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Abstract

Recently Roberts and Srinivas proved the existence of large classes of modules of finite
and finite projective dimension with prescribed intersection multiplicities, giving many new cou
examples to earlier vanishing conjectures. We present an explicit method for constructing the
ples whose existence is implied by their theorem.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The interest in intersection properties of modules of finite projective dimension
back to Serre’s definition of intersection multiplicities, where intersections for sm
schemes are defined using homological functors. Serre defined the intersection mu
ity for two finitely-generated modulesM andN over a regular local ringA of dimension
d as follows: ifM andN satisfy the condition thatM ⊗A N has finite length, then the
intersection multiplicity is

χ(M,N) =
d∑

i=0

(−1)i length
(
TorAi (M,N)

)
.
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One of the conjectures concerning this multiplicity (proven by Serre [11] in the geo
ric case and later by Roberts [8,9] and Gillet and Soule [3,4] in the mixed charact
case) was the vanishing conjecture, which stated that if

dim(M) + dim(N) < dim(A),

then

χ(M,N) = 0.

It was later asked to what extent this would hold if the condition thatA be a regular loca
ring were dropped and replaced with the condition thatM have finite projective dimen
sion. The first counterexample to this generalized conjecture was constructed by
Hochster, and McLaughlin in [1]. More recently, in answering a question of multiplic
over Gorenstein rings, another example was constructed by Miller and Singh in [7]. A
ilar example had been suggested by Kurano [6], but he did not actually construct a m
with the required property.

These examples answered the question on the vanishing conjecture but gave
why or where such examples existed. In Roberts and Srinivas [10], a general theore
proven on the existence of examples of this type, examples that include the above an
more. However, while this in a certain sense explained why these examples exist,
no idea as to how to construct them. The construction of examples using this metho
topic of this paper.

2. The setup

In this section we describe the situation in which the theorem of Roberts and Sr
applies, and modules of finite projective dimension with given intersection multiplic
are shown to exist.

Let R be a graded ring for whichR0 is a field andR is finitely generated overR0 by R1.
All graded rings will be assumed to have these properties. In this situation one can
a projective schemeX = Proj(R). We assume thatX is a smooth variety.

Before proceeding, we recall some facts about Chow groups andK-groups that we will
need.

2.1. Chow groups

For any schemeX of finite type over a regular scheme, the Chow groupCH∗(X) is
defined to be the group of cycles modulo rational equivalence. There are two ca
special interest here, and we describe these in more detail.

If A is a noetherian ring, then for each integeri � 0, we letZi(A) be the free abelian
group on the prime idealsp of A such that the dimension ofA/p is equal toi. For each
prime idealq with dim(A/q) = i + 1 and for eachf �= 0 in A/q, define

div(f,A/q) =
∑

length
(
A/(q, f )

) [A/p],

p
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where the sum is taken over all prime idealsp such that dim(A/p) = i (this sum is finite).
The component of dimensioni of the Chow group,CHi (A), is the quotient ofZi(A) by
the subgroup generated by all div(f,A/q) for all suchq andf .

If A has dimensiond , then CHd(A) is the free abelian group on the compone
of Spec(A) of dimensiond . If A is an integrally closed domain of dimensiond , then
CHd−1(A) is isomorphic to the divisor class group ofA.

The other case of interest is whereR is a graded ring over a field andX is the associate
projective scheme. In this case the description is similar except for two major differe

(1) Zi(X) is generated by graded prime idealsp with dim(R/p) = i + 1 (so that the pro
jective subscheme defined byR/p has dimensioni).

(2) The relation of rational equivalence is defined by setting div(f,R/q) = 0, whereq

is a graded prime ideal andf is a quotient of two homogeneous polynomials of
same degree. Thusf = g/h, and div(f,R/q) = div(g,R/q) − div(h,R/q) is zero in
CH∗(X) (but neither div(g,R/q) nor div(h,R/q) is necessarily zero inCH∗(X)).

Note that in the case in whichR is graded andX = Proj(R) there is a map fromCHi (X)

to CHi+1(A), whereA is the localization ofR at its graded maximal ideal, induced by t
inclusion of the set of graded prime ideals into the set of all prime ideals ofA.

For X = Proj(R) there is an important operator called thehyperplane sectionon
CH∗(X); we denote this operatorh. It is defined as the map fromCHi (X) to CHi−1(X)

that sends a generator[R/p] to div(R/p, x), wherex is any homogeneous element ofR of
degree 1 that is not inp. It is easy to check that this definition is well defined up to ratio
equivalence.

If X is smooth, there is an intersection pairing defined on the Chow group ofX, making
the Chow group a ring. This pairing can be defined, for example, using Serre’s defi
given in Section 1. Ifd is the dimension ofX andα andβ are elements ofCHi (X) and
CHd−i (X), respectively, we letα · β denote the degree of the intersection product oα

andβ.

2.2. K-groups

We useK0, the Grothendieck group of objects where relations are given by short
sequences. There are two main cases. IfX is a smooth scheme, we consider the gro
K0(X), which is the free abelian group on the set of coherent sheaves with relations
by short exact sequences. IfX is not smooth,K0(X) will denote theK-group where the ob
jects are perfect complexes. Aperfect complexis a complex that is locally quasi-isomorph
to a bounded complex of free modules. In this case, the relations are of two types:

(1) if
0→ F ′ → F → F ′′ → 0

is a short exact sequence of complexes (that is, the sequence is exact in each
then[F ] = [F ′] + [F ′′];

(2) if f :F → G is a quasi-isomorphism, then[F ] = [G].
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If X is smooth, then this definition agrees with the other one, using the fact that
coherent sheaf has a finite, locally free resolution.

We now state a version of the existence theorem of Roberts and Srinivas.

Theorem 1. LetR be a graded ring such thatX = Proj(R) is smooth of dimensiond . LetA
be the localization ofR at the graded maximal ideal; assume thatA is Cohen–Macaulay
Let η be an element of CHi (X) in the kernel of the hyperplane section. Then for ev
graded prime idealp such thatW = Proj(R/p) has dimensiond − i, there is anA-module
M of finite length and finite projective dimension and a positive integern such that

χ(M,A/pA) = n
(
η · [W ]).

In many cases the integern can be taken to be 1, so thatχ(M,R/p) is exactlyη · [W ].
If A is not Cohen–Macaulay, one can still define a perfect complex with these prop
In fact, in general the construction produces a complex, and in the Cohen–Macaula
a module can be constructed from this complex.

