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1. Introduction

Graded rings possess a high degree of structure, or rigidity, that often compensates 
for otherwise exotic behaviour. A ring A is graded by a group Γ if it has a decomposition 
into additive subgroups A =

⊕
γ∈Γ Aγ such that AγAδ ⊆ Aγδ for all γ, δ ∈ Γ. The ring is 

strongly graded if AγAδ = Aγδ for all γ, δ ∈ Γ. From our point of view, strong grading is 
the very best kind of grading. Strongly graded rings were studied extensively by Everett 
Dade [17,18]. Among other theorems, he proved in [17, Theorem 2.8] that A is strongly 
graded if and only if the category of graded A-modules is naturally equivalent to the 
category of Aε-modules (where ε is the identity in Γ). In other words, the ε-component 
“speaks” for the whole ring and carries some information about its other homogeneous 
components. If A is strongly graded, there is a one-to-one correspondence between the 
graded left ideals of A and the left ideals of Aε (see [23, Remark 1.5.6]). It follows that 
A satisfies the ascending/descending chain condition on graded left ideals if and only if 
Aε satisfies the ascending/descending chain conditions on left ideals. In a similar vein, a 
strongly graded ring is graded von Neumann regular (every homogeneous element has a 
von Neumann inverse) if and only if its ε-component is von Neumann regular.

In this paper, we develop a theory of strongly graded étale groupoids. In many re-
spects, it resembles the classical theory of strongly graded rings. A topological groupoid 
G is Γ-graded (by a discrete group Γ) if there is a continuous functor κ : G → Γ. Equiva-
lently, G is a disjoint union of clopen subsets G = �γ∈Γ Gγ such that GγGδ ⊆ Gγδ for all 
γ, δ ∈ Γ. In analogy with graded rings, we say that G is strongly graded if GγGδ = Gγδ for 
all γ, δ ∈ Γ. It is much easier to work with gradings on groupoids than it is to work with 
gradings on rings and, in particular, it is much easier to verify if a groupoid is strongly 
graded. To illustrate this, in a graded ring A =

⊕
γ∈Γ Aγ , the set AγAδ contains not only 

those elements of the form aγaδ, where aγ ∈ Aγ and aδ ∈ Aδ, but also all finite sums of 
such elements. In contrast, if G = �γ∈Γ Gγ is a graded topological groupoid, then GγGδ

is nothing more than the set of elements of the form gγgδ, where gγ ∈ Gγ and gδ ∈ Gδ. 
There are no sums to worry about. Moreover, every subgroupoid of a graded groupoid 
is graded, while not every subring of a graded ring is graded. Every element of a graded 
groupoid is homogeneous, while most elements in a graded ring are not homogeneous.

It is a common theme in mathematics that the theory of an algebraic structure benefits 
from an extrinsic approach. For instance, studying G-sets, on which a group G acts, often 
illuminates the properties of G. Dade’s Theorem shows that the “internal” definition of 
strong grading for rings has an equivalent “external” characterisation: one that takes 
meaning in the category of modules. In many situations, a sheaf is the appropriate 
kind of external structure on which an étale groupoid should act. That is, sheaves are to 
groupoids what modules are to rings. With this principle in mind, we define the category 
of graded G-sheaves, associated to a graded étale groupoid G. In Theorem 3.9, we prove 
a groupoid-theoretic analogue of Dade’s Theorem. It says that an ample groupoid is 
strongly graded if and only if every graded G-sheaf is “induced” by a Gε-sheaf. This 
result gives an external characterisation of strong grading for groupoids.
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While this theory is interesting in its own right, our main application is the study of 
strongly graded Steinberg algebras. Steinberg algebras AR(G) are convolution algebras 
of functions from an ample groupoid G to a commutative ring R. They first appeared 
independently in papers by Steinberg [36] and Clark, Farthing, Sims, and Tomforde [13]. 
The primary motivation for constructing these algebras was to generalise other classes 
of algebras, especially inverse semigroup algebras and Leavitt path algebras. Steinberg 
algebras provide a unifying theory and a new way of studying these seemingly disparate 
classes of algebras. For instance, various papers [38–40] have used Steinberg algebras to 
characterise, in terms of the underlying graph or inverse semigroup, when a Leavitt path 
algebra or inverse semigroup algebra is simple, (semi)prime, (semi)primitive, noetherian, 
or artinian. The Steinberg algebra model has also been put to use in [14,36] to describe 
the centres of these algebras. Other classes of algebras that arise as Steinberg algebras 
include partial skew group rings associated to topological partial dynamical systems 
[10], and the higher-rank analogues of Leavitt path algebras, known as Kumjian-Pask 
algebras [15]. Additionally, the theory of Steinberg algebras has succeeded in producing 
algebras with interesting prescribed properties, including the first examples of simple 
algebras of arbitrary Gelfand-Kirrilov dimension [31].

Graded ample groupoids produce graded Steinberg algebras, and many well-studied 
classes of Steinberg algebras (including Leavitt path algebras, Kumjian-Pask algebras, 
and partial skew group rings) receive a graded structure in this way [15,16,25]. We prove, 
in Theorem 3.11, that the Steinberg algebra AR(G) is strongly graded if and only if the 
groupoid G is strongly graded. This theorem is useful for applications, and it enables 
us to characterise the strong grading property for each of the classes mentioned above. 
Moreover, we prove a graded version of Steinberg’s Equivalence Theorem from [37], and 
use it to show that Theorems 3.9 and 3.11 are equivalent in the sense that either one 
can be derived from the other.

We have a special interest in Leavitt path algebras, not least because they have pro-
voked some of the most interesting recent developments in graded ring theory. Leavitt 
path algebras, first introduced in [2,8], are Z-graded algebras whose generators and re-
lations are encoded in a directed graph. The construction is somewhat similar to (and 
indeed motivated by) the graph C∗-algebra construction. It is not an exaggeration to 
say that the Z-graded structure of Leavitt path algebras is what makes it possible to 
study them so successfully. For instance, in the very first paper on Leavitt path alge-
bras, Abrams and Aranda Pino applied a decomposition into homogeneous components 
to establish a criterion for simplicity (see [2, Theorem 3.11]). The same authors, in [3], 
used graded ideals to prove that every Leavitt path algebra over a field is semiprime and 
semiprimitive. The graded Grothendieck group is a very important concept that emerged 
from the study of these Z-graded algebras, and it is the most promising invariant in the 
ongoing classification programme for Leavitt path algebras (see [4, §7.3] and [24]).

Strong grading is especially important for Leavitt path algebras, because the 
0-component of every Leavitt path algebra is ultramatricial (see [8, Theorem 5.3]). Many 
of the “good” properties of those ultramatricial 0-components, like von Neumann regu-
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larity, are then passed to the other components via strong grading (when it is present). 
Strong grading has also been applied to calculate the graded Grothendieck groups of 
some Leavitt path algebras [23, §3.9.3]. Strongly graded Leavitt path algebras have even 
found an application in noncommutative algebraic geometry, where Paul Smith [32] uses 
them to give an expression of the quotient category of graded modules over a path 
algebra, modulo those that are the sum of their finite-dimensional submodules.

However, not every Leavitt path algebra is strongly graded, so it is valuable to under-
stand which ones are. A characterisation of strongly graded Leavitt path algebras was 
known for graphs with finitely many edges and vertices: it is necessary and sufficient 
that every vertex connects to a cycle (see [22, Theorem 3.15]). Our new techniques lead 
quite easily to a complete characterisation of strongly graded Leavitt path algebras, for 
graphs of any size. We are able to prove a much more general result, characterising the 
strong grading property for Zk-graded Kumjian-Pask algebras of higher-rank graphs.

The structure of the paper moves from abstract to concrete. In Section 2, we extend 
some of the basic concepts in graded ring theory to the setting of graded rings with 
local units, among them Dade’s Theorem (Theorem 2.3). We recall the notion of a 
graded groupoid G and its associated Steinberg R-algebra AR(G), which is a graded 
algebra with local units. We recall the notion of a G-sheaf, in preparation for introducing 
the category of graded G-sheaves in Section 3. In Section 3, we prove the groupoid 
version of Dade’s Theorem (Theorem 3.9) and then we establish our main theorem that 
a Steinberg algebra AR(G) is strongly graded if and only if G is so (Theorem 3.11). We 
then establish an equivalence between the category of graded G-sheaves of R-modules 
and the category of graded modules over the Steinberg R-algebra associated to G. In 
Section 4, we apply our results to graph algebras: both to Leavitt path algebras and 
to Kumjian-Pask algebras, their higher-rank analogues. We use the groupoid model to 
give graphical characterisations of strongly graded graph algebras (Theorem 4.2 and 
Theorem 4.12). As emphasised, this demonstrates why it is much easier to check that 
a groupoid is strongly graded than it is to check the corresponding criterion for the 
ring itself. We also apply our results to partial group actions, showing that the algebra 
associated to a partial action of a discrete group on a totally disconnected space is 
strongly graded if and only if the action is a global action (Proposition 4.14).

2. Preliminaries

A groupoid is a small category in which every morphism has an inverse (see [35, 
Definition 1.1] for an alternative definition). If G is a groupoid, we write G(0) for the set of 
objects (called the unit space) and we identify objects with their identity morphisms. We 
denote by d and c the domain and codomain maps d, c : G → G(0) and write G(2) ⊆ G×G
for the set of composable pairs, which are pairs (x, y) with c(y) = d(x). We also write 
Gx := d−1(x) and xG := c−1(x). A topological groupoid is a groupoid G equipped with a 
topology such that inversion i : G → G and composition m : G(2) → G are continuous, 
where G(2) has the relative product topology. It is assumed that the unit space G(0) has 
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the relative topology (as a subspace of G). In case d is a local homeomorphism, we say 
that G is an étale groupoid. If G is étale, it follows that c is also a local homeomorphism. 
If U ⊆ G is open and both d|U and c|U are injective then they are homeomorphisms 
onto their images, and U is called an open bisection (or a slice, or an open G-set in some 
literature). The topology on an étale groupoid is generated by a basis of open bisections, 
and the unit space itself is an open bisection [19, Proposition 3.2].

A topological groupoid G is called ample if it has a basis of compact open bisec-
tions and G(0) is Hausdorff. Equivalently, G is ample if it is étale and G(0) is Haus-
dorff, locally compact, and totally disconnected [20, Proposition 4.1]. Let Bco(G) =
{B ⊆ G | B is a compact open bisection} and Bco(G(0)) = {U ∈ Bco(G) | U ⊆ G(0)}. In 
an ample groupoid G, the set Bco(G) is an inverse semigroup, with products defined as 
BC =

{
bc | (b, c) ∈ B × C ∩ G(2)} and inverses B−1 = {b−1 | b ∈ B}.

2.1. Steinberg algebras

Let R be a unital commutative ring. Following [36], one can construct an associative 
R-algebra from an ample groupoid. Let 1B : G → R be the characteristic function of a 
compact open bisection B ⊆ G.

Definition 2.1. Let G be an ample groupoid. Define AR(G) as the R-submodule of RG

generated by the set {1B | B ∈ Bco(G)}. The convolution product of f, g ∈ AR(G) is 
defined as

f ∗ g(x) =
∑
y∈G

d(y)=d(x)

f(xy−1)g(y) =
∑

(z,y)∈G(2)

zy=x

f(z)g(y) for all x ∈ G.

The R-module AR(G), with the convolution product, is called the Steinberg algebra of G
over R.

On the generators, the convolution product reduces to the formula 1B ∗ 1C = 1BC

for all B, C ∈ Bco(G). In particular, 1U ∗ 1V = 1U∩V whenever U, V ∈ Bco(G(0)). Note 
that AR(G) is unital if and only if G(0) is compact, in which case 1 = 1G(0) (see [36, 
Propositon 4.11]). If G is Hausdorff, AR(G) equals the set of locally constant, compactly 
supported R-valued functions on G.

