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Abstract

Recently Roberts and Srinivas proved the existence of large classes of modules of finite length
and finite projective dimension with prescribed intersection multiplicities, giving many new counter-
examples to earlier vanishing conjectures. We present an explicit method for constructing the exam-
ples whose existence is implied by their theorem.
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1. Introduction

The interest in intersection properties of modules of finite projective dimension goes
back to Serre’s definition of intersection multiplicities, where intersections for smooth
schemes are defined using homological functors. Serre defined the intersection multiplic-
ity for two finitely-generated module® and N over a regular local ringt of dimension
d as follows: if M and N satisfy the condition tha# ® 4 N has finite length, then their
intersection multiplicity is

d

X (M, N)=> (-1 length(Tor! (M. N)).
i=0

* Corresponding author.
E-mail addressegypiepmey@math.unl.edu (G. Piepmeyer), roberts@math.utah.edu (P. Roberts).
1 The second author was supported in part by a grant from the National Science Foundation.

0021-8693/$ — see front mattér 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.03.020



570 G. Piepmeyer, P. Roberts / Journal of Algebra 294 (2005) 569-589

One of the conjectures concerning this multiplicity (proven by Serre [11] in the geomet-
ric case and later by Roberts [8,9] and Gillet and Soule [3,4] in the mixed characteristic
case) was the vanishing conjecture, which stated that if

dim(M) +dim(N) < dim(A),
then
x(M,N)=0.

It was later asked to what extent this would hold if the condition thése a regular local

ring were dropped and replaced with the condition thahave finite projective dimen-

sion. The first counterexample to this generalized conjecture was constructed by Dutta,
Hochster, and McLaughlin in [1]. More recently, in answering a question of multiplicities
over Gorenstein rings, another example was constructed by Miller and Singh in [7]. A sim-
ilar example had been suggested by Kurano [6], but he did not actually construct a module
with the required property.

These examples answered the question on the vanishing conjecture but gave no idea
why or where such examples existed. In Roberts and Srinivas [10], a general theorem was
proven on the existence of examples of this type, examples that include the above and many
more. However, while this in a certain sense explained why these examples exist, it gave
no idea as to how to construct them. The construction of examples using this method is the
topic of this paper.

2. Thesetup

In this section we describe the situation in which the theorem of Roberts and Srinivas
applies, and modules of finite projective dimension with given intersection multiplicities
are shown to exist.

Let R be a graded ring for whicRg is a field andR is finitely generated oveRg by R;.

All graded rings will be assumed to have these properties. In this situation one can define
a projective schem& = Proj(R). We assume that is a smooth variety.

Before proceeding, we recall some facts about Chow group&agrbups that we will

need.

2.1. Chow groups

For any scheme of finite type over a regular scheme, the Chow gr@i, (X) is
defined to be the group of cycles modulo rational equivalence. There are two cases of
special interest here, and we describe these in more detail.

If A is a noetherian ring, then for each integer 0, we letZ; (A) be the free abelian
group on the prime ideals of A such that the dimension of/p is equal toi. For each
prime idealq with dim(A/q) =i + 1 and for eachy # 0 in A/q, define

div(f, A/a) =) _length(4/(a, /), [A/p],
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where the sum is taken over all prime ideglsuch that dintA /p) =i (this sum is finite).
The component of dimensianof the Chow groupCH; (A), is the quotient ofZ; (A) by
the subgroup generated by all dfy A/q) for all suchq and f.

If A has dimensiord, then CH;(A) is the free abelian group on the components
of SpecA) of dimensiond. If A is an integrally closed domain of dimensidn then
CH4-1(A) is isomorphic to the divisor class group 4f

The other case of interest is whekas a graded ring over a field aridis the associated
projective scheme. In this case the description is similar except for two major differences:

(1) Z;(X) is generated by graded prime ideplwith dim(R/p) =i + 1 (so that the pro-
jective subscheme defined ®y/p has dimension).

(2) The relation of rational equivalence is defined by settind fliR /q) = 0, whereq
is a graded prime ideal anfl is a quotient of two homogeneous polynomials of the
same degree. Thug= g/h, and di f, R/q) = div(g, R/q) — div(h, R/q) is zero in
CH..(X) (but neither divg, R/q) nor div(i, R/q) is necessarily zero i@H, (X)).

Note that in the case in whicR is graded an& = Proj(R) there is a map fror€H; (X)
to CH;+1(A), whereA is the localization ofR at its graded maximal ideal, induced by the
inclusion of the set of graded prime ideals into the set of all prime ideads of

For X = Proj(R) there is an important operator called thgperplane sectioron
CH.(X); we denote this operatdr. It is defined as the map fro@H; (X) to CH;_1(X)
that sends a generatd® /p] to div(R/p, x), wherex is any homogeneous element®bf
degree 1 that is not ip. It is easy to check that this definition is well defined up to rational
equivalence.

If X is smooth, there is an intersection pairing defined on the Chow groMpmo&king
the Chow group a ring. This pairing can be defined, for example, using Serre’s definition
given in Section 1. I/ is the dimension o and«a andg are elements o€H; (X) and
CH,—; (X), respectively, we letr - 8 denote the degree of the intersection product of
andg.

2.2. K-groups

We useKj, the Grothendieck group of objects where relations are given by short exact
sequences. There are two main case« s a smooth scheme, we consider the group
Ko(X), which is the free abelian group on the set of coherent sheaves with relations given
by short exact sequencesXMfis not smoothKo(X) will denote thek -group where the ob-
jects are perfect complexes p&rfect compleis a complex that is locally quasi-isomorphic
to a bounded complex of free modules. In this case, the relations are of two types:

Q) if
0>F >F—>F'>0

is a short exact sequence of complexes (that is, the sequence is exact in each degree),
then[F] = [F']1+ [F"];
(2) if f:F — G is aquasi-isomorphism, théi'] = [G].
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If X is smooth, then this definition agrees with the other one, using the fact that every
coherent sheaf has a finite, locally free resolution.
We now state a version of the existence theorem of Roberts and Srinivas.