In what follows, we will letR denote a graded ring and letA denote the localization o
R at its graded maximal ideal.

To conclude this section we describe the rings and cycles under consideration
examples mentioned in Section 1. We use the result of Kurano [6] that states thatR is
a graded ring as above, the Chow group ofA is isomorphic toCH∗(X)/hCH∗(X), where
h is the hyperplane section.

In most of the examples we consider, the cycles are defined by schemes and subs
of the formP

m ×P
n for variousm andn, so we describe the Chow ring of these scheme

detail. The graded ringR corresponding toPm ×P
n by the Segre embedding is the quotie

k[Xij ]/I2(Xij ), wherei runs from 0 tom, j runs from 0 ton, andI2(Xij ) is the ideal of 2
by 2 minors of them + 1 byn + 1 matrix(Xij ). The Chow ring ofPm × P

n is isomorphic
to Z[a, b]/(am+1, bn+1) (see Kurano [6]). Herea is the cycle of codimension 1 given b
H ×P

n andb is the cycle given byPm ×K , whereH andK are hyperplanes inPm andP
n,

respectively. The corresponding ideals ofR are defined by the entries in one column a
one row of the matrix(Xij ). The hyperplane in the Chow group of Proj(R) is defined by
one elementXij , and the corresponding ideal is the intersection of the ideals define
theith row and thej th column, so under our identifications this gives the elementa + b in
the Chow group. The class of a point is represented by the classambn.

In this situation it is very easy to compute the kernel of the operator given by interse
with the hyperplane. Since the hyperplane isa + b, an element in the Chow group will b
in the kernel if and only if each homogeneous component of codimensioni is an integer
multiple of an element of the form

ai − ai−1b + ai−2b2 − · · · + (−1)i+1bi,

wherei � m andi � n (some of the terms in this sum may be zero).
We now describe the examples in detail.
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2.3. The example of Dutta, Hochster, and McLaughlin

In this caseR = k[X,Y,Z,W ]/(XW − YZ), so X = P
1 × P

1. We choose the cy
cle η to a − b, so that the intersection witha is a2 − ab = −ab, and the degre
of the intersection is−1. In terms of the ringR, the cycleη can be chosen to b
[Proj(R/(X,Y ))] − [Proj(R/(X,Z))] and the intersection with[Proj(R/(X,Y ))] is −1.
Thus, by the theorem, there is a module of finite length and finite projective dimensM

with χ(M,R/(X,Z)) = −n for some positive integern; in fact,n can be taken to be 1 i
this case.

2.4. The example of Miller and Singh

In this case the ringR over which the example is constructed isk[X,Y,Z,U,V,W ]/
(XU + YV + ZW). The projective schemeX is a quadric and the primep is the ideal
defined by(X,Y,Z). The cycleη is [Proj(R/(U,V,W))] − [Proj(R/(U,V,Z))]. (The
example of a Gorenstein ring for which Dutta multiplicity and ordinary multiplicity do
coincide is a finite extension of this ringR.)

2.5. The example of a Gorenstein ring with nontrivial Todd class of Kurano

In [6], Kurano showed that the ring obtained by dividing a polynomial ring in n
variables corresponding to the entries of a 3× 3 matrix by the ideal of 2× 2 minors of the
matrix is a Gorenstein ring of dimension 5 such that the component of dimension 3
Todd class is nonzero. This gave a candidate for a Gorenstein ring where Dutta and o
multiplicity do not coincide. However, it was not known how to construct a module
which the two multiplicities are different. The technique of Roberts and Srinivas [10] s
that a module with these properties does exist in this case. HereX = P

2 × P
2 and the

Chow ring ofX is Z[a, b]/(a3, b3). The cycleη is a2 − ab + b2. Kurano showed that i
M is a module of finite length and finite projective dimension corresponding toη as in
Theorem 1, the Dutta multiplicities and ordinary multiplicities ofM are not equal.

2.6. A cubic surface

The component of the Chow group of a cubic surface of dimension 1 is known by
sical results to have rank 7 (see, for instance, Hartshorne [5]), and it follows from th
from Theorem 1 that ifR is the coordinate ring of a cubic surface, there are nume
examples of modules of finite length and finite projective dimension with different i
section multiplicities for various prime idealsp for which R/p has dimension 2. We d
not pursue this topic here, but we do show that the existence of nontrivial examp
the case ofk[X,Y,Z,W ]/(XZ − YW) implies at least that nontrivial examples exist
this case also. We assume that the fieldk is algebraically closed. LetF(X,Y,Z,W) be
a homogeneous cubic equation that defines a smooth surfaceS in P

3. Then it is known
that the surface contains a line (in fact, it contains 27 of them), so there are linear fol1
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andl2 such that the line defined byl1 andl2 is contained inS, which implies that there ar
quadratic formsq1 andq2 such that

F = l1q1 + l2q2.

If the four elements did not generate an ideal primary to the maximal ideal, by the Le
rule a nonmaximal prime would contain all the partial derivatives ofF , andS would not be
smooth. Thus we can map the generators ofk[X,Y,Z,W ]/(XZ − YW) to l1, q1,−l2, q2
and taking the tensor product over this map will transform whatever example we ha
k[X,Y,Z,W ]/(XZ −YW) to one overk[X,Y,Z,W ]/(F (X,Y,X,W)). Note that we can
do this for any line on the surface, and we get examples so that the intersection w
line is nonzero.

3. Outline of the construction

We outline the main steps in the construction. We recall that we are starting with a
η in the Chow group ofX with zero intersection with the hyperplane and ending wit
module of finite length and finite projective dimension with the same intersection w
given module of the formR/p.

There are four steps to the construction. They are:

(1) Finding an element in theK-group ofX that corresponds to the element of the Ch
group.
Since an element of the Chow group will be a linear combination of elements o
form [Proj(R/p)], wherep is a graded prime ideal ofR, it might look reasonable t
take the same combination of the classes of the coherent sheaves defined by theR/p in
K0(X). However, this will not work, in general; the main problem is that the elem
of K0(X) defined in this manner need not be in the kernel of intersection with
hyperplane inK0(X) (we give an example below). The way to proceed in general
use the inverse of the Riemann–Roch map, which defines an isomorphismK0(X)Q →
CH∗(X)Q. Any denominators that appear under this map are the source of the in
multiple necessary in Theorem 1. In special cases there are also simpler metho
can be used; we discuss one of these below.

