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Let V be an n-dimensional vector space over the finite field 
Fq. The spherical building XV associated with GL(V ) is 
the order complex of the nontrivial linear subspaces of V . 
Let g be the local coefficient system on XV , whose value 
on the simplex σ = [V0 ⊂ · · · ⊂ Vp] ∈ XV is given by 
g(σ) = V0. The homology module D1(V ) = H̃n−2(XV ; g)
plays a key role in Lusztig’s seminal work on the discrete 
series representations of GL(V ). Here, some further properties 
of g and its exterior powers are established. These include 
a construction of an explicit basis of D1(V ), a computation 
of the dimension of Dk(V ) = H̃n−k−1(XV ; ∧kg), and the 
following twisted analogue of a result of Smith and Yoshiara: 
For any 1 ≤ k ≤ n −1, the minimal support size of a non-zero 
(n − k − 1)-cycle in the twisted homology H̃n−k−1(XV ; ∧kg)
is (n−k+2)!

2 .
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1. Introduction

Let q be a prime power and let V be an n-dimensional vector space over the finite 
field Fq. The spherical building associated with G = GL(V ) is the order complex XV
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of the nontrivial linear subspaces of V : The vertices of XV are the linear subspaces 
0 �= U � V , and the k-simplices are families of subspaces of the form {U0, . . . , Uk}, 
where U0 � · · · � Uk. The homotopy type of XV was determined by Solomon and Tits 
[9] (see also Theorem 4.73 in [1]).

Theorem 1.1 (Solomon-Tits). XV is homotopy equivalent to a wedge of q
(n
2
)

(n − 2)-
spheres. In particular, the reduced homology of XV with coefficients in a field K is given 
by

dim H̃i(XV ;K) =
{

0 i �= n− 2,
q
(n
2
)

i = n− 2.

The natural action of G on XV induces a representation of G on H̃n−2(XV ; K). Viewed 
as a G-module, H̃n−2(XV ; K) is the Steinberg module of G over K (see e.g. section 6.4 in 
[6]). We recall some facts concerning XV and the Steinberg module. For a subset S ⊂ V , 
let 〈S〉 = span (S) denote the linear span of S. Let [n] = {1, . . . , n}. Let B = {v1, . . . , vn}
be a basis of V and let B̃ be the set of vertices of XV given by

B̃ =
{
〈vi : i ∈ I〉 : ∅ �= I � [n]

}
.

The induced subcomplex XV [B̃] is the apartment determined by B. Clearly, XV [B̃] is 
isomorphic to the barycentric subdivision of the boundary of a (n −1)-simplex, and thus

H̃n−2(XV [B̃];K) ∼= K.

We next exhibit a generator zB of H̃n−2(XV [B̃]; K). For a permutation π in the symmet-
ric group Sn and for 1 ≤ i ≤ n, let Vπ(i) = 〈vπ(1), . . . , vπ(i)〉 and let σπ be the ordered 
(n − 2)-simplex

σπ = [Vπ(1) ⊂ · · · ⊂ Vπ(n− 1)].

Then zB =
∑

π∈Sn
sgn(π)σπ is a generator of H̃n−2(XV [B̃]; K). The following explicit 

construction of a basis of H̃n−2(XV [B̃]; K) is due to Solomon [9] (see also Theorem 4.127 
in [1]).

Theorem 1.2 (Solomon). Let σ be a fixed (n − 2)-simplex of XV . Then{
zB : B is a basis of V such that σ ∈ XV [B̃]

}
is a basis of H̃n−2(XV [B̃]; K).

The support of a (n − 2)-chain c =
∑

σ aσσ ∈ Cn−2(XV ; K) is

supp(c) = {σ : aσ �= 0}.
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Clearly, |supp(zB)| = n! for any basis B of V . Smith and Yoshiara [7] proved that the 
zB ’s are in fact the nontrivial (n − 2)-cycles of minimal support in XV .

Theorem 1.3 (Smith-Yoshiara).

min
{
|supp(z)| : 0 �= z ∈ H̃n−2(XV ;K)

}
= n!.

In this paper we study analogues of Theorems 1.1, 1.2 and 1.3 for the homology of XV

with certain local coefficient systems introduced by Lusztig and Dupont. We first recall 
some definitions. Let X be a simplicial complex on a vertex set S. Let ≺ be an arbitrary 
fixed linear order on S. For k ≥ −1 let X(k) denote the set of k-dimensional simplices 
of X, and let X(k) denote the k-dimensional skeleton of X. A simplex σ ∈ X(k) will be 
written as σ = [s1, . . . , sk+1] where s1 ≺ · · · ≺ sk+1. The i-th face of σ as above is the 
(k − 1)-simplex σi = [s1, . . . , si−1, si+1, . . . , sk+1]. For a 0-dimensional simplex σ = [s1], 
let σ1 = ∅ be the empty simplex. A local system F on X is an assignment of an abelian 
group F(σ) to each simplex σ ∈ X, together with homomorphisms ρτσ : F(τ) → F(σ) for 
each σ ⊂ τ satisfying the usual compatibility conditions: ρσσ = identity, and ρσηρ

τ
σ = ρτη if 

η ⊂ σ ⊂ τ . A F-twisted k-chain of X is a formal linear combination c =
∑

σ∈X(k) c(σ)σ, 
where c(σ) ∈ F(σ). Let Ck(X; F) denote the group of F-twisted k-chains of X. For 
k ≥ 0 define the boundary map

∂k : Ck(X;F) → Ck−1(X;F)

by

∂k

⎛⎝ ∑
σ∈X(k)

c(σ)σ

⎞⎠ =
∑

σ∈X(k)

k+1∑
i=1

(−1)i+1ρσσi

(
c(σ)

)
σi.