2.2. Graded rings with graded local units

Let Γ be a group with identity ε. A ring A (possibly without unit) is called a Γ-graded 
ring if A =

⊕
γ∈Γ Aγ , where each Aγ is an additive subgroup of A and AγAδ ⊆ Aγδ, for 

all γ, δ ∈ Γ. By definition, AγAδ is the additive subgroup generated by all terms aγaδ
where aγ ∈ Aγ and aδ ∈ Aδ. The group Aγ is called the γ-homogeneous component of A
(or sometimes just the γ-component). The elements of 

⋃
γ∈Γ Aγ are called homogeneous, 
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and the nonzero elements of Aγ are called homogeneous of degree γ. If a ∈ A, we write 
a =

∑
γ∈Γ aγ for the unique expression of a as a sum of homogeneous terms aγ ∈ Aγ . 

When it is clear from context that the ring A is graded by the group Γ, we simply say 
that A is a graded ring. If A is an R-algebra over a commutative unital ring R, then A
is called a graded algebra if it is a graded ring and each Aγ is an R-submodule of A. 
A graded homomorphism of Γ-graded rings is a homomorphism f : A → B such that 
f(Aγ) ⊆ Bγ for every γ ∈ Γ. If a Γ-graded ring A =

⊕
γ∈Γ Aγ has the property that 

AγAδ = Aγδ for all γ, δ ∈ Γ, then A is called strongly Γ-graded, or just strongly graded
if Γ is clear from context.

We say that a ring A has local units if there is a set of idempotents E ⊆ A and for 
every finite subset F ⊆ A there exists e ∈ E such that exe = x for each x ∈ F . If A is 
Γ-graded then we say A has graded local units if E can be chosen as a subset of Aε. (It 
appears to be unknown whether there exist graded rings with local units that are not 
graded rings with graded local units.)

If A is a Γ-graded ring and Ω is a normal subgroup of Γ, then it gives rise to two more 
graded rings: AΩ :=

⊕
ω∈Ω Aω is an Ω-graded ring (with the subgroup grading), and

A =
⊕

Ωγ∈Γ/Ω

AΩγ , where AΩγ :=
⊕
ω∈Ω

Aωγ for all Ωγ ∈ Γ/Ω, (2.1)

is a Γ/Ω-graded ring (with the quotient grading).
Let M be a right A-module. We say M is unital if M = MA. If A is a Γ-graded ring, 

M is called a graded A-module if it has a decomposition M =
⊕

γ∈Γ Mγ where each 
Mγ is an additive subgroup of M and MγAδ ⊆ Mγδ for all γ, δ ∈ Γ. If A has graded 
local units and M is a unital graded A-module, then each Mγ is a unital Aε-module. 
A graded homomorphism between graded A-modules is an A-module homomorphism 
f : M → N such that f(Mγ) ⊆ Nγ for every γ ∈ Γ. We denote by Mod-A the category 
of unital right A-modules and by Gr-A the category of unital graded right A-modules 
with graded homomorphisms.

For a graded right A-module M , and α ∈ Γ, we define the α-shifted graded right 
A-module M(α) as

M(α) =
⊕
γ∈Γ

M(α)γ , (2.2)

where M(α)γ = Mαγ . The images of M(α) and M under the forgetful functor 
U : Gr-A → Mod-A are isomorphic, but M(α) and M are not generally isomorphic 
in Gr-A. For α ∈ Γ, the shift functor Tα : Gr-A → Gr-A, M �→ M(α), is an auto-
equivalence of the category Gr-A, and these shift functors satisfy TαTβ = Tαβ for all 
α, β ∈ Γ, and Tε = idGr-A.

The proof of the following lemma is straightforward.

Lemma 2.2. Let A be a Γ-graded ring with graded local units. The following are equivalent:
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(1) A is strongly graded.
(2) AγAγ−1 = Aε for every γ ∈ Γ.
(3) For every γ ∈ Γ, the set of graded local units is contained in AγAγ−1 .

Next, we introduce the functors involved in Dade’s Theorem. Consider the restriction 
functor, mapping a graded A-module M to the Aε-module Mε:

I : Gr-A −→ Mod-Aε (2.3)

M �−→ Mε

ψ �−→ ψ|Mε
.

Consider the induction functor, mapping an Aε-module N to the graded A-module 
N ⊗Aε

A:

J : Mod-Aε −→ Gr-A (2.4)

N �−→ N ⊗Aε
A

φ �−→ φ⊗ id .

The grading on N ⊗Aε
A is defined by setting (N ⊗Aε

A)γ = N ⊗Aε
Aγ . One can easily 

check that IJ ∼= idMod-Aε
with the natural isomorphism:

IJ (N) = I(N ⊗Aε
A) = N ⊗Aε

Aε

∼=−→ N, (2.5)

n⊗ a �−→ na.

On the other hand, there is a natural transformation:

J I(M) = J (Mε) = Mε ⊗Aε
A −→ M, (2.6)

m⊗ a �−→ ma.

The theorem below is Dade’s Theorem in the setting of graded rings with graded local 
units. The proof is similar to the case for unital rings, so we leave it to the reader (see [23, 
§1.5] and [17]).

Theorem 2.3. Let A be a Γ-graded ring with graded local units. Then A is strongly 
Γ-graded if and only if the functors I : Gr-A → Mod-Aε and J : Mod-Aε → Gr-A
(see (2.3), (2.4)) are mutually inverse equivalences of categories.

Note that it is possible to have an equivalence between the categories Gr-A and 
Mod-Aε, without A being strongly graded; see [30, Example 3.2.4]. Hence, the functors 
I and J are essential in the statement of Theorem 2.3.
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Applying Dade’s Theorem twice we can prove the following lemma. We give an 
element-wise proof of the lemma, as this paves the way for the proof of the groupoid 
version of it (see Lemma 3.2).

Lemma 2.4. Let A be a Γ-graded ring with graded local units, and let Ω � Γ. Then A is 
strongly Γ-graded if and only if A is strongly Γ/Ω-graded and AΩ is strongly Ω-graded.

Proof. Suppose A is a strongly Γ-graded ring. By Lemma 2.2, AγAγ−1 = Aε, for every 
γ ∈ Γ. Restricting to Ω, we immediately get that AΩ is strongly Ω-graded. Next we 
show that AΩγAΩγ−1 = AΩ, for every γ ∈ Γ. The fact AΩγAΩγ−1 ⊆ AΩ follows from the 
definition of the grading. It is enough to show that for ω ∈ Ω, Aω ⊆ AΩγAΩγ−1 . But 
Aω = AωAε = AωAγAγ−1 ⊆ AΩγAΩγ−1 . Applying Lemma 2.2 (for the Γ/Ω-graded ring 
A) it follows that A is strongly Γ/Ω-graded.

For the converse, we only need to show that Aε ⊆ AγAγ−1 , for every γ ∈ Γ. If 
γ ∈ Ω then Aε = AγAγ−1 , because AΩ is strongly Ω-graded. Suppose γ /∈ Ω. Since 
A is strongly Γ/Ω-graded, we have Aε ⊆ AΩ = AΩγAΩγ−1 . Thus for x ∈ Aε we have 
x =

∑
aibi, where ai ∈ Aωi1γ

and bi ∈ Aωi2γ
−1 . Comparing the degrees of both sides we 

have that deg(ai) = γωi and deg(bi) = ω−1
i γ−1, for ωi ∈ Ω. Now write ai = aiui, where 

ui ∈ Aε is a local unit. Since AΩ is strongly Ω-graded, by Lemma 2.2, ui ∈ Aω−1
i

Aωi
. 

Writing x =
∑

aibi =
∑

aiuibi, and using the fact from the previous sentence, we get 
x ∈ AγAγ−1 . By Lemma 2.2, this proves that A is strongly Γ-graded. �
2.3. Graded groupoids

Let Γ be a group (with identity ε) and let G be a topological groupoid. The groupoid 
G is called Γ-graded if G can be partitioned by clopen subsets indexed by Γ, i.e. G =
�γ∈Γ Gγ , such that GγGδ ⊆ Gγδ for every γ, δ ∈ Γ. The set Gγ is called the γ-component
of G. We write Gx

γ := d−1(x) ∩ Gγ and xGγ := c−1(x) ∩ Gγ . We say a subset X ⊆ G
is γ-homogeneous if X ⊆ Gγ . Obviously, the unit space is ε-homogeneous and if X is 
γ-homogeneous then X−1 is γ−1-homogeneous.

Equivalently, G is Γ-graded if there is a continuous functor κ : G → Γ, where Γ is 
regarded as a discrete group. To match the definition of Γ-grading, from the previous 
paragraph, one defines Gγ = κ−1(γ). We say that the graded groupoid G is strongly 
graded if GγGδ = Gγδ for every γ, δ ∈ G. If the grading is defined by κ : G → Γ, then G
is strongly graded if κ−1(γ)κ−1(δ) = κ−1(γδ) for all γ, δ ∈ Γ. Strong grading implies κ
is surjective. Strongly graded groupoids appeared in [6, Definition 5.3.7] where they are 
viewed as groupoids with a “strongly surjective” functor κ : G → Γ.

If G is a Γ-graded topological groupoid and Ω �Γ, then it gives rise to two more graded 
groupoids. Firstly, the open subgroupoid GΩ := �ω∈Ω Gω is an Ω-graded groupoid (with 
the subgroup grading). Secondly, if we view Γ as a discrete group, then the quotient 
topology on Γ/Ω is also discrete, so G has a natural Γ/Ω-grading (the quotient grading) 
defined by
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G = �
Ωγ∈Γ/Ω

GΩγ , where GΩγ := �
ω∈Ω

Gωγ for all Ωγ ∈ Γ/Ω. (2.7)

2.4. Graded Steinberg algebras

Graded ample groupoids are very important, because the Steinberg algebra that one 
gets from such a groupoid is always a graded algebra. This fact is essential for a number 
of key results: for instance, in [16] it is used to prove that every Leavitt path algebra 
is a Steinberg algebra, and in [25] it is used to prove that Steinberg algebras of cer-
tain transformation groupoids are partial skew group rings. Graded Steinberg algebras 
and their graded representations, graded diagonal-preserving isomorphisms, and graded 
ideals have been studied in [7,11,12].

If an ample groupoid G is Γ-graded then we write Bco
γ (G) for the set of all 

γ-homogeneous compact open bisections of G, and note that the set of all homoge-
neous compact open bisections, Bco

∗ (G) :=
⋃

γ∈Γ Bco
γ (G), is a basis for the topology on 

G. Recall that AR(G) is defined in Definition 2.1.

Lemma 2.5. [16, Lemma 3.1] If G is a Γ-graded ample groupoid, then AR(G) =⊕
γ∈Γ AR(G)γ is a Γ-graded algebra with homogeneous components:

AR(G)γ = {f ∈ AR(G) | supp(f) ⊆ Gγ} = spanR{1B | B ∈ Bco
γ }.

Naturally, AR(G)ε ∼= AR(Gε) via the isomorphism f �→ f |Gε
. If G is Γ-graded then 

AR(G) has graded local units, which are the characteristic functions of compact open 
subsets of G(0) (see [12, Lemma 2.6]). The quotient grading and subgroup grading are 
preserved by the construction of Steinberg algebras. Specifically, if G is Γ-graded and 
Ω �Γ, the Γ/Ω-graded structure on AR(G) can be obtained in the following two equivalent 
ways: either by viewing G as a Γ/Ω-graded groupoid, as in (2.7), and transferring that 
grading to AR(G), or by giving AR(G) the usual Γ-graded structure and taking the 
quotient grading of AR(G), as in (2.1). This is due to the fact (whose proof is similar to 
[16, Lemma 3.1]) that⊕

ω∈Ω

{
f ∈ AR(G) | supp(f) ⊆ Gωγ

}
=

{
f ∈ AR(G) | supp(f) ⊆ �

ω∈Ω
Gωγ

}
for all Ωγ ∈ Γ/Ω. Similarly, AR(GΩ) is graded isomorphic to AR(G)Ω. Since GΩ is clopen,

AR(GΩ) ∼= {f ∈ AR(G) | supp(f) ⊆ GΩ} =
⊕
ω∈Ω

{f ∈ AR(G) | supp(f) ⊆ Gω} = AR(G)Ω.