(2) Taking appropriate hyperplanes and representing the element as zero in theK-group.
In this step we find a concrete representation of the relations of the intersection
class in theK-group ofX with the hyperplane that show that its intersection is z
This will consist of a set of short exact sequences such that when the corresp
relations in theK-group are taken all terms cancel.

(3) Lifting the short exact sequences to perfect complexes by taking partial resol
and lifting.
This is the most difficult step and will be explained in full in a later section. The m
idea is as follows. The relations from step 2 are inX, and involve modules that defin
coherent sheaves that have finite locally free resolutions (sinceX is smooth) but are no
of finite projective dimension at the irrelevant maximal ideal. These are approxim
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by maps of perfect complexes that agree with the original ones up to complexe
homology of finite length.

(4) Going from a perfect complex to a module.
This process was first developed by Foxby [2] and was also explained in de
Roberts and Srinivas [10]. In this paper we do not carry out this step.

The remainder of the paper is devoted to explaining and working out these steps

4. Constructing an element on the K-group of X

As outlined above, the first step of the construction is to start with a cycle onX that is
in the kernel of the hyperplane in the Chow group ofX and to use that the Riemann–Ro
map is an isomorphism betweenK(X)Q andCH(X)Q to find a corresponding element
K0(X). As mentioned above, replacing a linear combination of integral subschemes
corresponding combination of coherent sheaves does not work in general. One p
that is necessary but is not necessarily satisfied by this element ofK0(X) is that it must be
in the kernel of the hyperplane. The inverse image under the Riemann–Roch map
in the kernel of the hyperplane section and will agree with this element up to compo
of lower dimension.

We use the notation[R/p] for the class of the coherent sheaf defined byR/p in K0(X),
and we denote the cycle determined byp in CH∗(X) by [Proj(R/p)]. For specific choice
of R, the quotient ringR/p may have a simple description, and in those cases, that de
tion may be substituted in these expressions.

In general the Riemann–Roch map may be hard to compute, but in our cases
cycles are products of the formPi × P

j , and the Riemann–Roch map is known in t
case. In fact, if we denote the generators of the Chow group ofP

m × P
n by a and

b as above, then the image of the class ofP
i × P

j under the Riemann–Roch maps
Q(a)i+1Q(b)j+1am−ibn−j , where

Q(X) = X

1− e−X
.

(For a proof of this equality see Kurano [6].) We use this formula in the examples.

4.1. The example of Dutta, Hochster, and McLaughlin

Here the class[Proj(R/(X,Y ))] − [Proj(R/(X,Z))] is in the kernel of the hyperplan
and is in fact the image under the Riemann–Roch map of the class[R/(X,Y )]−[R/(Y,Z)]
of K0(X). The intersection of this element ofK0(X) with the hyperplane can be comput
by intersecting the first term with the elementZ and the second withY (since both of thes
elements have degree one), giving[(R/(X,Y,Z))] − [(R/(X,Z,Y ))], which is clearly
zero.
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4.2. The Miller–Singh example

In this example we can take the obvious element[(R/(U,V,W))] − [(R/(U,V,Z))];
intersection withZ in the first term andW in the second shows that the intersection w
the hyperplane inK0(X) is zero.

4.3. The Kurano example

HereX = P
2 × P

2 and the cycle isa2 − ab + b2. In this case the obvious choice
cycle inK0(X) does not work, and we work out this example in detail, showing why
Riemann–Roch map is important for this construction.

Let R = k[Xij ]/I2 where theXij are the entries of the matrix

[
X11 X12 X13
X21 X22 X23
X31 X32 X33

]

and I2 is the ideal generated by the 2× 2 minors of this matrix. The elementa2 of the
Chow group corresponds to the ideal generated by the entries of two columns of th
trix, which we take to be the first two. The subscheme corresponding to this quot
Proj(k[X13,X23,X33]), which isP

2. The elementb2 is similar and is defined by the ide
generated by the first two rows. The elementab is defined by the ideal of entries in the fir
row and first column; the subscheme is Proj(k[X22,X23,X32,X33]/(X22X33 − X32X23)),
which isP

1 × P
1. We denote the prime ideals that define the cyclesa2, ab, andb2 by p1,

p2, andp3, respectively.
If we attempt to intersect the element of theK-group defined by the correspondin

combination of coherent sheaves, the best strategy is to take the hyperplanes defi
X13 for p1, X22 for p2, andX31 for p3. This gives

[
k[X23,X33]

] − [
k[X23,X32,X33]/(X32X23)

] + [
k[X32,X33]

]
.

This expression is not zero in theK-group; there is a short exact sequence

0→ k[X23,X33](−1)
X23−−−−−→ k[X23,X32,X33]/(X32X23) −→ k[X32,X33] → 0,

but the difference[k[X23,X33](−1)] − [k[X23,X33]] = [k[X33]] is not zero inK0(X), so
the above expression is not zero.

One way around this is to use the element

[
R/p1(−1)

] − [R/p2] + [R/p3].

This has all the necessary properties; in particular, the above short exact sequenc
that the intersection with the hyperplane is zero.

In general, the solution to this problem is more complicated, and we briefly ou
how the general procedure works in this case. To keep notation simple, we deno
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coherent sheaf corresponding to the cycleaibj by AiBj . We denote the Riemann–Ro
map byτ .

We recall that the Riemann–Roch map sends the class ofP
i ×P

j to Q(a)i+1Q(b)j+1 ×
am−ibn−j . Using thatA2 is P

2, AB is P
1 × P

1, and so on, we obtain

τ
(
A2) = a2

(
1+ 3

2
b + b2

)
, τ (AB) = ab(1+ a)(1+ b),

τ
(
B2) = b2

(
1+ 3

2
a + a2

)
, τ

(
A2B

) = a2b(1+ b),

τ
(
AB2) = ab2(1+ a), and τ

(
A2B2) = a2b2.

Using these expressions, it is not difficult to compute that the element

A2 − AB + B2 − 1

2

(
A2B + AB2)

maps toa2 − ab + b2 and can be used in the construction.
We note that in this notation the element derived previously is

A2(−1) − AB + B2 = A2 − AB + B2 − A2B.

This gives a different element of theK group, but both have the correct components
dimension 2 and are in the kernel of the hyperplane, so either one can be used.