For k = −1 let ∂−1 denote the zero map C−1(X; F) = F(∅) → 0. The homology of X with 
coefficients in F , denoted by H∗(X, F), is the homology of the complex ⊕i≥0Ci(X; F). 
The reduced homology H̃∗(X, F) is the homology of ⊕i≥−1Ci(X; F). Let X, Y be two 
simplicial complexes and let f : X → Y be a simplicial map such that dim f(σ) = dim σ

for all σ ∈ X. Let G be a local system on Y . The inverse image system F = f−1G given 
by F(σ) = G(f(σ)) is a local system on X. The induced mapping on homology is denoted 
by f∗ : H̃k(X; F) → H̃k(Y ; G). For further discussion of local coefficient homology, see 
e.g. chapter 7 in [3] and chapter 10 in [6].

Lusztig, in his seminal work [5] on discrete series representations of GL(V ), defined 
and studied the local system g on XV given by g(U1 ⊂ · · · ⊂ U�) = U1 and g(∅) = V , 
where the connecting homomorphisms ρτσ’s are the natural inclusion maps. Dupont, in his 
study of homological approaches to scissors congruences [4], extended some of Lusztig’s 
results to the higher exterior powers ∧kg over flag complexes of Euclidean spaces. For 
i ≥ 0 let H̃i(XV ; ∧kg) denote the i-th homology Fq-module of the chain complex of XV
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with ∧kg coefficients. Note that C−1(XV ; ∧kg) = ∧kV . The following result was proved 
by Lusztig (Theorem 1.12 in [5]) for k = 1, and extended by Dupont (Theorem 3.12 in 
[4]) to all k ≥ 1.

Theorem 1.4 (Lusztig, Dupont). Let 1 ≤ k ≤ n − 1. Then H̃i(XV ; ∧kg) = 0 for i �=
n − k − 1.

Let Dk(V ) = H̃n−k−1(XV ; ∧kg). Lusztig (Theorem 1.14 in [5]) proved that

dimD1(V ) =
n−1∏
i=1

(qi − 1). (1)

The proof of (1) in [5] is based on the case k = 1 of Theorem 1.4, combined with an 
Euler characteristic computation. In Section 2 we describe an explicit basis of D1(V ). 
This construction may be regarded as a twisted counterpart of Theorem 1.2. Concerning 
the dimension of Dk(V ) for general k, we prove the following extension of Theorem 1.

Theorem 1.5.

dimDk(V ) =
∑

1≤α1<···<αn−k≤n−1

n−k∏
j=1

(qαj − 1). (2)

Our final result is an analogue of the Smith-Yoshiara Theorem 1.3 for the coefficient 
system ∧kg.

Theorem 1.6.

min
{
|supp(w)| : 0 �= w ∈ Dk(V )

}
= (n− k + 2)!

2 .

The paper is organised as follows. In Section 2 we construct an explicit basis for 
D1(V ). In Section 3 we use an exact sequence due to Dupont to prove Theorem 1.5. 
In Section 4 we recall the Nerve lemma for homology with local coefficients, and obtain 
a vanishing result for a certain local system on the simplex. These results are used to 
prove Theorem 1.6. We conclude in Section 5 with some remarks and open problems.

2. A basis for D1(V )

In this section we construct an explicit basis for D1(V ) = H̃n−2(XV ; g). Let V = Fn
q

and let e1, . . . , en be the standard basis of V . For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ V

let a · b denote the standard bilinear form 
∑n

i=1 aibi. For a subset S ⊂ V , let S⊥ = {u ∈
V : u · s = 0, for all s ∈ S}. Let ≺ be any linear order on XV (0) such that U ≺ U ′ if 
dimU < dimU ′. Then an (n − 2)-simplex in XV is of the form [U1, . . . , Un−1], where 
0 �= U1 � · · · � Un−1 � V .
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Fig. 1. Four types of (n − 3)-simplices in sd(K) = supp(cv).

For simplicial complexes Y , Z defined on disjoint vertex sets, let Y ∗ Z = {σ ∪ τ :
σ ∈ Y, τ ∈ Z} denote their simplicial join. Let a0

1, a
1
1, . . . , a

0
n−1, a

1
n−1, b be 2n − 1 distinct 

elements. Let M denote the octahedral (n − 2)-sphere

M = {a0
1, a

1
1} ∗ · · · ∗ {a0

n−1, a
1
n−1},

and let K = M∪
(
{b} ∗M (n−3)). See Fig. 1a for a depiction of the 2-dimensional complex 

K when n = 4.
Choose a linear order ≺1 on the simplices of K such that σ ≺1 τ if dim σ > dim τ . The 

barycentric subdivision of K, denoted by sd(K), is the complex whose vertex set sd(K)(0)
consists of all nonempty simplices of K, and whose k-simplices (ordered according to ≺1) 
are [σ1, . . . , σk+1] where σ1 � · · · � σk+1. For a sequence x = (x1, . . . , xn−1) of distinct 
vertices of K, such that {x1, . . . , xn−1} ∈ K, let S(x) denote the (n − 2)-simplex of 
sd(K) given by

S(x) = [{x1, . . . , xn−1}, {x1, . . . , xn−2}, . . . , {x1}] .