2.5. G-sheaves

Let X be a topological space. A sheaf space over X is a pair (E, p) where E is a 
topological space and p : E → X is a local homeomorphism. If (E, p) is a sheaf space, 
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the fibre Ex := p−1(x) is called the stalk of E at x ∈ X. A local section of E is a map 
s : U → E, where U ⊆ X is open, such that ps is the identity on U . A global section of 
E is a section s : X → E. The set {s(U) | s : U → E is a continuous local section} is 
a basis that generates the topology on E. A morphism of sheaf spaces (E, p) and (F, q)
over X is a continuous map φ : E → F such that qφ = p. In practice, a sheaf space (E, p)
is often referred to by E when there is no need to draw attention to p. The following 
lemma is extremely useful.

Lemma 2.6. [41, §2, Lemma 3.5 (c)] If (E, p) and (F, q) are sheaf spaces over X and 
φ : E → F satisfies qφ = p, then the following are equivalent:

(1) φ is continuous;
(2) φ is an open map;
(3) φ is a local homeomorphism.

A sheaf space (E, p) over X is called a sheaf of R-modules (where R is a commutative 
ring with 1) provided each stalk Ex is an R-module and the following conditions are 
satisfied:

(A1) The zero section Z : X → E sending x ∈ X to 0x ∈ Ex (the zero of Ex) is 
continuous;

(A2) Addition E ×G(0) E is continuous (where the fibre product is with respect to p);
(A3) Scalar multiplication R×E → E is continuous (where R has the discrete topology).

One can use Lemma 2.6 to show that addition and scalar multiplication are also open 
maps. A morphism of sheaves of R-modules is a morphism of sheaf spaces that restricts 
to R-homomorphisms on the stalks. A section s : X → E is called compactly supported
if supp(s) := {x ∈ X | s(x) �= 0x} is compact. If s is a continuous section, then s(X) is 
open and supp(s) = X \ Z−1(s(X)) is closed in X. Condition (A1) is equivalent to the 
statement that {0x | x ∈ X} is open in E.

Let C be either the category of sets or the category of R-modules. Let X be a topolog-
ical space and OX the poset of open subsets of X. A presheaf over X is a contravariant 
functor F : OX → C. More precisely, F is a presheaf of sets or a presheaf of R-modules, 
according to the category C. A morphism of presheaves F : OX → C and G : OX → C is 
a natural transformation ν : F → G. Given any presheaf of sets F , a standard process 
converts F into a sheaf space (F̃ , pF ) in a functorial way (and the same process converts 
a presheaf of R-modules into a sheaf of R-modules). In practice, it is sufficient that F is 
defined on a subset O′

X of OX , provided O′
X is a basis for the topology on X, because 

(F̃ , pF ) is determined uniquely by the restriction of F to O′
X . For every U ∈ OX and ev-

ery x ∈ U there is a surjective homomorphism F (U) → F̃x usually denoted by s �→ [s]x.
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Restricted to a subcategory of presheaves that satisfy two extra conditions (see [41, p. 
14]), the functor F �→ (F̃ , pF ) is an equivalence of categories. We refer to [41] for the 
details.

Now let G be an étale groupoid. A (right) G-sheaf consists of a sheaf space (E, p) over 
G(0) together with a continuous action E ×G(0) G → E (where the fibre product is with 
respect to p and c), denoted (e, g) �→ eg, satisfying the conditions:

(B1) ep(e) = e for all e ∈ E;
(B2) p(eg) = d(g) whenever e ∈ E, g ∈ G, and p(e) = c(g);
(B3) (eg)h = e(gh) whenever e ∈ E, (g, h) ∈ G(2), and p(e) = d(g).

If E and F are G-sheaves, a morphism of sheaf spaces φ : E → F is called G-equivariant
if φ(eg) = φ(e)g for all (e, g) ∈ E ×G(0) G. A morphism of G-sheaves is a G-equivariant 
morphism of sheaf spaces. The category of G-sheaves, denoted BG, is called the classifying 
topos of G [28,29].

A G-sheaf (E, p) is called a G-sheaf of R-modules if it is a sheaf of R-modules over 
G(0) and for each g ∈ G the map Rg : Ec(g) → Ed(g), given by Rg(e) = eg, is an 
R-homomorphism. A morphism of G-sheaves of R-modules is a G-equivariant morphism 
of sheaves of R-modules. We write BRG for the category of G-sheaves of R-modules.

2.6. Steinberg’s Equivalence Theorem

The main reason we are interested in G-sheaves of R-modules is that they are equiv-
alent to representations of Steinberg algebras. In [37, Theorem 3.5], Steinberg proved 
that (for ample G) the category of G-sheaves of R-modules is equivalent to the category 
of right unital AR(G)-modules. This is a vast generalisation of the fact that the cate-
gory of representations of a group G in K-vector spaces is equivalent to the category of 
KG-modules. Steinberg’s Equivalence Theorem (as we call it) was used in [38] to study 
primitive Steinberg algebras, and it leads to a very short proof of the Primitivity Theo-
rem for Leavitt path algebras (see [40, Theorem 5.5] and [5, Theorem 5.7]). We briefly 
describe the theorem and the functors involved in it.

Let M be a right AR(G)-module. Define the following presheaf of R-modules over G(0):

M(U) = M1U , for all U ∈ Bco(G(0)); (2.8)

ρUV : M(U) → M(V ), ρUV (m) = m1V , for all V ⊆ U in Bco(G(0)), m ∈ M(U).

Applying the sheaf space functor, one gets a sheaf of R-modules Sh(M) = (M̃, pM )
where:

M̃ =
⋃

x∈G(0)

M̃x, M̃x = lim−→
x∈U

M(U) = {[m]x | m ∈ M};

pM ([m]x) = x for all [m]x ∈ M̃x.
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In other words, M̃x is the direct limit of the directed system in (2.8), as U ranges over 
all the sets U ∈ Bco(G(0)) that contain x. The notation [m]x is standard: it means the 
image of m ∈ M in the direct limit M̃x. The topology on M̃ is generated by the basis of 
open sets:

(U,m) =
{
[m]x | x ∈ U

}
, where U ∈ Bco(G(0)), m ∈ M(U). (2.9)

For [m]x ∈ M̃ and g ∈ xGy, we define [m]xg = [m1B ]y where B ∈ Bco(G) is an arbitrarily 
chosen compact open bisection containing g. This makes M̃ a G-sheaf of R-modules. After 
defining the effect of Sh on morphisms and checking some details, this process defines a 
functor Sh : Mod-AR(G) → BRG.

In the other direction, let (E, p) be a G-sheaf of R-modules. Define Γc(E) as the set 
of compactly supported continuous sections s : G(0) → E. Then Γc(E) is an R-module 
and, moreover, it is a right AR(G)-module with:(

sf
)
(x) =

∑
g∈Gx

f
(
g
)
s
(
c(g)

)
g for all s ∈ Γc(E), f ∈ AR(G), x ∈ G(0). (2.10)

In particular, (2.10) entails:

(
s1B

)
(x) =

{
s
(
c(g)

)
g if g ∈ B, d(g) = x

0x otherwise.
for all s∈ Γc(E), B ∈ Bco(G), x ∈G(0).

If U ∈ Bco(G(0)) then 
(
s1U

)
(x) = 1U (x)s(x) for all x ∈ G(0). After defining the effect 

of Γc on morphisms and checking some details, this defines a functor Γc : BRG →
Mod-AR(G). Here is the statement of Steinberg’s Equivalence Theorem:

Theorem 2.7. [37, Theorem 3.5] Let G be an ample groupoid and R a unital commutative 
ring. The functors Γc : BRG → Mod-AR(G) and Sh : Mod-AR(G) → BRG are mutually 
inverse equivalences of categories.

To demonstrate the theorem, we show what becomes of AR(G) once it is sent from the 
category of AR(G)-modules to the category of G-sheaves of R-modules. This sheaf (or at 
least, its stalks) appear in a number of proofs, both in this paper and elsewhere [36,38].

Example 2.8. Consider the right regular representation M := AR(G). The sheaf of 
R-modules Sh(M) = (M̃, pM ) has stalks M̃x = lim −→

x∈U
AR(G) ∗ 1U

∼= RGx, where RGx

is the free R-module with basis Gx. The isomorphism 
(
lim −→

x∈U
AR(G

)
∗ 1U ) → RGx

carries [f ]x to 
∑

g∈Gx f(g)g. The induced action of G on the sheaf 
⋃

x∈G(0) RGx is the 
canonical one where (g, h) �→ gh for all (g, h) ∈ G(2). Since RGx is a limit of left 
AR(G)-modules, and the connecting homomorphisms are AR(G)-homomorphisms, RGx

is also a left AR(G)-module with

f · t =
∑
z∈Gx

f(zt−1)z for all f ∈ AR(G), t ∈ Gx. (2.11)
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In particular, if U ∈ Bco(G(0)) then 1U · t = 1U (c(t))t. More details on RGx as a 
bimodule can be found in [36, Proposition 7.8].

3. Strongly graded groupoids

We begin this section by proving groupoid versions of Lemmas 2.2 and 2.4. It is the 
first of several instances where graded groupoids and graded rings display surprisingly 
similar results.

Lemma 3.1. Let G be a Γ-graded topological groupoid. The following are equivalent.

(1) G is strongly graded;
(2) GγGγ−1 = Gε, for all γ ∈ Γ;
(3) d(Gγ) = G(0), for all γ ∈ Γ;
(4) c(Gγ) = G(0), for all γ ∈ Γ.

Proof. (1) ⇒ (2) It follows from the definition of strong grading.
(2) ⇒ (3) For any γ ∈ Γ, we have G(0) = d(Gε) = d(GγGγ−1) ⊆ d(Gγ−1) ⊆ G(0).
(3) ⇒ (4) For any γ ∈ Γ, G(0) = d(Gγ−1) = ci(Gγ−1) = c(Gγ).
(4) ⇒ (1) For any x ∈ Gγδ choose y ∈ Gδ−1 with c(y) = d(x). Then x = xyy−1 ∈
GγGδ. �
Lemma 3.2. Let G be a Γ-graded topological groupoid and Ω � Γ. Then G is strongly 
Γ-graded if and only if G is strongly Γ/Ω-graded and GΩ is strongly Ω-graded.

Proof. (⇒) If G is strongly Γ-graded then Lemma 3.1 (2) implies G is strongly 
Γ/Ω-graded and GΩ is strongly Ω-graded.

(⇐) By Lemma 3.1 (3), d(Gω) = G(0) for any ω ∈ Ω, since GΩ is strongly Ω-graded. 
Suppose γ ∈ Γ \ Ω. Since G is strongly Γ/Ω-graded, again by Lemma 3.1 (3) we have 
d(GΩγ) = G(0). Then for any u ∈ G(0), there exists ω ∈ Ω and g ∈ Gωγ such that 
d(g) = u. Now c(g) ∈ G(0) = d(Gω−1) so there exists h ∈ Gω−1 such that d(h) = c(g). 
Then hg ∈ Gω−1Gωγ ⊆ Gγ with d(hg) = u. Thus u ∈ d(Gγ) and so d(Gγ) = G(0). By 
Lemma 3.1 (3), it follows that G is strongly Γ-graded. �
3.1. The category of graded G-sheaves

In this subsection, we define two new categories. Both times, we give an informal 
motivation, describing how they arise naturally, and then we provide a concise formal 
definition.