5. Transforming the intersection with the hyperplane into a perfect complex

We assume now that we have an elementβ of K0(X) whose intersection with the hy
perplane is zero. We can writeβ in the form

β =
∑

ai

[
R/pi (ni)

]
,

for some graded prime idealspi and some rational numbersai and integersni .
The intersection ofβ with the hyperplane inK0(X) is taken by choosing an elementyi

of degree 1 that is not inpi for eachi and taking the element
∑

ai[R/(pi , yi)(ni)]. In this
section we show how to replaceR/(pi , yi) by a perfect complex that reduces toR/(pi , yi)

in U = Spec(R) − {m}. To simplify notation, we drop the subscripts and denotepi by p

andyi by y.
The reason this is not a simple process is thatR/p will usually not have finite pro

jective dimension. The main technique is suggested by a construction of Thomas
Trobaugh [12] and involves taking a partial resolution ofR/p and using maps defined o
the tensor product of this resolution with a truncated Koszul complex. We now expla
construction in detail.



578 G. Piepmeyer, P. Roberts / Journal of Algebra 294 (2005) 569–589

ap of

t

g

e

e map
lve
lit the
ich
Letx1, . . . , xm be a sequence of homogeneous elements inm and letK = K(x1, . . . , xm)

be the Koszul complex on these elements. We define the complexK+ = K+(x1, . . . , xm)

by lettingK+
i = Ki+1 if i � 0 andK+

i = 0 if i < 0. In other words, we removeK0 and
shift the other degrees by one. LetE be a graded truncated resolution ofR/p; that is,
we have a resolutionF of R/p by graded freeR-modules and a positive integert so that
Ei = Fi for i � t andEi = 0 for i > t . The boundary maps inK+ andE are induced by
those ofK andF , respectively.

Lemma 1. LetE andF be complexes. Suppose we have, for each ordered subsetI = {i1 <

i2 < · · · < ir} of {1< 2< · · · < m}, a mapφI :E → F [r − 1] such that for eachI we have

dF φI =
r∑

j=1

(−1)j xij φI−{ij } + (−1)r−1φI dE.

Assume also thatφ∅ = 0. Then theφI define a map of complexesΦ :K+ ⊗ E → F . More
precisely, for eachI let bI be the standard basis element ofK+

r−1. If e ∈ En, then

Φn+r−1(bI ⊗ e) = φI (e).

Proof. The proof is exactly a matter of checking the condition for a map to be a m
complexes. LetbI ⊗ e be as above. We have

Φn+r−2dK+⊗E(bI ⊗ e) = Φn+r−2
(
dK+(bI ) ⊗ e + (−1)r−1bI ⊗ dE(e)

)
= Φn+r−2

(∑
(−1)j xij bI−{xij

} ⊗ e + (−1)r−1bI ⊗ dE(e)
)

=
∑

(−1)j xij φI−{xij
}(e) + (−1)r−1φI

(
dE(e)

)
= dF

(
φI (e)

) = dF

(
Φn+r−1(bI ⊗ e)

)
. �

We note that ifI = {i} has one element, the condition isdF φi = φidE , which states tha
φi is a map of complexes.

To motivate the construction, we note first that ifx1, . . . , xm generate anm-primary
ideal, then the Koszul complex onx1, . . . , xm is exact onU = Spec(R) − {m}, and this
implies that the map fromK+ to R defined by the boundary map fromK1 to K0 = R

is a quasi-isomorphism onU . Thus we can tensor this map withE and obtain a map
σ :K+ ⊗ E → E that is a quasi-isomorphism onU . (We could also define this map usin
the above lemma by lettingφi = multiplication byxi and lettingφI = 0 for |I | > 1.)

The aim of this section is to represent the quotientR/(p, y) by a perfect complex. Th
first approximation toR/p is the complexE, its graded resolution truncated in degreet .
This complex has nonzero homology in two degrees, 0 andt . If we could splitE into a
direct sum of two complexes, each with homology in one degree, we could take th
y in degree 0 and the identity in degreet , and the associated mapping cone would so
the problem. Usually, however, that will not be possible. What we do instead is to sp
above map fromK+ ⊗ E to E; that is, we show that it is a sum of two maps, one of wh
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is zero in low degrees and the other in high degrees and use this decomposition to co
the desired perfect complex. We denote the natural map fromK+ ⊗ E to E by Φ.

Assume thatx1, . . . , xm is a sequence of homogeneous elements ofR of positive degree
that generate anm-primary ideal ofR. We note that since Proj(R) is smooth,(R/p)(x) has
finite projective dimension over the ringR(x). (Here, following standard notation,R(x) de-
notes the ring of homogeneous elements of degree zero in the localizationRx .) We denote
E(−n) the complexE with the grading on each module in the complex shifted by−n.

Lemma 2. LetE be a projective resolution ofR/p truncated att for some integert . Letx
be a homogeneous element ofR of positive degree, and lets be an integer greater than o
equal to the projective dimension of(R/p)(x) and less thant . Then there exists an integ
n such that multiplication byxn fromE(−n) to E can be written as a sumφ′ + φ′′, where

(1) φ′ andφ′′ are maps of complexes that are maps of graded modules in each degr;
(2) φ′

j = 0 for j < s andφ′
j = multiplication byxn for j > s;

(3) φ′′
j = 0 for j > s andφ′′

j = multiplication byxn for j < s.

Proof. Sinces is greater than or equal to the projective dimension of(R/p)(x), andE(x)

is a projective resolution of(R/p)(x) up to a degreet greater thans, (E(x))s splits into a
direct sum Im(ds+1)(x) ⊕M , whered denotes the boundary map onE andM is a submod-
ule that maps injectively into(E(x))s−1. Taking the projections onto Im(ds+1)(x) andM ,
respectively, and clearing denominators, we obtain a decomposition of the map gi
multiplication byxn on Es into a sumf ′ + f ′′. Note thatdsf

′ = 0 sincef ′ maps into
the image ofds+1. We now defineφ′ by lettingφ′

j = xn for j > s, f ′ for j = s, and 0 for
j < s. Sincedsf

′ = 0, φ′ is a chain map. Letφ′′
j = 0 for j > s, f ′′ for j = s, andxn for

j < s; thenφ′ + φ′′ = xn, and soφ′′ is also a chain map. This entailsf ′′ds+1 = 0. �
We next combine the maps given by Lemma 2 to split the natural mapΦ from K+ ⊗ E

to E.

