (G3G2)p−1.

This proves the inclusion (I [p] : I) ∩ (Ω[p] : Ω) ⊂ I [p] + (u).
Now let us verify that, if again we set u = (G3G2)p−1, then I [p] + (u) ⊂ (I [p] : I) ∩

(Ω[p] : Ω), which then will be an equality. Since clearly I [p] ⊂ Ω[p], we only need to show 
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that uI ⊂ I [p] and uΩ ⊂ Ω[p]. Let us prove first that uI ⊂ I [p]. By the exactness of 
Frobenius we get

Ass(R/I [p]) = Ass(R/I)

which is simply {I} since I is prime, and hence it suffices to prove that u = u/1 ∈
II

[p] : II . Since RI is a 2-dimensional regular local ring, its maximal ideal II is a complete 
intersection of height 2, and we can write II = (G3, G2)I ⊂ RI , which gives

II
[p] : II = (I [p], (G3G2)p−1)I = (I [p], u)I

and therefore u ∈ II
[p] : II .

Let us now check that uΩ ⊂ Ω[p]. As uI ⊂ I [p] and clearly Ω[p] = (P+I)[p] = P [p]+I [p], 
it suffices to show that uP ⊂ P [p], which, since P is prime, amounts to show that 
u ∈ P

[p]
P : PP . We may localize the primary decomposition (G3, G2) = I ∩ P at P and 

obtain PP = (G3, G2)P ⊂ RP , hence P [p]
P : PP = (P [p], u)P , as needed.

Thus we have shown that, in case n = 3, the cyclic module ((I [p] : I) ∩ (Ω[p] : Ω))/I [p]

is generated by the image of the polynomial

u = (G3G2)p−1.

Remark 5.3. We point out that, if n = 3, Fedder [9, Proposition 4.7] explicitly computed 
the colon ideal I [p] : I as being equal to I [p] + I2p−2. Here we have not used this fact for 
our description of the intersection (I [p] : I) ∩ (Ω[p] : Ω), and we note that

(G3G2)p−1 ∈ (I2)p−1 = I2p−2.

On the other hand, Fedder’s computation is no longer valid in higher dimension; for 
instance if p = 3 and n = 4, then it can be verified that

I [3] : I 
= I [3] + I4

while Proposition 5.4 below computes (I [p] : I) ∩(Ω[p] : Ω) for any n, so that the behavior 
illustrated in the examples above is not a coincidence.

For convenience, in the present setting we write

C (X) = ((I [p] : I) ∩ (Ω[p] : Ω))/I [p]

where X is the given n × (n −1) generic matrix, and as before u denotes a representative 
for a generator of this cyclic module.

Proposition 5.4. For an arbitrary n, we can take u = (GnGn−1)p−1.
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Proof. We proceed by induction on n. The case n = 3 is the content of Example 5.2. We 
set f = (GnGn−1)p−1 and we will prove that we may take u = f for arbitrary n.

Let Y = (yij) be a generic matrix of new indeterminates yij ’s over k, with 2 ≤ i ≤ n, 
2 ≤ j ≤ n − 1, and denote by S the ring obtained by adjoining to the polynomial 
ring k[Y ] = k[{yij}] all the variables that appear in the first row and first column of 
the original matrix X. Now let us invert the variable x = x11, that is, we pass to the 
rings of fractions Sx and k[X]x, where k[X] = k[{xij}n×(n−1)]. It is well-known (cf. 
[4, Lemma 7.3.3]) that the substitution

yij 	→ xij − x1j xi1

x
, 2 ≤ i ≤ n, 2 ≤ j ≤ n− 1

yields a ring isomorphism ϕ : Sx → k[X]x such that ϕ(It−1(Y )x) = It(X)x for every 
t ≥ 1. In particular,

Ix = ϕ(In−2(Y )x).

In analogy with the notation C (X), let C (Y ) stand for the corresponding cyclic 
module derived from the generic matrix Y . Write generators

Q = In−2(Y ) = (H2, . . . , Hn) ⊂ S.