To motivate Definition 3.3, let Γ be a group and let X be a topological space. Let SetΓ
be the category whose objects are Γ-graded sets (that is, sets Y equipped with a function 
κY : Y → Γ) and whose morphisms are functions f : Y1 → Y2 such that κY2f = κY1 . 
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A SetΓ-valued presheaf over X is a contravariant functor F : OX → SetΓ. Applying 
the sheaf space functor (see [41, pp. 8, 21]) to F , and keeping track of the Γ-grading, 
one obtains a sheaf space (F̃ , pF ) whose stalks are Γ-graded sets. If, in addition, G is a 
Γ-graded étale groupoid and F̃ is a G-sheaf such that the grading on G is compatible 
with the grading on F̃ , then we call F̃ a graded G-sheaf of sets.

Definition 3.3. Let G be a Γ-graded étale groupoid, graded by the continuous functor 
κ : G → Γ. A G-sheaf (E, p) is called a graded G-sheaf of sets if there is a continuous 
map κ : E → Γ (named again κ) such that κ(eg) = κ(e)κ(g), whenever p(e) = c(g).

We write E = �γ∈Γ Eγ , where Eγ := κ−1(γ), and we call Eγ the γ-component. A 
morphism φ : E → F of G-sheaves is a graded morphism if φ(Eγ) ⊆ Fγ for any γ ∈ Γ. 
The category of all graded G-sheaves of sets with graded morphisms is denoted by BgrG. 
There is a forgetful functor U : BgrG → BG.

To motivate Definition 3.4, let Γ be a group, X a topological space, and R a unital 
commutative ring. Consider R as a Γ-graded ring with the trivial grading (i.e., R = Rε). 
Let F be a presheaf of graded R-modules; i.e., a contravariant functor from OX to the 
category of graded R-modules. Applying the sheaf space functor (see [41, pp. 8, 21]) to 
F one obtains a sheaf of R-modules (F̃ , pF ) in which each stalk is a Γ-graded R-module. 
Suppose, in addition, G is a Γ-graded étale groupoid and F̃ is a G-sheaf of R-modules such 
for each g ∈ Gγ the homomorphism Rg : Ec(g) → Ed(g) implemented by g maps 

(
Ec(g)

)
α

to 
(
Ed(g)

)
αγ

, for all α ∈ Γ. We call such an object a graded G-sheaf of R-modules.

Definition 3.4. Let G be a Γ-graded étale groupoid and let E be a G-sheaf of R-modules. 
Then E is called a graded G-sheaf of R-modules if:

(C1) For any x ∈ G(0), Ex =
⊕

γ∈Γ(Ex)γ , where (Ex)γ are R-submodules of Ex;
(C2) Eγ :=

⋃
x∈G(0)(Ex)γ is open in E for every γ ∈ Γ;

(C3) EγGδ ⊆ Eγδ for every γ, δ ∈ Γ.

We call Eγ the γ-homogeneous component of E, and denote the homogeneous elements
of E by Eh :=

⋃
γ∈Γ Eγ . Note that the degree map κ : Eh → Γ, sγ �→ γ, where sγ ∈ Eγ , 

is continuous, and (C3) can be interpreted as κ(eg) = κ(e)κ(g) for every e ∈ Eh and 
any g ∈ G such that p(e) = c(g). A morphism φ : E → F of G-sheaves of R-modules 
is a graded morphism if φ(Eγ) ⊆ Fγ for any γ ∈ Γ. The category of graded G-sheaves 
of R-modules with graded morphisms will be denoted Bgr

R G. There is a forgetful functor 
U : Bgr

R G → BRG.
For a graded G-sheaf of R-modules E, and α ∈ Γ, we define the α-shifted graded 

G-sheaf of R-modules (compare with (2.2)):

E(α) =
⋃

x∈G(0)

E(α)x =
⋃

x∈G(0)

⊕
γ∈Γ

(E(α)x)γ , where (E(α)x)γ = (Ex)αγ . (3.1)
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The γ-homogeneous component of E(α) is the αγ-homogeneous component of E. The 
images of E(α) and E under the forgetful functor U : Bgr

R G → BRG are isomorphic, 
but E(α) and E are not generally isomorphic in Bgr

R G. For α ∈ Γ, the shift functor 
Tα : Bgr

R G → Bgr
R G, E �→ E(α), is an auto-equivalence of the category Bgr

R G.

Lemma 3.5. If G is a Γ-graded étale groupoid and E is a graded G-sheaf of R-modules, 
then the natural projection onto the γ-homogeneous component of E (i.e., πγ : E → Eγ , 
e �→ eγ) is continuous.

Proof. Let Y ⊆ Eγ be open. Let D = {δ1, . . . , δn} ⊆ Γ \ {γ}. Then the set

T (D) = {eγ + e1 + · · · + en | eγ ∈ Y, e1 ∈ Eδ1 , . . . , en ∈ Eδn}

is open in E because n-fold addition E ×G(0) · · · ×G(0) E → E is an open map, and 
Y ×G(0) Eδ1 ×G(0) · · · ×G(0) Eδn is an open set in E ×G(0) · · · ×G(0) E. Thus

π−1
γ (Y ) = {e ∈ E | eγ ∈ Y } =

⋃{
T (D) | D is a finite subset of Γ \ {γ}

}
is open, proving that πγ is continuous. �

Applying Lemma 2.6, we can also conclude that πγ : E → Eγ is a local homeomor-
phism.

3.2. Dade’s Theorem for G-sheaves of R-modules

We begin this subsection by describing how a graded G-sheaf of R-modules is induced 
by a Gε-sheaf of R-modules in a natural way. Then we show how this fits into the 
categorical framework, and describe the implications for graded Steinberg algebras.

Let G be a Γ-graded ample groupoid, and let (E, p) be a Gε-sheaf of R-modules. Define 
the graded G-sheaf E ⊗Gε

G as 
⋃

x∈G(0) E ⊗Gx where E ⊗Gx is the R-module generated 
by the symbols {e ⊗ g | e ∈ E, g ∈ Gx, p(e) = c(g)} subject to the relations:

e⊗ g + e′ ⊗ g = (e + e′) ⊗ g, (re) ⊗ g = r(e⊗ g), eh⊗ g = e⊗ hg,

for all e, e′ ∈ E, g ∈ G, r ∈ R, and h ∈ Gε. Indeed, E ⊗Gε
G carries the structure of a 

G-sheaf of R-modules as follows. Define p(e) = x if e ∈ E⊗Gx. For e =
∑

ei⊗gi ∈ E⊗Gε
G

and g ∈ G with p(e) = c(g), define eg =
∑

ei⊗gig. The topology on E⊗Gε
G is generated 

by the basis of open sets{
Z(t, U) | U ∈ Bco(G(0)), t ∈ Γc(E) ⊗AR(G)ε AR(G)

}
, where

Z(s1 ⊗ f1 + · · · + sn ⊗ fn, U)

:=
{∑

g∈Gx

(
f1(g)s1(c(g)) + · · · + fn(g)sn(c(g))

)
⊗ g

∣∣∣ x ∈ U

}
.

(3.2)
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(The origin of this complicated-looking basis becomes apparent in the upcoming lemma.) 
Assigning to each e ⊗g the degree κ(e ⊗g) = κ(g), and noting that the relations defining 
E ⊗ Gx are homogeneous, we have E ⊗ Gx =

⊕
γ∈Γ E ⊗ Gx

γ . Moreover, (E ⊗Gε
G)γ =⋃

x∈G(0) E ⊗ Gx
γ is open because it is a union of all basic open sets Z(t, U) for t ∈

Γc(E) ⊗AR(G)γ . This makes E ⊗Gε
G a graded G-sheaf of R-modules.

Remark 3.6. In an earlier version of this paper, we gave a different (longer and more 
difficult) construction of the sheaf E ⊗Gε

G. Essentially, E ⊗ Gx is a quotient of the 
free R-module generated by E ×G(0) Gx and the basis of open sets (3.2) in E ⊗Gε

G =⋃
x∈G(0) E ⊗ Gx consists of finite sums of subsets {e ⊗ g | (e, g) ∈ s(W ) ×G(0) B} where 

W is a compact open subset of G(0), s : W → E is a continuous local section, and B ⊆ G
is a compact open bisection.

Alternatively, to build a G-sheaf of R-modules from the Gε-sheaf of R-modules (E, p), 
we can apply the following sequence of functors, from subsections 2.2 and 2.6:

BRGE

Γc(E)
Mod-AR(Gε) Mod-AR(G)

J Sh
BRG

(E, p) Γc(E) Γc(E)
⊗

AR(G)ε

AR(G) Sh
(

Γc(E)
⊗

AR(G)ε

AR(G)
)

(3.3)

Lemma 3.7. Let (E, p) be a Gε-sheaf of R-modules, where G is a Γ-graded ample groupoid. 
Then E

⊗
Gε

G and Sh
(
Γc(E) 

⊗
AR(G)ε AR(G)

)
are isomorphic G-sheaves of R-modules.

Proof. Let M = Γc(E) and N = M
⊗

AR(G)ε AR(G). By definition, Sh(N) = Ñ =⋃
x∈G(0) Ñx where

Ñx = lim−→
x∈U

N1U = lim−→
x∈U

(
M

⊗
AR(G)ε

AR(G) ∗ 1U

)
= M

⊗
AR(G)ε

(
lim−→
x∈U

AR(G) ∗ 1U

)
∼= M

⊗
AR(G)ε

RGx.

For a justification of the isomorphism in the last step, see Example 2.8. Define

πx : M
⊗

AR(G)ε

RGx → E ⊗ Gx, s⊗ g �→ s(c(g)) ⊗ g, for all s ∈ M, g ∈ Gx; (3.4)

σx : E ⊗ Gx → M
⊗

AR(G)ε

RGx,
∑
i

ei ⊗ gi �→
∑
i

si ⊗ gi,

where si ∈ M, ei = si(c(gi)), gi ∈ Gx. (3.5)

To show that σx is unambiguously defined, suppose e ⊗ g ∈ E ⊗ Gx and s, t ∈ M

have s(c(g)) = t(c(g)) = e. Pick some neighbourhood U of c(g) in G(0). Since s(c(g)) ∈
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s(U) ∩t(U) and s(U) and t(U) are open in E, there exists some open set A ⊆ s(U) ∩t(U)
with s(c(g)) ∈ A, and s and t agree on W := p(A). Thus, applying (2.10) and (2.11), we 
have

s⊗ g = s⊗ 1W g = s1W ⊗ g = t1W ⊗ g = t⊗ 1W g = t⊗ g.

We omit some details that are not difficult to check: σx respects the relations on E⊗Gx, 
and πxσx and σxπx are the identity homomorphisms. Since E ⊗Gε

G =
⋃

x∈G(0) E ⊗ Gx

and Sh(N) =
⋃

x∈G(0) Ñx, the functions (3.4) and (3.5) extend to functions π : Sh(N) →
E ⊗Gε

G and σ : E ⊗Gε
G → Sh(N) which are inverse to each other. One can check that 

σ and π are G-equivariant, and that the topology transferred from Sh(N) to E ⊗Gε
G is 

the one generated by the basis in (3.2). Conclude that π and σ = π−1 are isomorphisms 
of G-sheaves of R-modules. �

We now describe as functors the processes of inducing and restricting graded G-sheaves 
of R-modules. Define the induction functor :

J : BRGε −→ Bgr
R G, (3.6)

E �−→ E ⊗Gε
G.

If E, F are Gε-sheaves of R-modules and φ : E → F is a morphism, then we define

J (φ) = φ⊗ id : E ⊗Gε
G −→ F ⊗Gε

G∑
ei ⊗ gi �−→

∑
φ(ei) ⊗ gi.

One can check that J (φ) is continuous, G-equivariant, and restricts to graded homomor-
phisms on the stalks. That is, J (φ) is a morphism of graded G-sheaves of R-modules.