Proposition 1. Let F be a graded resolution of a moduleM . Let x1, . . . , xm be a set of
homogeneous elements ofR of positive degree, and lets be an integer greater or equal t
the maximum of the projective dimensions of theM(xj ), and lett > s + m be an integer.
Let E be the truncation ofF in degreet . Then there is a positive integern such that the
natural mapΦ :K+(xn

1 , . . . , xn
m) ⊗ E → E splits into a sumΦ = Φ ′ + Φ ′′, where

(1) Φ ′
j = 0 for j < s andΦ ′

j = Φj for j � s + m;
(2) Φ ′′

j = 0 for j � s + m andΦ ′′
j = Φj for j < s.

Proof. We constructΦ ′ andΦ ′′ by constructing mapsφ′
I andφ′′

I as in Lemma 1 using
induction on the number|I | of elements ofI . At each step in the induction we may chan
the integern. We begin with multiples of the mapsφ′ andφ′′ given by Lemma 2. Begin
by settingn to be the maximum of theni ’s from Lemma 2. The multiples arexn−ni

i φ′ and
x

n−ni φ′′. Rather than carry around a power, we renamex
ni as simplyxi . Then, sinceφ′
i i {i}
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is either 0 orxi except in degrees, we have thatxlφ
′{j} − xjφ

′{l} has a nonzero compone
only in degrees, and similarly forφ′′.

Assumer � 2. We now construct, for each ordered subsetI = {i1 < · · · < ir} of
{1 < · · · < m}, mapsφ′

I andφ′′
I from E to E[r − 1] such that each map is zero exce

in degrees and, denoting the components ofφ′
I andφ′′

I in degrees by f ′
I andf ′′

I , respec-
tively, we have

f ′
I dE = 0 and dEf ′

I =
∑

(−1)j xij f
′
I−{ij },

and similarly forf ′′
I . Fix r , and assume that we have such maps for all smaller valuesr .

We then have

dE

(∑
(−1)j xij f

′
I−{ij }

)
=

∑
(−1)j xij dEf ′

I−{ij } =
∑∑

(−1)j+lxij xil f
′
I−{ij ,il} = 0;

each term appears twice, but with opposite signs since the punctured subsets ofI are also
ordered. SinceE is exact in degrees + r − 2, we can lift the map

∑
(−1)j xij f

′
I−{ij } and

find a map satisfying the second of the required conditions. To satisfy the first cond
we localize by invertingxi1xi2 . . . xir and consider the part of degree zero in the gra
localization. Sinces + r − 1 is greater than the projective dimension ofM(xi1xi2 ...xir ) and
s + r is smaller thant , the degree where the complex is truncated, the complex is split
at this point. Therefore we can find a map satisfying alsof ′

I dE = 0 by projecting the lift
onto a complement of the image ofdE(xi1

...xir
)

and then clearing denominators. We assu

that we have done this for each setI with |I | = r , and thatnr is sufficiently large so tha
it suffices to multiply by(xi1 . . . xir )

nr to define the mapf ′
I for all I . If nr > 1 we replace

the mapsφ′
i1,...,is

by x
nr−1
i1

. . . x
nr−1
is

φ′
i1,...,is

for s < r .
We letφ′′

I = −φ′
I for eachI with |I | � 2; this ensures that theΦ ′ andΦ ′′ from Lemma 1

sum to give the naturalΦ. �
We can now define the complex we want.

Definition 1. We letC(p;y) denote the mapping cone of the mapΦ ′ + yΦ ′′ from K+ ⊗E

to E defined above.

It is clear thatC(p;y) is a perfect complex.

Lemma 3. The natural map fromC(p;y) to R/(p, y) is a quasi-isomorphism onU .

Proof. The complexC(p;y) in degree 0 is justE0, and its homology is the cokernel und
the sum of the images of the map fromE1 → E0 and that fromK+ ⊗ E0 → E0. The
cokernel of the first map is, of course,R/p and the image of the second map in this coker
is the ideal generated by theyxj , which is equal to the ideal generated byy onU .

The homology in the rest ofC(p;y) is determined by that in degreet in E. Since the
natural map is a quasi-isomorphism onU and the maps in homology in degrees� s + m
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are the same as those induced by the natural map, the homology of the mapping
zero in these degrees onU . Hence our map is a quasi-isomorphism onU . �

6. Building the complex from the pieces

As we have discussed, the fact that the intersection of our element ofK0(X) with the
hyperplane is zero implies that the modulesR/(pi , yi) fit into short exact sequences su
that the corresponding alternating sum of terms that occur in these sequences is ze
final step in the construction of the complex is to replace these maps by maps from
plexes tensored with truncated Koszul complexes in a manner similar to that in the pr
section and replace the exact sequences by appropriate mapping cones. We do not
this formalism in general but describe two examples in detail.

6.1. The example onk[X,Y,Z,W ]/(XW − YZ)

In this case we have two idealsp1 = (X,Y ) andp2 = (X,Z) and homogeneous elemen
y1 = Z andy2 = Y such that

R/(p1, y1) = R/(X,Y,Z) = R/(X,Z,Y ) = R/(p2, y2).

ThusC(p1;y1) andC(p2;y2) are isomorphic onU , and we can find a map fromK+ ⊗
C(p1;y1) to C(p2;y2) that is a quasi-isomorphism onU for K+ the truncated Koszu
complex on some sequence of homogeneous elements ofm that generate anm-primary
ideal. (A proof of this fact can be found in Thomason and Trobaugh [12].) The map
cone of this map will have homology of finite length and will satisfy the desired condit

In the last section of the paper we describe a much more efficient method to con
the complex in this case.

6.2. The example of Kurano

We also describe the case suggested by Kurano. In this case the fact that the inte
with the hyperplane is zero is expressed by a short exact sequence involving three
As described earlier, we letp1 be the ideal generated by the first two columns of the ma
(Xij ), p2 the ideal generated by the first row and the first column, andp3 the ideal generate
by the first two rows. The element ofK0(X) is [R/p1(−1)] − [R/p2] + [R/p3]. We let
y1 = X13, y2 = X22, andy3 = X31. We then have a short exact sequence

0→ R/(p1, y1)(−1)
α−→ R/(p2, y2) −→ R/(p3, y3) → 0.

This means that there is a quasi-isomorphismβ from the mapping cone ofα to R/(p3, y3).
We let α̃ be a map fromK+ ⊗ C(p1;y1) to C(p2;y2) that restricts toα on U . We then
let β̃ be a map from the cone oñα tensored with an appropriate truncated Koszul comp
to C(p3;y3) that restricts toβ on U . The mapping cone of̃β will then have the righ
intersection properties.
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7. Proof that the construction gives the correct result

In this section we show that the above construction gives a complex with the
rect intersection properties. First we recall the process used in the proof in Rober
Srinivas [10].