For a permutation π in the symmetric group Sn−1 let π(x) = (xπ(1), . . . , xπ(n−1)). Let 
E = {0, 1}n−1 and for 1 ≤ j ≤ n − 1 let

Ej = {(ε1, . . . , εn−1) ∈ E : εj = 0}.
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For εεε = (ε1, . . . , εn−1) ∈ E and 1 ≤ j ≤ n − 1 let aεεε = (aε11 , . . . , aεn−1
n−1 ) and let

aεεε,j = (aε11 , . . . , a
εj−1
j−1 , b, a

εj+1
j+1 , . . . , a

εn−1
n−1 ).

Let Tq,n denote the set of all sequences v = (v1, . . . , vn−1) ∈ V n−1 such that vi ∈
ei + 〈ei+1, . . . , en〉 and vi �= ei for all 1 ≤ i ≤ n − 1. Clearly |Tq,n| =

∏n−1
i=1 (qi − 1).

Fix v = (v1, . . . , vn−1) ∈ Tq,n. For εεε = (ε1, . . . , εn−1) ∈ E, let vε = (u1, . . . , un−1), 
where

ui =
{

ei εi = 0,
vi εi = 1.

For 1 ≤ j ≤ n − 1 let vεεε,j = (u1, . . . , un−1), where

ui =

⎧⎪⎨⎪⎩
en i = j,

ei i �= j & εi = 0,
vi i �= j & εi = 1.

Define θv : K(0) → V by

θv(x) =

⎧⎪⎨⎪⎩
ei x = a0

i ,

vi x = a1
i ,

en x = b,

and let fv : sd(K)(0) → XV (0) be the map given by

fv(σ) = 〈θv(x) : x ∈ σ〉⊥.

Clearly, fv extends to a simplicial map from sd(K) to XV . The inverse of g under fv is 
the local system of sd(K) given by hv = f−1

v g. We next define an element

cv =
∑

F∈sd(K)(n−2)

cv(F )F ∈ Cn−2(sd(K); hv).

For a sequence u = (u1, . . . , un−1) ∈ V n−1 of linearly independent vectors in V such that 
en /∈ 〈u1, . . . , un−1〉, let w(u) be the unique element w ∈ 〈u1, . . . , un−1〉⊥ such that w ·
en = 1. For εεε = (ε1, . . . , εn−1) ∈ {0, 1}n−1 and π ∈ Sn−1 let χ(ε, π) = (−1)

∑n−1
j=1 εj sgn(π). 

On an (n − 2)-simplex F ∈ sd(K)(n − 2) define

cv(F ) =

⎧⎪⎨⎪⎩
χ(εεε, π)w(vεεε) εεε ∈ E,F = S(π(aεεε)),
χ(εεε, π)

(
w(vεεε+ej ) − w(vεεε)

)
εεε ∈ Ej , F = S(π(aεεε,j)),

0 otherwise.
(3)

Note that cv(F ) ∈ hv(F ) for all F ∈ sd(K)(n − 2). Indeed, if F = S(π(aεεε)) then
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cv(F ) = χ(εεε, π)w(vεεε) ∈ 〈vε11 , . . . , v
εn−1
n−1 〉⊥

= g(fv(F )) = hv(F ).

If F = S(π(aεεε,j)) for 1 ≤ j ≤ n − 1 and εεε ∈ Ej then

cv(F ) = χ(εεε, π)
(
w(vεεε+ej ) − w(vεεε)

)
∈ 〈vε11 , . . . , v

εj−1
j−1 , en, v

εj+1
j+1 , . . . , v

εn−1
n−1 〉⊥

= g(fv(F )) = h(F ).

Proposition 2.1. cv ∈ H̃n−2(sd(K); hv).

Proof. Let G ∈ sd(K)(n −3). We have to show that ∂n−2cv(G) = 0. Let Γ(G) denote the 
set of (n − 2)-simplices in sd(K) that contain G. For 2 ≤ � ≤ n − 1 let η� ∈ Sn−1 denote 
the transposition (n − �, n − � +1). We consider the following four cases according to the 
type of G. For n = 4 we depict the types of the 24 bold edges in Fig. 1b. The 6 edges 
incident with the vertex 1© are of type 1, and the 6 edges incident with the vertex 2© are 
of type 2 below. Of the remaining 12 edges, the 8 edges that are incident with vertices 
labelled 3© are of type 3, and the remaining 4 edges incident with vertices labelled by 4©
are of type 4.

1. G = S(π(aεεε))� for some 2 ≤ � ≤ n − 1, π ∈ Sn−1 and εεε ∈ E.
Then

Γ(G) = {S(π(aεεε)), S((πη�)(aεεε))}

As G is the �-th face of both these simplices, it follows that

(−1)�+1∂n−2cv(G) = cv(S(π(aεεε))) + cv(S((πη�)(aεεε)))

= χ(εεε, π)w(vεεε) + χ(εεε, πη�)w(vεεε)

= χ(εεε, π)w(vεεε) − χ(εεε, π)w(vεεε) = 0.