Theorem 1. Let R be a graded ring such thaf = Proj(R) is smooth of dimensiah LetA

be the localization oR at the graded maximal ideghssume tha#i is Cohen—Macaulay.
Let n be an element of CHX) in the kernel of the hyperplane section. Then for every
graded prime ideap such thatW = Proj(R/p) has dimensiod — i, there is anA-module

M of finite length and finite projective dimension and a positive integarch that

X (M, A/pA) =n(n-[W]).

In many cases the integercan be taken to be 1, so thatM, R/p) is exactlyn - [W].

If A is not Cohen—Macaulay, one can still define a perfect complex with these properties.
In fact, in general the construction produces a complex, and in the Cohen—Macaulay case
a module can be constructed from this complex.

In what follows, we will letR denote a graded ring and latdenote the localization of
R at its graded maximal ideal.

To conclude this section we describe the rings and cycles under consideration in the
examples mentioned in Section 1. We use the result of Kurano [6] that states g if
a graded ring as above, the Chow groupiak isomorphic toCH, (X)/hCH,(X), where
h is the hyperplane section.

In most of the examples we consider, the cycles are defined by schemes and subschemes
of the formP™ x P" for variousm andn, so we describe the Chow ring of these schemes in
detail. The graded rin@ corresponding t&” x P" by the Segre embedding is the quotient
k[X;;1/12(X;;), wherei runs from O tom, j runs from O tor, and>(X;;) is the ideal of 2
by 2 minors of then + 1 by n 4 1 matrix (X;;). The Chow ring of?”* x P" is isomorphic
to Z[a, b]/(a™ 1, b"*1) (see Kurano [6]). Here is the cycle of codimension 1 given by
H x P" andb is the cycle given by x K, whereH andK are hyperplanes iB” andP",
respectively. The corresponding idealsifre defined by the entries in one column and
one row of the matrixX;;). The hyperplane in the Chow group of Ri®) is defined by
one elemeniX;;, and the corresponding ideal is the intersection of the ideals defined by
theith row and thejth column, so under our identifications this gives the elemepb in
the Chow group. The class of a point is represented by the ¢ldgs

In this situation it is very easy to compute the kernel of the operator given by intersection
with the hyperplane. Since the hyperplane is b, an element in the Chow group will be
in the kernel if and only if each homogeneous component of codimensman integer
multiple of an element of the form

Cli _ai—lb+ai—2b2 e (—l)i+lbi,

wherei > m andi > n (some of the terms in this sum may be zero).
We now describe the examples in detalil.
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2.3. The example of Dutta, Hochster, and McLaughlin

In this caseR = k[X,Y,Z, W]/(XW — YZ), so X = P! x PL. We choose the cy-
cle n to a — b, so that the intersection with is a® — ab = —ab, and the degree
of the intersection is—1. In terms of the ringR, the cyclen can be chosen to be
[Proj(R/(X,Y))] — [Proj(R/(X, Z))] and the intersection witfProj(R/(X, Y))] is —1.
Thus, by the theorem, there is a module of finite length and finite projective dimemsion
with x (M, R/(X, Z)) = —n for some positive integer; in fact,n can be taken to be 1 in
this case.

2.4. The example of Miller and Singh

In this case the ringk over which the example is constructedkisX, Y, Z, U, V, W]/
(XU + YV + ZW). The projective schem& is a quadric and the primg is the ideal
defined by(X, Y, Z). The cyclen is [Proj(R/(U, V, W))] — [Proj(R/(U, V, Z))]. (The
example of a Gorenstein ring for which Dutta multiplicity and ordinary multiplicity do not
coincide is a finite extension of this rirng).)

2.5. The example of a Gorenstein ring with nontrivial Todd class of Kurano

In [6], Kurano showed that the ring obtained by dividing a polynomial ring in nine
variables corresponding to the entries of a 3 matrix by the ideal of Z 2 minors of the
matrix is a Gorenstein ring of dimension 5 such that the component of dimension 3 of the
Todd class is honzero. This gave a candidate for a Gorenstein ring where Dutta and ordinary
multiplicity do not coincide. However, it was not known how to construct a module for
which the two multiplicities are different. The technique of Roberts and Srinivas [10] shows
that a module with these properties does exist in this case. MereP? x P2 and the
Chow ring of X is Z[a, b]/(a®, b3). The cyclen is a® — ab + b2. Kurano showed that if
M is a module of finite length and finite projective dimension correspondingds in
Theorem 1, the Dutta multiplicities and ordinary multiplicitiesMfare not equal.

2.6. A cubic surface

The component of the Chow group of a cubic surface of dimension 1 is known by clas-
sical results to have rank 7 (see, for instance, Hartshorne [5]), and it follows from this and
from Theorem 1 that ifR is the coordinate ring of a cubic surface, there are humerous
examples of modules of finite length and finite projective dimension with different inter-
section multiplicities for various prime ideagsfor which R/p has dimension 2. We do
not pursue this topic here, but we do show that the existence of nontrivial examples in
the case ok[X, Y, Z, W]/(XZ — YW) implies at least that nontrivial examples exist in
this case also. We assume that the fielid algebraically closed. LeF (X, Y, Z, W) be
a homogeneous cubic equation that defines a smooth suffac@3. Then it is known
that the surface contains a line (in fact, it contains 27 of them), so there are linearforms
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andl, such that the line defined By and!; is contained inS, which implies that there are
guadratic formsg;; andgz such that

F =l1q1+12q>.

If the four elements did not generate an ideal primary to the maximal ideal, by the Leibniz
rule a nonmaximal prime would contain all the partial derivativeg pdndS would not be
smooth. Thus we can map the generatorg[&f, Y, Z, W]/(XZ — YW) to 1, q1, —I2, g2

and taking the tensor product over this map will transform whatever example we had over
k[X,Y,Z, W]/(XZ—-YW)tooneovek[X,Y,Z, W]/(F(X,Y, X, W)). Note that we can

do this for any line on the surface, and we get examples so that the intersection with any
line is nonzero.