By induction, the class v + Q[p] of the element

v = (HnHn−1)p−1

is a generator of C (Y ), and ϕ(v) has the form f/xα ∈ k[X]x, for some α ≥ 0. Clearly 
ϕ(v) ≡ (f/1) mod (Ix), and since moreover C (X)x � C (Y )x (in virtue of the isomor-
phism ϕ), the residue class f/1 + I

[p]
x must generate C (X)x. Therefore, for an arbitrary 

g ∈ k[X] such that g + I [p] generates C (X), we get

(f/1) ≡ (g/1) mod (I [p]
x )

or what amounts to the same

xβ(f − g) ∈ I [p]

for some β ≥ 0. Since Ass(R/I [p]) = {I} and x /∈ I, we necessarily have f − g ∈ I [p], i.e., 
the image of f generates C (X) and hence we can take u = f , as asserted. �
Remark 5.5. For n ≥ 3, we claim that Proposition 5.4 remains valid if we pass from 
A = R/I to the Gorenstein domain

A/ω � R/Ω = R/(I + P ) = k[[X]]/(In−1(X) + In−2(X ′)).
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More precisely, if now we denote by u′ ∈ R a representative of a generator of the cyclic 
R/Ω[p]-module (Ω[p] : Ω)/Ω[p], then we can still take

u′ = (GnGn−1)p−1

so that the map R/Ω → R/Ω[p] given by multiplication by this polynomial is isomorphic 
to a generating morphism of the local cohomology module H3

Ω(R) (cf. Remark 3.4).
Our claim can be proved by induction in a very similar way, with a suitable adaptation. 

Let us momentarily assume the validity of the base case n = 3, and suppose that n ≥ 4. 
Let ϕ : Sx → k[X]x be the isomorphism described in the proof of Proposition 5.4. Since 
the submatrix X ′ (formed by the first n − 2 rows of X) is a generic matrix as well, we 
may consider the generic submatrix Y ′ of Y for i = 2, . . . , n − 2, j = 2, . . . , n − 1, and 
we can correspondingly define a ring S′ as well as an isomorphism

ϕ′ : S′
x −→ k[X ′]x

which is simply the restriction of ϕ to the subring S′
x ⊂ Sx. Since In−2(X ′)x ⊂ k[X ′]x

is the image of In−3(Y ′)x ⊂ S′
x via ϕ′, it follows that the ideal

Px = In−2(X ′)x ⊂ k[X]x

is the extension of the ideal ϕ′(In−3(Y ′)x) to the ring k[X]x, which in turn coincides 
with ϕ(In−3(Y ′)Sx). Thus we have

Ωx = Ix + Px = ϕ(In−2(Y )x) + ϕ′(In−3(Y ′)x)k[X]x = ϕ(In−2(Y )x + In−3(Y ′)Sx).

Writing generators

Q′ = In−3(Y ′) + In−2(Y ) = (h2, . . . , hn−1, H2, . . . , Hn) ⊂ S

we get, by induction, that if we set

v′ = (HnHn−1)p−1

then the residue class v′ + Q′[p] generates the cyclic module (Q′[p] : Q′)/Q′[p], and by 
construction it satisfies ϕ(v′) = (GnGn−1)p−1/xγ for some γ ≥ 0. Since

Ωx � Q′
x

via ϕ, and since Ω is prime, the rest of the proof is exactly as in the proof of the 
proposition.

It remains to check the case n = 3. We use the same notation as in Example 5.2, where 
we verified that Ω[p] : Ω = (Ω[p], (G1xw)p−1) and (I [p] : I) ∩ (Ω[p] : Ω) = (I [p], u) for u =
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(G3G2)p−1. Denote u′ = (G1xw)p−1, so that Ω[p] : Ω = (Ω[p], u′). Since u ∈ (I [p], u) ⊂
Ω[p] : Ω, we get an inclusion (Ω[p], u) ⊂ (Ω[p], u′) which turns out to be necessarily an 
equality since the elements u, u′, regarded as homogeneous polynomials of the standard 
graded ring k[X], have the same degree. Therefore, the class u′+Ω[p] = u +Ω[p] generates 
(Ω[p] : Ω)/Ω[p].

5.2. Strong F -regularity

As a consequence of Theorem 4.4 and Remark 5.5, we will establish a simple proof of 
the fact that the ring defined by the maximal minors of an n ×(n −1) matrix X = (xij) of 
indeterminates over a positive characteristic field k (which must satisfy mild conditions) 
is strongly F -regular for any n ≥ 2. As mentioned in the Introduction, this is well-known 
and has been proven in more generality, but the method we have employed in this paper 
is completely different from the ones available in the literature and we expect that some 
variation of it may shed a new light on further developments, mainly with a view to the 
possibility of investigating other classes of determinantal rings.