2. G = S(π(aεεε,j))� for some 2 ≤ � ≤ n − 1, π ∈ Sn−1, 1 ≤ j ≤ n − 1 and εεε ∈ Ej .
Then

Γ(G) = {S(π(aεεε,j)), S((πη�)(aεεε,j))}.

As G is the �-th face of both these simplices, it follows that

(−1)�+1∂n−2cv(G) = cv(S(π(aεεε,j))) + cv(S((πη�)(aεεε,j)))

= χ(εεε, π)
(
w(vεεε+ej ) − w(vεεε)

)
+ χ(εεε, πη�)

(
w(vεεε+ej ) − w(vεεε)

)
= χ(εεε, π)

(
w(vεεε+ej ) − w(vεεε)

)
− χ(εεε, π)

(
w(vεεε+ej ) − w(vεεε)

)
= 0.
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3. G = S(π(aεεε))1 for some π ∈ Sn−1 and εεε ∈ Ej , where j = π(n − 1).
Then

Γ(G) = {S(π(aεεε)), S(π(aεεε+ej )), S(π(aεεε,j))}.

As G is the 1-face of each of these simplices, it follows that

∂n−2cv(G) = cv (S(π(aεεε))) + cv
(
S(π(aεεε+ej ))

)
+ cv

(
S(π(aεεε,j))

)
= χ(εεε, π)w(vεεε) + χ(εεε + ej , π)w(vεεε+ej ) + χ(εεε, π)

(
w(vεεε+ej ) − w(vεεε)

)
= χ(εεε, π)

(
w(vεεε) − w(vεεε+ej )

)
+ χ(εεε, π)

(
w(vεεε+ej ) − w(vεεε)

)
= 0.

4. G = S(π(aεεε,j))1 for some π ∈ Sn−1 and εεε ∈ Ej , where j �= π(n − 1).
Let j′ = π(n − 1) and let τ denote the transposition (j, j′). Since S(π(aεεε,j))1 is 
independent of επ(n−1), we may assume that εj′ = επ(n−1) = 0. Then:

Γ(G) = {S(π(aεεε,j)), S(π(aεεε+ej′ ,j)), S((τπ)(aεεε,j′)), S((τπ)(aεεε+ej ,j
′
))}.

As G is the 1-face of each of these simplices, it follows that

∂n−2cv(G) = cv(S(π(aεεε,j))) + cv(S(π(aεεε+ej′ ,j)))

+ cv(S((τπ)(aεεε,j′))) + cv(S((τπ)(aεεε+ej ,j
′
)))

= χ(εεε, π)(w(vεεε+ej ) − w(vεεε)) + χ(εεε + ej′ , π)(w(vεεε+ej′+ej ) − w(vεεε+ej′ ))

+ χ(εεε, τπ)(w(vεεε+ej′ ) − w(vεεε))

+ χ(εεε + ej , τπ)(w(vεεε+ej+ej′ ) − w(vεεε+ej ))

= χ(εεε, π)[(w(vεεε+ej ) − w(vεεε)) − (w(vεεε+ej′+ej ) − w(vεεε+ej′ ))

− (w(vεεε+ej′ ) − w(vεεε)) + (w(vεεε+ej′+ej ) − w(vεεε+ej ))] = 0.

We have thus shown that cv ∈ H̃n−2(sd(K); h). �
Proposition 2.1 implies that c̃v = (fv)∗cv ∈ H̃n−2(XV ; g).

Theorem 2.2. The family {c̃v : v ∈ Tq,n} is a basis of D1(V ) = H̃n−2(XV ; g).

Proof. Let v ∈ Tq,n. Let R(v) ∈ XV (n − 2) be the (n − 2)-simplex

R(v) = [〈v1, . . . , vn−1〉⊥, 〈v1, . . . , vn−2〉⊥, . . . , 〈v1, v2〉⊥, 〈v1〉⊥].

Let 1 = (1, . . . , 1) ∈ E. It is straightforward to check that F = S(a1) is the unique 
(n − 2)-simplex in sd(K) such that fv(F ) = R(v). It follows that
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Fig. 2. The cycle cv for v = (v1, v2) = ((1, r, s), (0, 1, t)).

c̃v(R(v)) = cv(S(a1)) = (−1)n−1w(v).

On the other hand, if v �= v′ ∈ Tq,n, then R(v′) /∈ fv(sd(K)) and so c̃v(R(v′)) = 0. It 
follows that the (n − 2)-cycles {c̃v : v ∈ Tq,n} are linearly independent in D1(V ). As 
|Tq,n| =

∏n−1
i=1 (qi − 1) = dimD1(V ), this completes the proof of Theorem 2.2. �

Example. Let n = 3 and let

v = (v1, v2) = ((1, r, s), (0, 1, t)) ∈ Tq,3.

Fig. 2 depicts the cycle cv ∈ H1(sd(K); h). Black vertices correspond to vertices of K and 
white vertices correspond to edges of K. The values of cv are indicated on the edges of the 
diagram. For example, let εεε = (1, 1) and π = (1, 2). Then F = S(π(aεεε)) = [{a1

2, a
1
1}, {a1

2}], 
and

cv(F ) = χ(εεε, π)w
(
(v1, v2)

)
= −w

(
(v1, v2)

)
= (s− rt, t,−1).