3. Outline of the construction

We outline the main steps in the construction. We recall that we are starting with a cycle
n in the Chow group ofX with zero intersection with the hyperplane and ending with a
module of finite length and finite projective dimension with the same intersection with a
given module of the fornk /p.

There are four steps to the construction. They are:

(1) Finding an element in th& -group of X that corresponds to the element of the Chow
group.
Since an element of the Chow group will be a linear combination of elements of the
form [Proj(R/p)], wherep is a graded prime ideal ok, it might look reasonable to
take the same combination of the classes of the coherent sheaves define fyy ithe
Ko(X). However, this will not work, in general; the main problem is that the element
of Ko(X) defined in this manner need not be in the kernel of intersection with the
hyperplane inkp(X) (we give an example below). The way to proceed in general is to
use the inverse of the Riemann—Roch map, which defines an isomorfligistmg —
CH.(X)q. Any denominators that appear under this map are the source of the integral
multiple necessary in Theorem 1. In special cases there are also simpler methods that
can be used; we discuss one of these below.

(2) Taking appropriate hyperplanes and representing the element as zer&irgtioeip.
In this step we find a concrete representation of the relations of the intersection of our
class in theK -group of X with the hyperplane that show that its intersection is zero.
This will consist of a set of short exact sequences such that when the corresponding
relations in theK -group are taken all terms cancel.

(3) Lifting the short exact sequences to perfect complexes by taking partial resolutions
and lifting.
This is the most difficult step and will be explained in full in a later section. The main
idea is as follows. The relations from step 2 are&inand involve modules that define
coherent sheaves that have finite locally free resolutions (nsesmooth) but are not
of finite projective dimension at the irrelevant maximal ideal. These are approximated
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by maps of perfect complexes that agree with the original ones up to complexes with
homology of finite length.

(4) Going from a perfect complex to a module.
This process was first developed by Foxby [2] and was also explained in detail in
Roberts and Srinivas [10]. In this paper we do not carry out this step.

The remainder of the paper is devoted to explaining and working out these steps.

4. Constructing an element on the K-group of X

As outlined above, the first step of the construction is to start with a cyclé that is
in the kernel of the hyperplane in the Chow group¥o&nd to use that the Riemann—Roch
map is an isomorphism betwe&(X)g andCH(X)q to find a corresponding element in
Ko(X). As mentioned above, replacing a linear combination of integral subschemes by the
corresponding combination of coherent sheaves does not work in general. One property
that is necessary but is not necessarily satisfied by this eleméf(af) is that it must be
in the kernel of the hyperplane. The inverse image under the Riemann—Roch map will be
in the kernel of the hyperplane section and will agree with this element up to components
of lower dimension.

We use the notatiofir /p] for the class of the coherent sheaf defined®yy in Ko(X),
and we denote the cycle determinedibiyn CH,.(X) by [Proj(R /p)]. For specific choices
of R, the quotient ringk /p may have a simple description, and in those cases, that descrip-
tion may be substituted in these expressions.

In general the Riemann—Roch map may be hard to compute, but in our cases all the
cycles are products of the foriif x P/, and the Riemann—Roch map is known in this
case. In fact, if we denote the generators of the Chow group”of P" by a and
b as above, then the image of the classPbfx P/ under the Riemann—Roch maps is
Q(a)H»lQ(b)jJrlamfibnfj, where

X
1—e X'

0(X)=

(For a proof of this equality see Kurano [6].) We use this formula in the examples.
4.1. The example of Dutta, Hochster, and McLaughlin

Here the clas$Proj(R/(X, Y))] — [Proj(R/(X, Z))] is in the kernel of the hyperplane
and is in fact the image under the Riemann—Roch map of the[@a$X, Y)]—[R/(Y, Z)]
of Ko(X). The intersection of this element &f(X) with the hyperplane can be computed
by intersecting the first term with the elemeéhtind the second witki (since both of these
elements have degree one), givinR/(X, Y, Z2))] — [(R/(X, Z,Y))], which is clearly
zero.
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4.2. The Miller—Singh example

In this example we can take the obvious eleniért/ (U, V, W))] — [(R/(U, V, Z))];
intersection withZ in the first term and¥ in the second shows that the intersection with
the hyperplane irKo(X) is zero.

4.3. The Kurano example

Here X = IP?2 x P2 and the cycle is:? — ab + b2. In this case the obvious choice of
cycle in Ko(X) does not work, and we work out this example in detail, showing why the
Riemann—Roch map is important for this construction.

Let R = k[X;;]1/I> where theX;; are the entries of the matrix

X11 X12 X3
Xo1 X220 Xo3
X31 X32 Xsz3

and I, is the ideal generated by thex22 minors of this matrix. The elemeng of the
Chow group corresponds to the ideal generated by the entries of two columns of the ma-
trix, which we take to be the first two. The subscheme corresponding to this quotient is
Proj(k[X 13, X23, X33]), which isP2. The elemenb? is similar and is defined by the ideal
generated by the first two rows. The elemehis defined by the ideal of entries in the first
row and first column; the subscheme is Rk0K 22, X23, X 32, X33]/(X22X33 — X32X23)),
which isPP! x P1. We denote the prime ideals that define the cyefes:b, andb? by p1,
p2, andps, respectively.

If we attempt to intersect the element of tikegroup defined by the corresponding
combination of coherent sheaves, the best strategy is to take the hyperplanes defined by
X13for p1, X2 for pp, and X33 for p3. This gives

[k[X23. X33]] — [k[X23, X32, X33]/(X32X23) | + [k[X32. X33]].

This expression is not zero in th&-group; there is a short exact sequence

X
0— k[X23, X33](—1) —=— k[X23, X32, X33]/(X32X23) —> k[X32, X33] = O,

but the differencék[ X 23, X33](—1)] — [k[X23, X33]] = [k[X33]] iS not zero inK(X), SO
the above expression is not zero.
One way around this is to use the element

[R/p1(—=D)] — [R/p2] + [R/p3].