Let α be an element ofK0(X) in the kernel of the hyperplane section. The first s
in the proof in [10] is to push this element forward intoK0(Y ), whereY = Proj(R[T ])
with T an indeterminate of degree 1 and whereX is embedded intoY as Proj(R[T ]/(T )).
A computation shows that this element ofK0(Y ) goes to zero onY − {p}, wherep is
the point defined by the maximal ideal ofR in R[T ], and the theorem of Thomason a
Trobaugh [12] then implies that it is equal inK0(Y ) to the class of a complex support
at p. The final step is to restrict this element toK0(A), whereA is the localization ofR
at the graded maximal ideal. To prove that the complex we have constructed is corre
have to show that it is the restriction to Spec(A) of a complex that is supported atp and
whose class in theK-group ofY is the same as the pushforward of the original elem
of K0(X).

We prove this result with one further assumption, that inx1, . . . , xm we havem greater
than the dimension ofR. We also assume thatR is Cohen–Macaulay. We then have t
following result.

Lemma 4. LetE be a perfect complex onY . Then, ifK+ = K+(x1, . . . , xm), where thexi

are homogeneous elements ofR andm > dim(R), we have the equality[K+ ⊗R E] = [E]
in theK-group ofY .

Proof. We show that ifK is the whole Koszul complex onx1, . . . , xm, thenK ⊗ E is the
class of zero, which is equivalent to the statement of the lemma. It suffices to sho
the class ofK ⊗R R[T ] itself is zero. To see this, we note thatK ⊗R R[T ] is built up out
of copies ofOY (n) for variousn, and its class in theK-group ofY depends only on th
degrees of the elementsxi . Sincem > dimR, we can choosem homogeneous elements
R[T ] of the same degrees that generate an ideal primary to the irrelevant maximal id
R[T ]. The support of this complex inY is empty, so its class is clearly zero.�

The element we begin with in the general construction is a combination of cl
of the form [R/pi (ni)]. The image of this class in theK-group of Y is the class of
R[T ]/(pi , T )(ni). We assume for simplicity of notation thatni = 0; this does not affec
the proof. The main part of the proof here is to show that there is a complex with ho
ogy supported atp except in degree 0 that defines the same element in theK-group of
Y asR/(pi , T ) and restricts in theK-group ofA to the complexC(pi;yi) defined in the
previous sections. We note (a fact already used) that any complex with support con
in (T ) is perfect onY , since Proj(R[T ]/T ) = Proj(R) is smooth and the embedding ofX

in Y is a regular embedding.
In the remainder of this section we use the notationE andK+ to denote the extension

E ⊗R R[T ] andK+ ⊗R R[T ].
The procedure we use involves defining complexes onY that reduce to the given com

plex whenT is set equal to 1 (note that we can obtain the restriction of the compl



G. Piepmeyer, P. Roberts / Journal of Algebra 294 (2005) 569–589 583

ng
e
on

se com-

lex
y

s

at
s

ters

l

Y − X = Spec(R) by settingT = 1 using the isomorphismR ∼= R[T ](T ), whereR[T ](T )

denotes the graded part of the localizationR[T ]T of degree zero). The class of mappi
cone of the mapT times the natural map fromK+ ⊗ E to E is equal to the class of th
mapping cone of the mapT Φ ′ + yiΦ

′′ in theK-group, since they are mapping cones
maps between the same two complexes (with the same gradings). We denote the
plexesC(pi;T ,T ) andC(pi;T ,yi), respectively. Note thatC(pi;T ,yi) becomesC(pi;yi)

if T is set equal to 1.

Lemma 5. For eachi we can find a perfect complexQi and mapsγi :Qi → C(pi;T ,T )

andδi :Qi → C(pi;T ,yi) such that:

(1) Qi is supported onX = Proj(R/T R[T ]);
(2) the mapping cones onγi andδi have homology supported atp except in degree zero;
(3) we have[R[T ]/(pi , T )] = [C(pi;T ,T )] − [Qi] in K0(Y );
(4) there is a map from the mapping cone onδi to R[T ]/(pi , yi) that is an isomorphism

up to homology supported at{p}.

Proof. We first examine the homology of the mapping cones more closely. The compE

has homologyH0 = R[T ]/(pi , T ) in degree 0 andHt in degreet ; the rest of the homolog
is zero. LetF be the mapping cone ofT times the natural map fromK+ to R[T ]. Letψ be
the embedding ofHt [t] into E. Then, sinceF is a complex of free graded modules,ψ in-
duces maps fromF ⊗ Ht [t] to C(pi;T ,T ) and toC(pi;T ,yi) that induce isomorphism
in homology in degrees� t .

We recall that we are trying to find a complexQi supported onX and maps fromQi to
C(pi;T ,T ) andC(pi;T ,yi) such that their mapping cones have homology supportedp

except in degree zero. Since the maps defined above fromF ⊗Ht [t] to these mapping cone
induce isomorphisms in homology in degrees� t it suffices to find a map toF ⊗Ht [t] with
these properties. The homology ofF ⊗ Ht [t] is supported atp except in degreet , where it
is isomorphic toHt/(x1T , . . . , xmT )Ht .

Let d be the dimension ofR, and letz1, . . . , zd be a homogeneous system of parame
of R such that the ideal(z1, . . . , zd) is contained in(x1, . . . , xm). LetF(zj ) be the complex
defined in the same way asF with x1, . . . , xm replaced byz1, . . . , zd . Since(z1, . . . , zd) ⊆
(x1, . . . , xm), there is a map from the Koszul complex onz1, . . . , zd to the Koszul complex
on x1, . . . , xm, and the same maps define a map fromF(zj ) to F , and hence a map from
F(zj )⊗Ht [t] toF ⊗Ht [t]. In degreet this map induces the surjection fromR[T ]/(T zj )⊗
Ht to R[T ]/(T xj ) ⊗ Ht .

SinceR is assumed to be Cohen–Macaulay andt is greater than the dimension ofR,
the moduleHt is a Cohen–Macaulay module of dimensiond . Hence, since thezj form a
system of parameters onR, F(zj ) ⊗ Ht [t] is exact except in degreet .