Similarly, if j = 1, εεε = (0, 1) ∈ E1 and π = (1, 2), then F = S(π(aεεε,j)) = [{a1
2, b}, {a1

2}]
and
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Fig. 3. The cycle c̃v for a generic v = ((1, r, s), (0, 1, t)).

cv(F ) = χ(εεε, π)
(
w
(
(v1, v2)

)
− w

(
(e1, v2)

))
= (rt− s,−t, 1) − (0,−t, 1) = (rt− s, 0, 0).

Figs. 3 and 4 depict the 1-cycle c̃v ∈ H1(XV ; g). Here, the black vertices correspond 
to 2-dimensional subspaces of V . The white vertices and their labels correspond to 
1-dimensional subspaces and their generating vectors. Fig. 3 depicts the generic case 
when rst(rt − s) �= 0. The labels of the left most 6 white points together with the ±
signs, indicate the values of c̃v on the incident edges. The remaining three values of c̃v
are indicated on the edges incident with the vertex corresponding to the line spanned by 
(1, 0, 0). Fig. 4 similarly depicts the case s = 0. Note that in both cases, the simplicial 
map fv : sd(K) → XV is not injective.

3. The dimension of Dk(V )

Proof of Theorem 1.5. For an Fq-space W let St(W ) = H̃dim W−2(XW ; Fq) denote the 
Steinberg module of W over Fq. Recall that dim St(W ) = q

(dim W
2

)
by Theorem 1.1. Let 

Gj(V ) denote the family of all j-dimensional linear subspaces of V . The following result 
is due to Dupont (Proposition 5.38 in [4]).
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Fig. 4. The cycle c̃v for v = (v1, v2) = ((1, r, 0), (0, 1, t)).

Theorem 3.1 (Dupont). There is an exact sequence

0 → Dk(V ) →
⊕

Uk∈Gk(V )

∧ kUk ⊗ St(V/Uk) →
⊕

Uk+1∈Gk+1(V )

∧kUk+1 ⊗ St(V/Uk) →

. . . →
⊕

Un−2∈Gn−2(V )

∧kUn−2 ⊗ St(V/Un−2)

→
⊕

Un−1∈Gn−1(V )

∧kUn−1 → ∧kV → 0.

Writing 
[
n
j

]
q

for the q-binomial coefficient, Theorem 3.1 implies that

dimDk(V ) =
n∑

j=k

(−1)j−k

(
j

k

)
q
(n−j

2
)[n
j

]
q

. (4)

By the q-binomial theorem (see e.g. (1.87) in [8])

n−1∏
j=0

(1 + qjλ) =
n∑

j=0
q
(j
2
)[n
j

]
q

λj . (5)

Substituting λ = −t−1 in (5) and multiplying by tn it follows that
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n−1∏
j=0

(t− qj) =
n∑

j=0
(−1)jq

(j
2
)[n
j

]
q

tn−j . (6)

Differentiating (6) k times and multiplying by (−1)n−k

k! we obtain

n−1∏
j=0

(qj − t)
∑

0≤α0<···<αk−1≤n−1

k−1∏
�=0

1
qα� − t

=
n∑

j=0
(−1)n−k+j

(
n− j

k

)
q
(j
2
)[n
j

]
q

tn−j−k

=
n∑

j=0
(−1)j−k

(
j

k

)
q
(n−j

2
)[n
j

]
q

tj−k.

(7)

Substituting t = 1 in (7) and using (4) we obtain (2). �
3.1. A basis for Dn−1(V )

In this subsection we describe an explicit basis for Dn−1(V ) = H̃0(XV ; ∧n−1g). We 
first recall some facts concerning the exterior algebra ∧V . Let V = Fn

q . Using the notation 
of Section 2, recall that e1, . . . , en are the unit vectors in V , and a ·b denotes the standard 
symmetric bilinear form on V . Let e = e1 ∧ · · · ∧ en ∈ ∧nV . The induced bilinear form 
on ∧pV is given by

(u1 ∧ · · · ∧ up) · (v1 ∧ · · · ∧ vp) = det
(
ui · vj

)p
i,j=1.

The star operator ∗ : ∧n−kV → ∧kV is the unique linear map that satisfies

(∗α) · β = e · (α ∧ β)

for any α ∈ ∧n−kV, β ∈ ∧kV .

Claim 3.2. Let v1, . . . , vn−k be linearly independent vectors in V and let M =
〈v1, . . . , vn−k〉⊥. Then

0 �= ∗(v1 ∧ · · · ∧ vn−k) ∈ ∧kM.

Proof. Extend {vi}n−k
i=1 to a basis {vi}ni=1 of V , and let {wj}nj=1 be the dual basis, i.e. 

vi · wj = δi,j . Then M = 〈wn−k+1, . . . , wn〉. For a subset L = {i1, . . . , i�} ∈
([n]

�

)
such 

that 1 ≤ i1 < · · · < i� ≤ n let vL = vi1 ∧ · · ·∧vi� and wL = wi1 ∧ · · ·∧wi� . If L, L′ ∈
([n]

�

)
then vL · wL′ = δL,L′ .