This has all the necessary properties; in particular, the above short exact sequence shows
that the intersection with the hyperplane is zero.

In general, the solution to this problem is more complicated, and we briefly outline
how the general procedure works in this case. To keep notation simple, we denote the
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coherent sheaf corresponding to the cyla/ by A’ B/. We denote the Riemann—Roch
map byr.

We recall that the Riemann—Roch map sends the claBsoP/ to Q(a)' 1 Qb)/ 1 x
a™p"=J . Using thatA? is P2, AB is P! x P, and so on, we obtain

7(42) :a2<1+ gb+b2), T(AB) = ab(1+a)(1+b),

1(B?) = b2(1+ ga + az), 1(A?B) = a®b(1+b),
r(ABZ) =ab’(l+a), and T(AZBZ) =a’b°.

Using these expressions, it is not difficult to compute that the element
2 2 1.2 2
A“— AB+B _E(A B+ AB?)

maps taa? — ab + b2 and can be used in the construction.
We note that in this notation the element derived previously is

A%(-1)— AB + B>= A’ — AB + B®> — A?B.

This gives a different element of th€ group, but both have the correct components in
dimension 2 and are in the kernel of the hyperplane, so either one can be used.

5. Transforming theintersection with the hyperplaneinto a perfect complex

We assume now that we have an elemgmif Ko(X) whose intersection with the hy-
perplane is zero. We can wrifein the form

B=> ai[R/pi(n)).

for some graded prime ideagls and some rational numbetgs and integers; .

The intersection o with the hyperplane irKo(X) is taken by choosing an element
of degree 1 that is not ip; for eachi and taking the element_ a;[R/(p;, yi)(n;)]. In this
section we show how to replad®/ (p;, y;) by a perfect complex that reducesRg(p;, y;)
in U = Spe¢R) — {m}. To simplify notation, we drop the subscripts and dengptéy p
andy; by y.

The reason this is not a simple process is tRap will usually not have finite pro-
jective dimension. The main technique is suggested by a construction of Thomason and
Trobaugh [12] and involves taking a partial resolution®fp and using maps defined on
the tensor product of this resolution with a truncated Koszul complex. We now explain this
construction in detail.
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Letxs, ..., x, be asequence of homogeneous elementsand letK = K (x1, ..., x;)
be the Koszul complex on these elements. We define the coniptex K (x1, ..., xn)
by letting K;* = K41 if i >0 andK;" =0 if i < 0. In other words, we remov&y and
shift the other degrees by one. LEtbe a graded truncated resolution Bfp; that is,
we have a resolutior of R/p by graded freeR-modules and a positive integeso that
E; =F; fori <t andE; =0 fori > ¢t. The boundary maps ik + and E are induced by
those ofK and F, respectively.

Lemmal. Let E and F be complexes. Suppose we have, for each ordered subsgf <
i2<---<i}of{l<2<..-<m},amapg;: E — F[r — 1] such that for eacli we have

r

drdr =Y (=) xi; 1)+ (1) prdg.

j=1

Assume also thagy = 0. Then thep; define a map of complex€s: K+ ® E — F. More
precisely, for eacll let b; be the standard basis elementlo,f_l. If e € E,,, then

DPpir—1(b; @ e) =y (e).

Proof. The proof is exactly a matter of checking the condition for a map to be a map of
complexes. Leb; ® e be as above. We have

Putr—2di o (br ® ) = Putr—2(di+ (br) ® e + (1) s @ d (e))
= P2 (D31, b)) @ e+ (=1 by @ die) )
=2 U xi1-(x )(@) + (D (di(e)
=dr(¢1(e)) =dp (Pnir—1(b; @ €)). |

We note that iff = {i} has one element, the conditiondis¢; = ¢;dr, which states that
¢; is a map of complexes.

To motivate the construction, we note first thatxif, ..., x,, generate am-primary
ideal, then the Koszul complex on, ..., x;, is exact onU = Spec¢R) — {m}, and this
implies that the map fronK* to R defined by the boundary map froii; to Ko = R
is a quasi-isomorphism ofy. Thus we can tensor this map withh and obtain a map
o:KT ® E — E thatis a quasi-isomorphism dn. (We could also define this map using
the above lemma by letting; = multiplication byx; and lettingg; =0 for |1| > 1.)

The aim of this section is to represent the quotiRptp, y) by a perfect complex. The
first approximation taR /p is the complexE, its graded resolution truncated in degree
This complex has nonzero homology in two degrees, Ozaiidwe could splitE into a
direct sum of two complexes, each with homology in one degree, we could take the map
y in degree 0 and the identity in degreeand the associated mapping cone would solve
the problem. Usually, however, that will not be possible. What we do instead is to split the
above map fronk + ® E to E; that is, we show that it is a sum of two maps, one of which
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is zero in low degrees and the other in high degrees and use this decomposition to construct
the desired perfect complex. We denote the natural map K6n® E to E by &.
Assume thaty, ..., x,, is a sequence of homogeneous element® of positive degree
that generate am-primary ideal ofR. We note that since Pr@) is smooth(R/p) ) has
finite projective dimension over the rirky,. (Here, following standard notatio®,, de-
notes the ring of homogeneous elements of degree zero in the localiRgtiowe denote
E (—n) the complexE with the grading on each module in the complex shiftedHay

Lemma 2. Let E be a projective resolution a® /p truncated at for some integer. Letx
be a homogeneous elementrodf positive degree, and letbe an integer greater than or
equal to the projective dimension @& /p) ) and less than. Then there exists an integer
n such that multiplication by" from E(—n) to E can be written as a sury + ¢, where

(1) ¢’ and¢” are maps of complexes that are maps of graded modules in each degree
(2) ¢>’/. =0forj <s andgb} = multiplication byx" for j > s;
3) qb}’ =0forj>s andq&}’ = multiplication byx" for j <s.