The homology ofF(zj )⊗Ht [t] in degreet is Ht/(z1T , . . . , zdT )Ht . Let N be the sub-
module(z1, . . . , zd)Ht/(z1T , . . . , zdT )Ht . OverY − {p} the submoduleN is isomorphic
to the degreet homology ofF(zj )⊗Ht . SetQi as the mapping cone ofT times the natura
map fromK+(z1, . . . , zd)⊗Ht [t] to (z1, . . . , zd)⊗Ht [t]. ThenQi is perfect onY . In fact,
by the regularity of the thezj on Ht , the complex is acyclic in degrees> t . In degreet
its homology is(z1, . . . , zd)Ht/(z1T , . . . , zdT )Ht . Over points ofY whereT is invertible,
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this quotient is zero. Over points ofY where somezj is invertible, the quotient agrees wi
Ht/T Ht , but more importantly, the localization is regular, so that every finitely-gene
module has a finite free resolution. Thus everywhere onY , the complexQi is locally quasi-
isomorphic to bounded complexes of finitely-generated free modules. HenceQi is perfect
onY .

The inclusion of(z1, . . . , zd) into R[T ] induces a map fromQi into F(zj ) ⊗ Ht [t]
which is a quasi-isomorphism since the degreet homology ofQi is N and that agrees wit
the degreet homology ofF(zj ) ⊗ Ht [t] overY − {p}, while in higher degrees, the cha
map consists of identity maps.

Let γi and δi be the induced maps fromQi to C(pi;T ,T ) andC(pi;T ,yi), respec-
tively. It is clear thatQi is supported onX. The map induced on homology fromHt(Qi)

to Ht(F (xj ) ⊗ Ht [t]) is the inclusion of(zj )Ht/(T zj )Ht into (xj )Ht/(T xj )Ht , and the
quotient of this map is supported atp (in fact its support is empty). It thus follows thatQi ,
γi , andδi satisfy statements (1) and (2) of the lemma. The map in statement (4) is the
as that defined in Lemma 3. It remains to be shown that statement (3) is satisfied.

Let Φ denote the natural map fromK+(x1, . . . , xm) ⊗ E to E. ThenC(pi;T ,T ) is the
mapping cone ofT Φ. We have a commutative square

K+ ⊗ E
Φ

E

T

K+ ⊗ E
T Φ

E

It follows, there is a mapΨ from the mapping cone onΦ, which isK(x1, . . . , xm) ⊗ E,
to C(pi;T ,T ), and that the mapping cone ofΨ is quasi-isomorphic to the mapping co
of multiplication byT on E. The homology of the mapping cone of multiplication byT

onE is R/(pi , T ) in degree 0 andHt/T Ht in degreet . Combining these facts, we obtai[
C(pi;T ,T )

] − [
K(xj ) ⊗ E

] = [
R/(pi , T )

] + [
Ht/T Ht [t]

]
.

On the other hand, we have[Qi] = [(zj )Ht/(T zj )Ht [t]]. The cokernel of the injectio
of (zj )Ht/(T zj )Ht [t] into Ht/T Ht [t] is supported at the irrelevant ideal ofR[T ], so we
thus have

[Ht/T Ht ] = [
(zj )Ht/(T zj )Ht [t]

] = [Qi].
Finally, Lemma 4 implies that[K(xj ) ⊗ E] = 0. Combining these equalities, we obtain[

R/(pi , T )
] = [

C(pi;T ,T )
] − [Qi].

This completes the proof of Lemma 5.�
We now complete the proof that the complex we constructed has the right inters

properties. LetC(δi) denote the mapping cone ofδi . From the above lemma, eachC(δi) is
a resolution ofR[T ]/(pi , yi) on Y − {p}. Hence, as we did for theC(pi;yi), we can find
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maps from truncated Koszul complexes tensored with theC(δi) so that the result of takin
the associated mapping cones, which we denoteC̃, is supported atp. Since the complex̃C
is built from theC(δi) by the same procedure as the complex in Section 6 was built
theC(pi;yi), to deduce that̃C defines the correct class inK0(Y ), it suffices to show that

(1) C(δi) becomes quasi-isomorphic toC(pi;yi) after settingT = 1, and
(2) [C(δi)] = [R[T ]/(pi , T )] in K0(Y ).

To see the first statement, we note first thatC(pi;T ,yi) becomesC(pi;yi) whenT is
set equal to 1. Since[C(δi)] = [C(pi;T ,yi)] − [Qi] andQi is supported atT R[T ], this
proves (1).

The second statement follows from the equalities[
C(δi)

] = [
C(pi;T ,yi)

] − [Qi] = [
C(pi;T ,T )

] − [Qi] = [
R[T ]/(pi , T )

]
by Lemma 5.

8. Example: the case of k[X,Y,Z,W ]/(XW − YZ) worked out in detail

While the previous sections described a general method for constructing complex
results are unwieldy and not as efficient as they might be. In this section we desc
better procedure in the case whereR = k[X,Y,Z,W ]/(XW − YZ) that, while following
the same general idea, gives a simpler result.

In this case the element of theK-group that we begin with is[R/(X,Y )]− [R/(X,Z)].
The general method would be to take truncated resolutions of each of these terms a
to take the cones on natural maps from their tensor products with truncated Koszu
plexes that can be split into sums. Finally, we would take another map on the com
tensored with more truncated Koszul complexes to give the complex we want. Inste
take another complex that is close to being a resolution but, like the truncated resolu
not exact in two places; however, this complex will have support strictly smaller tha
of the simply truncated resolution. A consequence is that we can use Koszul comple
fewer elements, leading to a more manageable result.

To begin, we letEY denote the complex

0→ R

[
Z

X

]
−−−−→ R2

[−Y W

X −Z

]
−−−−−−−−−→ R2 [X Y ]−−−−−−→ R → 0

and letEZ denote the complex

0→ R

[
Y

X

]
−−−−→ R2

[−Z W

X −Y

]
−−−−−−−−−→ R2 [X Z ]−−−−−−→ R → 0

We describe the computations onEY ; those onEZ are similar. The homology ofEY is
R/(X,Y ) in degree 0 andR/(X,Z) in degree 2. LetK+ denote the truncated Koszul com
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andR/(X,Z).
The next step is to split multiplication byW and byY + Z into a sum satisfying the

properties of Lemma 2. We recall that the splitting in general is begun by decomp
multiplication byxn

j on Ei into a sum for certainn and i; herei ∈ {W,Y + Z}. In this
case we takei = Y and n = 1. The splitting of multiplication byW is done using the
decomposition [

W 0
0 W

]
=

[
W 0
−Z 0

]
+

[
0 0
Z W

]
.