We shall assume that the characteristic p of k satisfies p ≥ 5, and, moreover, that k is 
perfect. The need for the former will be clear from the proof, and the latter is to ensure 
that the singular locus can be described by means of suitable minors of the Jacobian 
matrix, as recalled at the beginning of Section 4. As an illustration that this may fail if 
k is imperfect, pick a ∈ k \ kp. Then the polynomial f = xp − ayp is irreducible over k, 
hence (f) itself yields a non-singular prime of the domain A = k[x, y]/(f). On the other 
hand, the partial derivatives of f vanish. Thus the above-mentioned description of the 
singular locus does not hold for A.

Corollary 5.6. The generic determinantal ring A = R/I = k[[X]]/In−1(X) is strongly 
F -regular.

Proof. This statement is obvious if n = 2 as in this case we simply have A � k. Thus 
we may assume that n ≥ 3, hence dimA = n(n − 1) − 2 ≥ 2. Let Ω and J be the ideals 
as in the statement of Theorem 4.4 and let u′ be as in Remark 5.5. In order to prove the 
result by means of Theorem 4.4, we need to find some Δ ∈ J such that

Δu′ /∈ m[p]

where the image of u′ in R/Ω[p] generates (Ω[p] : Ω)/Ω[p] as a cyclic module, and Ω =
I + P = In−1(X) + In−2(X ′).

We treat first the case n = 3, and we follow the same notation of Example 5.2. We 
have Ω = (G1, x, w) = (yt − zs, x, w), so that J = m. According to the fact proved in 
Remark 5.5, we can take u′ = (G3G2)p−1. Since

G3G2 = (xs− yw)(xt− zw) = −xzws + . . .
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we get, by expansion,

u′ = (−1)p−1(xzws)p−1 + . . .

Taking for example Δ = y, we obtain that Δu′ /∈ m[p] and hence A is strongly F -regular 
in this case.

Now suppose that n ≥ 4. Let gj denote the determinant of X ′ with its jth column 
deleted, for j = 1, . . . , n − 1.

Then P = (g1, . . . , gn−1), and note that, for each j,

∂gj
∂xij

= 0, ∀ i ∈ {1, . . . , n− 2}.

Since Gn, Gn−1 ∈ P , we have (minimal) generators

Ω = (G1, . . . , Gn−2, g1, . . . , gn−1)

whose Jacobian matrix we denote by J . We will find an appropriate element Δ in the 
ideal I3(J ) ⊂ J generated by the minors of order 3 of J (recall that Ω has height 3). 
First, we define the auxiliary monomial

M =
{

1, n = 4
x34 · · ·xn−2,n−1, n ≥ 5.

It is easy to see that {
g1 = x12x23M + . . .

g2 = x11x23M + . . .

and expansion along the first column of the (n − 2) × (n − 2) matrix whose determinant 
is g3 yields

g3 = − x21(x12x34 · · ·xn−2,n−1 + . . .) + . . . = − x21x12M + . . .

Now we take the minor Δ ∈ I3(J ) given by

Δ = det

⎛⎜⎝ ∂g1/∂x11 ∂g1/∂x21 ∂g1/∂x23
∂g2/∂x11 ∂g2/∂x21 ∂g2/∂x23
∂g3/∂x11 ∂g3/∂x21 ∂g3/∂x23

⎞⎟⎠

= det

⎛⎜⎝ 0 0 ∂g1/∂x23
∂g2/∂x11 ∂g2/∂x21 ∂g2/∂x23
∂g /∂x ∂g /∂x 0

⎞⎟⎠

3 11 3 21



38 M. Katzman, C.B. Miranda-Neto / Journal of Algebra 525 (2019) 19–41
that is,

Δ = ∂g1

∂x23

∂g2

∂x11

∂g3

∂x21
− ∂g1

∂x23

∂g2

∂x21

∂g3

∂x11
.

But

∂g1

∂x23

∂g2

∂x11

∂g3

∂x21
= (x12M)(x23M)(−x12M) + . . .

and consequently

Δ = − x2
12x23M

3 + . . .

Finally, we claim that Δu′ /∈ m[p]. To prove this, recall that we can take u′ =
(GnGn−1)p−1 (cf. Remark 5.5). Denote by Xi the square submatrix of X obtained by 
deletion of its ith row. Looking at Gn = det(Xn) by taking expansion along the first row 
of Xn yields

Gn = . . . + (−1)nx1,n−1δ1,n−1

where the minor δ1,n−1, obtained after deletion of the first row and last column of Xn, 
can be written as

δ1,n−1 = x21 · · ·xn−1,n−2 + . . .

so that

Gn = (−1)nx1,n−1(x21 · · ·xn−1,n−2) + . . .