Proof. Sinces is greater than or equal to the projective dimensioRfp) .y, and E,)

is a projective resolution ofR/p)(x) up to a degree greater tham, (E()), splits into a

direct sum Intds+1) () ® M, whered denotes the boundary map érandM is a submod-

ule that maps injectively intQE,));—1. Taking the projections onto I@,+1)) and M,
respectively, and clearing denominators, we obtain a decomposition of the map given by
multiplication by x” on E; into a sumf’ + f”. Note thatd; /' = O since f' maps into

the image of/;11. We now definep’ by Ietting¢} =x"for j > s, f/ for j =5, and O for

Jj <s. Sinced, f' =0, ¢’ is a chain map. Lezb}’ =0forj >y, f” for j =s, andx" for

Jj <s;then¢’ 4+ ¢” =x", and sap” is also a chain map. This entaif§d;+1 =0. O

We next combine the maps given by Lemma 2 to split the naturaldnipm K+ ® E
to E.

Proposition 1. Let F be a graded resolution of a modul. Let xq, ..., x,, be a set of
homogeneous elementsRbf positive degree, and letbe an integer greater or equal to
the maximum of the projective dimensions of Mg ;), and letr > s +m be an integer.
Let E be the truncation o in degreer. Then there is a positive integersuch that the
natural map® : K+ (x7,...,x),) ® E — E splitsinto a sump = @' + &”, where

Q) q>}=0forj<sandq>}=q>j for j > s +m;
(2) ¢}/=0forj>s+m andq>}/=q§j for j <s.

Proof. We construcid’ and ®@” by constructing mapg), and¢; as in Lemma 1 using
induction on the number | of elements of . At each step in the induction we may change
the integem. We begin with multiples of the maps and¢” given by Lemma 2. Begin
by settingn to be the maximum of the;’s from Lemma 2. The multiples aoé’_”"qb/ and

xffn"(p”. Rather than carry around a power, we renalﬁieas simplyx;. Then, sincgbgi}
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is either O orx; except in degree, we have thakld){’j} - xj%} has a nonzero component
only in degrees, and similarly forg”.

Assumer > 2. We now construct, for each ordered subset {i; < --- < i,} of
{1<--- <m}, maps¢, and¢; from E to E[r — 1] such that each map is zero except
in degrees and, denoting the componentsgif and¢; in degrees by f; and f;, respec-
tively, we have

fjdg =0 and dEf}=Z(—1)in,~f[_{ij}v

and similarly for f;. Fix r, and assume that we have such maps for all smaller values of
We then have

dp (Z(—l)fxi,. Ficiin) = 2D xide £y = D0 YD x iy, =0

each term appears twice, but with opposite signs since the punctured suhsere @fiso
ordered. Since is exact in degree + r — 2, we can lift the ma;Z(—l)fx,-j fz/_{,',} and

find a map satisfying the second of the required conditions. To satisfy the first condition,
we localize by invertingy;, x;, ... x;, and consider the part of degree zero in the graded
localization. Since + r — 1 is greater than the projective dimensionMj@‘xilxl. .x;,) and

s +r is smaller than, the degree where the complex is truncated, the compfex is split exact
at this point. Therefore we can find a map satisfying i@z = 0 by projecting the lift

onto a complement of the image @, i) and then clearing denominators. We assume

that we have done this for each dewith || = r, and thats, is sufficiently large so that
it suffices to multiply by(x;, ... x;, )" to define the mag; for all 1. If n, > 1 we replace

/ np—1 ny—1 ./
the mapsp;, ;. byxl.1 XL fors <r.

We letp] = —¢) for eachl with || > 2; this ensures that the’ and®” from Lemma 1
sum to give the naturab. 0O

We can now define the complex we want.

Definition 1. We letC (p; v) denote the mapping cone of the map+ y@” from K+ @ E
to E defined above.

Itis clear thatC (p; y) is a perfect complex.
Lemma 3. The natural map fron€ (p; y) to R/(p, y) is a quasi-isomorphism o#i.

Proof. The complexC(p; y) in degree 0 is jusEp, and its homology is the cokernel under
the sum of the images of the map frofy — Eg and that fromK+ ® Eg — Ep. The
cokernel of the first map is, of coursR/p and the image of the second map in this cokernel
is the ideal generated by the ;, which is equal to the ideal generated pgn U.

The homology in the rest af (p; y) is determined by that in degreen E. Since the
natural map is a quasi-isomorphism bnand the maps in homology in degrees + m
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are the same as those induced by the natural map, the homology of the mapping cone is
zero in these degrees @h Hence our map is a quasi-isomorphismin O

6. Building the complex from the pieces

As we have discussed, the fact that the intersection of our elemetg(af) with the
hyperplane is zero implies that the moduRA(p;, y;) fit into short exact sequences such
that the corresponding alternating sum of terms that occur in these sequences is zero. The
final step in the construction of the complex is to replace these maps by maps from com-
plexes tensored with truncated Koszul complexes in a manner similar to that in the previous
section and replace the exact sequences by appropriate mapping cones. We do not work out
this formalism in general but describe two examples in detail.

6.1. The example (X, Y, Z, W]/(XW —YZ)

In this case we have two idegls = (X, Y) andp, = (X, Z) and homogeneous elements
y1 = Z andy2 =Y such that

R/(p1.y) =R/(X.Y,Z) =R/(X,Z,Y) = R/(p2, y2).

ThusC(p1; y1) and C(p2; y2) are isomorphic o/, and we can find a map froi ™ ®

C(p1; y1) to C(p2; y2) that is a quasi-isomorphism dif for K+ the truncated Koszul

complex on some sequence of homogeneous elememtstiodt generate am-primary

ideal. (A proof of this fact can be found in Thomason and Trobaugh [12].) The mapping

cone of this map will have homology of finite length and will satisfy the desired conditions.
In the last section of the paper we describe a much more efficient method to construct

the complex in this case.