On the other hand, if E is a graded G-sheaf of R-modules, it is easy to see that 
Eε :=

⋃
x∈G(0)(Ex)ε is a Gε-sheaf of R-modules. Moreover, a graded morphism φ : E → F

restricts to a morphism φε : Eε → Fε. This gives rise to a restriction functor :

I : Bgr
R G −→ BRGε, (3.7)

E �−→ Eε,

φ �−→ φε.

Recall that for E, a Gε-sheaf of R-modules, we have (E⊗Gε
G)ε =

⋃
x∈G(0) E⊗Gx

ε . For 
every x ∈ G(0) there is an isomorphism E ⊗ Gx

ε → Ex, sending e ⊗ g �→ eg, with inverse 
sending e �→ e ⊗ p(e). This yields a map:

η : IJ (E) = I(E ⊗Gε
G) = (E ⊗Gε

G)ε
∼=−→ E (3.8)

η :
∑

ei ⊗ gi �−→
∑

eigi.
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In Lemma 3.8 we shall prove that η is an isomorphism of Gε-sheaves of R-modules and, 
indeed, η is a natural transformation from IJ to the identity, so we have an isomorphism 
of functors IJ ∼= idBRGε

.
On the other hand, there is a natural transformation JI → idBRG . Namely, for a 

graded G-sheaf E, and x ∈ G(0), there is a homomorphism Eε ⊗Gε
Gx → Ex sending 

e ⊗ g �→ eg. This yields a map:

θ : J I(E) = J (Eε) = Eε ⊗Gε
G −→ E (3.9)

θ :
∑

ei ⊗ gi �−→
∑

eigi.

The following lemma formalises an important part of the preceding discussion.

Lemma 3.8.

(1) If (E, p) is a Gε-sheaf of R-modules, η from (3.8) is an isomorphism of Gε-sheaves 
of R-modules.

(2) If (E, p) is a graded G-sheaf, θ from (3.9) is a graded morphism of G-sheaves of 
R-modules.

Proof. It is clear that η is invertible, Gε-equivariant, and restricts to R-module isomor-
phisms on the stalks. To show that η is continuous, take a basic open set s(U) ⊆ E

where U ∈ Bco(G(0)) and s : U → E is a continuous local section. Then η−1(s(U)) =
Z(s ⊗ 1U , U) (see (3.2)) is open in (E ⊗Gε

G)ε.
Clearly, θ restricts to homomorphisms on the stalks, and it is graded and G-equivariant. 

Suppose Z(t, U) is a basic open set in Eε ⊗Gε
G, where t =

∑
si ⊗ fi ∈ Γc(Eε) 

⊗
AR(G)ε

AR(G), and U ∈ Bco(G(0)). A short calculation reveals that θ (Z (t, U)) =
(∑

sifi
)
(U), 

so it is open in E because 
∑

sifi ∈ Γc(E) (see (2.10)). Thus θ is an open map, and by 
Lemma 2.6, θ is continuous. �

We are in a position to prove a groupoid version of Dade’s Theorem (see Theorem 2.3, 
[17, Theorem 2.8], and [23, §1.5]).

Theorem 3.9. Let G be a Γ-graded ample groupoid. Then G is strongly graded if and only 
if the functors I : Bgr

R G → BRGε and J : BRGε → Bgr
R G (see (3.6), (3.7)) are mutually 

inverse equivalences of categories.

Proof. (⇒) Recall that IJ ∼= idBRGε
holds for any G. So, we need to prove that G

is strongly graded implies J I ∼= idBgr
R G . For a graded G-sheaf E, we have J I(E) =

Eε ⊗Gε
G. Assuming that G is strongly graded, we show that the natural transformation 

θ : Eε ⊗Gε
G → E (see (3.9)) is an isomorphism of graded G-sheaves. Since G is strongly 

graded, using Lemma 3.1 (2), it follows that for γ, δ ∈ Γ,



52 L.O. Clark et al. / Journal of Algebra 530 (2019) 34–68
⋃
x∈G(0)

(Ex)γδ =
⋃

x∈G(0)

(Ex)γδGε =
⋃

x∈G(0)

(Ex)γδGδ−1Gδ ⊆
⋃

x∈G(0)

(Ex)γGδ ⊆
⋃

x∈G(0)

(Ex)γδ. (3.10)

Thus EγGδ =
⋃

x∈G(0)(Ex)γGδ =
⋃

x∈G(0)(Ex)γδ = Eγδ. Therefore, θ(Eε ⊗Gε
Gγ) =

EεGγ = Eγ , which shows that θ is surjective.
For the injectivity of θ : Eε ⊗Gε

G → E, it is enough to show that the restriction 
θ|x : Eε ⊗Gε

Gx → Ex is injective for any x ∈ G(0). In turn, it is enough to show that the 
restriction (θ|x)γ : Eε ⊗Gε

Gx
γ → (Ex)γ is injective for any γ ∈ Γ. Lemma 3.1 (2) yields 

Gε = Gγ−1Gγ , so we can fix an h ∈ Gγ such that x = h−1h. Define an R-homomorphism 
(ψ|x)γ : (Ex)γ → Eε ⊗Gε

Gx
γ by e �→ eh−1 ⊗ h. Now, if e ∈ (Ex)γ ,

(θ|x)γ(ψ|x)γ(e) = (θ|x)γ(eh−1 ⊗ h) = eh−1h = ex = e.

On the other hand, if 
∑

ei ⊗ gi ∈ Eε ⊗Gε
Gx
γ ,

(ψ|x)γ(θ|x)γ
(∑

ei ⊗ gi

)
= (ψ|x)γ

(∑
eigi

)
=

∑
eigih

−1 ⊗ h =
∑

ei ⊗ gih
−1hi =

∑
ei ⊗ gix =

∑
ei ⊗ gi.

The maps (ψ|x)γ and (θ|x)γ are inverses, which implies that θ is injective. Thus J I(E) =
Eε ⊗Gε

G ∼= E. Since the morphisms η and θ are natural, this shows that JI ∼= idBgr
R G .

(⇐) Assume I and J are mutually inverse equivalences (under (3.8) and (3.9)). Since 
θ is an isomorphism it follows that for any graded G-sheaf of R-modules E, and any 
γ ∈ Γ, y ∈ G(0), we have

EεGy
γ = (Ey)γ . (3.11)

We consider the graded G-sheaf of R-modules RG constructed as follows: RG :=⋃
x∈G(0) RGx, where RGx =

⊕
γ∈Γ RGx

γ is a free R-module with basis Gx (see Exam-
ple 2.8). Let β, γ ∈ Γ, and consider the β-shifted graded G-sheaf E := RG(β) where 
(Ex)γ = RGx

βγ ; see (3.1). From (3.11) we get

EεGy
γ =

( ⋃
x∈G(0)

(Ex)ε
)
Gy
γ = (Ey)γ ,

which is to say ( ⋃
x∈G(0)

RGx
β

)
Gy
γ = RGy

βγ

for every x ∈ G(0). In particular if g ∈ Gy
βγ , then the above equation implies that 

g ∈ GβGy
γ . Thus Gβγ ⊆ GβGγ . This shows that G is strongly graded. �
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Remark 3.10. A version of Theorem 3.9 holds for G-sheaves of sets: the categories BgrG
and BGε are equivalent (under appropriate functors I and J ) if and only if G is a strongly 
graded groupoid. The proof of that statement is simpler, and it is only necessary to 
assume that G is étale. However, we were not able to prove Theorem 3.9 in the more 
general setting, i.e., when G is étale but not necessarily ample.

In the following theorem, we find that the property of being strongly graded is trans-
ferred from an ample groupoid to its Steinberg algebra.

Theorem 3.11. Let G be a Γ-graded ample groupoid. Then G is strongly graded if and 
only if AR(G) is strongly graded.

Proof. (⇒) Assume G is strongly Γ-graded. Fix γ, δ ∈ Γ, and suppose U ∈ Bco
γδ(G). We 

claim it is possible to write 1U =
∑

j rj(fj ∗ gj), where rj ∈ R, fj ∈ AR(G)γ , and gj ∈
AR(G)δ for all j. Fix some y ∈ U . Since G is strongly Γ-graded, there exist morphisms 
p ∈ Gγ and q ∈ Gδ such that y = pq. From the continuity of groupoid multiplication, there 
are compact open bisections Vy ∈ Bco

γ (G), containing p, and Wy ∈ Bco
δ (G), containing q, 

such that y = pq ∈ VyWy ⊆ U . Therefore, U =
⋃

y∈U VyWy and it can reduce to a finite 

union U =
⋃N

i=1 ViWi because U is compact. The principle of inclusion-exclusion yields

1U =
N∑
j=1

(−1)j−1
∑

I⊆{1,...,N}
|I|=j

1∩i∈IViWi
.

Examining the terms,

1∩i∈IViWi
= 1Vi1Wi1∩···∩Vij

Wij
= 1(Vi1Wi1∩···∩Vij

Wij
)W−1

i1
Wi1

= 1(Vi1Wi1∩···∩Vij
Wij

)W−1
i1

∗ 1Wi1
∈ AR(G)γ∗AR(G)δ.

The above calculation uses the fact that Wi1 is a bisection, which implies W−1
i1

Wi1 =
d(Wi1). Therefore, 1U ∈ AR(G)γ ∗AR(G)δ as claimed. Since the functions {1U | U ∈
Bco

γδ(G)} span AR(G)γδ, it follows that AR(G)γδ ⊆ AR(G)γ∗AR(G)δ and therefore AR(G)
is strongly graded.

(⇐) Suppose G is not strongly graded. Then there exists a pair γ, δ ∈ Γ and some 
g ∈ Gγδ such that g /∈ GγGδ. Let W ∈ Bco

γδ(G) be a neighbourhood of g, so 1W ∈ AR(G)γδ
and 1W (g) = 1. It is straightforward to check that

AR(G)γ∗AR(G)δ = spanR{1U ∗1V | U ∈ Bco
γ (G), V ∈ Bco

δ (G)}.

If it were true that 1W ∈ AR(G)γ ∗AR(G)δ then it would be possible to write

1W =
n∑

rj(1Uj
∗1Vj

) =
n∑

rj1UjVj
,

j=1 j=1
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where each Uj ⊆ Gγ and Vj ⊆ Gδ. In particular, this would require for at least one j that 
1UjVj

(g) �= 0, which would require g ∈ UjVj ⊆ GγGδ. This is a contradiction. Therefore, 
AR(G) is not strongly Γ-graded. �

In fact, using a diagram of functors, Theorem 3.11 can be derived from Theorem 3.9
and vice versa. To this end, we prove two lemmas and then Proposition 3.14, a graded 
version of Steinberg’s Equivalence Theorem from [37].

Lemma 3.12. If G is a Γ-graded ample groupoid and M is a graded right AR(G)-module, 
then Sh(M) is a graded G-sheaf of R-modules. Moreover, Sh : Gr-AR(G) → Bgr

R G is a 
functor.

Proof. Since M is a graded right AR(G)-module, it is also a graded R-module (where 
R = Rε has the trivial grading) and the presheaf M defined in (2.8) takes values in the 
category of graded R-modules. Concretely, M(U) =

⊕
γ∈Γ M(U)γ =

⊕
γ∈Γ Mγ1U , for 

all U ∈ Bco(G(0)). The connecting homomorphisms ρUV : M(U) → M(V ), m �→ m1V , 
are graded homomorphisms because 1V ∈ AR(G)ε. The direct limit M̃x = lim −→

x∈U
M(U)

is therefore a graded R-module, for every x ∈ G(0), so Sh(M) = M̃ =
⋃

x∈G(0) M̃x

is a sheaf of graded R-modules over G(0). Moreover, for g ∈ yGx
δ we can pick B ∈

Bco
δ (G) containing g and conclude that [m]y ∈ (M̃y)γ implies [m]yg = [m1B ]x ∈ (M̃x)γδ. 