Also, note that

Gn−1 = det(Xn−1) = x11 · · ·xn−2,n−2xn,n−1 + . . .

Hence

GnGn−1 = (−1)nx1,n−1(x21 · · ·xn−1,n−2)(x11 · · ·xn−2,n−2xn,n−1) + . . .

and therefore

u′ = [(−1)nx1,n−1 (x21 · · ·xn−1,n−2) (x11 · · ·xn−2,n−2xn,n−1)]p−1 + . . .

Now, considering the product Δu′ and noticing, by an elementary inspection, that the 
monomial

x2
12x23M

3 [x1,n−1 (x21 · · ·xn−1,n−2) (x11 · · ·xn−2,n−2xn,n−1)]p−1
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avoids m[p] if the characteristic satisfies p ≥ 5, we obtain Δu′ /∈ m[p] for p ≥ 5, as 
needed. �
Remark 5.7. Together with some of the well-known facts mentioned in Section 2, the 
corollary above yields that every ideal of k[[X]]/In−1(X) is tightly closed and, moreover, 
that this ring is F -pure. Furthermore notice that, for n = 3 (resp. n = 4), our proof 
works for every p ≥ 2 (resp. p ≥ 3). For arbitrary n, a natural question is whether our 
argument can be adapted (e.g., by choosing Δ more efficiently) so as to cover also the 
remaining cases p = 2 and p = 3.

5.3. Further remarks

We conclude the paper with a couple of remarks.

Remark 5.8. It is natural to ask whether the structural result established in Remark 5.5
(which was crucial to the proof of Corollary 5.6) can be extended in an analogous manner 
to the situation of non-maximal minors, i.e., in the case where

Ω = It(X) + It−1(X ′), 2 ≤ t ≤ n− 2.

Unfortunately, the answer is negative at least if n = 4, t = 2 and p = 3, for which we 
have verified that u′ has degree 18 as an element of the standard graded polynomial 
ring k[X], and hence it cannot be expressed as (Q1 · · ·Qr)2 for quadratic homogeneous 
polynomials Q1, . . . , Qr ∈ I.

On the other hand, regardless of the ability to understand the entire shape of u′, we 
claim that in this case the ring A = R/I is strongly F -regular. In fact, a computation 
shows that

u′ = (x11x12x13x22x23x31x33x41x42)2 + . . .

and moreover that x43 ∈ J , and hence clearly

x43u
′ /∈ m[3]

which, by Theorem 4.4, proves the claim.

Remark 5.9. We can also raise the problem as to whether our method for finding u′, given 
in Remark 5.5, extends to other classes of determinantal singularities, specially the one 
formed by generic symmetric determinantal rings. We have checked, however, that the 
formula for u′ as the (p − 1)th power of a suitable product of minors does not hold in 
this situation. For instance, if I is the ideal of minors of order 2 of a 3 × 3 symmetric 
matrix of indeterminates over a field of characteristic p = 2, then, as we have seen in 
Example 4.7, the element u′ has degree 5 and consequently it cannot be expressed as a 
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product of quadratic polynomials, and, analogously, if p = 3 then u′ has degree 10 and 
hence it cannot be written as the second power of such a product. Of course, even for 
arbitrary p, the shape of u′ in the 3 × 3 case can be easily detected as Ω is a complete 
intersection in this situation. However, the problem becomes rather subtle in the case 
of an n × n generic symmetric matrix with n ≥ 4, as the structure of an adequate u′

remains quite mysterious and we do not even know whether it can be taken reducible.
Furthermore, inspired by Corollary 5.6, it seems relevant to complement the problem 

above with the following question:

Question 5.10. Are generic symmetric determinantal rings strongly F -regular?

As far as we know, this is an open problem. The answer is affirmative for 3 ×3 generic 
symmetric matrices and p = 2 or p = 3, as shown in Example 4.7. There is computational 
evidence that this is also true in the 4 × 4 case, at least in low characteristic as well.

Naturally, besides the symmetric case, it would be also of interest to investigate u′ as 
well as the strong F -regularity property for other important classes of rings, such as those 
defined by Pfaffians of generic alternating matrices or by minors of Hankel matrices.
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