6.2. The example of Kurano

We also describe the case suggested by Kurano. In this case the fact that the intersection
with the hyperplane is zero is expressed by a short exact sequence involving three terms.
As described earlier, we Igt be the ideal generated by the first two columns of the matrix
(Xij), p2 the ideal generated by the first row and the first column garitle ideal generated
by the first two rows. The element &p(X) is [R/p1(—1)] — [R/p2] + [R/p3]. We let
y1 = X13, y2 = X22, andysz = X31. We then have a short exact sequence

0— R/(p1, y1)(—1) —> R/(p2, y2) —> R/(p3, y3) — O.

This means that there is a quasi-isomorphgsfrom the mapping cone af to R/ (p3, y3).

We leta be a map fromK ™ ® C(p1; y1) to C(p2; y2) that restricts tax on U. We then
let 8 be a map from the cone @ntensored with an appropriate truncated Koszul complex
to C(p3; y3) that restricts to8 on U. The mapping cone of will then have the right
intersection properties.
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7. Proof that the construction givesthe correct result

In this section we show that the above construction gives a complex with the cor-
rect intersection properties. First we recall the process used in the proof in Roberts and
Srinivas [10].

Let o be an element oKo(X) in the kernel of the hyperplane section. The first step
in the proof in [10] is to push this element forward inkiy(Y), whereY = Proj(R[T])
with 7 an indeterminate of degree 1 and wh&rés embedded int&” as Pro{R[T]/(T)).

A computation shows that this element &K§(Y) goes to zero oY — {p}, wherep is

the point defined by the maximal ideal &fin R[T], and the theorem of Thomason and
Trobaugh [12] then implies that it is equal Kp(Y) to the class of a complex supported

at p. The final step is to restrict this elementk@(A), whereA is the localization ofR

at the graded maximal ideal. To prove that the complex we have constructed is correct, we
have to show that it is the restriction to Spag of a complex that is supported atand
whose class in th& -group ofY is the same as the pushforward of the original element

of Ko(X).

We prove this result with one further assumption, thatiin. .., x,, we havem greater
than the dimension oR. We also assume th& is Cohen—Macaulay. We then have the
following result.

Lemma 4. Let E be a perfect complex on. Then, ifK+ = K+ (x1, ..., x,), where thex;
are homogeneous elementsfoindm > dim(R), we have the equalipfk +* @ E] = [E]
in the K-group ofY .

Proof. We show that ifK is the whole Koszul complex aty, ..., x,;;, thenK ® E is the

class of zero, which is equivalent to the statement of the lemma. It suffices to show that
the class oK ®g R[T] itself is zero. To see this, we note thtR  R[T] is built up out

of copies ofOy (n) for variousn, and its class in th& -group of Y depends only on the
degrees of the elements. Sincem > dim R, we can choosg: homogeneous elements of
R[T] of the same degrees that generate an ideal primary to the irrelevant maximal ideal of
R[T]. The support of this complex iFi is empty, so its class is clearly zeroo

The element we begin with in the general construction is a combination of classes
of the form [R/p;(n;)]. The image of this class in th&-group of Y is the class of
R[T1/(p;, T)(n;). We assume for simplicity of notation that = 0; this does not affect
the proof. The main part of the proof here is to show that there is a complex with homol-
ogy supported ap except in degree 0 that defines the same element irKtgeoup of
Y asR/(p;, T) and restricts in th&X -group of A to the complexC (p;; y;) defined in the
previous sections. We note (a fact already used) that any complex with support contained
in (T) is perfect onY, since ProfR[T]/T) = Proj(R) is smooth and the embedding &f
in Y is a regular embedding.

In the remainder of this section we use the notafioand K+ to denote the extensions
E ®g R[T]andKt ®p R[T].

The procedure we use involves defining complexe% dhat reduce to the given com-
plex whenT is set equal to 1 (note that we can obtain the restriction of the complex to
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Y — X = Spe€R) by settingT = 1 using the isomorphism® = R[T]r), whereR[T](r)

denotes the graded part of the localizati®fV']; of degree zero). The class of mapping
cone of the mag times the natural map frolk ™ ® E to E is equal to the class of the
mapping cone of the map®’ + y; ®@” in the K -group, since they are mapping cones on
maps between the same two complexes (with the same gradings). We denote these com-
plexesC(p;; T, T) andC (p;; T, y; ), respectively. Note that (p;; T, y;) becomeg (p;; y;)

if T is setequal to 1.

Lemma 5. For eachi we can find a perfect compleX; and mapsy;: Q; — C(p;; T, T)
andsé;: Q; — C(p;; T, y;) such that

(1) Q; is supported orX = Proj(R/TR[T]);

(2) the mapping cones g ands; have homology supported atexcept in degree zero

(3) we have R[T1/(pi, T)] =[C(pi; T, T)] — [Qi] In Ko(Y);

(4) there is a map from the mapping cone &ro R[T]/(p;, y;) that is an isomorphism
up to homology supported &p}.

Proof. We first examine the homology of the mapping cones more closely. The cotfiplex
has homologyo = R[T]/(pi, T) in degree 0 and{, in degree; the rest of the homology
is zero. LetF be the mapping cone df times the natural map frok+ to R[T']. Lety be
the embedding off;[¢] into E. Then, sincef’ is a complex of free graded modules,in-
duces maps fronk" ® H;[t]to C(p;; T, T) and toC(p;; T, y;) that induce isomorphisms
in homology in degrees ¢.

We recall that we are trying to find a compléx supported orX and maps fronQ; to
C(p;; T, T)andC(p;; T, y;) such that their mapping cones have homology supportged at
exceptin degree zero. Since the maps defined aboveAr@nt, [¢] to these mapping cones
induce isomorphisms in homology in degreesit suffices to find a map té&" ® H;[¢] with
these properties. The homology Bf® H;[t] is supported ap except in degree, where it
is isomorphic toH, / (x1T, ..., x, T) H;.