This shows M̃γGδ ⊆ M̃γδ. Finally, M̃γ =
⋃

x∈G(0)(M̃x)γ is open: [m]x ∈ (M̃x)γ implies 
m ∈ M(U)γ for some U containing x, and thus the open set (U, m) (see (2.9)) has 
[m]x ∈ (U, m) ⊆ M̃γ . If f : M → N is a graded homomorphism of AR(G)-modules, then 
clearly Sh(f) : [m]x �→ [f(m)]x is a graded morphism of G-sheaves. �
Lemma 3.13. If G is a Γ-graded ample groupoid and (E, p) is a graded G-sheaf of 
R-modules, then Γc(E) is a graded AR(G)-module. Moreover, Γc : Bgr

R G → Gr-AR(G) is 
a functor.

Proof. Let N := Γc(E) = {s : G(0) → E | s is a compactly supported continuous 
section}. For α ∈ Γ, define Nα := {s ∈ N | s(G(0)) ⊆ Eα}. We first show that N ⊆∑

α∈Γ Nα. For s ∈ N , define sα : G(0) → E by sα(x) = s(x)α for all x ∈ G(0). We claim 
that only finitely many of the sα are nonzero. Since addition is an open map, for any 
finite subset {α1, . . . , αn} ⊆ Γ, the set Eα1 + · · · + Eαn

is open in E. The collection of 
all such sets is an open cover of E. The nonzero image of s, in other words s(supp(s)), is 
compact because s is continuous and compactly supported. Therefore, reducing to a finite 
subcover yields a finite subset {α1, . . . , αn} ⊆ Γ such that s(supp(s)) ⊆ Eα1 + · · ·+Eαn

. 
This proves that only finitely many of the sα are nonzero. Next, we claim that each 
sαi

∈ Nαi
. Indeed sαi

is continuous because it is just s composed with the continuous 
projection onto the αi-homogeneous component (see Lemma 3.5). The support of sαi

is compact because it is closed and contained in the support of s. This proves that 
N ⊆

∑
α∈Γ Nα and clearly Nα ∩ (

∑
β 	=α Nβ) = 0, so N =

⊕
α∈Γ Nα. From the definition 
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(see (2.10)) it is clear NαAR(G)β ⊆ Nαβ for all α, β ∈ Γ. To finish, note that when 
φ : E → F is a graded morphism of G-sheaves of R-modules, Γc(φ) : s �→ φ ◦ s is a 
graded homomorphism. �
Proposition 3.14. Let G be a Γ-graded ample groupoid, and R a commutative unital 
ring. Then Γc : Bgr

R G → Gr-AR(G) and Sh : Gr-AR(G) → Bgr
R G are mutually inverse 

equivalences of categories, and the equivalences commute with the shift functors Tα :
Gr-AR(G) → Gr-AR(G) and Tα : Bgr

R G → Bgr
R G.

Proof. With the help of Lemmas 3.12 and 3.13, it follows from Steinberg’s Equivalence 
Theorem [37, Theorem 3.5] that Γc ◦ Sh ∼= idGr-AR(G) and Sh ◦Γc

∼= idBgr
R G , since the 

natural transformations involved in that theorem are indeed graded isomorphisms. If E
is a graded G-sheaf and α ∈ Γ, it is immediate that Γc(E(α)) = Γc(E)(α). Similarly, if 
M is a graded AR(G)-module then Sh(M(α)) = Sh(M)(α). �

From this result, we can prove Theorem 3.9 using Theorem 3.11 or the other way 
around (so the theorems are equivalent, and only one of the proofs is really necessary). 
The key lies in the following commutative diagram:

Bgr
R G I

Γc

BRGε

Γc

J Bgr
R G

Γc

Gr-AR(G) I

Sh

Mod-AR(G)ε

Sh

J
Gr-AR(G).

Sh

(3.12)

Lemma 3.7 proves that the square on the right commutes (since the isomorphism from 
J to Sh ◦J ◦ Γc is natural and graded). It is easy to prove that the square on the left 
commutes.

Proof of Theorem 3.11 using Theorem 3.9. If G is a strongly graded groupoid, by The-
orem 3.9, IJ ∼= idBRGε

and JI ∼= idBgr
R G (on the top row). Since the vertical arrows are 

equivalences, this implies that IJ ∼= idMod-AR(G)ε and JI ∼= idGr-AR(G) (on the bottom 
row). Now by Theorem 2.3, AR(G) is a strongly graded ring. The converse is similar. �
Proof of Theorem 3.9 using Theorem 3.11. If G is a strongly graded groupoid, then by 
Theorem 3.11, AR(G) is a strongly graded algebra. By Theorem 2.3, IJ ∼= idMod-AR(G)ε
and J I ∼= idGr-AR(G). Using the diagram (3.12), this implies IJ ∼= idBRGε

and 
J I ∼= idBgr

R G on the top row. Conversely, if IJ ∼= idBRGε
and J I ∼= idBgr

R G , then 
IJ ∼= idMod-AR(G)ε and JI ∼= idGr-AR(G), and Theorem 2.3 implies AR(G) is strongly 
graded. Thus G is strongly graded, by Theorem 3.11. �

The following corollary is a summary of the results from this section.
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Corollary 3.15. Let G be a Γ-graded ample groupoid. The vertical arrows in (3.12) are 
equivalences. The following statements are equivalent:

(1) G is strongly graded;
(2) AR(G) is strongly graded;
(3) The arrows on the top row of (3.12) are equivalences;
(4) The arrows on the bottom row of (3.12) are equivalences.

4. Applications

In this section, we use the previous results (in fact, we only use Lemma 3.1 and The-
orem 3.11) to characterise strongly Z-graded and Z/nZ-graded Leavitt path algebras, 
and strongly Zk-graded Kumjian-Pask algebras. At the end, we briefly discuss strongly 
graded transformation groupoids.

4.1. Leavitt path algebras

Leavitt path algebras are Z-graded R-algebras presented by generators and relations 
that are determined by a directed graph. For every graph E, there is a Z-graded ample 
groupoid GE such that AR(GE) is graded isomorphic to the Leavitt path algebra of E
with coefficients in R (see [16, Example 3.2]).

4.1.1. Preliminaries
We refer to [4, Definitions 1.2.2] for the standard terminology used to describe a 

directed graph E = (E0, E1, r, s). A vertex is a sink if it emits no edges. A vertex is 
an infinite emitter if it emits infinitely many edges, and a graph is row-finite if it has 
no infinite emitters. Sinks and infinite emitters are collectively called singular vertices. 
A vertex that neither receives nor emits any edges is called isolated. In this section, we 
adopt the convention from [4] that a path is a sequence of edges α = α1 . . . αn where the 
range of αi coincides with the source of αi+1, i.e., r(αi) = s(αi+1), for all 1 ≤ i ≤ n − 1. 
We write |α| = n ∈ N ∪ {∞} for the length of the path. We use the notation E� for the 
set of finite paths, and E∞ for the set of infinite paths. We define the set of boundary 
paths as ∂E := E∞ ∪ {α ∈ E� | r(α) is singular}. If α ∈ E�, p ∈ E� ∪ E∞, and p = αq

for some q ∈ E� ∪ E∞, then we say that α is an initial subpath of p. In this section, we 
make no restrictions on the cardinality of E0 or E1.

Let E be a graph and let A be a ring. A subset {v, e, e∗ | v ∈ E0, e ∈ E1} ⊆ A is called 
a Leavitt E-family if the elements of {v | v ∈ E0} are pairwise orthogonal idempotents 
and the following conditions are satisfied:

(E1) s(e)e = er(e) = e for all e ∈ E1,
(E2) e∗s(e) = r(e)e∗ = e∗ for all e ∈ E1,
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(CK1) e∗f = δe,fr(e) for all e, f ∈ E1, and
(CK2) v =

∑
e∈s−1(v) ee

∗ for every regular vertex v ∈ E0.

As usual, let R be a commutative ring with unit. The Leavitt path algebra with coeffi-
cients in R, which we denote by LR(E), is the universal R-algebra generated by a Leavitt 
E-family. Leavitt path algebras have a canonical Z-graded structure with homogeneous 
components

LR(E)n = {αβ∗ | r(α) = r(β), n = |α| − |β|}.

We now describe the boundary path groupoid, which was introduced in [27]. Let E
be a graph, and define the one-sided shift map σ : ∂E \ E0 → ∂E as follows:

σ(p) :=

⎧⎪⎪⎨⎪⎪⎩
r(p) if p ∈ E� ∩ ∂E and |p| = 1
p2 . . . p|p| if p ∈ E� ∩ ∂E and |p| ≥ 2
p2p3 . . . if p ∈ E∞

The n-fold composition σn is defined on paths of length ≥ n and we understand that 
σ0 : ∂E → ∂E is the identity map. The boundary path groupoid is the groupoid

GE : =
{
(x, k, y) ∈ ∂E × Z× ∂E | σn(x) = σn−k(y) for some n ≥ max{0, k}

}
= {(αx, |α| − |β|, βx) | α, β ∈ E�, x ∈ ∂E, r(α) = r(β) = s(x)} ,

with domain, codomain, multiplication, and inversion maps:

d(x, k, y) = y, c(x, k, y) = x, (x, k, y)(y, l, z) = (x, k + l, z),

(x, k, y)−1 = (y,−k, x).

The unit space is G(0)
E = {(x, 0, x) | x ∈ ∂E}, which we identify with ∂E. The groupoid 

GE comes with a canonical Z-grading given by the functor ϕ : (p, k, q) �→ k. Since we 
do not need to work with the topology on GE, it suffices to say that there is a topology 
with respect to which GE is a Z-graded ample groupoid. There is a graded isomorphism 
πE : LR(E) → AR(GE), but we do not need to use it explicitly, so we refer the reader to 
[16, Example 3.2].

4.1.2. Strongly graded Leavitt path algebras

Definition 4.1. A graph E satisfies Condition (Y) if for every k ∈ N and every infinite 
path p, there exists an initial subpath α of p and a finite path β such that r(β) = r(α)
and |β| − |α| = k.
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If E is a graph such that every infinite path contains a vertex that is the base of 
a cycle, then E satisfies Condition (Y). On the other hand, there exist infinite acyclic 
graphs that satisfy Condition (Y).

Theorem 4.2. Let E be a graph, and R a unital commutative ring. The Leavitt path 
algebra LR(E) is strongly Z-graded if and only if E is row-finite, has no sinks, and 
satisfies Condition (Y).

Proof. We prove the statement for AR(GE), since it is graded isomorphic to LR(E).
(⇒) Firstly, suppose E has a singular vertex. Then there is a finite path μ ∈ ∂E. The 

morphism (μ, 0, μ) ∈ G(0)
E cannot be factored in the form (μ, |μ| + 1, x)(x, −(|μ| + 1), μ), 

where x ∈ ∂E, so (μ, 0, μ) /∈ (GE)|μ|+1(GE)−(|μ|+1). Therefore, GE is not strongly 
Z-graded, so neither is AR(GE), according to Theorem 3.11. Secondly, suppose E
has no singular vertices, but fails to satisfy Condition (Y). This means there is some 
k ∈ N, and some infinite path p ∈ E∞, such that for every initial subpath α of p, 
there does not exist a finite path β ∈ E� having r(β) = r(α) and |β| − |α| = k. 
Therefore, the morphism (p, 0, p) ∈ G(0)

E does not admit a factoring of the form 
(p, 0, p) = (αp′, −k, βp′)(βp′, k, αp′). This implies (p, 0, p) /∈ (GE)−k(GE)k, so GE is not 
strongly graded, and consequently AR(GE) is not strongly graded.