This decomposes multiplication byW onEY into the sum of the two maps

0→ R

W

[
Z

X

]
R2

[−Y W

X −Z

]

[
W 0
0 W

] R2
[ X Y ]

[
W 0
−Z 0

] R

0

→ 0

0→ R [
Z

X

] R2 [−Y W

X −Z

] R2
[ X Y ]

R → 0

and

0→ R

[
Z

X

]

0

R2

[−Y W

X −Z

]

[
0 0
0 0

] R2
[ X Y ]

[
0 0
Z W

] R

W

→ 0

0→ R [
Z

X

] R2 [−Y W

X −Z

] R2
[ X Y ]

R → 0

Similarly, the decomposition[
Y + Z 0

0 Y + Z

]
=

[
Y −W

−X Z

]
+

[
Z W

X Y

]

gives a decomposition of multiplication byY + Z into a sum of two maps. We denote t
two maps onEY decomposing multiplication byW by φ′

W andφ′′
W , and those forY + Z

by φ′
Y+Z andφ′′

Y+Z .
Since the Koszul complex we are using is on only two elements, there is only one

step in constructing the maps fromK+ ⊗ E to E, and that is to lift the differences

(Y + Z)φ′
W − Wφ′

Y+Z and (Y + Z)φ′′
W − Wφ′′

Y+Z.

We have
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(Y + Z)φ′
W − Wφ′

Y+Z = (Y + Z)

[
W 0
−Z 0

]
− W

[
Y −W

−X Z

]
,

[
ZW W2

−Z2 −WZ

]
=

[−Y W

X −Z

][
0 0
Z W

]
.

Thus the map fromE to E[1] inserted to make the maps fromK+ ⊗E to E compatible
is given by the matrix

[ 0 0
Z W

]
from E1 to E2 and zero, elsewhere. Note that the condit

thatdEφ′
12 that arose in the proof of Proposition 1 holds in this case. The correspo

map forφ′′ will, as in the general construction, be given by the negative of this matri[ 0 0
−Z −W

]
.

We now, denoting the two maps fromK+ ⊗EY to EY by Φ ′
Y andΦ ′′

Y , take the mapping
cone of the sumΦ ′

Y + ZΦ ′′
Y . This is the representation ofR/((X,Y ) + (Z)) by a perfect

complex. To display the resulting mapping cone, it is convenient to letV = Y + Z, and we
only show the nonzero portions, let

Γ =




Z 0 −W 0
X 0 0 −W

0 Z V 0
0 X 0 V

0 0 Y −W

0 0 −X Z


 , Λ =




−Y W 0 0 −W 0
X −Z 0 0 0 −W

0 0 −Y W V 0
0 0 X −Z 0 V

0 0 0 0 −X −Y


 ,

Σ =
[

V 0 W 0 0 0
0 V 0 W Z − Z2 W − ZW

]
,

Π =
[

Y + Z2 ZW − W W 0 0
XZ − X Z + YZ Z2 − Z ZW 0

]
, Θ =

[
X Y 0 0 −W

0 0 X Y V

]
.

R




−W

V

−Z

−X




0

R2 ⊕ R2
Γ

[ V W 0 0]

R4 ⊕ R2
Λ

Σ

R4 ⊕ R
Θ

Π

R2

[ YZ + Z2 ZW ]

0 R [
Z

X

] R2 [−Y W

X −Z

] R2
[ X Y ]

R

The mapping cone of the above map of complexes is then the complexC(p1;y1) =
C((X,Y );Z) of the general construction; while the complexEY that we used here is no
exactly the same as the truncated complexes in the general case, the rest of the con
is identical. The complexC(p2;y2) = C((X,Z);Y) is defined similarly as the mappin
cone ofΦ ′

Z + YΦ ′′
Z ; in fact, by the symmetry of the situation it suffices to interchangY

andZ in C((X,Y );Z).
The final step is to take the mapping cone of a map fromK+ ⊗ EZ to EY for a suitable

truncated Koszul complexK+. In this case, since bothC((X,Y );Z) andC((X,Z);Y)
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have support in Spec(R/(X,Y,Z)), it suffices to take a Koszul complex on one eleme
a power ofW . The homology of both complexes has finite length everywhere exce
degree zero, where the homology modules areR/(X,Y,Z2,ZW) andR/(X,Z,Y 2, YW),
respectively. It follows that we can find a map of complexes that lifts multiplication byWm

for somem, and the mapping cone of the resulting map fromC((X,Z);Y) to C((X,Y );Z)

will have homology of finite length. LetC denote this mapping cone. We now show direc
thatC will have the required intersection multiplicity.

We will show thatχ(R/(Z,W),C) = −1. SinceC is defined as the mapping cone o
map fromC((X,Z);Y) to C((X,Y );Z), it suffices to show that

χ
(
R/(Z,W),C

(
(X,Y );Z)) − χ

(
R/(Z,W),C

(
(X,Z);Y )) = −1.

To accomplish this, we tensor the diagrams for the mapsΦ ′
Y + ZΦ ′′

Y andΦ ′
Z + YΦ ′′

Z

with R/(Z,W) and compute the homology. Since after tensoring withR/(Z,W) we are
left with fairly simple complexes with entries in a polynomial ring in two variables,
not terribly difficult. We letS = R/(Z,W) and letk be the residue field ofS. Tensoring
the diagram defining the mapΦ ′

Y +ZΦ ′′
Y with R/(Z,W) and taking homology in the row

we obtain

0
0

0
0

S/XS ⊕ k

S/XS

k

0
k ⊕ k

k

To complete the computation we need to compute the vertical map in the third po
The element of homology that generates the componentS/XS is (0,1,0,0,0,0), and
computing its image we obtainY in the lower copy ofS/XS. Thus we are left withk
in each row in the third column, and the Euler characteristic ofC((X,Y );Z) ⊗ R/(Z,W)

is 1− 2+ 2− 1= 0.
If we carry out the same computation tensoringC((X,Z);Y) with R/(Z,W) (which

we do by tensoringC((X,Y );Z) with R/(Y,W), so nowS = R/(Y,W)), we obtain

0
0

0
0

k

0
k ⊕ k

k

S/XS ⊕ k

S/XS

In this case the vertical map fromS/XS to S/XS in the fifth column is multiplication
by Y 2. Hence the Euler characteristic is 2− 2+ 2− 1= 1. Thus the Euler characteristic
C ⊗ R/(Z,W) is 0− 1= −1.
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