Letd be the dimension aR, and letzs, . .., zg be a homogeneous system of parameters
of R such thatthe idedky, ..., zq) is contained in(xy, ..., x»). Let F(z;) be the complex
defined in the same way &swith x1, ..., x,, replaced by, ..., z4. Since(zy, ..., z4) C
(x1,...,xm), there is a map from the Koszul complexon..., zy to the Koszul complex
onx,...,xy,, and the same maps define a map frbi@a;) to F, and hence a map from
F(z;)® H;[t] 1o F ® H,[t]. In degree this map induces the surjection fraki7]/(T'z;) ®
H, 10 R[T1/(Tx;) ® H;.

SinceR is assumed to be Cohen—Macaulay ans greater than the dimension &f
the moduleH; is a Cohen—-Macaulay module of dimensibnHence, since the; form a
system of parameters dt, F(z;) ® H;[t] is exact except in degree

The homology ofF (z;) ® H;[t] indegree is H;/(z1T, ...,z4T)H;. Let N be the sub-
module(zs, ..., zq)H;/(zaT, ..., z4T)H;. OverY — {p} the submoduleV is isomorphic
to the degree homology ofF (z;) ® H;. SetQ; as the mapping cone @f times the natural
map fromK " (z1, ..., z4) ® H;[t] 0 (z1, ..., z¢) ® H;[t]. ThenQ; is perfect ort . In fact,
by the regularity of the the; on H;, the complex is acyclic in degrees:. In degreer
its homology is(z1, . .., za)H: /(zaT, ..., zaT) H;. Over points ofY whereT is invertible,
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this quotient is zero. Over points Bfwhere some;; is invertible, the quotient agrees with
H,/T H,, but more importantly, the localization is regular, so that every finitely-generated
module has a finite free resolution. Thus everywher& gime complexQ; is locally quasi-
isomorphic to bounded complexes of finitely-generated free modules. H&nisegperfect
onY.

The inclusion of(zy, ..., z¢) into R[T] induces a map fronQ; into F(z;) ® H;[t]
which is a quasi-isomorphism since the degreemology ofQ; is N and that agrees with
the degree homology of F(z;) ® H;[t] overY — {p}, while in higher degrees, the chain
map consists of identity maps.

Let y; and§; be the induced maps fro@; to C(p;; T, T) andC(p;; T, y;), respec-
tively. It is clear thatQ; is supported orX. The map induced on homology frof# (Q;)
to H;(F(xj) ® H,[t]) is the inclusion of(z;)H;/(Tz;)H; into (x;)H;/(Tx;)H;, and the
quotient of this map is supported af(in fact its support is empty). It thus follows thé;,
y;i, ands; satisfy statements (1) and (2) of the lemma. The map in statement (4) is the same
as that defined in Lemma 3. It remains to be shown that statement (3) is satisfied.

Let @ denote the natural map fro&i* (x1,...,x,) ® E to E. ThenC(p;; T, T) is the
mapping cone of' @. We have a commutative square

)]
KtQE —E
\LT
T®
KtQE —E

It follows, there is a mar from the mapping cone oft, which isK (x1, ..., x,) ® E,
to C(p;; T, T), and that the mapping cone ¥f is quasi-isomorphic to the mapping cone
of multiplication by T on E. The homology of the mapping cone of multiplication By
OonEisR/(p;, T) indegree 0 andd;/ T H, in degree.. Combining these facts, we obtain

[Ci:T.T)] - [K&x)) ® E]=[R/(i, T)] + [H// T H,[11].

On the other hand, we hav@;1 = [(z;) H;/(Tz;)H;[t]]. The cokernel of the injection
of (z;)H;/(Tz;)H;[t]into H;/ T H[t] is supported at the irrelevant ideal BfT'1, so we
thus have

[H,/TH) = [(zj)H/(Tz))H[t]] = [Qi].
Finally, Lemma 4 implies th&tK (x;) ® E]= 0. Combining these equalities, we obtain
[R/(i. )] =[Cpi: T.T)] = [Qi].
This completes the proof of Lemma 50

We now complete the proof that the complex we constructed has the right intersection
properties. LeC (8;) denote the mapping cone &f From the above lemma, each{s;) is
a resolution ofR[T]/(p;, y;) onY — {p}. Hence, as we did for th€ (p;; y;), we can find
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maps from truncated Koszul complexes tensored with(t{&) so that the result of taking
the associated mapping cones, which we dedoiie supported ap. Since the complek

is built from theC(3;) by the same procedure as the complex in Section 6 was built from
the C(p;; vi), to deduce thaf defines the correct class Ko (Y), it suffices to show that

(1) C($;) becomes quasi-isomorphic &(p;; y;) after settingl’ =1, and
(2) [CDI=IRIT]/(pi, T)]in Ko(Y).

To see the first statement, we note first tGap;; T, y;) become (p;; y;) whenT is
set equal to 1. SinceC(8;)1 =[C(p;; T, y;)] — [Q;] and Q; is supported af’ R[T], this
proves (1).

The second statement follows from the equalities

[CG)]=[Chi; T, y)] = 1Qi1=[C(pi; T, T)] = [Q:1 = [RIT1/(pi, T)]

by Lemma 5.

8. Example: thecaseof k[X, Y, Z, W]/(XW — Y Z) worked out in detail

While the previous sections described a general method for constructing complexes, the
results are unwieldy and not as efficient as they might be. In this section we describe a
better procedure in the case wh&e=k[X, Y, Z, W]/(XW — Y Z) that, while following
the same general idea, gives a simpler result.

In this case the element of th&-group that we begin with igR/(X, Y)] —[R/(X, Z)].

The general method would be to take truncated resolutions of each of these terms and then
to take the cones on natural maps from their tensor products with truncated Koszul com-
plexes that can be split into sums. Finally, we would take another map on the complexes
tensored with more truncated Koszul complexes to give the complex we want. Instead, we
take another complex that is close to being a resolution but, like the truncated resolution, is
not exact in two places; however, this complex will have support strictly smaller than that
of the simply truncated resolution. A consequence is that we can use Koszul complexes on
fewer elements, leading to a more manageable result.