(⇐) Suppose E is row-finite, has no sinks, and satisfies Condition (Y). Let p ∈ ∂E be 
arbitrary. There are no singular vertices in E, so p is an infinite path. For n ≥ 0, we have 
(p, n, σn(p)) ∈ (GE)n. For n < 0, Condition (Y) implies that there exists some initial 
subpath α of p, and a finite path β ∈ E� with r(β) = r(α) and |β| − |α| = −n. Then 
(p, n, βσ|α|(p)) ∈ (GE)n. Therefore, p ∈ c((GE)n) for every n ∈ Z. By Lemma 3.1 (3.1), 
GE is strongly graded. By Theorem 3.11, AR(GE) is strongly Z-graded. �

It is also possible to equip LR(E) with a non-canonical graded structure. One way to 
do this is to take the quotient grading by a subgroup nZ � Z. To simplify notation for 
cosets, let [k] := k + nZ.

Proposition 4.3. Let E be a graph. Then LR(E) is strongly Z/nZ-graded if and only if 
every singular vertex receives a path of length n − 1.

Proof. (⇐) Let G = GE and take x ∈ ∂E. If x is infinite, or if |x| ≥ n − 1, then for 
0 ≤ k ≤ n − 1, we have (x, k, σk(x)) ∈ G[k] so x ∈ c(G[k]) for any [k] ∈ Z/nZ. Otherwise 
0 ≤ |x| < n − 1 and r(x) is a singular vertex. By assumption, there exists μ ∈ E� of 
length n − 1, such that r(μ) = r(x). For all 0 ≤ k ≤ n − 1 we have

(x, 0, x) =
(
x, |x| − k, σn−1−k(μ)

)(
σn−1−k(μ), k − |x|, x

)
,

so x ∈ c(G[|x|−k]). Therefore x ∈ c(G[k]) for every [k] ∈ Z/nZ, so GE is strongly 
Z/nZ-graded, by Lemma 3.1 (3.1). Conclude that AR(GE) ∼= LR(E) is strongly 
Z/nZ-graded.
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(⇒) If v ∈ E0 is a singular vertex that does not receive a path of length n − 1, then v
receives no paths of length ≥ n − 1, so v ∈ ∂E but v /∈ d(G[n−1]). By Lemma 3.1 (3.1), 
G is not strongly Z/nZ-graded, so LR(E) is not strongly Z/nZ-graded. �

We now can easily recover one of the main theorems of [22], namely [22, Theorem 
3.15], and identify a large collection of strongly graded algebras.

Corollary 4.4. Let E be a row-finite graph.

(1) LR(E) is a strongly Z/2Z-graded ring if and only if E has no isolated vertex.
(3) LR(E) is a strongly Z/nZ-graded ring if E has no sink.

If E0 is finite:

(3) LR(E) is a strongly Z-graded ring if and only if E has no sink.

4.2. Kumjian-Pask algebras of higher-rank graphs

4.2.1. Preliminaries on k-graphs
We view the additive semigroup Nk as a category with one object 0 := (0, . . . , 0) and 

equip it with the coordinate-wise partial order

m ≤ n ⇐⇒ mi ≤ ni for 1 ≤ i ≤ k.

With this partial order, Nk is a lattice, and we use the notation ∨ for the supremum 
(coordinatewise maximum) and ∧ for the infimum (coordinatewise minimum). We denote 
the usual generators in Nk by {ei | 1 ≤ i ≤ k}. The partial order ≤ also extends to the 
abelian group Zk.

Definition 4.5. A higher-rank graph of rank k, or k-graph for short, is a countable small 
category Λ = (Λ0, Λ, r, s), together with a functor d : Λ → Nk, called the degree map, 
satisfying the factorisation property: for every λ ∈ Λ and m, n ∈ Nk with d(λ) = m + n, 
there are unique morphisms μ, ν ∈ Λ with d(μ) = m, d(ν) = n, and λ = μν.

We write λ = λ(0, m)λ(m, m + n), where λ(0, m) and λ(m, m + n) are the unique 
composable factors of λ with degrees m and n respectively. The set Λ0 is the set of objects, 
which we may think of as vertices, and we identify each object v ∈ Λ0 with the identity 
morphism at v, which according to the factorisation property is the only morphism v → v

in Λ. The maps r, s : Λ → Λ0 are the range and source maps respectively. For n ∈ Nk, we 
define Λn := d−1(n), and call the elements of Λn paths of degree n. Note that 1-graphs 
are the same as ordinary directed graphs, although the notation differs and the roles of 
r and s are swapped (see [26, Example 1.3]). For a vertex v ∈ Λ0, we use the notation,
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vΛ := {λ ∈ Λ | r(λ) = v}, vΛn := {λ ∈ Λn | r(λ) = v}.

We say that Λ is row-finite if vΛn is finite for every v ∈ Λ0 and n ∈ Nk. A source is a 
vertex v ∈ Λ0 such that vΛei = ∅ for some 1 ≤ i ≤ k. The k-graph Λ has no sources if 
and only if vΛn is non-empty for every v ∈ Λ0 and n ∈ Nk.

We follow [15] in saying that τ is a minimal common extension of λ, μ ∈ Λ if d(τ) =
d(λ) ∨ d(μ), τ(0, d(λ)) = λ, and τ(0, d(μ)) = μ. Not every pair of paths has a common 
extension and, if k ≥ 2, a pair of paths may have more than one minimal common 
extension. Let MCE(λ, μ) be the set of all minimal common extensions of λ and μ, and

Λmin(λ, μ) : = {(ρ, τ) ∈ Λ × Λ | λρ = μτ ∈ MCE(λ, μ)}

= {(ρ, τ) ∈ Λ × Λ | λρ = μτ and d(λρ) = d(λ) ∨ d(μ)}.

We say that the k-graph Λ is finitely aligned if Λmin(λ, μ) is finite for every λ, μ ∈ Λ or, 
equivalently, if MCE(λ, μ) is finite for every λ, μ ∈ Λ. Every row-finite k-graph is finitely 
aligned, but there exist finitely aligned k-graphs which are not row-finite [15]. From here 
on, we assume Λ is a finitely aligned k-graph.

A subset E ⊆ vΛ is said to be exhaustive if for every λ ∈ vΛ, there exists μ ∈ E such 
that Λmin(λ, μ) �= ∅. As in [15], we define

v FE(Λ) := {E ⊆ vΛ \ {v} | E is finite and exhaustive},

FE(λ) :=
⋃

v∈Λ0

v FE(Λ).

If v ∈ Λ0, λ ∈ vΛ, and E ∈ v FE(Λ), the set

Ext(λ,E) :=
⋃
μ∈E

{
ρ ∈ Λ | (ρ, τ) ∈ Λmin(λ, μ) for some τ ∈ Λ

}
is a finite exhaustive subset of s(λ)Λ, according to [34, Lemma C.5], and the set

I(E) :=
k⋃

i=1
{λ(0, ei) | λ ∈ E, d(λ)i > 0} (4.1)

is a finite exhaustive subset of vΛ [34, Lemma C.6] whose elements can be viewed as 
edges (of various colours).

We refer to [21, Example 3.2] for the definition of the row-finite k-graphs Ωk,m, for 
m ∈ (N ∪ {∞})k. Briefly:

Ω0
k,m := {p ∈ Nk | p ≤ m}, Ωk,m := {(p, q) ∈ Ω0

k,m × Ωk,m | p ≤ q},
r(p, q) = p, s(p, q) = q, d(p, q) = q − p.
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Definition 4.6. [21, Definitions 5.1 and 5.10] Let Λ be a k-graph. A boundary path in 
Λ is a degree-preserving functor x : Ωk,m → Λ with the property: for all n ∈ Nk with 
n ≤ m, and all E ∈ x(n) FE(Λ), there exists some λ ∈ E such that x(n, n + d(λ)) = λ. 
We write ∂Λ for the set of all boundary paths in Λ, and say that the degree of x ∈ ∂Λ
is d(x) := m.

We also have the notion of an infinite path [9], which is a degree-preserving functor 
x : Ωk,(∞,...,∞) → Λ. In [42, Proposition 2.12], we see that every infinite path is a 
boundary path. We denote the set of infinite paths by Λ∞, and write r(x) := x(0) for 
the range of an infinite path. For v ∈ Λ0, we also write

vΛ∞ := {x ∈ Λ∞ | r(x) = v}.

We recall some facts about infinite paths from [9, Lemma 2.5].

• Finite paths and infinite paths can be composed: if λ ∈ Λ and x ∈ s(λ)Λ∞ then 
there is a unique y ∈ Λ∞ such that y(0, n) = λx(0, n − d(λ)) for all n ≥ d(λ). In this 
case we write λx := y.

• Infinite paths have a factorisation property: if x ∈ Λ∞ then there exist unique 
x(0, n) ∈ Λn and x(n, ∞) ∈ Λ∞ such that x = x(0, n)x(n, ∞). Moreover, s(x(0, n)) =
x(n) = r(x(n, ∞)).

If Λ is row-finite and has no sources, then the boundary path space is considerably 
easier to work with, because ∂Λ = Λ∞ (see [42, Proposition 2.12]).

4.2.2. Strongly graded Kumjian-Pask algebras

Lemma 4.7. Let Λ be a finitely aligned k-graph with no sources. Suppose Λ is not row-
finite. Then there exists x ∈ ∂Λ and i ∈ {1, ..., k} such that d(x)i < ∞.

Proof. Let k ≥ 2, since the statement for 1-graphs is trivial. We consider two cases. 
First, suppose there exists v ∈ Λ0 such that v FE(Λ) = ∅. Then v ∈ ∂Λ and we are 
done. For the second case, suppose that vFE(Λ) �= ∅ for every v ∈ Λ0. Since Λ is not 
row-finite, there exists v ∈ Λ0 and i ∈ {1, ..., k} such that |vΛei | = ∞.

Since there exists E ∈ v FE(Λ), there also exists a finite exhaustive set I(E) ∈
v FE(Λ), consisting entirely of edges (see (4.1)). So we can find an edge λ1 ∈ I(E) such 
that Λmin(μ, λ1) �= ∅ for infinitely many distinct μ ∈ vΛei . It follows that d(λ1)i = 0 and 
|s(λ1)Λei | = ∞. Similarly, for n > 1 we can find λn ∈ s(λn−1)Λ such that

d(λn)i = 0 and |s(λn)Λei | = ∞. (4.2)

As n increases, we pick λn so that the degree of x := λ1...λn... is as large as possible in 
each component. We do this by cycling through each of the components j ∈ {1, ..., k} as 
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n increases. For example, when n = 1, we start with j = 1 and look for an edge λ1 with 
the desired property (4.2) and with degree e1. If there is no such edge (for example, if 
i = 1), we try j = 2 and look for an edge of degree e2 so on. Then for n = 2, we start 
with j = j1 + 1, where j1 is such that d(λ1)j1 = 1. Note that,

(1) d(x)i = 0; and
(2) If d(x)j < ∞ for some j then there exists N such that d(λN ) = ej and

d(λ1...λN )j = d(x)j .

(3) We claim that for every n > N we have |x(n)Λej | = ∞ (where N and j are 
from (4.2)). For otherwise, there exists some n > N such that En := x(n)Λej ∈
x(n) FE(Λ). But then for every m > 0 we have a finite exhaustive set

Ext(λn+m, En) ⊆ s(λn+m)Λej .

Since our choice of x makes the degree in each component as large as possible, we 
eventually will choose a λm with degree ej , for example in some I(Ext(λn+m, En)), 
which is a contradiction. This verifies the claim.

We show x ∈ ∂Λ using an approach similar to [42, Proposition 2.12]. Fix n ≤ d(x)
and E ∈ x(n) FE(Λ). Define t ∈ Nk such that for j ∈ {1, ..., k},

tj :=

⎧⎨⎩d(x)j if d(x)j < ∞
max
λ∈E

{d(λ)j} if d(x)j = ∞.

Then n + t < d(x) and we can consider x(n, n + t) ∈ x(n)Λ. Define

Ft := {j ∈ {1, ..., k} | x(n + t)Λej is infinite}.