Let I0 = {1, . . . , n − k}, J0 = {n − k + 1, . . . , n}, and let ∗vI0 =
∑

|J|=k λJwJ . Then 

for any J ′ ∈
([n])
k
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∗vI0 · vJ ′ =
∑
|J|=k

λJwJ · vJ ′ = λJ ′ . (8)

On the other hand

∗vI0 · vJ ′ = e · (vI0 ∧ vJ ′)

=
{

det(v1, . . . , vn) J ′ = J0,

0 J ′ �= J0.

(9)

Combining (8) and (9), it follows that 0 �= ∗vI0 = det(v1, . . . , vn)wJ0 ∈ ∧kM . �
We proceed to construct a basis of Dn−1(V ) = H̃0(XV ; ∧n−1g). Note that if u ∈ V , 

then by Claim 3.2, (∗u)u⊥ ∈ C0(XV ; ∧n−1g). For any 1 ≤ i ≤ n let

zu,i = (∗ei)e⊥i + (∗u)u⊥ − (∗(u + ei))(u + ei)⊥ ∈ C0(XV ;∧n−1g).

Then

∂0(zu,i) = ∗ei + ∗u− ∗(u + ei) = ∗(ei + u− (u + ei)) = 0

and therefore zu,i ∈ Dn−1(V ). For 2 ≤ i ≤ n let Ri =
(
F i−1
q \ {0}

)
× {0}n−i+1.

Claim 3.3.

B =
{
zu,i : 2 ≤ i ≤ n , u ∈ Ri

}
(10)

is a basis of Dn−1(V ).

Proof. By Theorem 1.5

dimDn−1(V ) =
n∑

i=2
(qi−1 − 1) =

n∑
i=2

|Ri| = |B|.

It therefore suffices to show that the elements of B are linearly independent. This in 
turn follows from the fact that for any 2 ≤ j ≤ n and v ∈ Rj , it holds that (v + ej)⊥ ∈
supp(zv,j), but (v + ej)⊥ /∈ supp(zu,i) for any (u, i) �= (v, j) such that 2 ≤ i ≤ j and 
u ∈ Ri. �
4. Minimal cycles in Dk(V )

In this section we prove Theorem 1.6. The upper bound follows from a construction 
of certain explicit (n − k− 1)-cycles of Dk(V ) given in Subsection 4.1. The lower bound 
is established in Subsection 4.2.
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4.1. The upper bound

Let 1 ≤ k ≤ n − 1 and let m = n − k + 2. Let u = (u1, . . . , um) ∈ V m be an ordered 
m-tuple of vectors in V whose only linear dependence is 

∑m
i=1 ui = 0. Let Im−2,m denote 

the family of injective functions π : [n − k] = [m − 2] → [m]. For π ∈ Im−2,m let T (u, π)
be the (n − k − 1)-simplex given by

T (u, π) = [〈uπ(1), . . . , uπ(n−k)〉⊥ ⊂ · · · ⊂ 〈uπ(1)〉⊥].

Let γu ∈ Cn−k−1(XV ; ∧kg) be the chain whose value on an (n − k − 1)-simplex F is 
given by

γu(F ) =
{

∗
(
uπ(1) ∧ · · · ∧ uπ(n−k)

)
F = T (u, π),

0 otherwise.
(11)

Proposition 4.1. γu ∈ Dk(V ).

Proof. Let G be an (n − k − 2)-simplex in XV . Let Γu(G) denote the set of (n − k −
1)-simplices in supp(γu) that contain G. For 2 ≤ � ≤ n − k let η� ∈ Sn−k−2 denote the 
transposition (n − k − � + 1, n − k − � + 2). We consider the following two cases:

1. G = T (u, π)� for some 2 ≤ � ≤ n − k and π ∈ Im−2,m.
Then

Γu(G) = {T (u, π), T (u, πη�)} .

As G is the �-th face of both these simplices, it follows that

(−1)�+1∂n−k−1γu(G) = γu(T (u, π)) + γu(T (u, πη�))

= ∗
(
uπ(1) ∧ · · · ∧ uπ(n−k−�+1) ∧ uπ(n−k−�+2) ∧ · · · ∧ uπ(n−k)

)
+ ∗

(
uπ(1) ∧ · · · ∧ uπ(n−k−�+2) ∧ uπ(n−k−�+1) ∧ · · · ∧ uπ(n−k)

)
= 0.

2. G = T (u, π)1 for some π ∈ Im−2,m.
Let [m] \ π([m − 3]) = {α1, α2, α3}. For i = 1, 2, 3 define πi ∈ Im−2,m by

πi(j) =
{

π(j) 1 ≤ j ≤ n− k − 1,
αi j = n− k.

Then

Γu(G) = {T (u, π1), T (u, π2), T (u, π3)} .

As G is the 1-th face of these three simplices, it follows that
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∂n−k−1γu(G) =
3∑

i=1
γu(T (u, πi))

=
3∑

i=1
∗
(
uπ(1) ∧ · · · ∧ uπ(n−k−1) ∧ uαi

)
= ∗

(
uπ(1) ∧ · · · ∧ uπ(n−k−1) ∧ (

3∑
i=1

uαi
)
)

= ∗
(
uπ(1) ∧ · · · ∧ uπ(n−k−1) ∧ (

m∑
j=1

uj)
)

= 0.

We have thus shown that γu ∈ Dk(V ). �
Corollary 4.2.

min
{
|supp(w)| : 0 �= w ∈ Dk(V )

}
≤ |supp(γu)|

= |Im−2,m| = (n− k + 2)!
2 .

Example. Let n = 3, k = 1. A minimal twisted 1-cycle in D1(XV ) is depicted in Fig. 4.