To begin, we letEy denote the complex

X X —Z
0— R R? R Y R0
and letE; denote the complex
X X Y
0— R R? 21X 2l p L0

We describe the computations @y ; those onEz are similar. The homology ofy is
R/(X,Y)indegree 0 an®k/(X, Z) in degree 2. LeK+ denote the truncated Koszul com-
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plex onW,Y + Z; note that these elements generate the maximal ideal inbotk, Y)
andR/(X, Z).

The next step is to split multiplication by and byY + Z into a sum satisfying the
properties of Lemma 2. We recall that the splitting in general is begun by decomposing
multiplication byx;? on E; into a sum for certaim andi; herei e {W,Y + Z}. In this
case we také = Y andn = 1. The splitting of multiplication byW is done using the

decomposition
w o] [w 0 + 0 O
O wW| |-z 0 Z W\

This decomposes multiplication By on Ey into the sum of the two maps

V4 -y W
O R | R C % B
- (R .
0— R [i} R? [*XY _WZ} R? x 7] R =0

and

g . [x 7]

0— R R? R —0
L 1
0~ R [)ﬂ R? [—XY _WZ} R? [x ¥] k=0

Similarly, the decomposition

Y+z 0 1 [y -w] [Z W
0 Y+Z| |-X Z X Y
gives a decomposition of multiplication B+ Z into a sum of two maps. We denote the
two maps onEy decomposing multiplication by by ¢}, and¢y,, and those fol” + Z
by ¢y, , andgy ;. o _
Since the Koszul complex we are using is on only two elements, there is only one more
step in constructing the maps frokT™ ® E to E, and that is to lift the differences

Y +Z2)py — Woy., and (Y +2)¢ly — Woy, 5.

We have
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Z 0 —-X VA
zw w2 ] [-r wl[0o o
-z2 —wz| | x -zl||lz w|
Thus the map fronE to E[1] inserted to make the maps frokT™ ® E to E compatible
is given by the matriy{ 9 O] from Ej to E» and zero, elsewhere. Note that the condition
thatdp ¢/, that arose in the proof of Proposition 1 holds in this case. The corresponding
m%p fgrcj)” will, as in the general construction, be given by the negative of this matrix, or
(2wl
We now, denoting the two maps frol* ® Ey to Ey by @}, and®y, take the mapping
cone of the sun®;, + Z&7. This is the representation &/((X, Y) + (Z)) by a perfect

complex. To display the resulting mapping cone, it is convenient tg letY + Z, and we
only show the nonzero portions, let

(Y+Z)¢>’W—W¢’Y+Z=(Y+Z)|:_W 0}—W|: Y _W]

s Y w0 -w 0
o7z v o X -z 0 0 0 -W
= , A=| 0 O —-¥Y W Vv 0 |,
00X 0 Vv
o 0 X -z 0 Vv
0 0 ¥ -W O 0 0 0 -X -¥
L0 0 -x Z
E__V 0w o0 0 0
|0V 0 W Z-27°> W-2ZW
oo Y+z2 zw-w w 0 o0 o_[X Y 0 0 -w
" |\Xz-Xx zZ+4vzZ Z7°-7Z ZwW 0] 0o 0o Xx vy Vv |
-Ww
V
r A ©]
R4>R2@R2—>R4@R24>R4@R4>R2
lo [v w o o]l ):i ni [vz+2z2 zw]l
0 R? R?
z -y w [x r]
K e

The mapping cone of the above map of complexes is then the corgjglex y1) =
C((X,Y); Z) of the general construction; while the complEx that we used here is not
exactly the same as the truncated complexes in the general case, the rest of the construction
is identical. The complexX (p2; y2) = C((X, Z); Y) is defined similarly as the mapping
cone of®’, + Y7, in fact, by the symmetry of the situation it suffices to interchakige
andZinC((X,Y); 2).

The final step is to take the mapping cone of a map fiom® E7 to Ey for a suitable
truncated Koszul compleX ™. In this case, since botfi((X,Y); Z) andC((X, Z);Y)
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have support in SpéR/(X, Y, Z)), it suffices to take a Koszul complex on one element,
a power of W. The homology of both complexes has finite length everywhere except in
degree zero, where the homology modulesrRyfex, Y, Z2,7ZW) andR/(X, Z, Y2, YW),
respectively. It follows that we can find a map of complexes that lifts multiplicatiow By
for somem, and the mapping cone of the resulting map fréiX, Z); Y)toC((X,Y); Z)
will have homology of finite length. Lef denote this mapping cone. We now show directly
that C will have the required intersection multiplicity.

We will show thaty (R/(Z, W), C) = —1. SinceC is defined as the mapping cone of a
map fromC((X, Z); Y) to C((X, Y); Z), it suffices to show that

x(R/(Z,W),C((X,Y); Z)) — x(R/(Z,W),C((X,Z);Y)) =—1.

To accomplish this, we tensor the diagrams for the maps+ Zoy and®’, + Y&/
with R/(Z, W) and compute the homology. Since after tensoring \&fliZ, W) we are
left with fairly simple complexes with entries in a polynomial ring in two variables, it is
not terribly difficult. We letS = R/(Z, W) and letk be the residue field of. Tensoring
the diagram defining the map;, +- Z®y with R/(Z, W) and taking homology in the rows
we obtain

0 0 S/XSek k kok
0 O S/XS 0 k

To complete the computation we need to compute the vertical map in the third position.
The element of homology that generates the compos¢nts is (0,1,0,0,0,0), and
computing its image we obtaik in the lower copy ofS/XS. Thus we are left withk
in each row in the third column, and the Euler characterist€ @iX, Y); Z) ® R/(Z, W)
is1—-24+2-1=0.

If we carry out the same computation tensoriigg X, Z); Y) with R/(Z, W) (which
we do by tensoring’ ((X, Y); Z) with R/(Y, W), so nowS = R/(Y, W)), we obtain

0 0 k keok S/XSok
O 0 O k S/XS

In this case the vertical map fro8y XS to S/ XS in the fifth column is multiplication
by Y2. Hence the Euler characteristic is-2 + 2 — 1 = 1. Thus the Euler characteristic of
CRR/(Z,W)is0—1=—-1.
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