Then, since Λ has no sources, there exist an infinite number of paths

δ ∈ x(n + t)Λ
∑

j∈Ft
ej ,

which we label δ1, δ2, . . . . Since E is finite exhaustive, there exists a single ν ∈ E which 
has common extensions with infinitely many x(n, n + t)δq. For each q ∈ N (by passing 
to a subsequence and relabelling), there exists (αq, βq) ∈ Λmin(x(n, n + t)δq, ν) whereby,

x(n, n + t)δqαq = νβq. (4.3)

We claim that d(ν) ≤ t. If j is such that d(x)j = ∞, then d(ν)j < tj by construction. 
Otherwise, suppose j is such that tj := d(x)j < ∞. Then we have j ∈ Ft by item (4.2)
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, z).
above. By way of contradiction, suppose d(ν)j > tj . Write ν = bν′, where d(b) = tj + ej . 
So for each q ∈ N we have from (4.3)

(x(n, n + t)δqαq) (0, t + ej) = x(n, n + t)(δq(0, ej)) = bν′βq(0, t + ej).

But then |Λmin(x(n, n + t), b)| = ∞, which contradicts that Λ is finitely aligned. Thus 
d(ν)i ≤ dj . Now (4.3) gives x(n + d(ν)) = ν, so x ∈ ∂Λ. �
Lemma 4.8. Let Λ be a finitely aligned k-graph and suppose that v ∈ Λ0 is a source. Then 
there exists x ∈ ∂Λ and i ∈ {1, ..., k} such that d(x)i < ∞.

Proof. By the definition of a source, there exists i ∈ {1, ..., k} such that vΛei = ∅. By 
[21, Lemma 5.15] v∂Λ �= ∅ so we can chose x ∈ v∂Λ. Then d(x)i = 0. �

We now introduce the boundary path groupoid GΛ which was first studied by Yeend 
in [43]. The boundary path groupoid is a Hausdorff ample groupoid, with unit space ∂Λ, 
that generalises the boundary path groupoid of an ordinary directed graph (or 1-graph). 
We shall use the notation

Λ ∗s Λ := {(λ, μ) ∈ Λ × Λ | s(λ) = s(μ)}.

The morphisms in GΛ are triples (λz, d(λ) −d(μ), μz) ∈ ∂Λ ×Zk×∂Λ, where (λ, μ) ∈
Λ ∗s Λ and z ∈ s(λ)∂Λ. The unit space of GΛ is the set of morphisms {(x, 0, x) | x ∈ ∂E}
and we identify (x, 0, x) ∈ G(0)

Λ with x ∈ ∂Λ. The domain, codomain, inversion, and 
composition maps are given by the following formulae.

d(x,m, y) = y, c(x,m, y) = x, (x,m, y)−1 = (y,−m,x), (x,m, y)(y, l, z) = (x,m + l

To equip GΛ with a suitable topology, we define the following open sets for any pair 
(λ, μ) ∈ Λ ∗s Λ and finite non-exhaustive subset F ⊆ s(λ)Λ,

Z(λ ∗s μ) := {(λz, d(λ) − d(μ), μz) | z ∈ s(λ)∂Λ},

Z(λ ∗s μ \ F ) := Z(λ ∗s μ) \
⋃
φ∈F

Z(λφ ∗s μφ).

The collection of sets Z(λ ∗sμ \F ) forms a basis of compact open bisections for a Hausdorff 
topology on GΛ, making it an ample groupoid. The continuous functor ϕ : GΛ → Zk

sending (x, m, y) �→ m makes GΛ a Zk-graded groupoid (and hence its Steinberg algebra 
is Zk-graded).

We refer to [15, Definition 3.1, Theorem 3.7] for a fully algebraic definition of the 
Kumjian-Pask algebra KPR(Λ) of a finitely aligned higher-rank graph Λ, with coefficients 
in a unital commutative ring R. For our purposes it suffices to say that KPR(Λ) is a 
Zk-graded R-algebra that is graded isomorphic to AR(GΛ). We refer to [15, Theorem 
5.4] for the details on that isomorphism.
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Proposition 4.9. Let Λ be a finitely aligned k-graph.

(1) If GΛ is strongly Zk-graded, then Λ has no sources.
(2) If GΛ is strongly Zk-graded, then Λ is row finite.

Proof. For (1), we prove the contrapositive. Suppose v ∈ Λ is a source. Then we apply 
Lemma 4.8 to get x ∈ ∂Λ such that d(x)i < ∞ for some i ∈ {1, . . . , k}. Fix m > d(x)i. 
In the groupoid GΛ we have

d−1(x) ∩ (GΛ)m = ∅

and hence GΛ is not strongly graded.
For (2), first apply part (1) and assume Λ has no sources. By way of contradiction, 

assume Λ is not row-finite. Let x be as in Lemma 4.7. Then in the groupoid d−1(x) ∩
(GΛ)i = ∅ which is a contradiction. �

To characterise strong grading on Kumjian-Pask algebras, we define a condition that 
generalises Condition (Y) from Definition 4.1.

Definition 4.10. Let Λ be a k-graph. We say that Λ satisfies Condition (Y) if for every 
m ∈ Nk and every infinite path x ∈ Λ∞, there exists some n ∈ Nk and some path β ∈ Λ
such that s(β) = x(n) and d(β) − n = m.

Example 4.11. [33, Examples 2.2] Consider the 2-graph Λ with 1-skeleton

u•f

e

v• h

g

where blue edges (e and g) have degree e1 = (1, 0) and red edges (f and h) have degree 
e2 = (0, 1). The only infinite path x with r(x) = u is the following path:

u•
f

v•

h

g u•
f

e v•

h

g

u•
f

v•

h

g u•
f

e v•

h

g

u• v•g u•e v•g

The only infinite path y with r(y) = v is just y = x(e1, ∞) = gx, which can be visualised 
by removing the first column in the diagram above. One can see that Λ is row-finite 
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without sources, and that it satisfies Condition (Y). Indeed, if m ∈ Nk and m1 is even, 
then s(x(0, m)) = x(0) = u and d(x(0, m)) = m. If m1 is odd, then s(x(e1, m + 2e1)) =
s(x(e1)) = v, and d(x(e1, m +2e1)) −e1 = m. A similar check works for the other infinite 
path y.

There are already hints that the boundary path groupoid GΛ, whose unit space is 
∂Λ = {x, y}, is strongly graded. For example, if m = (−1, 1), to prove that (x, 0, x) ∈
(GΛ)m(GΛ)−m, we can write

(x, 0, x) = (fx, (−1, 1), gx)(gx, (1,−1), fx).

This idea is generalised and made precise in the following theorem.

Theorem 4.12. Let Λ be a k-graph, and R a unital commutative ring. The Kumjian-Pask 
algebra KPR(Λ) is strongly Zk-graded if and only if Λ is row-finite, has no sources, and 
satisfies Condition (Y).

Proof. We prove that GΛ is strongly graded if and only if Λ satisfies the hypotheses. 
Assume that GΛ is strongly Z-graded. By Proposition 4.9, Λ is row-finite and has no 
sources, so ∂Λ = Λ∞. Now let m ∈ Nk, and x ∈ Λ∞. Then we can factor x in GΛ as 
x = (x, 0, x) = (x, −m, y)(y, m, x) for some y ∈ Λ∞. This implies that for some n ∈ Nk, 
we have x(n, ∞) = y(n + m, ∞). Letting β = y(0, n + m), we have s(β) = x(n) and 
d(β) − n = m. Therefore Λ satisfies Condition (Y).

Now suppose that Λ is row-finite and has no sources (so ∂Λ = Λ∞), and satisfies 
Condition (Y). Let x ∈ Λ∞. For arbitrary m ∈ Zk, we aim to write

(x, 0, x) = (x,m, y)(y,−m,x),

where (x, m, y), (y, −m, x) ∈ GΛ. If m ≥ 0 then this is easy: let y = x(m, ∞). If m ≤ 0
then Condition (Y) implies there is a path β ∈ Λ with s(β) = x(n) and d(β) − n = −m, 
so we let y = βx(n, ∞). There is a third case, where some mi are positive and others 
are negative. Let d ∈ Nk, di := max

1≤j≤k
{mj}, which ensures −m + d ∈ Nk. Then x′ =

x(d, ∞) ∈ Λ∞, so we can apply the hypothesis to −m + d and x′. This provides some 
n ∈ Nk and β ∈ Λ with s(β) = x′(n) = x(d + n) and d(β) − n = −m + d. It follows that

(x, 0, x) =
(
x,m, βx(d + n,∞)

)(
βx(d + n,∞),−m,x

)
.

Therefore, GΛ is strongly graded. �
Remark 4.13. We can recover our Leavitt path algebra Theorem 4.2 as a special case of 
Theorem 4.12. Strictly speaking, however, we assumed that the higher-rank graphs in 
Section 4.2 are countable, and made no such restrictions on the graphs in Section 4.1.
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4.3. The Steinberg algebra of a transformation groupoid

Here, we discuss the groupoid associated to a partial action of a discrete group on a 
topological space. This groupoid was defined by Abadie in [1], and it has been studied 
recently in the context of partial skew group rings [10,25]. We show that the Steinberg 
algebra of this groupoid is strongly Γ-graded if and only if the partial action is a global 
action.

Let Γ be a discrete group with identity ε, and X a topological space. A partial action
of Γ on X, is a pair θ = ({Xγ}γ∈Γ, {θγ}γ∈Γ), where:

(P1) Each Xγ is open in X, and each θγ : Xγ−1 → Xγ is a homeomorphism;
(P2) Xε = X and θγδ is an extension of θγθδ for every γ, δ ∈ Γ.

We say that the partial action is a global action if Xγ = X for every γ ∈ Γ; this 
corresponds with the usual definition of a discrete group acting continuously on a space.

The transformation groupoid Γ �θ X of the partial action θ is a Γ-graded groupoid 
which has X as its unit space. We define the transformation groupoid as follows:

Γ �θ X := {(x, γ, y) | y ∈ Xγ−1 , x = θγ(y)},
d(x, γ, y) = y, (x, γ, y)(y, δ, z) = (x, γδ, z),

c(x, γ, y) = x, (x, γ, y)−1 = (y, γ−1, x).

The unit space is {(x, ε, x) | x ∈ X}; we identify it with X and give it the same topology 
as X. If X is locally compact, Hausdorff, and totally disconnected, the transformation 
groupoid is ample. On Γ �θ X we take the topology inherited from X × Γ ×X. There 
is some redundancy in our notation, since in the expression (x, γ, y) the element x is 
uniquely determined by γ and y, but this notation makes composition and inversion 
easy to visualise and causes no inconsistencies (see [1, p. 1042] for further details). There 
is a natural Γ-grading on Γ �θ X specified by the continuous functor Γ �θ X → Γ, 
(x, γ, y) �→ γ. Transformation groupoids have the property that the ε-component is 
equal to the unit space.

Proposition 4.14. Let θ be a partial group action of a discrete group Γ on a totally 
disconnected, locally compact Hausdorff space. Then the following are equivalent:

(1) θ is a global action;
(2) Γ �θ X is strongly graded;
(3) AR(Γ �θ X) is strongly graded.

Proof. (1) ⇒ (2) If θ is a global action, then for every γ ∈ Γ and x ∈ X we have 
(θγ(x), γ, x) ∈ Γ �θ X, so x ∈ d((Γ �θ X)γ). By Lemma 3.1 (3), Γ �θ X is strongly 
graded.
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(2) ⇒ (1) Suppose Γ �θ X is strongly graded. By Lemma 3.1 (3), for all γ ∈ Γ and 
x ∈ X we have x ∈ d((Γ �θ X)γ). This implies x ∈ Xγ−1 for all x ∈ X and γ ∈ Γ. 
Therefore θ is a global action.

(2) ⇔ (3) This is Theorem 3.11. �
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