4.2. The lower bound

In preparation for the proof of the lower bound in Theorem 1.6, we first recall a twisted 
version of the nerve lemma. Let F be a local system on a finite simplicial complex Y , and 
let Y = {Yi}mi=1 be a family of subcomplexes of Y such that Y =

⋃m
i=1 Yi. The nerve of 

the cover Y is the simplicial complex N = N(Y) on the vertex [m] = {1, . . . , m}, whose 
simplices are the subsets τ ⊂ [m] such that Yτ :=

⋂
i∈τ Yi �= ∅. For j ≥ 1 let Nj(F) be 

the local system on N given by Nj(F)(τ) = Hj(Yτ ; F). The following result is twisted 
version of the Mayer-Vietoris spectral sequence (see e.g. [5]).

Proposition 4.3. There exists a spectral sequence {Er
p,q} converging to H∗(Y ; F) such 

that E1
p,q =

⊕
σ∈N(p) Hq(Yσ; F) and E2

p,q = Hp(N ; Nq(F)).

The Nerve Lemma is the following

Corollary 4.4. Suppose that Hq(Yσ; F) = 0 for all q ≥ 1 and σ ∈ N(p) such that p +q ≤ t. 
Then Hp(Y ; F) ∼= Hp(N ; N0(F)) for all 0 ≤ p ≤ t.

We will also need a simple observation concerning a certain twisted homology of 
the simplex. Let r ≥ 2 and let W1, . . . , Wr be arbitrary linear subspaces of a finite 
dimensional vector space W over a field K. Let Δr−1 denote the simplex on the vertex 
set [r], and let G be the local system on Δr−1 given by
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G(σ) =
{⋂

i∈σ Wi ∅ �= σ ∈ Δr−1,

W σ = ∅,

with the natural inclusion maps.

Proposition 4.5. H̃k(Δr−1; G) = 0 for k ≥ r − 2.

Proof. Using the natural order on {1, . . . , r}, the top dimensional simplex in Δr−1 is 
τ = [1, 2, · · · , r], and its i-th face is τi = [1, . . . , i − 1, i + 1, . . . , r]. For 1 ≤ i < j ≤ r let

τi,j = [1, . . . , i− 1, i + 1, . . . , j − 1, j + 1, . . . , r].

Then

Cr−1(Δr−1,G) =
{
wτ : w ∈

r⋂
i=1

Wi

}

and

Cr−2(Δr−1,G) =
{

r∑
i=1

wiτi : wi ∈
⋂
�∈τi

W�

}
.

The boundary map ∂r−1 : Cr−1(Δr−1; G) → Cr−2(Δr−1; G) is given by

∂r−1(wτ) =
r∑

i=1
(−1)i+1wτi. (12)

Note that for 1 ≤ i ≤ r and 1 ≤ j ≤ r − 1, the j-th face of τi is

(τi)j =
{

τj,i 1 ≤ j < i ≤ r,

τi,j+1 1 ≤ i ≤ j ≤ r − 1.

It follows that the boundary map ∂r−2 : Cr−2(Δr−1; G) → Cr−3(Δr−1; G) is given by

∂r−2
( r∑
i=1

wiτi
)

=
r∑

i=1

r−1∑
j=1

(−1)j+1wi(τi)j

=
r∑

i=1

i−1∑
j=1

(−1)j+1wiτj,i +
r∑

i=1

r−1∑
j=i

(−1)j+1wiτi,j+1

=
r∑

j=1

j−1∑
i=1

(−1)i+1wjτi,j +
r∑

i=1

r∑
j=i+1

(−1)jwiτi,j

=
∑ (

(−1)i+1wj + (−1)jwi

)
τi,j .

(13)
1≤i<j≤r
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Eq. (12) implies that H̃r−1(Δr−1; G) = 0. Next let c =
∑r

i=1 wiτi ∈ ker ∂r−2 be a 
G-twisted (r − 2)-cycle of Δr−1. It follows by (13) that wj = (−1)j+1w1 for all 1 ≤ j ≤
r. Therefore w1 ∈

⋂r
i=1 Wi and hence w1τ ∈ Cr−1(X; G). Eq. (12) then implies that 

∂r−1(w1τ) = c. Thus H̃r−2(Δr−1; G) = 0. �
Proof of the lower bound in Theorem 1.6. We argue by induction on n − k. For the in-
duction basis k = n − 1, we have to show that if 0 �= z ∈ Dn−1(V ) = H̃0(XV ; ∧n−1g), 
then |supp(z)| ≥ (n−k+2)!

2 = 3. Suppose for contradiction that |supp(z)| < 3. Then 
z = (∗u)u⊥ + (∗v)v⊥ for some u, v ∈ V . As

0 = ∂0z = (∗u) + (∗v) = ∗(u + v),

it follows that u +v = 0 and hence z = 0, a contradiction. For the induction step, assume 
that n − k ≥ 2 and let

0 �= z =
∑

z∈XV (n−k−1)

z(τ)τ ∈ Hn−k−1(XV ;∧kg) = Zn−k−1(XV ;∧kg).

Let supp(z) = {τ1, . . . , τs} ∈ XV (n − k − 1) and write

τi = [Vk(i), . . . , Vn−1(i)],

where dimVj(i) = j for all 1 ≤ i ≤ s and k ≤ j ≤ n − 1. Let

{Vn−1(i) : 1 ≤ i ≤ s} = {U1, . . . , Ur},

where the Ui’s are distinct (n − 1)-dimensional subspaces. Let Ui = {U : 0 �= U ⊂ Ui}
and let Yi = XV [Ui]. Let Y = ∪r

i=1Yi then clearly z ∈ Zn−k−1(Y ; ∧kg). Let N be the 
nerve of the cover {Yi}ri=1 of Y . For σ ⊂ [r] let Uσ = ∩i∈σUi and Yσ = ∩i∈σYi. If σ ∈ N

then Yσ is the order complex of the poset Pσ = {W : 0 �= W ⊂ Uσ}. As Pσ has a unique 
maximal element Uσ it follows (see e.g. Lemma 1.4 in [5]) that

Nq(∧kg)(σ) = Hq(Yσ;∧kg) =
{

∧kUσ q = 0,
0 q > 0.

(14)

Write

F(σ) = N0(∧kg)(σ) = ∧kUσ.

Eq. (14) and Corollary 4.4 imply that for all p ≥ 0

Hp(Y ;∧kg) ∼= Hp(N ;F). (15)

Proposition 4.6. r ≥ n − k + 2.



100 R. Meshulam, S. Zerbib / Journal of Algebra 531 (2019) 83–101
Proof. Suppose to the contrary that r ≤ n −k+1. Then Δ(r−2)
r−1 ⊂ N ⊂ Δr−1. For 1 ≤ i ≤

r let Wi = ∧kUi ⊂ ∧kV . Let G be the local system on Δr−1 given by G(σ) = ∩i∈σWi =
∧kUσ. Then G(σ) = F(σ) if σ ∈ N and G(σ) = 0 otherwise. Hence H∗(Δr−1; G) =
H∗(N ; F). As n − k − 1 ≥ r − 2, it follows by combining (15) and Proposition 4.5 that

Hn−k−1(Y ;∧kg) ∼= Hn−k−1(N ;F) = Hn−k−1(Δr−1;G) = 0,

in contradiction with the assumption that z is a nonzero element of Hn−k−1(Y ; ∧kg). �
We now conclude the proof of Theorem 1.6. For 1 ≤ j ≤ r define zj ∈

Cn−k−2(XUj
; ∧kg) as follows. For an (n − k − 2)-simplex F = [Vk, . . . , Vn−2] ∈

XUj
(n − k − 2) let zj(F ) = z([Vk, . . . , Vn−2, Uj ]). Then ∂n−k−2zj = 0. Indeed, sup-

pose that

[Vk, . . . , Vi−1, Vi+1, . . . , Vn−2] ∈ XUj
(n− k − 3),

where dimV� = � for i �= � ∈ {k, . . . , n − 2}. Then:

∂n−k−2zj ([Vk, . . . , Vi−1, Vi+1, . . . , Vn−2])

= (−1)i+k
∑

Vi−1⊂Vi⊂Vi+1

zj ([Vk, . . . , Vi−1, Vi, Vi+1, . . . , Vn−2])

= (−1)i+k
∑

Vi−1⊂Vi⊂Vi+1

z ([Vk, . . . , Vi−1, Vi, Vi+1, . . . , Vn−2, Uj ])

= ∂n−k−1z ([Vk, . . . , Vi−1, Vi+1, . . . , Vn−2, Uj ]) = 0.

As 0 �= zj ∈ Hn−k−2(XUj
; ∧kg), it follows by induction that |supp(zj)| ≥ (n−k+1)!

2 . 
Therefore by Proposition 4.6

|supp(z)| =
r∑

j=1
|supp(zj)| ≥ (n− k + 2)(n− k + 1)!

2 = (n− k + 2)!
2 . �

5. Concluding remarks

In this paper we studied some aspects of the twisted homology modules Dk(V ) =
H̃n−k−1(XV ; ∧kg). Our results suggest several problems and directions for further re-
search:

• In Sections 2 and 3.1 we described explicit bases for D1(V ) = H̃n−2(XV ; g) and for 
Dn−1(V ) = H̃0(XV ; ∧n−1g). It would be interesting to obtain analogous construc-
tions for other Dk(V )’s.
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• The Nerve Lemma argument used in the proof of Theorem 1.6 can be adapted to 
give a simple alternative proof of the Smith-Yoshiara Theorem 1.3. We hope that 
this approach can also be useful for the study of minimal cycles of local systems over 
other highly symmetric complexes.

• The Smith-Yoshiara Theorem 1.3 and its counterpart for the local system ∧kg, The-
orem 1.6, show that the linear codes that arise from (twisted) homology of XV have 
small distance relative to their length, and are therefore far from good codes. On 
the other hand, it is known (see [2]) that for fixed integers n ≥ 2 and K > 0 there 
is a constant λ = λ(n, K) > 0, such that for sufficiently large N there exists a com-
plex XN ⊂ Δ(n)

N−1 whose number of n-faces satisfies fn(XN ) = K
(
N
n

)
, and such that 

|supp(z)| ≥ λ
(
N
n

)
for all 0 �= z ∈ C = Hn(XN ; F2). In particular, the rate r(C) and 

relative distance δ(C) of C satisfy

r(C) = dimC

fn(XN ) ≥ K − 1
K

and

δ(C) = min{|supp(c)| : 0 �= c ∈ C}
fn(XN ) ≥ λ

K
.

It would be interesting to give explicit constructions of simplicial complexes that 
give rise to homological codes with similar parameters.
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